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ABSTRACT

Adapting transformers to meshes and graph-structured data presents significant
computational challenges, particularly when leveraging spectral methods that re-
quire eigendecomposition of the graph Laplacian, a process incurring cubic com-
plexity for dense matrices or quadratic complexity for sparse graphs, a cost further
compounded by the quadratic complexity of standard self-attention mechanism.
Conventional approximate spectral methods compromise the gauge symmetry in-
herent in spectral basis selection, risking the introduction of spurious features tied
to the gauge choice that could undermine generalization. In this paper, we pro-
pose a transformer architecture that is able to preserve gauge symmetry through
distance-based operations on approximate randomly projected spectral embed-
dings, achieving linear complexity while maintaining gauge invariance. By in-
tegrating this design within a linear transformer framework, we obtain end-to-end
memory and computational costs that scale linearly with the number of nodes in
the graph. Unlike approximate methods that sacrifice gauge symmetry for com-
putational efficiency, our approach maintains both scalability and the principled
inductive biases necessary for effective generalization to unseen graph structures
in inductive graph learning tasks. We demonstrate our method’s flexibility by
benchmarking on standard transductive and inductive node classification tasks,
achieving results matching the state-of-the-art on multiple datasets. Furthermore,
we demonstrate scalability by deploying our architecture as a discretization-free
Neural Operator for large-scale computational fluid dynamics mesh regression,
surpassing state-of-the-art performance on aerodynamic coefficient prediction re-
formulated as a graph node regression task.

1 INTRODUCTION

Following their incredible success for processing sequential data in Natural Language Processing,
Transformers (Vaswani et al., 2017) have been demonstrating a remarkable capacity for handling
data of increasing structural complexity. Lee et al. (2019a) have proposed a variant of the trans-
former block for permutation invariant data with their Set Transformer architecture; Dosovitskiy
et al. (2021) have adapted the self-attention mechanism to 2D images with the very influential Vision
Transformer architecture; and Bertasius et al. (2021) have extended transformers to video analysis
with their Video Vision Transformer (ViViT), demonstrating how attention mechanisms capture both
spatial and temporal dependencies across video frames. This progression from sequential text to in-
creasingly structured data indicates a trajectory suggesting that Transformers are poised to tackle
even more complex data structures, including irregular meshes and graphs.

Indeed, recent developments in adapting Transformers to graphs have shown promising results in
capturing long-range dependencies that traditional Graph Neural Networks (GNNs) struggle with
due to their reliance on localized message passing (Dwivedi et al., 2022; Zhu et al., 2023). Un-
like GNNs that aggregate information from nearest neighboring nodes by iterating through layers,
Transformers can directly capture global relationships across the whole graph through self-attention,
enabling them to reason about distant node interactions in a single layer.

Two Barriers to Scalable Graph Transformers. However, adapting transformers to graphs in-
troduces two distinct barriers that have not been simultaneously addressed. First, there is a compu-
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tational barrier: exact spectral graph embeddings, while theoretically natural, require eigendecom-
position of the graph Laplacian, scaling as O(N3) for dense graphs or O(N2) for sparse graphs
(where N is the number of nodes), which is prohibitively expensive for large-scale graphs. Second,
there is a theoretical barrier: approximate spectral methods that achieve computational efficiency
(e.g., random projection-based methods) inadvertently break the gauge invariance of the eigenspace,
i.e., the inherent freedom to rotate eigenvectors, flip signs, or choose among degenerate eigenvec-
tors. Importantly, this invariance can also be inadvertedtly broken by the numerics implementing
the eigendecomposition of exact spectral methods (Bronstein et al., 2017). This gauge-breaking in-
troduces spurious inductive biases tied to arbitrary numerical choices, causing models trained with
one random projection or eigendecomposition to fail catastrophically when evaluated with a dif-
ferent projection or numerical solver, particularly in inductive learning tasks where models must
generalize to unseen graph structures.

The Gauge Invariance Challenge. Concretely, consider a graph whose spectral embeddings are
computed via random projection matrix R. A neural network trained on these embeddings {Rϕi}i
will inevitably learn features correlated with the specific choice of R. When the same model is eval-
uated on a different graph, or even re-evaluated on the same graph with a different random projection
R′ or different numerical eigensolver choices (sign flips, eigenspace ordering, handling of degener-
ate eigenvalues), the learned features become meaningless. This gauge dependence fundamentally
undermines generalization, a critical failure mode for inductive graph learning where models must
transfer to unseen structures.

Beyond graph learning, gauge invariance is essential to generate neural operators with bounded
discretization error. Physical problems (e.g. computational fluid dynamics, structural mechanics,
shape analysis) are defined on continuous manifolds but discretized into computational meshes cor-
responding to graphs. Different mesh resolutions produce different graph Laplacians with different
spectral decompositions, each involving arbitrary gauge choices (sign flips, eigenspace rotations,
solver artifacts). Without gauge invariance, parameters trained on one discretization fail to transfer
to another, and the attention kernels computed from spectral embeddings at different resolutions
cannot be compared meaningfully. Gauge invariance ensures that the learned operator converges
to the same continuum limit regardless of discretization, enabling provably bounded discretization
mismatch error that vanishes as resolution increases.

Existing approaches address only one barrier at a time: (1) spectral methods like SAN (Kreuzer et al.,
2021) try to maintain gauge invariance but require full eigendecomposition; (2) approximate spectral
methods achieve linear complexity but sacrifice gauge invariance; (3) generic linear transformers
reduce attention complexity but ignore graph structure.

Our Contribution: GIST. We propose Gauge-Invariant Spectral Transformers (GIST), which
overcomes both barriers through a key insight: while random projections break gauge symmetry, the
inner products between projected embeddings ⟨Rϕi, Rϕj⟩ = ⟨ϕi, (RTR)ϕj⟩ ≈ ⟨ϕi, ϕj⟩ remain ap-
proximately invariant under gauge transformations. By restricting attention operations to only these
inner products we recover gauge invariance algorithmically while maintaining O(N) complexity
from random projections and O(N) from linear attention, achieving end-to-end linear scaling. Our
contributions in short are:

1. identifying gauge invariance breaking as a fundamental limitation of approximate spectral
methods and characterize when this breaks generalization;

2. proposing GIST, combining gauge-invariant spectral attention with multi-scale linear trans-
former blocks, achieving theoretical guarantees on complexity and invariance preservation;

3. demonstrating competitive empirical results across diverse settings: transductive (Cora,
CiteSeer, PubMed) and inductive (PPI, Elliptic) node classification tasks;

4. establishing GIST as a neural operator with provably bounded discretization mismatch er-
ror O(n−1/(m+4)) through gauge invariance, and demonstrating state-of-the-art perfor-
mance on large-scale mesh regression (DrivAerNet), improving relative L2 error from
20.35% to 20.10% on graphs with ∼500K nodes.
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2 RELATED WORKS

Graph Transformers. Graphormer (Ying et al., 2021) introduces the idea of integrating struc-
tural encodings such as shortest path distances and centrality in Transformers. Similarly, Dwivedi
et al. (2022) propose LSPE (Learnable Structural and Positional Encodings), an architecture that de-
couples structural and positional representations. Kreuzer et al. (2021) propose Spectral Attention
Network (SAN), which introduces learned positional encodings from the full Laplacian spectrum.
Park et al. (2022) develop Graph Relative Positional Encoding (GRPE), which extends relative po-
sitional encoding to graphs by considering features representing node-topology and node-edge in-
teractions. Hierarchical Graph Transformer (Zhu et al., 2023) addresses scalability to million-node
graphs through graph hierarchies and coarsening techniques.

