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ABSTRACT

Adapting transformers to meshes and graph-structured data presents significant
computational challenges, particularly when leveraging spectral methods that re-
quire eigendecomposition of the graph Laplacian, a process incurring cubic com-
plexity for dense matrices or quadratic complexity for sparse graphs, a cost further
compounded by the quadratic complexity of standard self-attention mechanism.
Conventional approximate spectral methods compromise the gauge symmetry in-
herent in spectral basis selection, risking the introduction of spurious features tied
to the gauge choice that could undermine generalization. In this paper, we pro-
pose a transformer architecture that is able to preserve gauge symmetry through
distance-based operations on approximate randomly projected spectral embed-
dings, achieving linear complexity while maintaining gauge invariance. By in-
tegrating this design within a linear transformer framework, we obtain end-to-end
memory and computational costs that scale linearly with the number of nodes in
the graph. Unlike approximate methods that sacrifice gauge symmetry for com-
putational efficiency, our approach maintains both scalability and the principled
inductive biases necessary for effective generalization to unseen graph structures
in inductive graph learning tasks. We demonstrate our method’s flexibility by
benchmarking on standard transductive and inductive node classification tasks,
achieving results matching the state-of-the-art on multiple datasets. Furthermore,
we demonstrate scalability by deploying our architecture as a discretization-free
Neural Operator for large-scale computational fluid dynamics mesh regression,
surpassing state-of-the-art performance on aerodynamic coefficient prediction re-
formulated as a graph node regression task.

1 INTRODUCTION

Following their incredible success for processing sequential data in Natural Language Processing,
Transformers (Vaswani et al., 2017) have been demonstrating a remarkable capacity for handling
data of increasing structural complexity. Lee et al. (2019a) have proposed a variant of the trans-
former block to permutation invariant data with their Set Transformer architecture; Dosovitskiy
et al. (2021) have adapted the self-attention mechanism to 2D images with the very influential Vision
Transformer architecture; and Bertasius et al. (2021) have extended transformers to video analysis
with their Video Vision Transformer (ViViT), demonstrating how attention mechanisms can cap-
ture both spatial and temporal dependencies across video frames. This progression from sequential
text to increasingly structured data indicates a trajectory suggesting that Transformers are poised to
tackle even more complex data structure, including irregular meshes and graphs.

Indeed, recent developments in adapting Transformers to graphs have shown promising results in
capturing long-range dependencies that traditional Graph Neural Networks (GNNs) struggle with
due to their reliance on localized message passing (Dwivedi et al., 2022; Zhu et al., 2023). Un-
like GNNs that aggregate information from nearest neighboring nodes by iterating through layers,
Transformers can directly capture global relationships across the whole graph through self-attention,
enabling them to reason about distant node interactions in a single layer.

However, adapting transformers to graphs introduces significant computational and theoretical chal-
lenges that must be carefully addressed to realize their full potential on large-scale graphs.
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The main problem addressed in this work is introducing meaningful “graph positional encoding”:
embeddings that, analogous to positional encodings for sequential data, bias attention toward nearby
nodes within the graph. Spectral embeddings derived from the graph Laplacian are natural candi-
dates for capturing graph proximity structure due to their ability to reflect global and local geometric
relationships. However, exact computation of spectral embeddings via eigendecomposition is pro-
hibitive for large graphs, scaling cubically with the number of nodes, and at best, quadratically for
sparse graphs, making these approaches impractical in real-world settings.

Resorting to more computationally feasible approximate methods introduces its own challenges, as
such approximations can inadvertently break the intrinsic symmetries of the Laplacian eigenspaces.
This often results in embeddings sensitive to arbitrary basis choices and alignment, leading to spu-
rious inductive biases that compromise the generalization power and robustness of the model.

Our approach seeks to overcome this barrier by designing graph position encodings that are both
computationally efficient and fundamentally gauge-invariant, ensuring that graph structure is en-
coded without introducing undesirable biases due to arbitrary choices in spectral representations.

2 RELATED WORKS

Graph Transformers. Graphormer (Ying et al., 2021) introduces the idea of integrating struc-
tural encodings such as shortest path distances and centrality in Transformers. Similarly, the paper
by Dwivedi et al. (2022) proposes LSPE (Learnable Structural and Positional Encodings), an ar-
chitecture that decouples structural and positional representations. Kreuzer et al. (2021) propose
Spectral Attention Network (SAN), which introduce learned positional encodings from the full
Laplacian spectrum. Park et al. (2022) develop Graph Relative Positional Encoding (GRPE), which
extends relative positional encoding to graphs by considering features representing node-topology
and node-edge interactions. Hierarchical Graph Transformer (Zhu et al., 2023) addresses scalability
to million-node graphs through graph hierarchies and coarsening techniques.

