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ABSTRACT
Authors publish documents in a dynamic manner. Their topic of in-

terest and writing style might shift over time. Tasks such as author

classification, author identification or link prediction are difficult

to solve in such complex data settings. We propose a new represen-

tation learning model, DGEA (for Dynamic Gaussian Embedding

of Authors), that is more suited to solve these tasks by capturing

this temporal evolution. We formulate a general embedding frame-

work: author representation at time 𝑡 is a Gaussian distribution

that leverages pre-trained document vectors, and that depends on

the publications observed until 𝑡 . The representations should retain

some form of multi-topic information and temporal smoothness.

We propose two models that fit into this framework. The first one,

K-DGEA, uses a first orderMarkovmodel optimized with an Expec-

tationMaximization Algorithmwith Kalman Equations. The second,

R-DGEA, makes use of a Recurrent Neural Network to model the

time dependence. We evaluate our method on several quantitative

tasks: author identification, classification, and co-authorship pre-

diction, on two datasets written in English. In addition, our model

is language agnostic since it only requires pre-trained document

embeddings. It outperforms existing baselines by up to 18% on an

author classification task on a news articles dataset.

CCS CONCEPTS
• Information systems → Document representation; • Comput-
ing methodologies → Natural language processing; Neural net-
works; Latent variable models.

KEYWORDS
Representation Learning, Dynamic Gaussian Embedding, Author

Embedding, Document Embedding
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Figure 1:Output ofDGEA -Wehere present an illustration of
the dynamicGaussian embedding of an author (in orange) in
the same semantic space than pre-trained document repre-
sentation. We illustrate documents’ representations as dots
(in blue). They are built using document encoders such as
the Universal Sentence Encoder [16]. The author’s represen-
tations are Gaussian distributions that evolve over time (in-
dicated as an orange arrow).
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1 INTRODUCTION
1.1 Context
Text is the dominant form of information exchange on the Web.

Authors’ interests and personality can often be determined by their

publication history. On social media, such as Twitter, users’ publica-

tions are a mix of personal diary entries and speak-up stances. Au-

thors’ publications are often observed on a large temporal window.

This information is crucial. For example, in the scientific literature,

researchers tend to publish in narrow domains when considering

short-time windows, though their research interests significantly

vary at the scale of a decade due to the evolution of their scientific

fields, job relocation, new positions, etc.
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As the amount of available textual data gets bigger, automatic

tools are developed to scrap it, store it, and process it. Information

Retrieval study the organization of corpora to facilitate the access

to relevant information. Usual Information Retrieval tasks, such

as recommendation or expert finding [11], require a coarse-grain

representation of authors. This task is referred to as Representation

Learning. It uses machine learning approaches to build represen-

tations of textual objects (words, documents, author) into a (low

dimensional) Euclidean space.

To capture the dynamic information and to consider the drift of

authors interest, we propose to learn multi-purpose dynamic repre-
sentations of authors in the same space than documents embeddings.

The representations should demonstrate smooth temporal trajecto-

ries, i.e., they should incorporate some form of time dependence.

As we consider a discrete representation of time, we learn, for each

author, a sequence of representations in a semantic space R𝑟 . Ad-
ditionally, as authors can write on different subjects, we propose

to learn Gaussian representations to capture the author semantic

uncertainty. We illustrate our main objective in Figure 1.

1.2 Motivation
Learning one author’s representation by time bin is a strong model-

ing assumption. We provide here empirical evidences that support

this assumption and therefore the relevance to tackle this prob-

lem. We start with an illustrative example. In Table 1, we present 5

decades of Geoffrey Hinton’s publications. The selected articles are

the most cited. His research interests clearly evolved. He initially

worked on cognitive science then progressively changed to neural

network and general machine learning. We extend this observation

to a significant pool of authors. To this end, we consider the S2G cor-

pus, composed of machine learning articles’ titles from Ammar et al.

[2], each of them being associated to one or several authors. The

articles were published between 1985 and 2017. We first construct

vectorial representations inR𝑟 of each document in the dataset with

the Universal Sentence Encoder [13]. We then compute, for each

author, the cosine similarity between the representations of the

documents she/he wrote in her/his last year of publication T and

the representations of the documents she/he wrote in the previous

year (T-1), in the one preceding this last year (T-2) and in her/his

very first year of publication (T1). We then compute the average

similarity, for each author, and then the overall average over the

corpus. We also trained a baseline classifier, which is a two-layers

MLP (700 units) using ReLU activation and dropout (rate set to 0.1),

that predicts the document’s authors from the USE representations.

We use documents in T as training data, and evaluate performance

at T-1, T-2 and T1 (in terms of micro-F1). For comparison, the micro-

F1 on a validation set of 10% of the documents in T is close to 13%.

We obtain the results presented in Table 2.

On average, the representations of an author’s documents are

closer between T and T-1 and between T and T-2 than between T

and T1. We perform a Student’s t test on the means per author and

obtain that the similarities T vs T-1 are significantly greater than T

vs T1 (p-value : 1.6e-24), greater at T vs T-2 than T vs T1 (p-value

: 8.6e-20) but not significantly greater between T vs T-1 and T vs

T-2 (p-value :0.059). Finally, we observe a significant drop in the au-

thor’s prediction performance between T-1/T-2 and T1. This shows

that the representations are much closer between T, T-1 and T-2

than between T and T1. On this dataset, the representations of the

documents produced by the authors have evolved, demonstrating

the necessity to learn dynamic representations of authors.

1.3 Related works
Representation Learning has been successfully applied to Natural

Language Processing (NLP), e.g. for information retrieval [32] or

text generation [12]. User embedding consists in learning represen-

tations for numerical services users (usually web services). Users

are usually associated with heterogeneous data [21, 37], such as link

information, purchases history, text, etc. In this article, we study a

sub-domain of representation learning for users that focuses only

on the textual information. We call it author representation learning.
Several approaches go beyond the naive Term frequency repre-

sentation of documents. In [31], authors propose to learn sentence

representations with an encoder-decoder architecture, while in [3],

authors average pre-trained word embeddings and modify the ob-

tained vectors using a PCA to produce the document representation.

Recent approaches [13, 16] train different aggregation functions

(LSTM, Transformers, and Deep averaging networks) to map matri-

ces of word embeddings to a single vector. The function is trained

using pairs of related documents. Reimers and Gurevych [39] pro-

ceed in a similar way by fine tuning a BERT model [18] using a

siamese networks approach.

Representation learning for authors has been less studied. The

Author Topic Model (ATM) [41], based on LDA [9] learns low di-

mensional vectors for each author. This vector is a distribution over

latent topics. Aut2Vec [20] uses textual and link information to

build users’ representations. They propose two models. The first

one, the Content Info model, is based on the textual content only. It

uses a Deep Neural Network. For a given pair of author/document,

the network outputs the probability that the author wrote the doc-

ument, computed using the distance between the author and the

document representation. Usr2vec [1] makes use of pre-trained

word embeddings, using a method close to Le and Mikolov [33].