SpecFormer (Bo et al., 2023) and PolyFormer (Chen et al., 2025b) are recent spectral Transformers
that improve over SAN by leveraging approximate spectral bases or low-rank polynomial Laplacian
filters to enhance scalability and accuracy on graph tasks.

Several recent architectures aim to improve graph Transformer models via structural encodings and
scalable attention. GraphGPS (Rampášek et al., 2022) combines Laplacian or random-walk posi-
tional encodings with global attention and local message passing, while Exphormer (Shirzad et al.,
2023) replaces full attention with sparse expander-based mechanisms. Tokenized approaches like
TokenGT (Hamilton et al., 2017) and NAGphormer (Chen et al., 2023) model graphs as sets of
tokens with [CLS]-style readouts. However, these models scale poorly due to full attention com-
plexity, memory-intensive tokenization, and position encoding costs that grow with graph size. As a
result, they are rarely evaluated on large inductive node classification tasks such as PPI, Elliptic, or
ogbn-arxiv due to scalability issues.

Scalable Attention Architectures. Recent advances tackled the quadratic scaling of self-attention
through various approaches, including cross-attention bottlenecks that map inputs to fixed-size latent
representations or concepts (Jaegle et al., 2021b; Rigotti et al., 2022), kernel-based attention mecha-
nisms using random feature approximations (Choromanski et al., 2020), feature map decomposition
methods that linearize the attention computation (Katharopoulos et al., 2020), and memory-efficient
variants with sub-linear complexity (Likhosherstov et al., 2021). As noted by Dao & Gu (2024),
many such linear transformer models are directly related to linear recurrent models such as state-
space-models (Gu et al., 2021; 2022; Gu & Dao, 2023; Chennuru Vankadara et al., 2024)

Neural Operators. Further addressing the scalability of these graph-based methods is essential
for applying them to complex domains such as geometry meshes and point clouds. In these settings,
graphs are induced by the connectivity of an underlying continuous object whose discretization
is not unique: it can be sampled at arbitrarily many densities and resolutions. High-density dis-
cretizations can render the graph prohibitively large, undermining both efficiency and scalability in
existing methods. As a result, efficient mesh downsampling and/or re-discretization onto regular
lattices (e.g., via SDF-based volumetric grids), and task-aware coarsening learned by GNNs, were
commonly required to make these problems tractable.

In recent years, neural operators have shown success in learning maps between continuous func-
tion spaces rather than fixed-dimensional vectors. Two properties are crucial here: (i) discretization
invariance, i.e., a single set of parameters applies across discretizations (meshes, resolutions, and
sampling locations) of the same underlying continuum problem; and (ii) global integration, i.e., the
ability to represent nonlocal interactions via learned integral kernels, rather than being limited to
finite-receptive-fields. Formally, a neural operator composes learned integral operators with point-
wise nonlinearities, yielding universal approximation results for continuous nonlinear operators and
implementations that share weights across resolutions. Our approach preserves these neural operator
properties and improves scalability, allowing it to be applied to these cases (Kovachki et al., 2023).

Foundational operator families. The Fourier Neural Operator (FNO) parameterizes kernels in the
spectral domain and evaluates them with FFT-based spectral convolutions, sharing weights across
resolutions and enabling efficient nonlocal interactions on grids (Li et al., 2021). The Graph Neural
Operator (GNO) realizes the kernel via message passing, supporting irregular meshes and geometry
variation while keeping the learned map discretization-agnostic (Li et al., 2020). Convolutional
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Neural Operators (CNOs) define continuous convolutions with learnable kernels and interpolation,
specifying the operator in the continuum and discretizing only at runtime (Raonić et al., 2023).

Hybrid designs pair geometry-aware encoders with operator layers to handle complex shapes. GINO
couples a graph encoder/decoder with a latent FNO on a proxy grid from SDF or point-cloud
inputs and shows convergence across large 3D, multi-geometry problems (Li et al., 2023). En-
coder–decoder operator learners, such as DeepONet, use a branch network for inputs and a trunk
network for coordinate queries, directly supporting heterogeneous sampling (Lu et al., 2021); U-NO
adds a multi-resolution U-shaped backbone for multiscale effects (Rahman et al., 2022).

Transformers as neural operators. Self-attention behaves as a learned, data-dependent kernel in-
tegral, and with suitable positional features can approximate continuous maps on variable-length
sets for discretization-invariant operator learning; cross-attention evaluates outputs at arbitrary co-
ordinates (Tsai et al., 2019; Yun et al., 2020; Lee et al., 2019b; Jaegle et al., 2021a). Transolver
casts PDE operator learning as attention from query coordinates to context tokens built from in-
put fields, yielding resolution-agnostic inference and strong generalization across meshes (Wu et al.,
2024a). Recent operator-oriented transformers, e.g., GNOT, add geometric normalization and gating
to stabilize training on irregular meshes and multi-condition PDEs (Hao et al., 2023).

Positioning GIST. Existing graph transformers and scalable attention methods address comple-
mentary but not simultaneous challenges. Spectral methods like SAN (Kreuzer et al., 2021) lever-
age the full Laplacian spectrum to maintain theoretical expressiveness but incur significant com-
putational costs from full spectral methods. Approximate spectral methods achieve better scala-
bility but completely forsake gauge invariance, exacerbating generalization failures when arbitrary
gauge choice differs between training and testing. Generic linear transformers reduce attention
complexity but typically ignore graph structure entirely. GIST uniquely combines graph awareness
through spectral embeddings, computational efficiency through random projections, gauge invari-
ance through a modified attention mechanism, and linear attention for end-to-end linear scaling.
Furthermore, GIST preserves the discretization-invariance and global integration properties neces-
sary for neural operator applications on mesh regression, unifying graph learning and continuous
function approximation in a single framework.