Scalable Attention Architectures. Recent advances have tried to tackle the quadratic scaling of
self-attention through various approaches, including cross-attention bottlenecks that map inputs to
fixed-size latent representations or concepts (Jaegle et al., 2021b; Rigotti et al., 2022), kernel-based
attention mechanisms using random feature approximations (Choromanski et al., 2020), feature map
decomposition methods that linearize the attention computation (Katharopoulos et al., 2020), and
memory-efficient variants with sub-linear complexity (Likhosherstov et al., 2021). As noted by Dao
& Gu (2024), many such linear transformer models are directly related to linear recurrent models
such as state-space-models (Gu et al., 2021; 2022; Gu & Dao, 2023; Chennuru Vankadara et al.,
2024)

Neural Operators. Further addressing the scalability of these graph-based methods is essential
for applying them to complex domains such as geometry meshes and point clouds. In these settings,
graphs are induced by the connectivity of an underlying continuous object whose discretization
is not unique: it can be sampled at arbitrarily many densities and resolutions. High-density dis-
cretizations can render the graph prohibitively large, undermining both efficiency and scalability in
existing methods. As a result, efficient mesh downsampling and/or re-discretization onto regular
lattices (e.g., via SDF-based volumetric grids), and task-aware coarsening learned by GNNs, were
commonly required to make these problems tractable.

In recent years, neural operators have shown success in learning maps between continuous func-
tion spaces rather than fixed-dimensional vectors. Two properties are crucial here: (i) discretization
invariance, i.e., a single set of parameters applies across discretizations (meshes, resolutions, and
sampling locations) of the same underlying continuum problem; and (ii) global integration, i.e., the
ability to represent nonlocal interactions via learned integral kernels, rather than being limited to
finite-receptive-fields. Formally, a neural operator composes learned integral operators with point-
wise nonlinearities, yielding universal approximation results for continuous nonlinear operators and
implementations that share weights across resolutions. Our approach preserves these neural operator
properties and improves scalability, allowing it to be applied to these cases (Kovachki et al., 2023).

Foundational operator families. The Fourier Neural Operator (FNO) parameterizes kernels in the
spectral domain and evaluates them with FFT-based spectral convolutions, sharing weights across
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resolutions and enabling efficient nonlocal interactions on grids (Li et al., 2021). The Graph Neural
Operator (GNO) realizes the kernel via message passing, supporting irregular meshes and geometry
variation while keeping the learned map discretization-agnostic (Li et al., 2020). Convolutional
Neural Operators (CNOs) define continuous convolutions with learnable kernels and interpolation,
specifying the operator in the continuum and discretizing only at runtime (Raonić et al., 2023).

Hybrid designs pair geometry-aware encoders with operator layers to handle complex shapes. GINO
couples a graph encoder/decoder with a latent FNO on a proxy grid from SDF or point-cloud
inputs and shows convergence across large 3D, multi-geometry problems (Li et al., 2023). En-
coder–decoder operator learners, such as DeepONet, use a branch network for inputs and a trunk
network for coordinate queries, directly supporting heterogeneous sampling (Lu et al., 2021); U-NO
adds a multi-resolution U-shaped backbone for multiscale effects (Rahman et al., 2022).

Transformers as neural operators. Self-attention behaves as a learned, data-dependent kernel in-
tegral, and with suitable positional features can approximate continuous maps on variable-length
sets for discretization-invariant operator learning; cross-attention evaluates outputs at arbitrary co-
ordinates (Tsai et al., 2019; Yun et al., 2020; Lee et al., 2019b; Jaegle et al., 2021a). Transolver
casts PDE operator learning as attention from query coordinates to context tokens built from in-
put fields, yielding resolution-agnostic inference and strong generalization across meshes (Wu et al.,
2024a). Recent operator-oriented transformers, e.g., GNOT, add geometric normalization and gating
to stabilize training on irregular meshes and multi-condition PDEs (Hao et al., 2023).

3 APPROACH

3.1 PRELIMINARIES

Self-attention, permutation invariance and positional encoding. The core of Transformers, the
celebrated attention mechanism, is a powerful algorithm to condition the processing of each input
token contextually to all other tokens. To describe that more formally, given tokens xi ∈ Rd for
i = 1, . . . , N , one builds corresponding query, key and value representations qi, ki, vi, typically by
applying linear or affine operations fq, fk, fv on the tokens themselves:

qi = fq(xi), ki = fk(xi), vi = fv(xi). (1)

Scaled dot-product attention then consists in computing:

oi =

N∑
j=1

αijvj , where αij =
exp(eij)∑N
k=1 exp(eik)

with eij =
q⊤i kj√

d
are the attention weights. (2)

This operation is manifestly permutation invariant, as arbitrarily permuting indices j results in the
same output oi.