Very fewmethods take the temporal structure of the publications

into account. Blei and Lafferty [8] propose a graphical model to

learn topics with smooth temporal evolution. Recent works focus

on Dynamic Topic Embedding such as [19]. Nevertheless, this liter-

ature does not model author level representation. Sarkar et al. [43]

use Kalman Equations to learn author and word representations

that evolve over time. The conditional probability of co-occurrence

depends on author and word latent factors and uses the CODE

formulation [22]. Nevertheless, they need to use several approxi-

mations, such as a Taylor approximation of the variational bound.

Furthermore, the transition matrix (fixing the temporal evolution)

is shared among the authors and treated as an hyperparameter.

Delasalles et al. [17] propose to use a recurrent neural network

to model the evolution of author language models over time. The

network uses functions of static and dynamic representations to pre-

dict the next time step language model using a residual transition

model. These two approaches model author-word co-occurrences

only and cannot infer representations for unseen authors.
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Title Year of publication

“Some demonstrations of the effects of structural descriptions in mental imagery” 1979

“Phoneme recognition using time-delay neural networks” 1989

“Unsupervised learning: foundations of neural computation” 1999

“Learning multiple layers of features from tiny images” 2009

“When does label smoothing help?” 2019

Table 1: Five decades of Geoffrey Hinton’s publication record - We here present the titles of the articles and their year of pub-
lication. We provide the most cited article (according to Google Scholar) of the considered year. His research interest clearly
evolved over the year: he started with cognitive science, and progressively shifted to neural network/machine learning.

T-1 T-2 T1

Average cosine similarity (T vs ...) 0,233 0,228 0,201

Micro-F1 for author prediction (in %) 4,74 3,13 0,87

Table 2: Quantifying the authors’ publication evolution -
Comparison of average cosine similarities between S2G au-
thors’ documents representations at T vs. T-1, T vs. T-2, and
T vs. T1. We also provide the results of a simple classifier
that identify the author of a document trained on the au-
thors’ documents representations at time T (their last year
of publication).

Furthermore, an important limitation of these previous works is

that they learn vectorial representations. However, author publi-

cations often address several topics. Recent approaches therefore

learn an uncertainty measure in addition to vectors for each docu-

ment, such as [24, 27, 34]. Thesemodels learn document (not author)

representations as Gaussian distributions. The GELD method we

proposed in a previous article Gourru et al. [24] allows to learn

document representations from pre-trained word embedding. We

use a generative hypothesis: word vectors (and citations) are drawn

from Gaussian distributions representing the documents. These

approaches do not provide any way to capture the temporal depen-

dencies for such representations. In a nutshell, none of previous

works applied this approach to learn author-level representations

as Gaussian distributions in the same space than documents.

1.4 Proposition
We propose an original general framework to learn Dynamic Gauss-

ian Embeddings of Authors (DGEA) in a continuous latent space

R𝑟 . It is general in the sense that it can deal with any document

representation, and in the sense that we provide a high-level theo-

retical description of the temporal dependence. The key novelties

are that 1) authors are represented as Gaussian distribution, 2) these

representations lie in a same space than documents, represented

as data point, and 3) authors representations are also meant to

capture the temporal dependencies, so that their representation is

time dependent. We formulate a simple hypothesis that leverages

pre-trained document representations: documents vectors in R𝑟 are
generated by a Gaussian distribution, whose parameters depend on

the author. We then introduce two types of temporal dependencies.

The parameters (means and variances) are either 1) smoothed, so

that the parameters of consecutive time slices are close, modeling

the dependence as a prior at the parameter level, or 2) a function

of the entire publication history, i.e., the means and variances at

time 𝑇 are conditionally independent of the values of the means

and variances in the previous time slices. We then propose two

instances of this general framework: K-DGEA, based on Kalman

smoothing, and R-DGEA, which uses a recurrent neural network

(the representation of the author at time𝑇 is a function of all her/his

publication history).

We show that using the dynamic information allows to improve

authorship identification, co-authorship prediction and author clas-

sification on two English datasets. To mitigate the risk that our

experiments are dependent to the text encoder at use, we employ

three different settings the encode the document titles: InferSent

[16], USE [13] and SBERT [39], that are all reported to be efficient

for short-texts representations. Nevertheless, our framework can

be applied to any document representation, including embedding

of long documents obtained using methods such as [5, 15].

Our model has many advantages over existing work: 1) the R-

DGEA model (the second instance of DGEA) can infer represen-

tations for unseen authors, which avoids re-training the network

(our approach is the only existing method with this inductive prop-

erty), 2) the authors are represented as Gaussian distributions, so

they are associated with a variance measure, allowing to give addi-

tional information in a recommendation process for example, 3) it

easily incorporates pre-trained document representations, so that

our method can evolve as new approaches for learning document

representations are discovered, and 4) our model obtains the best

overall performances on the evaluated tasks.

2 THE DGEA FRAMEWORK
2.1 Generative model
We consider a corpus of timestamped documents. Each document

has a fixed representation in a semantic space R𝑟 , computed us-

ing any pre-trained document encoder, e.g. [13, 16], [23, 45] for

linked documents, or [5] for long documents. As done in previ-

ous works [4, 42], we split the corpus into 𝑇 time bins indexed

by 𝑡 ∈ {1, . . . ,𝑇 }. Each author 𝑖 (1 ≤ 𝑖 ≤ 𝑁 ) is associated with

the bag of document embeddings D (𝑡 )
𝑖

= {𝑑 (𝑡 )
𝑖,1

, 𝑑
(𝑡 )
𝑖,2

, . . .} she/he
wrote at time 𝑡 . In our notations, 𝑑

(𝑡 )
𝑖,1

is the embedding of the first

document wrote by author 𝑖 at time 𝑡 . We introduce the notation

|D (𝑡 )
𝑖

| = 𝑛𝑖,𝑡 , the number of documents published by the author 𝑖

at time 𝑡 . We also use the following notation for vector sequences:

𝑥1:𝑇 = (𝑥1, 𝑥2, ..., 𝑥𝑇−1, 𝑥𝑇 ).
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We posit that the vectors in D (𝑡 )
𝑖

are independently drawn from

a diagonal Gaussian distribution, meaning that the 𝑗-th element of

this set follows 𝑑
(𝑡 )
𝑖, 𝑗

∼ N(𝜙𝑖,𝑡 , 𝜎2

𝑖,𝑡
𝐼 ), with 𝜙𝑖,𝑡 , 𝜎

2

𝑖,𝑡
∈ R𝑟 . Note that

this means that the Gaussian distributions are author dependent.

We choose to use a Gaussian for several reasons: it allows to learn

a measure of semantic uncertainty, and it simplifies the calculation.

A strong hypothesis is that documents in the same time bin are

exchangeable. We believe this hypothesis to be reasonable when

choosing a relevant temporal resolution. Obviously, the mean and

variance are not independent of the author publication history. We

need to introduce some form of time dependence. In Figure (1), we

show what the output should look like: authors are represented as

smooth trajectories of Gaussians in a pre-trained document embed-

ding space. We propose two different approaches to model temporal

dependencies: stochastic dependence and functional dependence.