3 APPROACH

3.1 PRELIMINARIES

Self-attention and positional encoding. Given query, key and value representations qi, ki, vi of
N tokens with i = 1, . . . , N , self-attention (Vaswani et al., 2017) famously computes outputs as a
weighted sum of values with attention weights determined by query-key similarities:

oi =

N∑
j=1

αijvj , where αij = softmaxj

(
q⊤i kj√
d

)
. (1)

A key insight (Shaw et al., 2018) is that positional information can be injected through relative
positional biases: eij =

q⊤i kj√
d

+ bij , where bij reflects distances between positions. For graphs, this
can be generalized by replacing bij with distance measures reflecting the graph structure as follows.

Graph Laplacian and spectral embeddings. The (normalized) graph Laplacian
L = 1−D− 1

2AD− 1
2 induces a natural metric via the resistance distance: Ω(i, j) =

(ei − ej)
⊤L†(ei − ej), where ei is the ith standard basis vector and L† is the Moore-Penrose

pseudoinverse (Klein & Randić, 1993).

The resistance distance can be expressed via Laplacian eigenmaps, which satisfy:

Ω(i, j) = ||ϕi − ϕj ||2 where (ϕi)k =
1√
λk

(uk)i, (2)

with λk, uk being the eigenvalues and eigenvectors of L. These eigenmaps are natural positional
encodings for graphs because their pairwise distances preserve the graph’s metric structure (Dwivedi
& Bresson, 2021). However, exact computation requires O(N3) eigendecomposition, prohibitive
for large graphs.
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Approximate spectral embeddings and the gauge invariance problem. Approximate spectral
methods use iterative techniques to compute embeddings with O(N logN) complexity. A stan-
dard approach is FastRP (Chen et al., 2019), which uses random projections R ∈ Rr×N with
r = O(log(N)/ϵ2) to approximate the spectral decomposition via k power iterations on the transi-
tion matrix. The resulting approximated eigenmaps are ϕ̃i = Rϕi ∈ Rr.

By the Johnson-Lindenstrauss Lemma, random projections preserve distances approximately:
Ω(i, j) ≈ ||ϕ̃i − ϕ̃j ||2 +O(ϵ), enabling efficient computation. However, the arbitrary choice of the
projection matrixR introduces a choice of projection axis, i.e. gauge dependence: models trained on
embeddings {Rϕi} will fail when evaluated with a different projection R′. Importantly, as noted by
Bronstein et al. (2017) also exact spectral embeddings method might accidentally introduce gauge
dependence, due to numerical issues or choices introduced by the eigensolver, making them an often
overlooked but pervasive concern in the field.

Motivation for gauge-invariant operations. While the approximate eigenmaps ϕ̃i are efficient
and preserve distances, as mentioned their gauge dependence is problematic: neural networks
trained on these embeddings will learn features correlated with the specific projection matrix R.
This creates a generalization failure in inductive settings where different graphs or different numer-
ical solvers produce different projections.

Our approach addresses this by using approximate eigenmaps as positional encodings, but restricting
the Transformer to operations that depend only on gauge-invariant quantities.

3.2 OUR APPROACH: GIST.

The key insight is that while the projection matrix R breaks gauge invariance, the inner products
between projected embeddings remain approximately invariant: (Rϕi)⊤(Rϕj) = ϕ⊤i (R

⊤R)ϕj ≈
ϕ⊤i ϕj . By taking care that all operations depend on the embeddings only through these inner prod-
ucts we preserve gauge invariance by design while maintaining computational efficiency.
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Figure 1: Gauge-Invariant Spectral Transformer. Left: Gauge-Invariant Spectral Self-Attention oper-
ates on graph positional embeddings ϕ̃ as queries and keys, and node features x as values. The output
of the self-attention operation is then combined with x through a residual connection. Limiting ϕ̃ to
queries and keys preserves gauge invariance across the self-attention block. Right: Gauge-Invariant
Spectral Self-Attention is embedded in a Multi-Scale Gauge-Invariant Spectral Transformer Block
which comprises 3 parallel branches inspired by EfficientViT.
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Gauge-Invariant Spectral Self-Attention. We now introduce our main contribution: Gauge-
Invariant Spectral Transformer (GIST). The first ingredient of GIST is Gauge-Invariant Spec-
tral Self-Attention, which operates on approximate spectral embeddings ϕ̃i = Rϕi ∈ Rr but re-
stricts attention computations to inner products between embeddings. The key observation is that
while the embeddings themselves depend on the arbitrary projection matrix R, the inner products
(Rϕi)

⊤(Rϕj) = ϕ⊤i (R
⊤R)ϕj ≈ ϕ⊤i ϕj are approximately gauge-invariant because R⊤R ≈ I by

Johnson-Lindenstrauss. Thus, attention weights computed from these inner products do not depend
on R and generalize across different projections.

Formally, for each node i = 1, . . . , N , Gauge-Invariant Spectral Self-Attention modifies the stan-
dard self-attention mechanism as follows:

qi = ϕ̃i, ki = ϕ̃i, vi = fv(xi).

This ensures that the attention logits are based on inner products:

eij =
q⊤i kj√
d

=
ϕ̃⊤i ϕ̃j√
d

=
ϕ⊤i R

⊤Rϕj√
d

≈ ϕ⊤i ϕj√
d
,

which are approximately gauge-invariant (see Fig. 1, left). By limiting the embeddings to the query-
key computation and not using them as values, we ensure that downstream layers (which operate
on node features) cannot access gauge-dependent information. Algorithm 1 in Section A.2 explains
how we compute graph spectral positional embeddings and Algorithm 2 details the implementation.

Gauge-Equivariant Spectral Self-Attention. The Gauge-Invariant Spectral Self-Attention oper-
ation thus preserves gauge invariance, but at the cost of giving up a lot of the flexibility of regular
self-attention. In particular, there is no mechanism that allows for a modification of the vectors ϕ̃i
through learning. In fact, applying even just a linear operation on ϕ̃i would break again gauge in-
variance. However, notice that rescaling each ϕ̃i by a scalar possibly depending on the node features
s(xi) ∈ R would modify the similarity between graph positional embeddings in the same way across
gauge choices, since scalars commute with orthogonal projections, meaning that it is an equivariant
operation across gauges: (s(xi)ϕ̃i)⊤(s(xj)ϕ̃j) = s(xi)s(xj)(ϕ̃

⊤
i ϕ̃j) = s(xi)s(xj)(ϕ

⊤
i ϕj).

Remarkably, such a gauge-equivariant operation can also be straight-forwardly implemented via a
modification of self-attention by modifying equation 1 as follows:

qi = fq(xi), ki = fk(xi), vi = ϕ̃i,

and the output in equation 1 such that it is constrained to operate on ϕ̃i, i.e. ϕ̃l+1
i =

∑N
j=1 αijvj ,

where ϕ̃l+1
i indicates the graph positional encoding that will be used in the next layer l + 1. Algo-

rithm 3 in Section A.2 details how the implementation of Gauge-Equivariant Spectral Self-Attention
relates to regular Self-Attention.