In order to break this invariance and enable the architecture to pay more or less attention to tokens
depending on their absolute or relative position as opposed to all inputs uniformly, already the orig-
inal Transformer paper introduced positional encoding, fixed or learned embeddings that encode
a token’s coordinates in the sequence (Vaswani et al., 2017). These would modify equation 1 by
adding positional embeddings PEi to the tokens: xi ← xi + PEi.

Another more generalizable approach by Shaw et al. (2018) implements relative positional embed-
dings by modifying equation 2 with eij =

q⊤i kj√
d

+ bij , i.e. adding bias terms that shift attention in
favor of neighboring tokens by decreasing its contribution as |i− j| increases.

This reveals to be a very promising approach, since it can be naturally extended to other structures
than tokens on a linear sequence, as long as one can provide a bias matrix bij that reflects distances
on the data structure of interest.

Graph Laplacian and spectral methods in graph transformers. The graph Laplacian is a fun-
damental operator for representing graph structure and has been widely proposed as a basis for
representing graph structures in connection to and as a generalization of CNNs (see e.g. Bruna et al.
(2014), end Defferrard et al. (2016)).
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Its connection with Transformers can be intuitively motivated starting from the original sine and
cosine positional encodings originally proposed by Vaswani et al. (2017), and in particular by ob-
serving that sine and cosine are eigenfunctions of the Laplace operator (the diffusion operator on
a linear 1D domain). By analogy, the eigenvectors of the graph Laplacian (the generalization of
the Laplacian on graphs) should serve as natural basis to encode positional information on graphs,
extending the idea of positional encoding from sequences to graphs.

More formally, given the adjacency matrix A ∈ RN×N of an undirected graph, the (normalized)
graph Laplacian is defined as L = 1 −D− 1

2AD− 1
2 , where D is the diagonal degree matrix. This

operator is related to one-step transition probabilities of a random walk on the graph where edges
represent possible transitions weighted by their connectivity (Chung, 1996). The graph Laplacian
induces a distance between given nodes i and j on the graph known as the resistance distance, which
is defined as Ω(i, j) = (ei − ej)

⊤L†(ei − ej), where ei ∈ RN is the ith canonical basis element
indicizing node i, and L† denotes the Moore-Penrose pseudoinverse of L (Klein & Randić, 1993).

Indeed, since the graph Laplacian is symmetric and positive semidefinite, Ω(i, j) satisfies the metric
axioms: non-negativity (i.e., Ω(i, j) ≥ 0 for all i, j), identity (i.e., Ω(i, j) = 0 iff i = j), symmetry
(i.e., Ω(i, j) = Ω(j, i)), and the triangle inequality (i.e., Ω(i, j) ≤ Ω(i, k) + Ω(k, j) for all i, j, k).

Using the spectral decomposition of L, the resistance distance can now be written as follows:
Ω(i, j) = (ei − ej)

⊤ ∑
k

1
λk

uku
⊤
k (ei − ej) =

∑
k

1
λk

((uk)i − (uk)j)
2, where λk are the nonzero

eigenvalues and uk the corresponding eigenvectors. This can be rewritten as:

Ω(i, j) = ||ϕi − ϕj ||2 for the Laplacian eigenmaps ϕi with components (ϕi)k =
1√
λk

(uk)i.

(3)

To summarize, the spectrum and eigenvectors of the graph Laplacian can be used to construct vec-
tors, the Laplacian eigenmaps ϕi, which are node embeddings whose distance reflects a bonafide
metric on the graph, making them natural candidates for positional encoding on graph structures
(Dwivedi & Bresson, 2021). Unfortunately, this idea incurs a major computational bottleneck due
to the eigendecomposition having O(N3) time complexity for dense graphs and at best O(N2) for
sparse graphs with specialized solvers. This complexity severely limits the scalability of transformer
approaches using spectral graph embeddings to large graphs.

Spectral Embedding Approximation. Because direct spectral decomposition scales poorly with
graph size, we propose to resort to standard iterative approximate decomposition methods such as
truncated series approximation that can be implemented efficiently for sparse matrices like graph
adjacencies (Saad, 2003). We are particularly interested in methods that scale linearly with the
number of nodes.

We briefly summarize the idea behind the use of a von Neumann series for approximating the re-
sistance distance, as it provides useful intuition on our method, but we will refer to the standard
literature for more details.