2.2 Stochastic dependence: the K-DGEA model
The simplest way to model the temporal evolution is to state that

the authors’ representations evolve according to a Markov model,

i.e., that the sequences of means and variances follow:

𝑝 (𝜙𝑖,1:𝑇 ) = 𝑝 (𝜙𝑖,1)
𝑇∏
𝑡=2

𝑝 (𝜙𝑖,𝑡 |𝜙𝑖,1:𝑡−1)

𝑝 (𝜎2

𝑖,1:𝑇 ) = 𝑝 (𝜎2

𝑖,1)
𝑇∏
𝑡=2

𝑝 (𝜎2

𝑖,𝑡 |𝜎
2

𝑖,1:𝑡−1
) .

(1)

With D the set of observations, i.e. {{D (𝑡 )
𝑖

}𝑁
𝑖=1

}𝑇
𝑡=1

, and D𝑖 =

{D (𝑡 )
𝑖

}𝑇
𝑡=1

, we obtain the following likelihood:

L(D) =
∏
𝑖

∫
𝑝 (𝜎2

𝑖,1:𝑇 )𝑝 (𝜙𝑖,1:𝑇 )𝑝 (D𝑖 |𝜙𝑖,1:𝑇 , 𝜎
2

𝑖 )𝑑𝜙𝑖,1:𝑇 ,𝜎
2

𝑖,1:𝑇
. (2)

This likelihood is generally difficult to maximize due to the

multiple integration and to the time dependence. Here, there is no

closed form solution, contrary to classical Linear Dynamic Gaussian

Models [6]. We therefore consider a simpler model. We use a first

order Markov model on the authors’ means. We learn a single

variance per author, i.e., the variance does not depend on time. This

second assumption is obviously simplistic, but it is computationally

convenient, and it allows us to maximize the likelihood efficiently:

we can rewrite it in such away as tomake use of Kalman’s equations

[6]. At each step, the author’s mean evolves according to a Gaussian

distribution depending only on the previous time step, and with a

diagonal variance:

𝜙𝑖,𝑡 ∼ N(𝜙𝑖,𝑡−1, 𝛿
2

𝑖 𝐼 ) and 𝜙𝑖,1 ∼ N(𝜙𝑖,0, 𝛿2

𝑖,0𝐼 ), (3)

where 𝜙𝑖,0 and 𝛿
2

𝑖,0
are the initial parameters to estimate. We obtain:

L(D;𝜓 ) =
∏
𝑖

∫
𝑝 (𝜙𝑖,1:𝑇 )𝑝 (D𝑖 |𝜙𝑖,1:𝑇 , 𝜎

2

𝑖 )𝑑𝜙𝑖,1:𝑇

=
∏
𝑖

∫
𝑝 (𝜙𝑖,1:𝑇 )

∏
𝑡

∏
𝑗

𝑝 (𝑑 (𝑡 )
𝑖, 𝑗

|𝜙𝑖,𝑡 , 𝜎2

𝑖 )𝑑𝜙𝑖,1:𝑇

(4)

where 𝜓 = {𝜙𝑖,0, 𝛿2

𝑖,0
, 𝛿2

𝑖
, 𝜎2

𝑖
}1≤𝑖≤𝑁 . For each author, we need to

identify the values of the parameters𝜓 that maximize L(D;𝜓 ). As
we show in Appendix C, 𝑝 (𝑑 (𝑡 )

𝑖, 𝑗
|𝜙𝑖,𝑡 ;𝜎2

𝑖
) can be rewritten as:∏

𝑗

𝑝 (𝑑 (𝑡 )
𝑖, 𝑗

|𝜙𝑖,𝑡 ;𝜎2

𝑖 ) = 𝐶𝑡𝜔 (𝜎2

𝑖 ,D
(𝑡 )
𝑖

)N ( ¯𝑑𝑖,𝑡 ;𝜙𝑖,𝑡 , 𝑟
2

𝑖,𝑡 𝐼 ) (5)

with𝐶𝑡 a positive constant. ¯𝑑𝑖,𝑡 , 𝑟
2

𝑖,𝑡
and 𝜔 (𝜎2

𝑖
,D (𝑡 )

𝑖
) are defined as

:

¯𝑑𝑖,𝑡 =
1

𝑛𝑖,𝑡

∑
𝑙

𝑑
(𝑡 )
𝑖, 𝑗

, 𝑟2

𝑖,𝑡 =
𝜎2

𝑖

𝑛𝑖,𝑡
, 𝑆2

𝑖,𝑡,𝑟 =
1

𝑛𝑖,𝑡

∑
𝑗

(𝑑 (𝑡 )
𝑖, 𝑗,𝑟

− ¯𝑑𝑖,𝑡,𝑟 )2
(6)

and 𝜔 (𝜎2

𝑖 ,D
(𝑡 )
𝑖

) = exp

(
−
𝑛𝑖,𝑡

2

∑
𝑟

𝑆2

𝑖,𝑡,𝑟

𝜎2

𝑖,𝑟

) (∏
𝑟

𝜎2

𝑖,𝑟

)−𝑛𝑖,𝑡 −1

2

. (7)

In this notation, 𝑟 refers to the dimension of the semantic space.

Moreover, 𝜔 (𝜎2

𝑖
,D (𝑡 )

𝑖
) does not depend on 𝜙2

𝑖,𝑡
. The likelihood

becomes:

L(D;𝜓 ) =
𝑁∏
𝑖

𝑇∏
𝑡=1

𝐶𝑡𝜔 (𝜎2

𝑖 ,D
(𝑡 )
𝑖

)︸                 ︷︷                 ︸
Normalizing factor

×
∫

𝑝 (𝜙𝑖,1:𝑇 )
𝑇∏
𝑡=1

N( ¯𝑑𝑖,𝑡 ;𝜙𝑖,𝑡 , 𝑟
2

𝑖,𝑡 𝐼 )𝑑𝜙𝑖,1:𝑇︸                                              ︷︷                                              ︸
Simple dynamic linear system

.

(8)

We obtain a simpler dynamical system, where instead of multiple

observations per time step, we can aggregate the observations

and consider the mean only. Apart from a normalization factor,

our objective is now similar to the likelihood maximization of the

simple model:

𝜙𝑖,𝑡 ∼ N(𝜙𝑖,𝑡−1, 𝛿
2

𝑖 𝐼 ) and
¯𝑑𝑖,𝑡 ∼ N(𝜙𝑖,𝑡 , 𝑟2

𝑖,𝑡 𝐼 ) . (9)

𝜙𝑖,𝑡 is the latent state which evolves with noise 𝛿2

𝑖
and

¯𝑑𝑖,𝑡 the

measurement, with error 𝑟2

𝑖,𝑡
. We can therefore apply the standard

Kalman equations [28, 38]. We use an EM model with forward

and backward recursions. We present the mathematical details in

Appendix B.