Linear Self-Attention, and Multi-Scale Architecture. Gauge-Invariant Spectral Self-Attention
ensures that we can compute reliable graph positional encoding with linear time complexity in the
number of nodes in the graph N . In order to maintain that linear scaling end-to-end, the very
last component of our architecture aims to address the quadratic scaling of Transformers by im-
plementing a linear version of self-attention. In particular, we implement the linear transformer
by Katharopoulos et al. (2020). Crucially, as feature map we use φ(x) = ReLU(x), which is a
map that induces a kernel k0(·) corresponding to the arc-cosine kernel (Cho & Saul, 2009). More
specifically, for random features ϕ̃i, ϕ̃j ∈ Rr, the attention weights ⟨φ(ϕ̃i), φ(ϕ̃j)⟩ ≈ k0(ϕ̃

⊤
i ϕ̃j)

converge to a kernel function that depends only on the inner product ϕ̃⊤i ϕ̃j . Since ϕ̃⊤i ϕ̃j ≈ ϕ⊤i ϕj
by Johnson-Lindenstrauss (as established earlier), this preserves gauge invariance: attention weights
depend only on gauge-invariant inner products between true spectral embeddings. For further con-
siderations on the choice of the feature map φ(·) see the note in Appendix A.2.

In order to fully exploit the capabilities of linear attention and mitigate its drawbacks like the re-
ported lack of sharp attention scores compared to softmax attention, we design a parallel architecture
inspired from EfficientViT by Cai et al. (2024) who proposed a multi-scale linear attention archi-
tecture. Just like EfficientViT our Multi-Scale Gauge-Invariant Spectral Transformer Block has 3
parallel branches: a feature branch consisting in a linear transformer block acting on node features

6
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x alone, a local branch consisting in a graph-convolution layer also acting on x followed by a linear
transformer block, and a global branch consisting in our Gauge-Invariant Spectral Self-Attention
layer followed by a Gauge-Equivariant Spectral Self-Attention layer (which as explained act on
both node features x and graph positional embeddings ϕ̃) then followed by a linear transformer. In
keeping with the analogy with EfficientViT, the role of the graph-convolution layer (which simply
averages node features across adjacent nodes) is to emphasize local information, which would be
otherwise diffused by linear attention. Conversely, Gauge-Invariant Spectral attention has the role
of integrating global information across the graph. This block is represented in the right panel of
Fig. 1 and represents a unit layer that is sequentially replicated multiple times.

In Appendix A.5 we report ablation studies empirically showing that all branches meaningfully
contribute to the final accuracy of the architecture, specifically for PPI where the full architecture
achieves SOTA performance but would not if any of the branches were missing.

Complexity Analysis. The computational complexity of GIST is dominated by two components.
First, spectral embedding computation via FastRP scales as O(N · r · k) where r is the embedding
dimension and k is the number of power iterations. Second, linear transformer blocks with Gauge-
Invariant Spectral Self-Attention on d-dimensional node features scale as O(N · d2). Overall, this
gives end-to-end scaling that is O(N · d2 + N · r · k), i.e. linear in the number of nodes N . This
contrasts with O(N3) for exact eigendecomposition and O(N2d) for standard quadratic attention.

4 RESULTS

4.1 NODE CLASSIFICATION TASKS

To demonstrate the key advantages of GIST, we evaluate it on both transductive and inductive node
classification datasets. Transductive tasks are a common graph neural networks paradigm and con-
sist of training and evaluating the model on the same graph, with the goal of predicting at test time
node labels that were not provided at training (infilling). Inductive tasks on the other hand, operate
on a disjoint set of graphs and aim to predict properties on an entirely new graph.

Experiment Setup We evaluate our method on transductive graph benchmarks using the official
training, validation, and test splits and evaluation protocols. For each method, we select optimal
hyperparameters by optimizing over the validation split of each dataset. GIST specific parameters
like the FastRP k (power iterations) and r are treated like regular hyperparameters and are also
optimized through HPO. In Appendix A.3 we show that final accuracy is quite robust to variation of
these hyperparameters. In addition, as can be expected, larger r tends to result in better accuracy,
as it corresponds to better approximation of the original graph Laplacian eigenmaps, and this trend
conveniently quickly saturates for relatively low r, consistently with the predictions of the Johnson-
Lindenstrauss Lemma. To obtain the final result, we conduct a training run on the combined
training and validation set and evaluate the model on the corresponding test set. We train across
multiple random seeds and report the mean ± standard deviation of the relevant metric.

4.1.1 TRANSDUCTIVE TASKS

We evaluate our method on the three standard Planetoid citation benchmarks for the transductive
setting where the whole graph is observed at train time: Cora (2,708 nodes, 5,429 edges, 1,433 bag-
of-words features, seven classes), CiteSeer (3,327 nodes, 4,732 edges, 3,703 features, six classes),
and PubMed (19,717 nodes, 44,338 edges, 500 features, three classes). Train-val-test sets follow
the Planetoid public split, and we report node-classification accuracy (Sen et al., 2008; Yang et al.,
2016; Kipf & Welling, 2017).

Across these benchmarks, GIST is competitive with strong graph convolutional and transformer-
style baselines (see Table 1). On Pubmed, GIST attains the best mean accuracy among the reported
methods (81.20% ± 0.41), narrowly surpassing enhanced GCN variants (e.g., 81.12% ± 0.52) and
outperforming GAT/GraphSAGE families. On Cora and Citeseer, GIST achieves results comparable
to the top results (within ∼1–2 points of GCNII/SGFormer and the enhanced GCN), landing at
84.00%± 0.60 and 71.31%± 0.50, respectively.
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Table 1: Transductive node classification on the Planetoid benchmarks (Cora, Citeseer, Pubmed).
We report test accuracy (%) as mean±std across random seeds using the standard public split (higher
is better). Benchmark results are taken from the following references: (Kipf & Welling, 2017; Hu
et al., 2021; Luo et al., 2024; Veličković et al., 2018; Chiang et al., 2019; OGB, 2025; Zeng et al.,
2020; Chen et al., 2020; Brody et al., 2022; Choi, 2022; Wu et al., 2024b) .

Model Cora
(Accuracy ↑)

Citeseer
(Accuracy ↑)

Pubmed
(Accuracy ↑)

GCN (baseline) 81.60 ± 0.40 71.80 ± 0.01 79.50 ± 0.30
GraphSAGE 71.49 ± 0.27 71.93 ± 0.85 79.41 ± 0.53
GIN 77.60 ± 1.10 – –
GAT 83.00 ± 0.70 69.30 ± 0.80 78.40 ± 0.90
GCNII 85.50 ± 0.50 72.80 ± 0.60 79.80 ± 0.30
GATv2 82.90 71.60 78.70
SGFormer 84.82 ± 0.85 72.60 ± 0.20 80.30 ± 0.60
GCN (enhanced) 85.10 ± 0.67 73.14 ± 0.67 81.12 ± 0.52

GIST (Ours) 84.00 ± 0.60 71.31 ± 0.50 81.20 ± 0.41

4.1.2 INDUCTIVE TASKS

We evaluate our method on two inductive benchmarks: PPI, a collection of 24 disjoint tissue-specific
protein–protein interaction graphs where nodes (proteins) have 50 features and 121 non–mutually-
exclusive GO labels (we use the standard split of 20 graphs for training, 2 for validation, and 2
for testing, and report micro-averaged F1 on the unseen test graphs), and Elliptic, a time-evolving
directed Bitcoin transaction graph with 203,769 transactions (nodes), 234,355 payment-flow edges,
and 166 features across 49 snapshots, labeled licit/illicit with many nodes unlabeled due to class
imbalance (we train on the first 29 time steps, validate on the next 5, and test on the last 14, reporting
micro-F1).