We first start by writing the graph Laplacian as L = 1 − P , where P is a transition matrix on the
graph (defined as P = D− 1

2AD− 1
2 if we are using the normalized graph Laplacian as before, or

P = D−1A if instead we are using the so-called random walk graph Laplacian). Methods such
the von Neumann series are based on the fact that for P with spectral radius < 1 (as in our case):
L·

∑
k P

k = (1−P )(
∑

k P
k) = 1, meaning that

∑
k P

k equals the (pseudo-) inverse of L defining
the resistance distance Ω. This iteration can be truncated at a large enough iteration step K.

These informal considerations reveal 2 interesting points: 1) since P is a transition matrix that can
be though of as an operator diffusion “probability mass” out on the graph a P k will in some sense
connect neighbors k-hops away on the graph; 2) because P is typically sparse (due to real-world
graphs having connectivity≪ number of nodes), we can take advantage of the celebrated Johnson-
Lindenstrauss Lemma and use random projections to accurately approximate the iteration P k using
a matrix multiplication which is exponentially smaller than the size of P and number of nodes N
(Dasgupta & Gupta, 2003). In short, the idea here is to generate a random projection R ∈ RN×r

with r = O(log(N)/ϵ2) for a small error tolerance ϵ > 0, and exploit the fact that computing PR
is fast and so is P · (P k−1R) given P k−1R, which in turn gives an iterative way of computing
(P kR) that reduces the time complexity fromO(N3k) toO(N · r · k), realizing our goal to achieve
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a scalable method liner in the number of nodes N . This method can be further improved upon by
exploiting sparsity as detailed in Chen et al. (2019), which develop FastRP, the specific random
projection-based truncated approximation method that we will use in practice.

At this point, it is important to note that approximate methods like FastRP will allow us to recover
Laplacian eigenmaps ϕi in equation 3 up to a an arbitrary projection R. This then translates to
“rotated eigenmaps” ϕ̃i = R⊤ϕi ∈ Rr. Fortunately, a consequence of Johnson-Lindenstrauss is
that for appropriate random projection ensembles, R⊤R is concentrated around the N × N unit
matrix: ||R⊤R − 1||2 = O(ϵ) (Dasgupta & Gupta, 2003)), meaning that the rotated eigenmaps ϕ̃i

closely preserve the resistance distance: Ω(i, j) = ||ϕi − ϕj ||2 = ||ϕ̃i − ϕ̃j ||2 +O(ϵ).

Invariance Breaking Challenges. The rotated eigenmaps ϕ̃i preserve the resistance distance
structure, making them good, efficient, and low-dimensional graph positional embeddings for a
given graph. However, the specific choice of matrix R corresponds to selecting a particular basis in
the eigenspace of the graph Laplacian, thereby breaking the intrinsic gauge invariance associated
with arbitrary rotations, sign flips, and eigenvector multiplicities that naturally occur in the eigende-
composition (Bronstein et al., 2017; Dwivedi et al., 2022). Breaking gauge invariance (i.e., choosing
an arbitrary basis) introduces spurious inductive biases that could link downstream model outputs
to irrelevant coordinate system artifacts rather than meaningful graph structure. More concretely, a
neural network that learns to associate an output to some particular feature spuriously arising from
the arbitrary basis and rotation choices, won’t be able to generalize on inputs that no longer present
the spurious feature.

This motivates our approach, which consists in using approximate eigenmaps ϕ̃i as Transformer
“positional” encoding on graphs, but by making sure that the Transformer will only be able to
operate on them through mechanisms that preserve gauge invariance, i.e. do not depend on R and
the corresponding graph Laplacian eigendecomposition.

3.2 OUR APPROACH: GIST.

Similarity-Based Encodings and Operations. Approximate spectral decomposition methods like
FastRP (Chen et al., 2019) allow us to efficiently (in time complexity O(N) in the number of nodes
in the graph) obtain well-defined graph positional embeddings as projected Laplacian eigenmaps.
However, the basis choice and rotation implicit in the projection break gauge invariance, which, as
discussed, introduces spurious features that could negatively bias our architecture. This could be
particularly pernicious in an inductive task, if our model were to be trained for instance on a graph
whose node have graph positional embeddings {Rϕi}i, but tested on a different graph with node
embeddings {R′ϕ′

j}j obtained from a different projection matrix R′ and/or eigenmaps based on a
different arbitrary way to span eigenspaces with higher multiplicity (which could happen simply due
to numerical instability, as Bronstein et al. (2017) note).

Our main contribution is to propose a Transformer architecture that recovers gauge invariance from
invariance-breaking spectral embeddings, which can then still take advantage of the efficiency of
approximate spectral decomposition methods while side-stepping the challenges that they introduce.

