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Abstract
Learners with a limited budget can use supervised
data subset selection and active learning
techniques to select a smaller training set and
reduce the cost of acquiring data and training
machine learning (ML) models. However, the
resulting high model performance, measured by a
data utility function, may not be preserved when
some data owners, enabled by the GDPR’s right to
erasure, request their data to be deleted from the
ML model. This raises an important question for
learners who are temporarily unable or unwilling
to acquire data again: During the initial data
acquisition of a training set of size k, can we
proactively maximize the data utility after future
unknown deletions? We propose that the learner
anticipates/estimates the probability that (i) each
data owner in the feasible set will independently
delete its data or (ii) a number of deletions
occur out of k, and justify our proposal with
concrete real-world use cases. Then, instead of
directly maximizing the data utility function, the
learner can maximize the expected or risk-averse
post-deletion utility based on the anticipated
probabilities. We further propose how to construct
these deletion-anticipative data selection (DADS)
maximization objectives to preserve monotone
submodularity and near-optimality of greedy
solutions, how to optimize the objectives and
empirically evaluate DADS’ performance on real-
world datasets.

1. Introduction
Training machine learning (ML) models with high
predictive performance often requires large datasets. For
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example, online services such as Netflix and Amazon
require different users’ usage and purchase history to predict
good recommendations, while healthcare startups require
various patients’ health records (e.g., heart statistics, CT
scans) to predict diseases well. However, using a larger
dataset incurs longer training and prediction time and more
expensive labelling costs. Thus, conventionally, supervised
data subset selection and active learning have often been
used to select a smaller training set to reduce the time
and cost incurred without significantly sacrificing accuracy
(Wei et al., 2015); the former assumes accessibility of data
labels but the latter does not. Concretely, both classes of
data selection (DS) methods select a subset K (of size
at most k) from a large feasible set M as the training
dataset to maximize some chosen data utility function u, i.e.,
K := argmaxB⊆M :|B|≤k u(B), that positively correlates
with model accuracy but can be more efficiently computed
without model training.

The recent interest in the rights of individuals to own and
protect their data as their properties, evidenced by the
General Data Protection Regulation (GDPR), has created
a stronger impetus for DS and a new important challenge
at the same time: Firstly, as data owners require monetary
compensations for their data (Ghorbani & Zou, 2019; Jia
et al., 2019) and would only grant ML model learners
temporary access to their data for DS, learners with a limited
monetary budget (e.g., a healthcare startup) have a stronger
impetus to acquire high utility data from fewer data owners.
Secondly, as some selected data owners may request timely
deletions of their data (e.g., sensitive health records) under
GDPR’s “right to erasure” in the future, the high data utility
and model accuracy achieved via DS is not preserved after
their data are deleted from the model (as empirically shown
in Sec. 5). The learner may neither have the budget1 nor
logistics to acquire replacement data from unselected data
owners for some time period. For example, a startup may
find it tedious to attract and request consent/data access
from data owners after every data deletion and prefer doing
data acquisition annually instead. Thus, a novel gap and
challenge arise: During data acquisition with a limited

1A learner that reserves part of its budget to purchase
replacement data later undesirably sacrifices better current data
utility. We further describe scenarios when DADS is more useful
in App. A.
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budget (Fig. 1), how can a learner proactively maximize the
post-deletion data utility as in Fig. 2?

Figure 1: An overview of data selection with a limited
budget. Using conventional DS can lead to a significant
fall in the model accuracy/data utility after multiple future
deletions from the ML model which may not be corrected
until the next data acquisition cycle (when new budget
and logistics become available). We propose deletion-
anticipative data selection (DADS) to address the challenge.

Our key perspective is that although the learner does
not know future deletions beforehand, the learner should
proactively anticipate the probability of subset of owners
staying present (i.e., not delete their data) in the period
of interest (before the next data acquisition) and account
for these probabilities in the deletion-anticipative data
selection (DADS) objectives. Realizing this perspective
involves addressing three sub-challenges. Firstly, instead of
requiring the learner to tediously anticipate the probabilities
for an exponential number of subsets, we must (D1) reduce
the number of probability parameters to anticipate (or
estimate). Secondly, given the anticipated probabilities, we
must design (D2) the DADS objectives to capture the post-
deletion data utility. Lastly, the learner desires guarantees
that (D3) the DADS objectives can be maximized greedily
and near optimally.

To address (D1), we propose that the learner assumes
that each owner in the feasible set M will decide (i)
independently or (ii) dependently but similarly to stay
present. For (i), the learner estimates the probability
each data owner stays based on surveys/histories of data
owners (O(|M |) parameters); for (ii), the learner decides
the probability of only a owners staying present out of k for
each size a based on its preferences (O(k) parameters). We
justify our proposal with concrete use cases in Sec. 3.