2.3 Functional dependence : the R-DGEA
model

Instead of treating the temporal information as a prior structuring

the sequences of latent variables, the author representation is a

function of the whole publication history:

𝜙𝑖,𝑡 = 𝑓 (D (1)
𝑖

, ...,D (𝑡−1)
𝑖

) and 𝜎𝑖,𝑡 = ℎ(D (1)
𝑖

, ...,D (𝑡−1)
𝑖

) . (10)

The likelihood becomes:

L(D) =
∏
𝑖,𝑡, 𝑗

𝑝 (𝑑 (𝑡 )
𝑖, 𝑗

|𝑓 (D (1:𝑡−1)
𝑖

), ℎ(D (1:𝑡−1)
𝑖

)) . (11)

We propose to use neural networks capable of modeling sequen-

tial data, such as Recurrent Neural Networks (RNN). Let us define
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Figure 2: Illustration of the R-DGEA architecture - The R-
DGEAmodel takes a sequence of document representations
as input, which are aggregated by time bin. TheRNNoutputs
a vector, which is the mean of the author at time𝑇 . This vec-
tor is then fed to a MLP that outputs the variance (similar to
VAE [30]). The likelihood of the documents written at time
𝑇 is then maximized.

𝑓𝜃 a Recurrent Neural Network [14, 25] or a Transformer [44] with

shared parameters, and 𝑔 an aggregation function mapping from

R𝑛𝑖,𝑗,𝑡×𝑟 to R𝑟 , with 𝑛 𝑗 the number of words in the 𝑗-th document

of D (𝑡 )
𝑖

. We get :

𝜙𝑖,𝑡 = 𝑓𝜃 (𝑔(D
(1)
𝑖

), ..., 𝑔(D (𝑡−1)
𝑖

)) (12)

For the variance, we propose to use a multi-layer perceptron

mapping the means to the variance vector. The function is therefore

log𝜎2

𝑖,𝑡
= ℎ𝜃 ′ (𝜙𝑖,𝑡 ). This is similar to the Deep Averaging Network

of Cer et al. [13] and what is done in Variational Auto Encoder [30].

This model can also be seen as a degenerated and dynamic version

of the Mixture Density Networks [7]. The intuition is that some

areas of the latent semantic space will be associated to a higher

variance. In Appendix, we present and evaluate different other

architectures, showing that mapping the mean to the variance using

an MLP performs best. We present in Figure 2 a general overview

of R-DGEA architecture.

2.4 Differences between K-DGEA and R-DGEA
The K-DGEA model is a smoothing approach. It cannot predict the

authors’ representations at time 𝑡 + 1: the most probable value of

𝜙𝑡+1 will be𝜙𝑡 , with an uncertainty given by the transition variance,

𝛿𝑖 . On the other hand, R-DGEA predicts the representation at time

𝑡 +1 given the publication history up to time 𝑡 . It is thus able to infer

the representations of authors who have not been seen during the

training phase. Another important difference is that, in R-DGEA,

the transition parameters 𝜃 are shared by all authors (they are the

RNN parameters), contrary to K-DGEA (the 𝛿 vectors are specific

to each author).

NYT S2G

Method SBERT InferSent USE SBERT InferSent USE

Average 19.07 13.70 12.51 26.98 27.83 23.54

N-DGEA 22.72 21.22 17.39 28.93 28.72 26.99

K-DGEA 17.54 12.65 12.16 26.35 24.71 22.74
R-DGEA 17.83 13.41 11.09 26.89 26.57 23.42

Table 3: Author identification - Coverage-error on the au-
thor identification task (the lower the better). The cover-
age error computes the worst rank (as a percent) of the
nearest neighbor that is a true author of the document.
ATM, Usr2Vec, Aut2Vec and DAR are missing as they do not
model document level representations. R-DGEA with USE
document embedding performs best, with 11.09% on NYT,
K_DGEAwith USE on S2Gwith 22.74%. Adding the temporal
information improves the performance in author identifica-
tion.

ATM 40.78

Aut2Vec 30.36

Usr2Vec 23.22

DAR (static) 21.49
DAR (dynamic) 42.25

DAR (concat) 33.17

Method SBERT InferSent USE

N-DGEA 31.39 33.82 30.69

K_DGEA 24.91 26.97 23.96

R-DGEA 22.67 22.89 21.55

Table 4: Author link prediction - Coverage-error (the lower
the better) for author link prediction on the S2G dataset, i.e.
the percent of nearest neighbors that we need to keep to
cover all the true author’s co-authors.

.

3 EVALUATION
3.1 Datasets
We use two datasets (S2G and NYT) written in English, prepared by

Delasalles et al. [17]. S2G is a corpus of machine learning articles

from Ammar et al. [2]. The articles were published between 1985

and 2017. Each article is associated with its authors, venue, and year

of publication. The textual content is the title only. It has 45, 496

documents and 1117 authors. NYT is a set of news articles from

the New York Times written between 1990 and 2015, gathered by

[46]. It is composed of the article’s title, its authors, and topics (e.g.,

sport, art, business). It has 41, 249 documents and 542 authors. We

can only access the year of each document. We therefore use that

information as the unit of time bins.

3.2 Evaluated methods
We compare our approach, DGEA (Dynamic Gaussian Embedding

for Authors)
1
against the most recent baselines. We compare our

method to three static author embedding methods, ATM [41], the

1
https://github.com/AntoineGourru/DGEA

https://github.com/AntoineGourru/DGEA
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Train/Test ratio 10% 30% 50% 70%

ATM 23.7 (4.5) 31.7 (1.7) 34.4 (1.3) 35.5 (2.5)

Aut2Vec 27.2 (2.6) 32.3 (2.1) 34.5 (1.6) 36.2 (2.21)

Usr2Vec 34.7 (4.1) 41.7 (2.8) 43.8 (2.4) 45.4 (2.4)

DAR (static) 34.9 (3.1) 42.9 (2.2) 43.3 (1.7) 45.21 (2.5)

DAR (dynamic) 18.6 (2.3) 24.9 (2.7) 27.1 (3.0) 29.6 (2.7)

DAR (concat) 34.5 (2.1) 43.6 (1.4) 44.1 (1.5) 47.4 (2.4)

N-DGEA_I 34.0 (2.4) 41.6 (1.1) 44.9 (2.2) 46.7 (2.2)

K-DGEA_I 41.7 (3.0) 51.3 (1.9) 53.1 (2.3) 56.0 (3.3)

R-DGEA_I 43.7 (2.8) 50.8 (1.9) 53.2 (1.8) 53.2 (2.5)

N-DGEA_S 29.3 (2.4) 34.8 (2.2) 36.5 (2.6) 37.2 (2.5)

K-DGEA_S 37.2 (3.0) 42.1 (2.6) 44.8 (2.0) 45.3 (3.3)

R-DGEA_S 39.9 (2.2) 46.6 (2.1) 49.5 (2.5) 51.4 (2.7)

N-DGEA_U 34.1 (2.2) 41.3 (2.5) 45.1 (2.4) 46.8 (2.3)

K-DGEA_U 42.3 (2.5) 50.8 (2.7) 54.2 (2.4) 54.9 (3.4)

R-DGEA_U 42.8 (2.1) 51.0 (1.2) 52.4 (3.0) 53.9 (4.0)

Table 5: Author classification (NYT) - We can associate each
author to a class. We then perform classification (using the
author representation as features). We display the Micro-F1
for different train/test ratios and provide the standard de-
viation in parentheses. Our approaches outperform all the
existing methods.