Our strategy is simple and based on the observation that, within a gauge choice, similarities between
spectral embeddings are (approximately) preserved: (Rϕi)

⊤(Rϕj) = ϕ⊤
i (R

⊤R)ϕj ≈ ϕ⊤
i ϕj . If,

therefore, we are to adapt our Transformer architecture so that graph positional encoding only affects
operations as a function of relative similarities, then gauge invariance is recovered (since changing
the gauge does not alter any computation).

Gauge-Invariant Spectral Self-Attention. We are now ready to introduce our main contribution
which is Gauge-Invariant Spectral Transformer (GIST). The first ingredient of GIST is Gauge-
Invariant Spectral Self-Attention which, for each node i = 1, . . . , N in a graph with N nodes, uses
graph positional embeddings ϕ̃i = Rϕi ∈ Rr obtained by an arbitrary random projection R ∈ Rr×N

and gauge choice ϕi (where the gauge choice, i.e. the eigenbasis uk, affect the eigenmaps ϕi through
equation 3). Gauge-Invariant Spectral Self-Attention then modifies equation 1 as follows:

qi = ϕ̃i, ki = ϕ̃i, vi = fv(xi).

5
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Figure 1: Gauge-Invariant Spectral Transformer. Left: Gauge-Invariant Spectral Self-Attention op-
erates on graph positional embeddings ϕ̃ as queries and keys, and node features x as values. The
output of the self-attention operation is then combined to x thorough as residual connection. Limit-
ing ϕ̃ to queries and keys preserves gauge invariance across the self-attention block. Right: Gauge-
Invariant Self-Attention is embedded in a Multi-Scale Gauge-Invariant Spectral Transformer Block
which comprises 3 parallel branches inspired by EfficientViT.

What this achieves is that the attention weights αij in equation 2 “unbreak” gauge invariance since

eij =
q⊤i kj√

d
=

ϕ̃⊤
i ϕ̃j√
d

=
ϕ⊤
i R⊤Rϕj√

d
=

ϕ⊤
i ϕj√
d

, which are gauge invariant (see Fig. 1, left). Notice
that R can also incorporate the gauge choice inherent in choosing eigenvectors signs and eigenspace
rotations, meaning that also the corresponding invariances are restored. Algorithm 1 in Section A.1
explains how we compute graph spectral positional embeddings and Algorithm 2 details how the
implementation of Gauge-Invariance Spectral Self-Attention relates to regular Self-Attention.

Gauge-Equivariant Spectral Self-Attention. The Gauge-Invariant Spectral Self-Attention oper-
ation thus preserves gauge invariance, but at the cost of giving up a lot of the flexibility of regular
self-attention. In particular, there is no mechanism that allows for a modification of the vectors ϕ̃i

through learning. In fact, applying even just a linear operation on ϕ̃i would break again gauge in-
variance. However, notice that rescaling each ϕ̃i by a scalar possibly depending on the node features
s(xi) ∈ R would modify the similarity between graph positional embeddings in the same way across
gauge choices, since scalars commute with orthogonal projections, meaning that it is an equivariant
operation across gauges: (s(xi)ϕ̃i)

⊤(s(xj)ϕ̃j) = s(xi)s(xj)(ϕ̃
⊤
i ϕ̃j) = s(xi)s(xj)(ϕ

⊤
i ϕj).

Remarkably, such a gauge-equivariant operation can also be straight-forwardly implemented via a
modification of self-attention by modifying equation 2 as follows:

qi = fq(xi), ki = fk(xi), vi = ϕ̃i,

and the output in equation 2 such that it is constrained to operate on ϕ̃i, i.e. ϕ̃l+1
i =

∑N
j=1 αijvj ,

where ϕ̃l+1
i indicates the graph positional encoding that will be used in the next layer l+1. Algorithm

3 in Section A.1 details how the implementation of Gauge-Invariance Spectral Self-Attention relates
to regular Self-Attention.

Linear Self-Attention, and Multi-Scale Architecture. Gauge-Invariant Spectral Self-Attention
ensures that we can compute reliable graph positional encoding with linear time complexity in the
number of nodes in the graph N . In order to maintain that linear scaling end-to-end, the very

6
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last component of our architecture aims to address the quadratic scaling of Transformers by imple-
menting a linear version of self-attention. In particular, we implement the linear transformer by
Katharopoulos et al. (2020), and in order to fully exploit its capabilities and mitigate its drawbacks
like the reported lack of sharp attention scores compared to softmax attention, we design a parallel
architecture inspired from EfficientViT by Cai et al. (2024) who proposed a multi-scale linear at-
tention architecture. Just like EfficientViT our Multi-Scale Gauge-Invariant Spectral Transformer
Block has 3 parallel branches: a feature branch consisting in a linear transformer block acting on
node features x alone, a local branch consisting in a graph-convolution layer also acting on x fol-
lowed by a linear transformer block, and a global branch consisting in our Gauge-Invariant Spectral
Self-Attention layer followed by a Gauge-Equivariant Spectral Self-Attention layer (which as ex-
plained act on both node features x and graph positional embeddings ϕ̃) then followed by a linear
transformer. In keeping with the analogy with EfficientViT, the role of the graph-convolution layer
(which simply averages node features across adjacent nodes) is to emphasize local information,
which would be otherwise diffused by linear attention. Conversely, Gauge-Invariant Spectral atten-
tion has the role of integrating global information across the graph. This block is represented in the
right panel of Fig. 1 and represents a unit layer that is sequentially repeated multiple times in our
models.

