
Reward Model Underspecification in Language
Model Alignment

Jacob Eisenstein1 Jonathan Berant1 Chirag Nagpal2 Alekh Agarwal2

Ahmad Beirami2 Alex D’Amour1 DJ Dvijotham1

Katherine Heller2 Stephen Pfohl2 Deepak Ramachandran2

1. Google DeepMind
2. Google Research

reward-model-underspecification-distshift-2023@google.com

Abstract

Reward models play a key role in aligning language model applications towards
human preferences. However, this setup can create a dynamic in which the policy
model has the incentive to exploit errors in the reward model to achieve high
reward. This means that the success of reward-based alignment depends on the
ability of reward models to transfer to new distributions created by the aligned
policy model. We show that reward models are underspecified, in the sense that
models that perform similarly in-distribution can yield very different rewards on
policy model outputs. These differences propagate to the aligned policies, which
we show to be heavily influenced by the random seed used during pretraining of
the reward model. We show that even a simple alignment strategy — best-of-n
reranking — creates a semi-adversarial dynamic between the policy and reward
models, promoting outputs on which the reward models are more likely to disagree.
Finally, we show that a simple ensembling strategy can help to address this issue.

1 Introduction

To align machine learning systems with human preferences, it has become common practice to
use reward models, which score potential outputs by how likely they are to be preferred by human
raters [CLB+17, SOW+20, BJN+22, RFS+23]. There are several ways to use reward models to
align policy models: they can act as training signals in reinforcement learning [CLB+17, SOW+20],
they can select examples for further fine-tuning [GPS+23], or they can be applied at inference time
to select a high-reward output from a set of samples [e.g., GSH23]. Such architectures create a
semi-adversarial dynamic between the reward model and the policy model: the policy model can try
to get high reward by exploiting errors in the reward model. Furthermore, while the reward model
is trained on a fixed set of human preference data, the process of alignment requires it to provide
feedback on data from a shifting target distribution, increasing the likelihood of such errors. The
success of reward model-based alignment therefore depends on whether it is possible to train reward
models that perform well out-of-distribution.

In this paper, we explore reward model distribution shift from the perspective of underspecifica-
tion [DHM+22], which occurs when a machine learning pipeline yields reliable performance on
held-out data from the training distribution, but variable performance out-of-distribution. For example,
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[SYW+21] pretrain and fine-tune 25 BERT-base checkpoints, finding that while their in-distribution
performance is consistent, their performance on out-of-distribution “challenge sets” varies signifi-
cantly across pretraining random seeds, with all other aspects of the training pipeline held constant.
One implication is that evaluation of individual artifacts, such as model checkpoints, cannot yield
accurate assessment of the out-of-distribution performance of training procedures. For that, it is
necessary to evaluate multiple runs of the training procedure. We explore the implications of these
ideas and results for language model alignment.

In general, alignment can fail for at least two reasons: 1) the reward model itself does not accurately
model human preferences, e.g., because it performs poorly out-of-distribution; 2) the alignment
procedure fails to adequately incorporate the reward model, e.g., because the aligned policy overfits
or underfits the reward signal. To focus on the first issue, we restrict consideration to a simple
inference-time alignment procedure, best-of-n reranking: we generate n samples from the policy
produced by supervised fine-tuning (SFT) and then return the one with the highest estimated reward.
The procedure is described in more detail at the beginning of section 2.

Prior work on reward model robustness Prior work has explored reward over-optimization
— sometimes called “reward hacking” or “Goodharting” — from several perspectives [KUM+20,
SHKK22, PBS22]. In reinforcement learning from human feedback (RLHF), reward overoptimization
is controlled by regularizing Kullback-Leibler divergence between the aligned policy and a reference
policy, typically obtained from supervised fine-tuning. But the effectiveness of this tradeoff is
limited by our ability to measure reward accurately, which has been called into question by other
work [BJN+22, GSH23]. [BJN+22] train two reward models on non-overlapping splits of the
preference annotations, using one to drive alignment (via either reinforcement learning or reranking),
and the other to measure the quality of the outputs. They find that RLHF increases performance
according to both the driver and measurement models, but that a performance gap emerges as the
policy is allowed to diverge further from the SFT distribution. However, both reward models were
built on the same pretraining data, which, as we will show, limits their diversity (as hypothesized
by [GI22]) and thus may understate the effect of reward hacking. Other work on has simulated the
relationship between a “true” reward and a learned proxy, showing that it is possible to overoptimize
the proxy to such an extent that the true reward starts to decrease [GSH23]. This phenomenon has
been replicated in more realistic settings by examining (and creating) spurious correlations in reward
model training data [PPS+23].

In offline reinforcement learning, uncertainty on out-of-distribution data points has been quantified
by ensembles [AMKS21]. Concurrent work, which appeared after the submission of this paper, also
examines the impact of ensembling on best-of-n reranking and reinforcement learning [CAKK23].
Using synthetic data in the style of [GSH23], they find that ensembles improve generalization in
both reranking and RLHF. None of this prior work considers how pretraining determines the OOD
behavior of the learned reward model, which may exert a significant and arbitrary impact on the
aligned policy.