To address (D2), we design two DADS objectives (Sec. 3) for
risk-neutral and risk-averse learners who, respectively, care
about the average and worst-cases post-deletion data utility:
Optimizing the expected objective EDADS maximizes the
expected data utility (w.r.t. the probability owners stay

Figure 2: DS and DADS maximize the data utility and post-
deletion data utility respectively. DADS selects a different
set of data points that are closer to the centre of the data
distribution. As a result, DADS is likely to have better post-
deletion predictive performance and its staying red selected
points are more representative of the initial full dataset.

present). In contrast, optimizing the risk-averse objective
RAα-DADS maximizes the α-level conditional value-at-
risk data utility — the expected data utility under the worst
100α% cases. A lower α ∈ (0, 1] signifies greater concern
for rare/worst utilities (associated with more deletions).

To achieve (D3), we focus on DS objectives whose data
utility function u is monotone submodular. In Sec. 4, we
seek to preserve monotonicity and submodularity in the
expected objective EDADS so as to exploit existing greedy
submodular maximization algorithms (Nemhauser et al.,
1978). For (i), we prove that the independence assumption is
sufficient. For (ii), we prescribe how to set the probabilities
of a data owners staying out of each size t < k. Lastly, we
discuss techniques to reduce the extra computational cost of
evaluating the DADS over the DS objective in Sec. 4.4 and
empirically show that DADS lead to higher post-deletion
predictive performance on real-world datasets in Sec. 5.

2. Background and Related Work
2.1. Background

Consider a set function u that maps any subset A ⊆ M to
its non-negative value, and denote the marginal gain of an
element (in our context, datum) j ∈M to the set A ⊆M as
∆u(j|A) := u(A∪j)−u(A).2 Set function u is monotone if
for every j ∈M and set A ⊆M , ∆u(j|A) ≥ 0 (i.e., adding
j does not decrease utility). Set function u is submodular
over M if for any sets A, B where A ⊆ B ⊆ M and
element j ∈ M \ B, ∆u(j|A) ≥ ∆u(j|B) (i.e., adding j
yields a smaller gain on a larger subset). The maximization
of submodular functions under cardinality constraints has
been studied extensively. In particular, the greedy algorithm

2To ease notations, we use j in place of {j} in set operations.
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(Nemhauser et al., 1978) that iteratively selects the element
with the largest marginal gain returns a solution that is at
least (1 − 1/e) of the optimal solution when the function
is non-negative and monotone. App. C.1 details the greedy
algorithm and operations preserving submodularity.

In DS, the learner maximizes some data utility function u
that maps each data subset A to the utility of a model only
trained on A. Existing supervised data subset selection and
active learning works use heuristics or theoretical analysis to
choose an efficiently computable u that positively correlates
with model performance. App.C.2 details the definition of
some submodular utility functions, including the nearest
neighbor (NN) and naı̈ve Bayes (NB) submodular functions
(Wei et al., 2015), which consider the log-likelihood on
the feasible set for their respective classifiers, and other
functions in App. C.2. Maximizing the NN or NB
submodular functions will, respectively, select a subset
representative of the training set or a subset that has diverse
feature coverage. It is meaningful to examine if these
existing submodular DS objectives can be extended to
submodular DADS objectives to exploit existing submodular
maximization algorithms (Minoux, 1978; Mirzasoleiman
et al., 2015; Nemhauser et al., 1978).

2.2. Related Work

Next, we will explain how our work is related to and differs
from others that have considered data deletions, the “right
to erasure”, and stochasticity in the submodular function.

Machine unlearning (Bourtoule et al., 2021; Cao & Yang,
2015) is concerned with the hows of erasing data and its
challenges such as efficiency, handling stochasticity, and
incrementality of training. We view machine unlearning as
complementary to our work. Our work selects the training
data while anticipating and accounting for deletions during
DS. Subsequently, when deletions are requested, the learner
is free to use any unlearning method; in our experiments,
we assume retraining from scratch.

Deletion-robust submodular maximization considers the
deletion of some set D with maximum size d. Krause et al.
(2008) have proposed how to achieve the (optimal) robust
objective value after adversarial deletions of d elements (i.e.,
maxB⊆M :|B|≤k minD:|D|≤d u(B \D)) by selecting the set
B to be logarithmically larger than k. Orlin et al. (2018)
and Bogunovic et al. (2017) have proposed algorithms that
achieve 0.387 of the optimal robust objective value when
d = o(

√
k) and o(k), respectively. Mirzasoleiman et al.