4 RESULTS

4.1 NODE CLASSIFICATION TASKS

To demonstrate the key advantages of GIST, we evaluate it on both transductive and inductive node
classification datasets. Transductive tasks are a common graph neural networks paradigm, and con-
sists in training and evaluating the model on the same graph, with the goal of predicting at test-time
node labels that where not provided at training (infilling). Inductive tasks on the other hand, operate
on a disjoint set of graphs and aim to predict properties on an entirely new graph.

Experiment Setup We evaluate our method on transductive graph benchmarks using the official
training, validation, and test splits and evaluation protocols. For each method, we select optimal
hyperparameters by optimizing over the validation split of each dataset. To obtain the final result,
we conduct a training run on the combined training and validation set and evaluate the model on
the corresponding test set. We train across multiple random seeds and report the mean ± standard
deviation of the relevant metric.

4.1.1 TRANSDUCTIVE TASKS

We evaluate our method on the three standard Planetoid citation benchmarks for the transductive
setting where the whole graph is observed at train time: Cora (2,708 nodes, 5,429 edges, 1,433 bag-
of-words features, seven classes), CiteSeer (3,327 nodes, 4,732 edges, 3,703 features, six classes),
and PubMed (19,717 nodes, 44,338 edges, 500 features, three classes). Train-val-test sets follow
the Planetoid public split, and we report node-classification accuracy (Sen et al., 2008; Yang et al.,
2016; Kipf & Welling, 2017)

Across these benchmarks, GIST is competitive with strong graph convolutional and transformer-
style baselines (see Table 1). On Pubmed, GIST attains the best mean accuracy among the reported
methods (81.20% ± 0.41), narrowly surpassing enhanced GCN variants (e.g., 81.12% ± 0.52) and
outperforming GAT/GraphSAGE families. On Cora and Citeseer, GIST achieves results comparable
to the top results (within ∼1–2 points of GCNII/SGFormer and the enhanced GCN), landing at
84.00%± 0.60 and 71.31%± 0.50, respectively.

4.1.2 INDUCTIVE TASKS

We evaluate our method on two inductive benchmarks: PPI, a collection of 24 disjoint tissue-specific
protein–protein interaction graphs where nodes (proteins) have 50 features and 121 non–mutually-
exclusive GO labels (We use the standard split of 20 graphs for training, 2 for validation, and 2
for testing, and report micro-averaged F1 on the unseen test graphs), and Elliptic, a time-evolving
directed Bitcoin transaction graph with 203,769 transactions (nodes), 234,355 payment-flow edges,
and 166 features across 49 snapshots, labeled licit/illicit with many nodes unlabeled due to class
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Table 1: Transductive node classification on the Planetoid benchmarks (Cora, Citeseer, Pubmed).
We report test accuracy (%) as mean±std across random seeds using the standard public split (higher
is better). Benchmark results are taken from the following references: (Kipf & Welling, 2017; Hu
et al., 2021; Luo et al., 2024; Veličković et al., 2018; Chiang et al., 2019; OGB, 2025; Zeng et al.,
2020; Chen et al., 2020; Brody et al., 2022; Choi, 2022; Wu et al., 2024b) .

Model Cora
(Accuracy ↑)

Citeseer
(Accuracy ↑)

Pubmed
(Accuracy ↑)

GCN (baseline) 81.60 ± 0.40 71.80 ± 0.01 79.50 ± 0.30
GraphSAGE 71.49 ± 0.27 71.93 ± 0.85 79.41 ± 0.53
GIN 77.60 ± 1.10 – –
GAT 83.00 ± 0.70 69.30 ± 0.80 78.40 ± 0.90
GCNII 85.50 ± 0.50 72.80 ± 0.60 79.80 ± 0.30
GATv2 82.90 ± 71.60 ± 78.70 ±
SGFormer 84.82 ± 0.85 72.60 ± 0.20 80.30 ± 0.60
GCN (enhanced) 85.10 ± 0.67 73.14 ± 0.67 81.12 ± 0.52