Contributions

• We show how even best-of-n alignment can induce distribution shifts that make reward
models less reliable.

• We connect this lack of reliability to underspecification, demonstrating that the behavior
of reward models (and the corresponding policies) is strongly affected by the random seed
used during pretraining.

• We propose a simple mitigation for reward model underspecification: pretrain ensemble
reward models, which aggregate over multiple pretrains.

2 Underspecification in Reward Models

We explore underspecification in the context of best-of-n reranking, a simple but effective approach
which has been shown to improve rewards while limiting divergence from the fine-tuned (SFT) policy
model [GSH23, RSM+23]. For prompt x, let y(s) indicate sample s ∈ {1 . . . n} from the policy.
For reward model m, we select the reward-maximizing sample, ŷm = argmaxs∈1...n rm(y(s);x).
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Figure 1: Reward of the best-of-n reranked output, as judged by: the ranker reward model itself
(squares); reward models fine-tuned from the same pretrain as the ranker (circles); reward models
fine-tuned from different pretrains from the ranker (triangles). The reward models that do not share a
pretrain with the ranker regard its outputs as significantly worse, particularly for larger scale reward
models. Confidence intervals reflect finite-sample variance.
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Figure 2: Agreement of the top-ranked summary between reward models that do (circles) and do not
(triangles) share pretrainings. Underspecification of reward models directly affects the behavior of
the aligned policy. Chance agreement is 1/n. Confidence intervals reflect finite-sample variance.

The Kullback–Leibler divergence of this policy from the SFT policy has upper bound log n −
n−1
n , and it generally outperforms more elaborate alignment techniques like RLHF in the low-KL

regime [GSH23], albeit with the cost of generating multiple samples at inference time. In the
experiments that follow, we consider n ∈ {21, 22, . . . 26}.
To demonstrate underspecification, we compute three relationships: (1) the reward under reward
models that do not drive the reranking, i.e. rm′(ŷm 6=m′); (2) the agreement across reward models,
i.e. δ(ŷm, ŷm′ 6=m); (3) the relationship between the variance of rewards and the number of reranking
candidates, i.e. V[rm(ŷm′)]. In each case, a single reward model (per scale) is used to rerank
candidate outputs from the policy, and then the other models are used to score the top-ranked outputs.

2.1 Experimental setup

We explore these questions in the context of the TLDR summarization task and preference annota-
tions [VPSS17, SOW+20].1 We build on a fine-tuned T5-large policy model (770M parameters),
which was trained on reference summaries, with maximum input and output lengths of 1024 and
128 tokens respectively, a dropout rate of 0.1, a constant learning rate of 10−3, and a batch size
of 128. To examine the effect of pretraining on the reward models, we pretrain five T5 models at
each of the base (220M), large (770M), and XL (3B) scales, using a denoising objective on the
C4 corpus [RSR+20]. The pretrained checkpoints differ only in their random seed, which controls
the parameter initialization and the pretraining data. We then finetune the TLDR reward model by
optimizing a Bradley-Terry objective over pairs of preferred/dispreferred summaries [SOW+20],
minimizing the log sigmoid of the difference in rewards between the dispreferred and preferred
outputs. The Bradley-Terry model is underdetermined with respect to constant shifts in the rewards,
which is problematic for ensembles based on order statistics such as min and median, as well as for

1We obtained similar results in pilot studies on the XSUM dataset [NCL18] with an NLI-based reward
model [NWD+19, RFS+23], but we omit them here due to space limitations.
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Figure 4: Pretrain ensemble reward models (PERMs) significantly improve the quality of summariza-
tion outputs, as measured by a more capable XXL-scale evaluation model.

approaches based on the variance of rewards [e.g., CAKK23]. For this reason, we add an additional
regularization-like term α||r+ + r−||22, which encourages the rewards to be centered around zero.

To examine the effect of random seed at finetuning time, we finetune one pretrained checkpoint five
times, with five distinct random seeds. Because our focus is on reward model underspecification, we
do not explore the effect of pretraining random seed on the policy models.

2.2 Evidence of Underspecification
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Figure 3: Fraction of variance explained by varia-
tion across reward models.

On held-out in-distribution data, the pairwise ac-
curacy of different reward model checkpoints is
similar: 65.4–66.7% (base), 68.8–70.0% (large),
and 71.2–72.9% (XL). However, when we move
out-of-distribution we observe significant dis-
agreements between the reward models on the
quality of candidate summaries, as shown in
Figure 1. The red line (square markers) shows
the expected reward of the top-ranked output
according to the ranker itself. Below the XL
scale, other reward models from the same pre-
train tend to score these outputs highly, although
a gap emerges at the XL scale. But in all cases,
these outputs are scored significantly less favor-
ably by reward models which do not share a pretrain with the ranker. We emphasize that the pretrains
differ only by random seed.