Train/Test ratio 10% 30% 50% 70%

ATM 31.4 (0.9) 32.4 (1.7) 33.5 (1.6) 33.5 (2.8)

Aut2Vec 23.2 (1.4) 24.0 (1.3) 24.6 (1.9) 24.9 (2.0)

Usr2Vec 34.6 (1.2) 36.9 (1.7) 36.9 (1.4) 36.1 (2.3)

DAR (static) 36.4 (1.3) 38.8 (1.1) 40.4 (1.1) 40.3 (2.3)

DAR (dynamic) 31.0 (1.1) 32.4 (0.7) 33.2 (1.5) 32.1 (2.3)

DAR (concat) 35.6 (1.5) 38.0 (0.8) 39.8 (1.5) 40.2 (1.7)

N-DGEA_I 30.9 (1.4) 34.5 (1.3) 35.2 (1.3) 35.6 (1.6)

K-DGEA_I 34.5 (2.1) 39.0 (0.8) 40.5 (1.2) 40.7 (1.5)

R-DGEA_I 37.4 (1.1) 40.3 (1.6) 42.7 (1.9) 42.6 (2.4)

N-DGEA_S 26.1 (1.6) 26.6 (0.8) 27.5 (1.4) 27.6 (1.8)

K-DGEA_S 28.1 (1.7) 30.4 (0.8) 30.9 (1.9) 31.3 (1.9)

R-DGEA_S 29.4 (0.9) 33.0 (0.9) 33.7 (1.5) 35.8 (1.6)

N-DGEA_U 27.2 (2.4) 30.5 (1.1) 31.4 (1.4) 32.5 (1.6)

K-DGEA_U 31.9 (2.1) 36.3 (1.3) 37.2 (1.3) 38.6 (2.6)

R-DGEA_U 36.4 (1.3) 38.8 (1.1) 39.7 (1.6) 40.6 (2.8)

Table 6: Author classification (S2G) - We can associate each
author to a class. We then perform classification (using the
author representation as features). We display the Micro-F1
for different train/test ratios and provide the standard de-
viation in parentheses. Our approaches outperform all the
existing methods.

“Content-Info” model of Aut2Vec [20] and Usr2Vec [1]. Eventu-

ally, we compare our approach to DAR [17], which produces low-

dimensional representations of author at each time step. We use

the static representation, DAR (static), the dynamic representation,

DAR (dynamic), and a concatenation of both, DAR (concat).

One could challenge that these empirical observations may be

biased depending on the used text encoder. For that reason, we

evaluate three versions of our model, using SBERT [39], USE [13]

and InferSent [16] as encoder. N-DGEA is the simpler setup in

which all time bins are considered independent. The solution is

therefore the empirical means and variances of the document writ-

ten by the author at each time step. This naive approach does not

use the temporal information. It allows to demonstrate the ben-

efit of smoothing author representations through time. K-DGEA

is the model optimized using Kalman Equations described in Sub-

section 2.2. R-DGEA is the model that uses an RNN, described in

Subsection 2.3. The subscript _U refers to USE, _I to InferSent and

_S to SBERT. We did not use the variance in the evaluation to be

fair with approaches that use point estimation.

3.3 Parameters setting
For SBERT [39], we use the ‘bert-base-nli-mean-tokens’ model. For

InferSent we use the Glove based pre-trained model
2
and the 300 di-

mensions pre-trained Glove embeddings
3
. For USE, we use version

4, available on the Tensorflow Hub
4
. For ATM, we use Gensim

5
. We

use the number of topics that maximizes the c𝑣 coherence value

[40], i.e., 201 for NYT and 229 for S2G. Ganguly et al. [20] initialize

the document embedding layer using PV-DBOW [33]. It leads to

poor performances in our experiments. We obtain the best results

with Universal Sentence Embedding and when initializing the au-

thor layer with the mean of the representations of the documents

they wrote. Embedding dimension is 512, we use 256 units in the

intermediate layer, and optimize with Adam and a learning rate of

0.001. We draw 10 negative examples by observed pair. For Usr2Vec,

we use a learning rate of 5e-5, a margin of 1, 25 epochs and patience

of 5 (number of epochs without loss decreasing needed to stop

training). We train the word embeddings using Skip gram with neg-

ative sampling [35] in dimension 300. We also remove rare words

(appearing less than 5 times).

For the dynamic methods, we split the documents by year. For

the DAR model [17], we use authors recommended parameters, as

they evaluate their model on the same datasets. For K-DGEA, we

use 100 epochs and our own implementation of the Kalman based

EM algorithm. For R-DGEA, we use an LSTM with a mean pooling

operation, as it produces the best results on these datasets. The

hidden dimension is the same as the document embeddings, and

we use the last hidden state as 𝜙 . ℎ𝜃 ′ () is a 2-layer MLP with 𝑟𝑒𝑙𝑢 ()
and linear activation. We use batch of 32 authors with Adam [29]

and a learning rate of 1e-4. *

3.4 Evaluation tasks
We evaluate how close a document representation is to its author

representation (the author identification task). Then, we use the

standard evaluation tasks to evaluate author representation learning

as used when evaluating embeddings: link prediction was used in

[20] and author classification in [1]. We then provide visualization

of K-DGEA authors representations and an analysis of K-DGEA

and R-DGEA learned variances.

2
https://github.com/facebookresearch/

3
http://nlp.stanford.edu/

4
https://tfhub.dev/google/

5
https://radimrehurek.com/gensim/

https://github.com/facebookresearch/
http://nlp.stanford.edu/
https://tfhub.dev/google/
https://radimrehurek.com/gensim/
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4 RESULTS
4.1 Author identification
We use the documents from the last year of production for each

author as the test set (T+1), and the previous documents as the

training set. Since S2G features multiple authors, we use the cover-

age error. This metric is well suited for multi-label evaluation as it

measures the average number of nearest neighbors that must be

considered to cover all the true authors of a given document. We

normalize the error by 𝑛𝑎 , the total number of authors in the corpus

(the worst-case scenario) and provide this result in percentage. The

coverage error also provides a quantification of the average rank

of true authors (unlike Hamming loss). We compute the nearest

neighbors of a document using cosine similarity computed between

the author representations at time𝑇 and those of the documents in

the test set, i.e. at 𝑇 + 1. Since existing author representation meth-

ods (ATM, Usr2Vec, Aut2Vec, DAR) do not model document-level

representations, they can hardly compete in this task. We therefore

compare our approach with several simple methods. We average

the representations of documents written by an author to build

its representation. This approach is equivalent to N-DGEA in the

naive configuration for which all documents are in the same time

slice.