On PPI, GIST matches the best large-scale sampling methods and deep residual GCNs (see Ta-
ble 2), reaching 99.50%± 0.03 micro-F1, on par with GCNIII and within noise of the strongest
GCNII setting (99.53%). On the temporally inductive Elliptic dataset, GIST attains 94.70%± 0.03
micro-F1. While this trails the strongest GraphSAGE configuration, GIST maintains stable perfor-
mance across future time steps. These findings collectively demonstrate GIST’s effectiveness as
a competitive graph learning approach, validating the successful trade-off between computational
overhead and representational power. On the Arxiv citation graph (269,343 nodes, 1,166,243 edges,
128 features, and 40 classes) and the Amazon Photo co-purchase network (7,650 nodes, 119,081
edges, 745 features, and 8 classes), we evaluate GIST in the inductive node classification setting
following prior Transformer-based benchmarks. On Arxiv, GIST achieves a mean micro-F1 of
72.12% ± 0.21, matching or surpassing several contemporary graph Transformers such as GPS
and PolyFormer while maintaining efficient scaling through its linear attention formulation. On the
smaller but feature-rich Photo graph, GIST attains 94.42%±0.40 micro-F1, competitive with recent
spectral and polynomial Transformer variants. These results confirm that GIST preserves accuracy
across diverse structural regimes while retaining favorable computational efficiency.

4.2 NEURAL OPERATORS

GIST as Neural Operator. Many physical problems (CFD, structural mechanics, shape analysis)
are defined on continuous manifolds but discretized into computational meshes that form graphs.
While message-passing GNNs struggle with long-range interactions and standard transformers in-
cur quadratic complexity on large meshes, GIST’s linear scaling enables direct processing of high-
resolution meshes with hundreds of thousands of vertices without downsampling. Critically, gauge-
invariance is essential for discretization-invariance (the ability key to Neural Operators to apply the
same learned parameters across different mesh resolutions): different mesh resolutions produce dif-
ferent spectral decompositions with arbitrary gauge choices (sign flips, rotations, solver artifacts).
Without gauge-invariance, parameters trained on one discretization fail to transfer to others.

We now formalize how GIST achieves discretization-invariance through gauge-invariant operations
that converge to a continuum operator:
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Table 2: Inductive node classification on PPI, Elliptic, Arxiv, and Photo. Results are reported as
micro-F1 (higher is better). Benchmark results are taken from the following references: (Chen
et al., 2020; Weber et al., 2019; Chiang et al., 2019; Veličković et al., 2018; Zhang et al., 2018; Zeng
et al., 2020; Chen et al., 2025b; Brody et al., 2022; Bo et al., 2023)

Model PPI
(micro-F1 ↑)

Elliptic Bitcoin
(micro-F1 ↑)

Arxiv
(micro-F1 ↑)

Photo
(micro-F1 ↑)

GCN (baseline) 51.50 ± 0.60 96.10 71.74 ± 0.29 88.26 ± 0.73
GraphSAGE 61.20 97.70 71.49 ± 0.27 –
GAT 97.30 ± 0.02 96.90 – 90.94 ± 0.68
GaAN 98.70 – – –
Cluster-GCN 99.36 – – –
GraphSAINT 99.50 – – –
GCNII 99.53 ± 0.01 – 72.04 ± 0.19 89.94 ± 0.31
GCNIII 99.50 ± 0.03 – – –
GATv2 96.30 – 71.87 ± 0.25 –
SpecFormer 99.50 – 72.37 ± 0.18 95.48 ± 0.32
PolyFormer – – 72.42 ± 0.19 –
Exphormer (LapPE) 72.44 91.59 ± 0.31

GIST (Ours) 99.50 ± 0.03 94.70 ± 0.03 72.12 ± 0.21 94.42 ± 0.40

Proposition 1. Gauge-Invariant Spectral Self-Attention is a discretization-invariant Neural Opera-
tor with bounded discretization mismatch error . Let M be a compact m-dimensional Riemannian
manifold and Gn a sequence of graphs obtained by sampling n nodes from M with n→∞. Let ϕni
be the Laplacian eigenmaps of Gn (equation 2). Then:

(i) The inner products ⟨ϕni , ϕnj ⟩ converge to the Green’s function GM (xi, xj) of the Laplace-
Beltrami operator at rate O(n−1/(m+4)).

(ii) Gauge-Invariant Spectral Self-Attention is discretization-invariant (can process graphs of
arbitrary size), with discretization mismatch error O(n−1/(m+4)) (Gao et al., 2025) for
any two discretizations Gn and Gn′ of the same manifold M with n ≤ n′.

This result follows from three key observations. First, the graph Laplacian converges to the manifold
Laplacian (Belkin & Niyogi, 2008; Calder & Garcı́a Trillos, 2022), so the Laplacian eigenmaps
converge to manifold eigenfunctions at rateO(n−1/(m+4)), and their inner products converge to the
continuum Green’s function. Second, random projections (Johnson-Lindenstrauss) preserve these
inner products with controllable error. Third, because the mechanism is gauge-invariant (insensitive
to spectral choices like sign flips and eigenspace rotations), the learned parameters do not depend on
arbitrary gauge choices in the spectral decomposition. The full proof is deferred to Appendix A.1.

Thus GIST’s Gauge-Invariant Spectral Self-Attention component is discretization-invariant while
maintaining provable bounds on discretization mismatch error (Gao et al., 2025): the error is domi-
nated by the coarser discretization and vanishes at rateO(n−1/(m+4)) as resolution increases. Since
this attention mechanism is a core component of the full GIST architecture, these properties provide
theoretical grounding for GIST as a Neural Operator.