These differences in estimated rewards induce different policies from the best-of-n alignment: as
shown in Figure 2, different reward models tend to produce different 1-best outputs. Again these
differences are strongly associated with the pretraining seed: for example, two reward models from
different pretrains will choose a different best-of-16 output more than half the time.

Finally, we investigate whether the effect of underspecification is increased by stronger forms of
alignment, which drive the policy further from the initial policy as represented by the SFT model.
We compute a matrix of instance-reward model scores Xi,m = rm(yi;xi), and apply ANOVA to
compute the fraction of the variance in scores that is explained by per-model offsets. As shown in
Figure 3, this fraction increases with the number of reranking candidates, which indicates stronger
alignment and greater divergence from the initial policy.

3 Pretrain Ensemble Reward Models

If reward model behavior is strongly associated with the pretraining seed, then a simple mitigation
for underspecification is to build an ensemble of reward models, each from a different pretrain:
r(y;x) = agg({rm(y;x)}m∈M, with agg indicating an aggregation function andM a set of reward
models [Die00, LPB17, RSR+20, ZZE+21]. As before, we build on five different pretrains, con-
structing five corresponding reward models. We consider simple aggregation functions: MEAN,
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MEDIAN, MIN, and MEAN MINUS STDEV. Before aggregation, each reward model is standardized to
zero mean reward per prompt. To evaluate the quality of the best-of-n outputs under these rewards,
we train an evaluation model by finetuning a T5-XXL checkpoint. The evaluator is thus more capable
than any of the ranker models (it achieves a 79.5% pairwise accuracy on heldout in-distribution data)
and does not share a pretraining checkpoint with any member of the ensemble.

According to the evaluator, the ensembled reward models yield significantly higher rewards than
individual reward models (Figure 4). Win rates over the SFT policy were also significantly higher:
for example, at n = 64 and XL-scale, the win rate was 90.0% for the pretrain-ensemble reward
model, versus 87.7% for a fine-tune ensemble and 85.7% for an individual reward model. Differences
between the aggregation functions were smaller, with the MEAN aggregation function performing best
at the XL scale and the more conservative MIN and MEAN MINUS STDEV aggregators performing
best at the base scale (see Table 1 in the supplement). In pilot studies we compared pretrain
ensembles to aggregations of MC Dropout samples from the reward model, and found that pretrain
ensembles showed a consistent advantage even when aggregating a much larger number of MC
Dropout samples [similar to LPB17]. Future work will compare these possibilities more rigorously.

4 Conclusion

Online alignment methods like RLHF and reranking rely on the robustness of reward models to
distributional shift. However, we find that the OOD performance of reward models are underspecified,
with a strong dependence on the random seed used during pretraining. Pretrain ensembles can help to
address this issue, yielding significantly better performance over individual reward models. However,
producing and maintaining multiple pretrains is expensive, suggesting that more efficient ensembling
approaches should be sought in future work [e.g., WIG+22]. Another topic for future work is to
move beyond reranking. Of particular interest are alignment techniques that enable exploration, such
as RLHF. These methods offer the opportunity to seek greater rewards by moving further from the
SFT policy, but at the cost of imposing even greater distribution shift on the reward model. Such
techniques thus stand to benefit from robustness-promoting architectures and learning objectives.
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Supplementary Material

4.1 Autoeval results

Numerical results for the ensembles are shown in Table 1.

scale ensemble method reward win rate

base

finetune

mean 0.951± 0.010 0.698± 0.005
mean minus stdev 0.995± 0.010 0.704± 0.005
median 0.938± 0.010 0.694± 0.005
min 1.004± 0.010 0.706± 0.005

pretrain

mean 1.041± 0.013 0.715± 0.005
mean minus stdev 1.085± 0.012 0.724± 0.005
median 1.018± 0.012 0.711± 0.005
min 1.099± 0.012 0.726± 0.005

single RM single RM 0.927± 0.009 0.691± 0.004

large

finetune

mean 1.513± 0.009 0.810± 0.004
mean minus stdev 1.516± 0.009 0.812± 0.004
median 1.489± 0.009 0.806± 0.004
min 1.523± 0.009 0.814± 0.004

pretrain

mean 1.720± 0.011 0.847± 0.004
mean minus stdev 1.687± 0.011 0.843± 0.004
median 1.688± 0.010 0.842± 0.004
min 1.630± 0.010 0.836± 0.004

single RM single RM 1.451± 0.008 0.797± 0.004

xl

finetune

mean 1.866± 0.009 0.877± 0.003
mean minus stdev 1.807± 0.009 0.867± 0.003
median 1.815± 0.009 0.868± 0.003
min 1.817± 0.009 0.868± 0.003

pretrain

mean 2.002± 0.010 0.900± 0.003
mean minus stdev 1.947± 0.009 0.890± 0.003
median 1.944± 0.009 0.890± 0.003
min 1.921± 0.009 0.887± 0.003

single RM single RM 1.756± 0.008 0.857± 0.003

Table 1: Auto-evaluator rewards and win rate versus the SFT model on TLDR, with standard errors.
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