We present the results in Table 3. K-DGEA and R-DGEA outper-

form the average of document representations without temporal

smoothing. USE performs best on this task: the approach seems to

be able to build document representations that better discriminate

authors. The USE model was pre-trained on two additional tasks

compared to SBERT and InferSent: a question-answer task and a

co-occurring sentence prediction task. The latter could allow the

model to capture information relevant to identify the author of a

document, such as writing style. We observe that the average re-

sults are worst on S2G: we recall that the models are not fine-tuned

on the dataset, and that S2G contains a more specialized vocabulary

than NYT. Finally, even in the best scenario, one must consider 10%

of the nearest neighbors to cover all the real authors of a document.

On these datasets, the task remains difficult to solve (even in the

supervised setting, c.f. Table 2): we recall that we consider the title

of the document only, for datasets in which the language is formal

and stereotyped: there is a journalistic and a scientific “style”, which

are consensual and shared by all authors.

4.2 Author classification
In this task, each document is associated with a class. We posit

that the author’s class is the most frequent class observed in their

productions. For example, Geoffrey E. Hinton published most often

at the NeurIPS conference, while Christopher D. Manning pub-

lished mostly at ACL, and Jure Leskovec at TheWebConf (WWW).

Here, we can construct an author’s class at each time slice. We use

the last year of publication for evaluation. We train the classifier

on the representations of the last time slice for DGEA. We use

the same classifier than in existing works [45]: an SVM with L2

norm regularization. The strength of the regularization is fixed, for

each method, using grid-search. We report the Micro-F1 mean and

standard deviation.

We present the results in Table 5 (Nyt) and Table 6 (S2G). The best

DGEA method performs up to 10 points better than all baselines on

EV #topics avg-#topic #topics𝑡+1 avg-#docs #docs

NYT

K-variance 0.86 0.15 0.18 0.06 0.02 0.09

K-𝛿 0.09 0.17 -0.12 -0.03 -0.72 -0.5

R-variance 0.20 -0.01 0.01 -0.01 -0.04 -0.10

EV 1 0.39 0.24 0.05 -0.16 0.11

S2G

K-variance 0.85 0.14 0.21 0.18 0.29 0.27

K-𝛿 0.12 -0.37 -0.75 -0.45 -0.81 -0.56

R-variance 0.41 -0.13 -0.22 -0.15 -0.13 -0.14

EV 1 0.02 -0.08 -0.04 0.02 0.20

Table 7: Variances correlation - Average correlation between
the variances learned by our models and different measures
computed on NYT and S2G.

the NYT dataset. On the S2G dataset, its performance is close to that

of DAR. We also observe that the performances are globally better

for the dynamic representation approaches: the datasets contain

a rather long production period (about 30 years), and the authors’

themes of interest change over time. This observation confirms the

importance to learn evolving representations.

4.3 Link prediction
We construct the co-author graph on the S2G dataset during each

author’s last year of publication. We compute how well the similar-

ity between author representations can predicts the existence of

an edge. Similar to author identification, we use the coverage error

which is defined as the average proportion of nearest neighbors we

need to compute to cover all co-authors of the author.

We present the results in Table 4. R-DGEA with USE equals the

static version of DAR (with a difference of 0.06 points). Further-

more, each R-DGEA model outperforms all other baseline models,

including the dynamic version of DAR. Finally, Usr2Vec and the

static version of DAR produce overall relative better results than

for the other tasks. Taking into account the authors’ dynamics does

not seem to be a prevalent feature for link prediction. This observa-

tion could mean that scientific collaborations are perennial in time

and that they: either remain little sensitive to changes in research

themes, or they are not independent of these changes, in the sense

that the collaboration can itself modify the thematic trajectory of

the authors.

4.4 Author variance analysis
Modeling the authors as Gaussian distributions has many advan-

tages, such as those highlighted by Bojchevski and Günnemann

[10] and in our previous works Gourru et al. [24]: it captures the

uncertainty of the representation and could help to interpret the

results in recommendation. It also allows to use the theoretical

framework of Gaussian dynamic linear models, and thus the EM

algorithm as well as forward-backward equations. We present in

Table 7 the average correlation between the variances learned by

our models and different measures of empirical dispersion com-

puted on NYT and S2G and USE representations. These measures

are the following. Empirical variance (denoted EV) is the empirical

variance of the representations of the documents written by the

author over her/his entire publication history. The number of topics,
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Figure 3: Representation of 3 authors learned with N-DGEA
and K-DGEA -We plot the first axis for three authors embed-
ding (color coded) with regard to time. We provide their rep-
resentation from N-DGEA𝑈 (on top; without time smooth-
ing), and K-DGEA𝑈 (on the bottom; with time smooth-
ing). Using the temporal information allows to easily sep-
arate the author trajectories. This temporal representation
smoothness can be observed for each author in the datasets.

noted #topics is the total number of different labels observed over

the author’s entire history. The average number of labels observed

(noted avg-#topic) is obtained by averaging the number of differ-

ent labels per time slice. The number of labels on the last year of

production is noted #topics𝑡+1. The average number of documents

written by an author per time slot is noted avg-#docs and the total

number of documents written by an author is #docs.

The variance of an author learned with K-DGEA shows a strong

correlation with the empirical variance of her/his document rep-

resentations (0.86 for K-DGEA𝑈 on NYT, and 0.85 on S2G). The 𝛿

parameter (the temporal variance) seems to be negatively corre-

lated with the average number of documents per time slot (-0.72 for

K-DGEA𝑈 on NYT and -0.81 on S2G) and with the average number

of topics (-0.75 on S2G): more publications and topics reduce the

temporal uncertainty of an author, i.e. authors publishing a lot in

many fields evolve less over time.

4.5 Comparison between DGEA settings
K-DGEA and R-DGEA consistently outperform N-DGEA: indepen-

dent construction of each time slice representations is generally

10 points worse on our evaluation tasks. Thus, temporal smooth-

ing clearly improves the performance of author representations to

solve the evaluated tasks. R-DGEA performs better than K-DGEA in

classification on S2G, and in link prediction. Nevertheless, K-DGEA

produces better results on the S2G dataset on the author identifi-

cation task and on NYT in author classification. On average, USE

vector representations seem to produce better results. The results

of both models remain comparable with similar document repre-

sentation methods while our models have the ability to represent

authors as Gaussian distribution in the same space than documents

which is not available for the literature – not only do they perform

better, but they also allow to address new author-based tasks such

as author identification (cf subsection 4.1).

4.6 Visualization
We provide the visualization of the trajectory of three authors in

Figure (3). We randomly selected one author, and then randomly

drew two other authors from among the authors who have pub-

lished as many years as the first author. On the y axis, we plot

the value on the first axis of the author’s representation (more

precisely its mean), on the x axis the time. On the top, we show

the K-DGEA_U result for 3 authors on the NYT dataset and on

the bottom, the N-DGEA_U version (without temporal smoothing).