Mesh Based Inductive Task. To illustrate these properties and the scalability of GIST, we ap-
ply it on a real-world continuous mesh based problem: the DrivAerNet dataset. DrivAerNet is a
high-fidelity CFD dataset of parametric car geometries comprising 4,000 designs; with each design
providing a watertight surface mesh with approximately 0.5M surface vertices per car and accom-
panying aerodynamic fields (pressure, velocity, wall-shear) plus global coefficients (e.g., Cd). We
model each car as a graph whose nodes are surface vertices and edges follow mesh connectivity.
Our task is node-level regression of the surface pressure field on previously unseen cars. Inductive
generalization is enforced by holding out entire designs for validation and testing as per the pub-
lished split. We report per-mesh R2 and RMSE for surface pressure prediction, averaged across test
meshes. Among the datasets considered here, DrivAerNet is the largest: both in total data volume
and in per-graph node count (Elrefaie et al., 2024).
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Table 3: Surface pressure prediction accuracy on DrivAerNet. Reported metrics: mean squared
error (MSE) and relative ℓ2 error (Rel L2). Lower is better for both.

Year Model MSE (×10−2) Rel L2 (%)

2024 RegDGCNN (Elrefaie et al., 2024) 9.01 28.49
2024 Transolver (Wu et al., 2024a) 5.37 22.52
2025 FigConvNet (Choy et al., 2025) 4.38 20.98
2025 TripNet (Chen et al., 2025a) 4.23 20.35
2025 GIST (ours) 4.16 20.10

As illustrated in Table 3, GIST outperforms existing methods on this task. Relevant baseline method
MSE and L2 values are pulled from their respective papers. For GIST, 3 layers were used with a hid-
den dimension of 384 and a node dropout of 0.7. The spectral embedding was computed per vertex
with a degree of 96, and the 256 embedding dimensions were appended with the euclidean vertex
coordinates and normal vectors. Unlike existing methods on this task, no lossy down-sampling to a
lattice grid or arbitrary latent space is required due to the inherent scalability of GIST.

We hypothesize that DrivAerNet’s surface meshes have sparse connectivity, intensifying the over-
squashing problem in message-passing GNNs where information must propagate through many hops
to reach distant vertices. In contrast, GIST’s global spectral attention directly captures long-range
flow interactions in a single layer, which is critical for accurate surface pressure prediction.

5 CONCLUSIONS

We presented GIST, a gauge-invariant spectral transformer architecture that addresses the fundamen-
tal computational and theoretical challenges of applying Transformers to graph-structured data. At
the core is a simple but powerful insight: while random projections used for computational efficiency
break gauge invariance, the inner products between projected embeddings remain approximately in-
variant. By restricting attention computations to these inner products, we recover gauge invariance
algorithmically while maintaining end-to-end linear complexity in the number of nodes.

Our method achieves linear complexity in both memory and computation while preserving gauge
invariance, a key property absent from all prior approximate spectral methods. Importantly, we show
that gauge invariance can be used as a foundation for bounded discretization mismatch error in Neu-
ral Operators: by ensuring that the attention kernel depends only on gauge-invariant inner products
that converge to a continuum Green’s function, GIST guarantees that learned parameters transfer
across mesh resolutions with provable error bounds O(n−1/(m+4)) that vanish as discretization is
refined. Unlike approximate methods that sacrifice invariance for efficiency, our approach main-
tains both scalability and principled inductive biases necessary for effective generalization, with
theoretical guarantees that distances are preserved approximately and attention weights are gauge-
independent.

Empirically, GIST demonstrates strong performance across diverse settings. On standard graph
benchmarks (Cora, CiteSeer, PubMed, PPI, Elliptic), GIST achieves competitive or state-of-the-art
results. Most notably, on large-scale mesh regression (DrivAerNet with 500K nodes per graph),
GIST achieves 4.16% MSE, improving upon the prior best of 4.23%, and demonstrates that neural
operators can be effective without discretization-dependent grid schemes—a practically important
finding for scientific computing applications.

By providing a unified framework for graphs and meshes that respects fundamental symmetries
while maintaining computational efficiency, GIST opens new directions for foundation models in
geometric deep learning and scientific machine learning.
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6 REPRODUCIBILITY AND ETHICS STATEMENT

To ensure reproducibility of our results we will release our complete source code, including prepro-
cessing scripts, model implementations, and evaluation pipelines, upon publication.

The authors would also like to disclose that a Large Language Model (LLM) was used to minimally
aid in the writing of the paper by paraphrasing specific sentences for brevity, clarity, and to avoid
stylistic flaws such as repetition. In addition, once a first Related Works section had been compiled
by us, and LLM was used to help retrieve and discover possible relevant papers that we had missed.
All references provided by the LLM were carefully checked against the literature by the authors.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1: GAUGE-INVARIANT SPECTRAL SELF-ATTENTION

We prove that the Gauge-Invariant Spectral Self-Attention mechanism is discretization-invariant
with quantifiable discretization mismatch error through three stages of analysis. The proof estab-
lishes that the positional encodings used in the attention mechanism converge to the continuum
Green’s function, allowing us to bound the discretization mismatch error between any two dis-
cretizations of the same manifold.

A.1.1 STAGE 1: SPECTRAL CONVERGENCE AND GREEN’S FUNCTION

Proposition 2. Let Ln be the normalized graph Laplacian of a graph Gn obtained by sampling
n nodes from a compact m-dimensional Riemannian manifold M . Let λnk , u

n
k be eigenvalues and

eigenvectors of Ln, and µk, ψk the eigenvalues and eigenfunctions of the Laplace-Beltrami operator
∆M on M . Then:

(a) Spectral convergence: |λnk − µk| = O(n−1/(m+4)) and ∥unk − ψk∥L2 = O(n−1/(m+4))
(up to log factors).

(b) Green’s function convergence: The inner products of Laplacian eigenmaps converge to the
Green’s function:〈

ϕni , ϕ
n
j

〉
=
∑
λn
k>0

1

λnk
(unk )i(u

n
k )j → GM (xi, xj) +O(n−1/(m+4)),

where GM is the Green’s function of ∆M on M .

Proof. Part (a) follows from the spectral convergence theory for graph Laplacians on manifolds
(Calder & Garcı́a Trillos, 2022). With appropriate graph construction, both eigenvalues and eigen-
vectors of Ln converge to those of ∆M at rate n−1/(m+4) (up to log factors). See Calder &
Garcı́a Trillos (2022) for complete error estimates.

Part (b) follows from part (a) by the spectral theorem. The discrete Green’s function (pseudoinverse
of the graph Laplacian) is given by the eigenfunction expansion:

⟨ϕni , ϕnj ⟩ =
∑
λn
k>0

1

λnk
(unk )i(u

n
k )j .

Using the convergence result from part (a), this sum converges to the continuum Green’s function
GM (xi, xj) =

∑∞
k=1

1
µk
ψk(xi)ψk(xj) at rate O(n−1/(m+4)).

A.1.2 STAGE 2: RANDOM PROJECTION ERROR

Proposition 3. Let R ∈ Rr×N be a random projection with r = O(log(N)/ε2) constructed via
FastRP. For any vectors v, w ∈ RN ,

P (|⟨Rv,Rw⟩ − ⟨v, w⟩| ≤ ε∥v∥∥w∥) ≥ 1− 2e−cε2r.