GIST (Ours) 84.00 ± 0.60 71.31 ± 0.50 81.20 ± 0.41

Table 2: Inductive node classification on PPI and Elliptic. Results are reported as micro-F1 (higher
is better). Benchmark results are taken from the following references: (Chen et al., 2020; Weber
et al., 2019; Chiang et al., 2019; Veličković et al., 2018; Zhang et al., 2018; Zeng et al., 2020; Chen
et al., 2025b; Brody et al., 2022)

Model PPI
(micro-F1 ↑)

Elliptic Bitcoin
(micro-F1 ↑)

GCN (baseline) 51.50 ± 0.60 96.10 ±
GraphSAGE 61.20 ± 97.70 ±
GAT 97.30 ± 0.02 96.90 ±
GaAN 98.70 ± –
Cluster-GCN 99.36 ± –
GraphSAINT 99.50 ± –
GCNII 99.53 ± 0.01 –
GCNIII 99.50 ± 0.03 –
GATv2 96.30 ± –

GIST (Ours) 99.50 ± 0.03 94.70 ± 0.03

imbalance (we train on the first 29 time steps, validate on the next 5, and test on latter 14, reporting
micro-F1.

On PPI, GIST matches the best large-scale sampling methods and deep residual GCNs (see Ta-
ble 2), reaching 99.50%± 0.03 micro-F1, on par with GCNIII and within noise of the strongest
GCNII setting (99.53%). On the temporally inductive Elliptic dataset, GIST attains 94.70%± 0.03
micro-F1. While this trails the strongest GraphSAGE configuration, GIST maintains stable perfor-
mance across future time steps. These findings collectively demonstrate GIST’s effectiveness as
a competitive graph learning approach, validating the successful trade-off between computational
overhead and representational power.

4.2 NEURAL OPERATORS

GIST as Neural Operator. As discussed, GIST fulfills the core properties of neural operators. It
defines an operator G : X →Y that maps functions sampled on a mesh to functions on the same (or
another) mesh while remaining agnostic to discretization. Positional information enters only through
inner products of Laplacian eigenmaps, which are invariant to spectral gauge (sign flips/rotations
within eigenspaces) and stable across mesh refinements/coarsenings. In the refinement limit, these
similarities recover the continuum Green’s-function kernel. Self-attention therefore realizes a non-
local, geometry-aware kernel integral oi =

∑
j αijvj with αij = softmax(ϕ̃⊤

i ϕ̃j/
√
d), providing

global integration.
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Table 3: Surface pressure prediction accuracy on DrivAerNet. Reported metrics: mean squared
error (MSE) and relative ℓ2 error (Rel L2). Lower is better for both.

Year Model MSE (×10−2) Rel L2 (%)

2024 RegDGCNN (Elrefaie et al., 2024) 9.01 28.49
2024 Transolver (Wu et al., 2024a) 5.37 22.52
2025 FigConvNet (Choy et al., 2025) 4.38 20.98
2025 TripNet (Chen et al., 2025a) 4.23 20.35
2025 GIST (ours) 4.16 20.10

Mesh Based Inductive Task. To illustrate these properties and the scalability of GIST, we ap-
ply it on a real-world continuous mesh based problem: the DrivAerNet dataset. DrivAerNet is a
high-fidelity CFD dataset of parametric car geometries comprising 4,000 designs; with each design
providing a watertight surface mesh with approximately 0.5M surface vertices per car and accom-
panying aerodynamic fields (pressure, velocity, wall-shear) plus global coefficients (e.g., Cd). We
model each car as a graph whose nodes are surface vertices and edges follow mesh connectivity.
Our task is node-level regression of the surface pressure field on previously unseen cars. Inductive
generalization is enforced by holding out entire designs for validation and testing as per the pub-
lished split. We report per-mesh R2 and RMSE for surface pressure prediction, averaged across test
meshes. Among the datasets considered here, DrivAerNet is the largest: both in total data volume
and in per-graph node count (Elrefaie et al., 2024).

As illustrated in Table 3, GIST outperforms existing methods on this task. Relevant baseline method
MSE and L2 values are pulled from their respective papers. For GIST, 3 layers were used with a hid-
den dimension of 384 and a node dropout of 0.7. The spectral embedding was computed per vertex
with a degree of 96, and the 256 embedding dimensions were appended with the euclidean vertex
coordinates and normal vectors. Unlike existing methods on this task, no lossy down-sampling to a
lattice grid or arbitrary latent space is required due to the inherent scalability of GIST.

We hypothesize that DrivAerNet’s low-valence surface meshes intensify oversquashing in message-
passing GNNs, since each vertex communicates only with close neighbors. In contrast, GIST’s
global attention and geometry-aware embeddings (e.g., spectral/shape features) provide nonlocal
coupling and coordinate-stable cues that better capture long-range flow interactions critical for sur-
face field predictions.