The trajectories formed by the authors’ dynamic representations

are easy to separate, while they are strongly intertwined without

temporal smoothing, reinforcing the interest of our approach.

5 CONCLUSION
We proposed the DGEA framework, that allows to learn dynamic

representations of authors from any pre-trained document embed-

dings. We proposed two instances of this framework: K-DGEA,

based on a first order Markov model, and R-DGEA a deep model

with a LSTM layer. We tested these models on three tasks involving

author representations (author identification, author classification,

and link prediction). The twomodels perform similarly in our exper-

iments. The main difference is that K-DGEA is faster and paralleliz-

able, whereas R-DGEA can infer representations for unseen authors.

The user can choose both depending on its computing resources

and targeted tasks, while knowing that the performance will be

equivalent. The temporal information allows to improve author

identification, co-authorship prediction and author classification.

Several tracks and limitations could be studied in the future.

First, we model the authors as Gaussians distributions, contrary to

existing approaches. Nevertheless, even this assumption may seem

limited: authors sometimes publish in distant topics. Modeling them

as a mixture of Gaussians could benefit the model and reduce the

number of parameters. Additionally, the document encoders inte-

grate complex distance measures in their objective function (scalar

product, Euclidean distance and concatenation of these measures).

We could test other probability laws more suited to these metrics:

this change would be simpler for R-DGEA (when the likelihood

is well determined) than for K-DGEA: particle filters [6] allow to

optimize linear models with non-Gaussian emission laws, but they

are more expensive in terms of computation. Finally, the variance

information could be used to improve tasks such as expert identifi-

cation, by penalizing authors with large variance, but the latter is

yet to be tested.
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NYT S2G

Method SBERT InferSent USE SBERT InferSent USE

Mean 17.6 13.2 11.3 26.6 25.7 23.0
LSTM 32.3 15.2 11.7 47.6 31.0 27.3

Single 17.6 13.1 11.1 26.9 25.7 23.2

R-DGEA 17.8 13.4 11.1 26.9 26.6 23.4

Table 8: Author Identification (with R-DGEA alternatives) -
Coverage error (the lower the better) on the author identifi-
cation task for different alternatives of the R-DGEA model.
The coverage error calculates the worst rank (in percent) of
the nearest neighbor who is a real author of the document.

Method SBERT InferSent USE

Mean 22.55 22.77 22.24

LSTM 29.24 28.52 23.13

Single 22.75 22.52 22.33

R-DGEA 22.67 22.89 21.55

Table 9: Link prediction (with R-DGEA alternatives) - Cover-
age error (to be minimized) for the prediction of links be-
tween authors on the S2G dataset for different alternatives
of the R-DGEAmodels, i.e., the percentage of nearest neigh-
bors we need to keep in order to cover all true co-authors of
an author.

Train/Test ratio 10% 30% 50% 70%

Mean (I) 44.0 (3.5) 51.0 (1.5) 52.9 (1.5) 53.3 (3.2)

LSTM (I) 40.1 (3.1) 47.8 (1.6) 48.2 (2.48) 48.7 (1.5)

Single (I) 43.5 (3.3) 50.2 (1.5) 52.7 (1.7) 53.5 (3.7)

R-DGEA (I) 43.7 (2.8) 50.8 (1.9) 53.2 (1.8) 53.2 (2.5)

Mean (S) 41.0 (2.1) 46.5 (1.8) 48.1 (2.8) 48.5 (2.9)

LSTM (S) 33.7 (2.4) 40.4 (1.5) 42.0 (2.9) 44.4 (2.7)

Single (S) 39.2 (3.0) 46.7 (1.84) 48.0 (2.5) 50.3 (2.7)

R-DGEA (S) 39.9 (2.2) 46.6 (2.1) 49.5 (2.5) 51.3 (2.7)

Mean (U) 44.6 (2.7) 49.3 (1.7) 52.0 (2.2) 54.4 (2.3)

LSTM (U) 43.5 (2.9) 49.8 (1.5) 52.2 (1.9) 52.8 (3.6)

Single (U) 44.3 (1.6) 49.9 (1.7) 51.3 (1.6) 53.2 (1.7)

R-DGEA (U) 42.8 (2.1) 51.0 (1.2) 52.4 (2.9) 53.9 (4.0)

Table 10: Author classification (with R-DGEA alternatives)
on NYT - Results in author classification on the NYT dataset.
We display the Micro-F1 score for different train/test ratios
and provide the standard deviation in parentheses.

A ADDITIONAL EXPERIMENTS
The R-DGEA model learns a variance per time slice using a DAN-

type network [26]. We assess the appropriateness of this modeling

choice by evaluating three alternatives to the original R-DGEA

model. We start by removing the variance and train the network

using a simple mean square error objective function (equivalent

to setting the diagonal of each author’s variance to one). We call

this model “Mean”. Next, we use an LSTM to which we feed the

sequences of empirical variances instead of the DAN-like approach.

Train/Test ratio 10% 30% 50% 70%

Mean (I) 34.6 (1.3) 38.2 (2.1) 39.7 (1.5) 39.0 (1.3)

LSTM (I) 31.1 (1.7) 34.5 (1.4) 36.8 (1.7) 37.3 (1.5)

Single (I) 36.1 (1.2) 36.8 (1.5) 38.5 (1.5) 38.8 (0.9)

R-DGEA (I) 37.4 (1.1) 40.3 (1.6) 42.7 (1.9) 42.6 (2.4)

Mean (S) 32.6 (1.5) 36.2 (1.2) 36.4 (1.2) 37.8 (2.5)

LSTM (S) 26.4 (1.6) 28.9 (1.1) 30.3 (1.6) 30.7 (1.8)

Single (S) 28.9 (1.5) 30.3 (1.2) 31.8 (1.6) 33.2 (2.6)

R-DGEA (S) 29.4 (0.9) 33.0 (0.9) 33.7 (1.5) 35.8 (1.6)

Mean (U) 36.3 (1.4) 37.9 (1.0) 38.8 (1.5) 39.4 (1.3)

LSTM (U) 31.2 (2.0) 33.8 (1.4) 35.0 (2.1) 35.6 (2.1)

Single (U) 34.7 (1.0) 37.8 (0.6) 38.8 (1.3) 39.3 (1.5)

R-DGEA (U) 36.4 (1.3) 38.8 (1.1) 39.7 (1.6) 40.6 (2.8)

Table 11: Author classification (with R-DGEA alternatives)
on S2G - Results in author classification on the S2G dataset.
We display the Micro-F1 score for different train/test ratios
and provide the standard deviation in parentheses.