Proof. This follows from the Johnson-Lindenstrauss Lemma (Dasgupta & Gupta, 2003). The key
properties:

1. Random projections with r = O(log(N)/ε2) distort distances by at most a factor (1 ± ε)
with high probability.

2. For inner products, since distances are preserved, we have ⟨Rv,Rw⟩ = 1
2 (∥Rv∥

2 +

∥Rw∥2 − ∥Rv −Rw∥2) ≈ 1
2 (∥v∥

2 + ∥w∥2 − ∥v − w∥2) = ⟨v, w⟩.

3. FastRP specifically uses sparse random matrices that maintain these guarantees while en-
abling efficient computation (Chen et al., 2019).

See Dasgupta & Gupta (2003) and Chen et al. (2019) for details on FastRP.
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A.1.3 STAGE 3: GAUGE INVARIANCE

Proposition 4. GIST’s learned parameters θ (projection matrix, transformer weights) do not depend
on arbitrary gauge choices (sign flips, rotations) in the spectral decomposition because GIST’s
computations depend only on gauge-invariant quantities.

Proof. GIST’s core attention mechanism is:

αij = softmax

(
⟨ϕ̃i, ϕ̃j⟩√

r

)
, ϕ̃i = Rϕi,

whereR is the random projection matrix. The key insight is that while ϕ̃i depends onR (the arbitrary
gauge choice), the inner products ⟨ϕ̃i, ϕ̃j⟩ do not (in the limit):

⟨ϕ̃i, ϕ̃j⟩ = ϕ⊤i (R
⊤R)ϕj ≈ ϕ⊤i ϕj ,

by Johnson-Lindenstrauss. Thus αij converges to a gauge-invariant quantity (the continuum Green’s
function kernel) independent of the choice of R.

Since all downstream computations operate on gauge-invariant quantities, the learned parameters θ
do not encode any information about the specific gauge choice in the eigenvector decomposition.

A.1.4 DISCRETIZATION MISMATCH ERROR ANALYSIS

Combining all three stages, we establish the discretization mismatch error bound stated in Propo-
sition 1(ii) (Gao et al., 2025). For two discretizations Gn and Gn′ of the same manifold M , the
attention kernel mismatch is bounded by triangle inequality:∣∣∣⟨ϕ̃ni , ϕ̃nj ⟩ − ⟨ϕ̃n′

i , ϕ̃
n′

j ⟩
∣∣∣ ≤ ∣∣∣⟨ϕ̃ni , ϕ̃nj ⟩ −GM (xi, xj)

∣∣∣+ ∣∣∣GM (xi, xj)− ⟨ϕ̃n
′

i , ϕ̃
n′

j ⟩
∣∣∣ .

Each term on the right decomposes into spectral convergence error (Stage 1) and random projection
error (Stage 2), yielding the total bound O(n−1/(m+4)) where n is the coarser discretization. For
typical manifold dimensions, random projection errors decay faster than spectral convergence errors,
so the latter dominate the discretization mismatch.

A.2 PSEUDO-CODE

Note that in the pseudocode we use bold notation for matrices and vectors (A,Φ,Q) and follow the
row-vector convention standard in machine learning: Φ ∈ RN×r has nodes as rows and embedding
dimensions as columns. In the main text, we use non-bold notation for compactness, with ϕi ∈ Rr

representing individual column vectors and upper case characters denoting matrices.

Algorithm 1 Broken Gauge-Invariance Spectral Embeddings (based on FastRP (Chen et al., 2019))
Require: Graph adjacency matrix A ∈ RN×N , embedding dimensionality r, iteration power k
Ensure: Matrix of N node graph positional embeddings Φ ∈ RN×r

1: Produce very sparse random projection R ∈ RN×r according to Li et al. (2006)
2: P← D−1 ·A the random walk transition matrix, where D is the degree matrix
3: Φ1 ← P ·R
4: for i = 2 to k do
5: Φi ← P ·Φi−1

6: end for
7: Φ = Φ1 +Φ2 + · · ·+Φk

8: return Φ

Below we provide pseudo-code for the core computations of GIST, the Gauge-Invariant Spectral
Self-Attention block and the Gauge-Equivariant Spectral Self-Attention block. For illustration pur-
poses, we compare the algorithms to a stripped down implementation of self-attention. We then
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Algorithm 2 Gauge-Invariant Spectral Self-Attention (with linear attention)
Require: Node feature tokens X ∈ RN×d , graph positional embeddings Φ ∈ RN×r

Ensure: Output sequence O ∈ RN×d to be applied to features X
1: // Compute attention matrices
2: Q← X ·WQ where WQ ∈ Rd×d Q← Φ
3: K← X ·WK where WK ∈ Rd×d K← Φ
4: V← X ·WV where WV ∈ Rd×d

5: // Compute linear attention with feature map φ(x) = ReLU(x)

6: Q̃, K̃← φ(Q), φ(K)

7: S← K̃TV ▷ Compute key-value matrix: Rr×d

8: Z← 1/(Q̃(K̃T1N ) + ϵ) ▷ Normalization factors: RN

9: O← (Q̃S)⊙ Z ▷ Normalized output: element-wise product
10: return O

Algorithm 3 Gauge-Equivariant Spectral Self-Attention (with linear attention)
Require: Node feature tokens X ∈ RN×d , graph positional embeddings Φ ∈ RN×r

Ensure: Output sequence O ∈ RN×d to be applied to graph positional embeddings Φ
1: // Compute attention matrices
2: Q← X ·WQ where WQ ∈ Rd×d

3: K← X ·WK where WK ∈ Rd×d

4: V← X ·WV where WV ∈ Rd×d V← Φ
5: // Compute linear attention (Katharopoulos et al., 2020)
6: Q̃, K̃← φ(Q), φ(K)

7: S← K̃TV ▷ Compute key-value matrix: Rd×r

8: Z← 1/(Q̃(K̃T1N ) + ϵ) ▷ Normalization factors: RN

9: O← (Q̃S)⊙ Z ▷ Normalized output: element-wise product
10: return O

point out the modifications that our algorithms apply to that basic functionality by indicating in red
red any addition to vanilla self-attention and in strike-through text anything that has to be removed.

Note on the choice of Feature Map φ. While in Algorithm 3 we do not need to impose that
restriction, in Algorithm 2 we use the feature map φ(x) = ReLU(x). This choice is theoretically
motivated: when applied element-wise to random features, ReLU induces the arc-cosine kernel
(Cho & Saul, 2009). Specifically, for vectors a,b ∈ Rr, the inner product ⟨φ(a), φ(b)⟩ converges
(as r →∞) to a kernel function k0(a⊤b) that depends only on the inner product a⊤b.