5 CONCLUSIONS

We presented a gauge-invariant spectral transformer architecture that addresses the fundamental
computational and theoretical challenges of applying Transformers to graph-structured data. Our
method achieves linear complexity in both memory and computation while preserving, and unlike
existing approximate methods that sacrifice gauge invariance for efficiency, our approach obtains
scalability, while avoiding pernicious inductive biases that would come about with breaking invari-
ance and hinder generalization. Experimental validation demonstrates state-of-the-art performance
on standard transductive and inductive node classification benchmarks, confirming the balance be-
tween computational efficiency and representational quality. The scalability of our approach is fur-
ther validated by state-of-the-art performance on a large-scale computational fluid dynamics task, a
benchmark that is usually tackled with discretization-invariant neural operators acting on lossy grid
discretization schemes that our approach can circumvent by virtue of its intrinsic scalability.
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6 REPRODUCIBILITY AND ETHICS STATEMENT

To ensure reproducibility of our results we will release our complete source code, including prepro-
cessing scripts, model implementations, and evaluation pipelines, upon publication.

The authors would also like to disclose that a Large Language Model (LLM) was used to minimally
aid in the writing of the paper by paraphrasing specific sentences for brevity, clarity, and to avoid
stylistic flaws such as repetition. In addition, once a first Related Works section had been compiled
by us, and LLM was used to help retrieve and discover possible relevant papers that we had missed.
All references provided by the LLM were carefully checked against the literature by the authors.
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Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, and João Carreira. Perceiver io: A
general architecture for structured inputs & outputs, 2021a. URL https://arxiv.org/
abs/2107.14795. ICLR 2022 version.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International Conference on Machine
Learning, pp. 4651–4664. PMLR, 2021b.

11

https://proceedings.mlr.press/v202/hao23c.html
https://arxiv.org/abs/2107.14795
https://arxiv.org/abs/2107.14795


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
RNNs: Fast Autoregressive Transformers with Linear Attention. arXiv:2006.16236 [cs, stat],
June 2020.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional Net-
works, February 2017.
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A APPENDIX

A.1 PSEUDO-CODE

Note that, contrary to the main text, in the pseudocode we use matrix notation where vectors are row
vectors, following the standard computer science convention. Thus, Φ ∈ RN×r has nodes as rows
and embedding dimensions as columns, consistent with machine learning frameworks where data
samples are stored row-wise.

Algorithm 1 Broken Gauge-Invariance Spectral Embeddings (based on FastRP (Chen et al., 2019))
Require: Graph adjacency matrix A ∈ RN×N , embedding dimensionality r, maximum power k
Ensure: Matrix of N node graph positional embeddings Φ ∈ RN×r

1: Produce very sparse random projection R ∈ RN×r according to Li et al. (2006)
2: P← A ·D−1 the random walk transition matrix, where D is the degree matrix
3: Φ1 ← P ·R
4: for i = 2 to k do
5: Φi ← P ·Φi−1

6: end for
7: Φ = Φ1 +Φ2 + · · ·+Φk

8: return Φ

Below we provide pseudo-code for the core computations of GIST, the Gauge-Invariant Spectral
Self-Attention block and the Gauge-Equivariant Spectral Self-Attention block. For illustration pur-
poses, we compare the algorithms to a stripped down implementation of self-attention. We then
point out the modifications that our algorithms apply to that basic functionality by indicating in red
red any addition to vanilla self-attention and in strike-through text anything that has to be removed.

Algorithm 2 Gauge-Invariant Spectral Self-Attention (softmax version)
Require: Node feature tokens X ∈ RN×d , graph positional embeddings Φ ∈ RN×r

Ensure: Output sequence O ∈ RN×d to be applied to features X
1: // Compute attention matrices
2: Q← X ·WQ where WQ ∈ Rd×d Q← Φ
3: K← X ·WK where WK ∈ Rd×d K← Φ
4: V← X ·WV where WV ∈ Rd×d

5: // Compute attention weights and output
6: A← softmax

(
QKT

√
r

)
7: O← AV
8: return O

Algorithm 3 Gauge-Equivariant Spectral Self-Attention (softmax version)
Require: Node feature tokens X ∈ RN×d , graph positional embeddings Φ ∈ RN×r

Ensure: Output sequence O ∈ RN×d to be applied to graph positional embeddings Φ
1: // Compute attention matrices
2: Q← X ·WQ where WQ ∈ Rd×d

3: K← X ·WK where WK ∈ Rd×d

4: V← X ·WV where WV ∈ Rd×d V← Φ
5: // Compute attention weights and output
6: A← softmax

(
QKT

√
r

)
7: O← AV
8: return O
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