We add to the output of the LSTM a two-layer MLP, with tanh and

relu activation. This is equivalent to using:

𝜎2

𝑖,𝑡 = ℎ𝜃 ′ (𝑔′(D
(0)
𝑖

), ...., 𝑔′(D (𝑡−1)
𝑖

)) (13)

,where ℎ𝜃 ′ is an LSTM and 𝑔′(D (𝑡 )
𝑖

) computes the empirical vari-

ance of D (𝑡 )
𝑖

. We call this method "LSTM". In the third variant, we

learn the authors’ variances as parameters (i.e., a layer of vector

representations). We call this method "Single".

We train the model with a batch size of 32 authors with Adam

[29] and a learning rate of 1e-4, except for the “LSTM” model which

we optimize with a learning rate of 1e-3. We present the results on

NYT and S2G in author identification in Table 8, link prediction in

Table 9, and author classification in Table 10 and Table 11.

R-DGEAwith USE performs better in author identification, while

the “Mean” model with USE performs better than the other mod-

els on S2G. R-DGEA with USE produces the best results in link

prediction.

It is interesting to note that the LSTM variance model fails to

produce good results in author identification with SBERT repre-

sentations. The “Mean” model generally produces the best results

in author classification on NYT, while R-DGEA outperforms the

competitors on S2G.

Nevertheless, there is no significant difference between all mod-

els. As the different models have equivalent performances, we have

chosen to keep the R-DGEA model presented previously for sev-

eral interesting properties when applying the model to real life

situations.

Indeed, the original model has several advantages over the other

instances: it provides a measure of semantic uncertainty unlike

mean-only learning, it has fewer parameters than LSTM-based

variance learning, and it allows to infer representations of authors

that has not been seen during the learning phase, unlike learning a

single variance as a parameter.
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B DETAILS FOR K-DGEA
We recall that the aim is to maximize :

L(D;𝜓 ) =
𝑁∏
𝑖

𝑇∏
𝑡=1

𝐶𝑡𝜔 (𝜎2

𝑖 ,D
(𝑡 )
𝑖

)︸                 ︷︷                 ︸
Normalizing factor

×
∫

𝑝 (𝜙𝑖,1:𝑇 )
𝑇∏
𝑡=1

N( ¯𝑑𝑖,𝑡 ;𝜙𝑖,𝑡 , 𝑟
2

𝑖,𝑡 𝐼 )𝑑𝜙𝑖,1:𝑇︸                                              ︷︷                                              ︸
Simple dynamic linear system

.

(14)

We use an EM model with forward and backward recursions.

In the E step, we evaluate the probability of the hidden states

𝜙𝑖,𝑡 for 1 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑡 ≤ 𝑇 using the forward-backward

equations, and in the M step, we maximize the expectation of the

completed log-likelihood. We obtain, for the E forward step:

𝑚𝑖,𝑡 =𝑚𝑖,𝑡−1 +
𝑣𝑖,𝑡−1 + 𝛿2

𝑖

𝑣𝑖,𝑡−1 + 𝛿2

𝑖
+ 𝑟2

𝑖,𝑡

(
¯𝑑𝑖,𝑡 −𝑚𝑖,𝑡−1

)
𝑣𝑖,𝑡 =

(𝑣𝑖,𝑡−1 + 𝛿2

𝑖
)𝑟2

𝑖,𝑡

𝑣𝑖,𝑡−1 + 𝛿2

𝑖
+ 𝑟2

𝑖,𝑡

(15)

with the initial conditions:

𝑚𝑖,1 = 𝜙𝑖,0 +
𝛿2

𝑖,0

(
¯𝑑𝑖,1 − 𝜙𝑖,0

)
𝛿2

𝑖,0
+ 𝑟2

𝑖,1

and 𝑣𝑖,1 = (
𝛿2

𝑖,0
𝑟2

𝑖,1

𝛿2

𝑖,0
+ 𝑟2

𝑖,1

). (16)

The backward E step is:

𝑚𝑖,𝑡 =𝑚𝑖,𝑡 +
𝑣𝑖,𝑡

𝑣𝑖,𝑡 + 𝛿2

𝑖

(
𝑚𝑖,𝑡+1 −𝑚𝑖,𝑡

)
�̂�𝑖,𝑡 = 𝑣𝑖,𝑡 +

(
𝑣𝑖,𝑡

𝑣𝑖,𝑡 + 𝛿2

𝑖

)
2 (

�̂�𝑖,𝑡+1 − 𝑣𝑖,𝑡 − 𝛿2

𝑖

) (17)

with𝑚𝑖,𝑇 =𝑚𝑖,𝑇 and �̂�𝑖,𝑇 = 𝑣𝑖,𝑇 . In the M step, we maximize :

E𝑝 [logL𝑖 (D𝑖 , 𝜙𝑖,1:𝑇 )] =
𝑇∑
𝑡=1

log𝜔 (𝜎2

𝑖 ,D
(𝑡 )
𝑖

)

+ E𝑝 [log𝑝 (𝜙𝑖,1 |𝜙𝑖,0, 𝛿2

𝑖,0)]

+ E𝑝 [
𝑡∑

𝑡=2

log𝑝 (𝜙𝑖,𝑡 |𝜙𝑖,𝑡−1, 𝛿
2

𝑖 𝐼 )

+
𝑡∑

𝑡=1

log 𝑝 ( ¯𝑑𝑖,𝑡 |𝜙𝑖,𝑡 , 𝑟2

𝑖,𝑡 )]

(18)

with regard to the parameters (cf [6]), with:

E
[
𝜙𝑖,𝑡

]
=𝑚𝑖,𝑡

E
[
𝜙𝑖,𝑡𝜙

⊤
𝑖,𝑡−1

]
=

𝑣𝑖,𝑡−1�̂�𝑖,𝑡

𝑣𝑖,𝑡−1 + 𝛿2

𝑖

+𝑚𝑖,𝑡𝑚
⊤
𝑖,𝑡−1

E
[
𝜙𝑖,𝑡𝜙

⊤
𝑖,𝑡

]
= �̂�𝑖,𝑡 +𝑚𝑖,𝑡𝑚

⊤
𝑖,𝑡

(19)

C PRODUCT OF DIAGONAL GAUSSIANS
Theorem C.1. The product of Multivariate Gaussians Densities

over independent vectors, with similar mean 𝜙 and diagonal variance
𝜎2𝐼 , is a scaled Gaussian Density over the empirical mean of the
vectors, with mean 𝜙 and diagonal variance 𝜎2

𝑛 𝐼 , where 𝑛 is the
number of random variables.

To prove that results, we follow [36]. Let us define 𝑥 = {𝑥𝑖 }𝑛𝑖=1
,

𝑥𝑖 , 𝜙, 𝜎
2 ∈ R𝑟 .∏

𝑖

N(𝑥𝑖 ;𝜙, 𝜎2𝐼 ) = 1

(
√
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∏

𝑟 𝜎
2
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2
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1

(
√
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∏
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· exp

(
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2

∑
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1
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𝑟
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√
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· exp
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𝑟
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(20)

With

𝑥 =
1

𝑛

∑
𝑖

𝑥𝑖 𝑠2

𝑟 =
1

𝑛

∑
𝑖
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(21)

Then∏
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