This property is crucial for preserving gauge invariance: since the attention weights are computed
as ⟨φ(ϕ̃i), φ(ϕ̃j)⟩ ≈ k0(ϕ̃

⊤
i ϕ̃j) and ϕ̃⊤i ϕ̃j ≈ ϕ⊤i ϕj by Johnson-Lindenstrauss (as established in

Section A.1), the resulting attention pattern depends only on gauge-invariant inner products between
the spectral embeddings.

We note that the original linear attention work by Katharopoulos et al. (2020) used φ(x) =
elu(x) + 1. Empirically, this feature map also tends to work well in practice, and it is similar to
ReLU in producing non-negative outputs. However, it is not known to correspond to any particular
kernel function, and thus the theoretical guarantee of gauge invariance via kernel structure does not
apply. Investigating other feature maps corresponding to different kernel functions (e.g., polynomial
kernels, random Fourier features for RBF-like kernels) is left for future work.

A.3 GIST HYPERPARAMETERS ROBUSTNESS

In order to study the sensitivity of GIST’s performance to variations in its spectral embedding hy-
perparameters, we train multiple simplified GIST architectures (two-block Gauge-Invariant Spectral
Self-Attention linear transformers) on the Cora benchmark while varying the power iteration pa-
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rameter k and the embedding dimension r in the FastRP approximation. These parameters directly
control the quality of spectral embeddings while balancing computational efficiency.

As shown in Figure 2, GIST exhibits robust performance across a wide range of both parameters.
The left panel sweeps k with r fixed, a clear but relatively shallow peak in accuracy around the
optimal value of k ≈ 32. This on one hand suggests that even modest iteration counts are sufficient
to capture the essential spectral structure, but also indicates that the choice of the power iteration is
quite robust. The right panel varies embedding dimension r with k fixed, demonstrating a smooth
monotonic improvement as r increases. Crucially, saturation occurs relatively quickly: performance
gains beyond r = 256 are marginal, validating our choice of reasonable embedding dimensions that
maintain computational efficiency.

These results empirically validate two important properties: (1) GIST does not require extensive hy-
perparameter tuning around these spectral parameters, suggesting stable generalization; and (2) the
linear end-to-end complexity achieved with modest k and r values is both computationally practical
and empirically effective. Combined with the gauge-invariance guarantees that prevent dependence
on arbitrary spectral choices, these hyperparameters provide a principled way and empirically robust
way to control the approximation quality of spectral embeddings without sacrificing scalability.
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Figure 2: Sensitivity study of GIST spectral embeddings parameters. The plots show the final test
accuracy of a two-block Gauge-Invariant Spectral Self-Attention linear transformer trained on Cora
while sweeping over the power iteration parameter k with r = 256 (left panel), and sweeping over
the embedding dimension r with k = 32 (right panel). Test accuracy is fairly robust around the best
value of either parameter. As expected, r is monotonically related to higher performance, as higher
r correspond to better approximations of the eigenmaps. Accuracy conveniently saturate relatively
fast, justifying the use of reasonably low r. The plots show mean test accuracy averaged across 10
seeds and corresponding standard deviation as error bars.

A.4 GIST SCALABILITY STUDY

From a computational standpoint, the end-to-end cost of GIST is dominated by two components:
spectral embedding generation and the subsequent transformer blocks. For the former, we employ
a FastRP-style approximation in which the Laplacian spectral information is captured via repeated
multiplication of a sparse random walk matrix with a low-dimensional random projection. Each
power iteration requires O(|E|r) operations, where |E| is the number of edges and r is the em-
bedding dimension, and the total cost over k iterations is O(k|E|r). On meshes and graphs with
bounded average degree, |E| = O(N), so the overall spectral embedding stage scales linearly in the
number of nodes N . This embedding is computed once per graph and then reused across all GIST
layers, so its cost is amortized over the full network depth.

The GIST layers themselves preserve this linear scaling. Each block combines: (i) a feature branch
based on linear attention, (ii) a local branch using graph convolution followed by linear attention,
and (iii) a global branch using Gauge-Invariant and Gauge-Equivariant Spectral Self-Attention fol-
lowed by linear attention. In all cases, attention is implemented in the form φ(Q)(φ(K)⊤V ) with
an element-wise feature map φ(·), which yields O(Nd2) complexity for d-dimensional features in-

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 100000 200000 300000 400000 500000 600000
Number of Nodes

10

20

30

40

50

60

70

80

VR
AM

 U
sa

ge
 (G

B)

Scalability Curve: GIST VRAM usage vs Number of Graph Nodes
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Scalability Curve: GIST Forward + Backward Pass Time vs Number of Graph Nodes
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Figure 3: Scalability study of GIST. All experiments use a fixed 3-layer model while varying the
hidden dimensionality. VRAM consumption was measured as a function of the number of nodes in
the input graph. Graph sizes were controlled using random node dropout applied to samples from
the Drivaernet dataset, enabling a systematic evaluation of memory scaling behavior.

stead of theO(N2d) cost of quadratic attention. Together with theO(N) spectral embedding stage,
this results in an overall complexity of O(N(d2 + rk)) per forward pass, i.e., linear in the number
of nodes. The empirical VRAM and wall-clock measurements in Figure 3 corroborate this analy-
sis: both memory usage and forward time grow approximately linearly with the number of graph
nodes for all hidden dimensions, up to graphs with hundreds of thousands of nodes sampled from
DrivAerNet.

A.5 MULTI-SCALE ARCHITECTURE ABLATION STUDY

To validate the design choices in the Multi-Scale GIST architecture, we systematically ablate each
of the three parallel branches shown in Figure 1 (right panel) on the PPI dataset, where the full archi-
tecture achieves state-of-the-art performance (see Table 2). For each ablation, we train with identical
hyperparameters but remove one branch: (1) feature processing, (2) local graph convolution, or (3)
global spectral attention. All experiments are repeated across 20 random seeds.

Table 4 shows that all three branches contribute meaningfully, with performance drops ranging from
4.29% to 7.90%. The local branch (Branch 2) has the strongest impact (−7.90%), validating the
EfficientViT-inspired design principle that local operations provide focused information comple-
menting the diffuse patterns from linear attention. The global spectral branch (Branch 3, −4.29%)
confirms that long-range dependencies are essential, while the feature branch (Branch 1, −5.04%)
provides complementary signal beyond structural information. Overall, these results demonstrate
that the Multi-Scale GIST effectively integrates complementary information sources.

Table 4: Ablation study on PPI dataset showing the contribution of each branch of the Multi-Scale
GIST (see Figure 1, right panel). Test accuracy is reported as percentage of baseline performance.
Results averaged over 10 seeds with standard deviations indicated as uncertainty intervals.

Ablation Test Accuracy (% baseline) ∆ (%)

No ablation 100.0 0.0
Branch 1 (feature) 95.0± 2.8 −5.0
Branch 2 (local) 92.1± 1.8 −7.9
Branch 3 (global) 95.7± 3.7 −4.3
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