(2017) have considered a streaming set where data can be
dynamically added and deleted but required the deleted
set D to be known. Separately, Kazemi et al. (2018) have
proposed how to select a coreset M ′ (of the feasible set) that
ensures a near-optimal solution to maxB⊆M\D:|B|≤k u(B)
can still be found in M ′ after the deletion of some set D

(unknown a priori). Dütting et al. (2022) and Mitrovic et al.
(2017) have considered the streaming setting instead. Our
work differs from the above as (a) we consider D to be
unknown (see Sec. 3), (b) select a dataset of exactly size k
to fit within a budget, and (c) maximize the expected and
conditional value-at-risk instead of the robust adversarial
case to preserve higher data utility in the average cases; see
Sec. 5 for negative examples on how optimizing for worse
cases (e.g., lower staying probability) results in lower data
utility when there are few or no deletions.

Stochastic submodular maximization. Asadpour et al.
(2008) have considered a setting where each element in the
feasible set is an independent random variable (e.g., may
be removed with some probability). They have proven that
the expected set function is monotone submodular and can
thus be maximized near-optimally by the greedy algorithm
(Nemhauser et al., 1978) or the continuous greedy algorithm
followed by rounding to an integral solution (Vondrák,
2008). While their non-adaptive results correspond to
ours for the expected EDADS objective with independent
decisions (Sec. 4.1), our work additionally (a) uses an
alternative proof to show monotone submodularity for some
dependent variables (Sec. 4.2), (b) prescribes how model
learners can intuitively set the probability distribution and
compute the DADS objectives efficiently (Secs. 3 & 4.4),
(c) discusses the risk-averse RAα-DADS objective, and (d)
demonstrates DS and DADS applications empirically.

3. Problem Formulation
Let u be a data utility function. Consider any subset B of the
feasible set M . Let pB denote a probability mass function
(pmf) mapping each subset A ⊆ B to the probability that
only the data owners in A stay present in the period of
interest. So, the support of pB is the power set of B. The
learner’s goal is to maximize the EDADS objective defined
as the expected data utility if owners stay present or delete
according to pmf’s (plural of pmf) {pB}B⊆M :

uE(B) := EA∼pB(·) [u(A)] (1)

under some constraints. Our work considers a cardinality
constraint, i.e., at most k elements in the selected set K ⊆
M and exactly k elements for monotone submodular set
functions. Deletions within K are not known during DS and
may happen at any time in the period of interest after DS.

Next, we address the challenge (D1) and answer the
question: How can a learner (e.g., healthcare startup)
anticipate deletions and set the pmf’s {pB}B⊆M readily
in real-world applications? Naively, the learner has to
anticipate the probabilities for an exponential number of
subsets A,B s.t. A ⊆ B ⊆ M . To reduce the number of
probability parameters to estimate, we propose simplified
yet realistic settings. The learner can follow the flowchart
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in Fig. 7 (App. B) and consider that data owners decide to
stay present (i) independently (Sec. 3.1) or (ii) dependently
but the probability only depends on the number of owners
(Sec. 3.2). App. B.4 gives a summary of notations.

3.1. Independent Decisions

The learner can assume that each data owner j ∈ M ’s
decision to stay present (i.e., not delete its data) is an
independent Bernoulli variable with staying probability sj .3

To estimate sj of data owner j, the learner can survey
owner j indirectly on its privacy preferences or directly
on its staying probability, observe its data deletion history in
data sharing platforms, or enforce sj = 1 through binding
contracts (e.g., each newly selected data owner cannot delete
its data in a fixed period, which is similar to how a new
tenant must commit to leasing the property for a short fixed
period). It is also natural that owners of data with different
class labels may exhibit different staying probability sj . For
example, patients with health conditions may be more likely
to request deletions of their sensitive medical information
than patients without and have a smaller sj .

The probability pB(A) is thus the product of the probability
that only owners in set A stay while owners in set B \ A
delete, i.e., pB(A) =

∏
j∈A sj

∏
ℓ∈B\A(1− sℓ).

3.2. Dependent Decisions

Next, we allow each data owner’s decision to stay present
to depend on others’ decisions but reduce the number of
probability parameters by assuming that each data owner
behaves similarly and is equally likely to delete their data.
Thus, the probability pB(A) of only subset A in B staying
present only depends on the size of A and B. Here,
we propose how the learner should use its experience,
data acquisition plans or limited surveys to decide the
probabilities (or the relative weights) (ra)

k
a=0 of only a

owners staying present (out of k selected owners) to non-
negative values that sum to 1 as follows.

(I) Decide tolerance to different number of deletions.
• An uninformed learner may place equal weights on any

number of deletions and set ra = 1/(k + 1) for all a =
0, 1, . . . , k.

• A startup that only experienced ≤ z deletions in the last
year or plans to reacquire data again after z (e.g., = .1k)
deletions can set ra = 0 for a < k − z. For example,
the startup can model the number of data owners staying
follows the (discrete) uniform distribution U(k − z, k).

• A pessimistic learner is pessimistic, who wishes to
tolerate more than z deletions, can set ra = 0 for
a ≥ k−z. For example, the learner can model the number

3Independence is a realistic assumption when the data owners
are diverse or do not know one another.

of data owners staying follows the uniform distribution
U(0, k − z − 1).

(II) Estimate common staying probability less
confidently. When the learner cannot confidently decide on
a value for the staying probability s of every owner/class in
Sec. 3.1, we propose that the learner can model s as a Beta
distribution to reflect its uncertainty. Thus, the number of
data owners staying follows a beta-binomial distribution
with k trials. The probability ra that only a selected owners
stay is BetaBin(a|k,α,β) and the expected staying
probability E[s] = α/(α + β). Suppose that the learner
estimates the staying probability to be 0.5.

• An unconfident learner can set the probability ra
as BetaBin(a|k, 1, 1) which follows the uniform
distribution.

• A moderately confident learner who has surveyed
a small group of data owners can set ra =
BetaBin(a|k, 10, 10).

• More generally, α− 1,β− 1 can encode the change in
belief from surveying a small group of owners.

For any subset Bk of the maximum size k, the probability
pBk

(A) of only subset A of size a (in Bk) staying present
is then obtained by dividing ra by the number of subsets of
size a, i.e., pBk

(A) = ra/
(
k
a

)
. We prescribe how to set the

pmf pBt
for other subset Bt of size t < k in Sec. 4.2.

3.3. Risk-Averse DADS

The expected data utility (Eq. 1) does not inform a learner
about the worst-case data utility after many data owners
delete their data. Thus, a risk-averse learner, who cares
about the worst cases, may prefer the value-at-risk (VaR)
and conditional value-at-risk (CVaR) (Sarykalin et al., 2008)
utility with parameter α ∈ (0, 1] that encodes concern for
only the worst 100α% possible utility. Let A be a set
random variable (r.v.) sampled according to A ∼ pB(·)
and u(A) be a discrete r.v. representing the corresponding
data utility. The VaR is the α-percentile of u(A), i.e.,
uVaRα(B) := inf {τ ∈ R : P [u(A) ≥ τ ] ≤ α}. The risk-
averse RAα-DADS objective is the expected value of u(A)
when u(A) is restricted to at most its α-percentile:

uCVaRα
(B) := (1− λ) uVaRα

(B) +

λ EA∼pB(·) [u(A)|u(A) < uVaRα
(B)]

(2)

where λ := (1/α) P [u(A) < uVaRα(B)] “splits” the
pmf at uVaRα

(B) to obtain the α-percentile. Rockafellar
& Uryasev (2002) have re-expressed the risk-averse
RAα-DADS objective (2) as

max
τ≥0

H(B, τ) := τ− 1

α
EA∼pB(·) [max(0, τ − u(A))] . (3)

Remark. When α = 1 and the learner is risk-neutral,
the EDADS objective (1) is recovered. We choose the
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RAα-DADS objective over other objectives that combine
the mean and standard deviation of u(A) as it is a coherent
risk measure (Sarykalin et al., 2008), affected by the
distribution’s asymmetry, and allows us to exploit greedy
submodular maximization algorithms described in Sec. 4.3.

4. Optimizing DADS Objectives
Sec. 2 describes that the data utility set function u is
often monotone submodular and amenable to efficient
optimization via greedy algorithms. However, the EDADS
objective uE is not necessarily monotone submodular as it
takes an expectation w.r.t. pB that changes with the input set
B, as illustrated by the counterexample in App. D.1. Here,
we propose Prop. 1 specifying conditions on the pmf’s to
ensure the monotone submodularity of uE and address the
challenge (D3). In App. B, we describe our algorithms to
optimize the DADS objectives (Algos. 1-2) and their time
complexity.

Proposition 1. Let u be (monotone) submodular over the
feasible set M . Consider a fixed subset K ⊆ M with
a valid pmf pK , i.e., the probabilities of all subsets of K
are non-negative and sum to 1. For every subset B ⊆ K,
let the pmf pB be a marginalization over the pmf pK , i.e.,
pB(A) =

∑
T⊆K\B pK(A ∪ T ) (‡). Then,

uE(B) := EA∼pB(·) [u(A)] = EC∼pK(·) [u(B ∩ C)] (4)

is (monotone) submodular over the set K.

Its proof is in App. D.2 and holds for any valid pmf pK ,
including those in Secs. 4.1 and 4.2. The main intuition is
that we can rewrite the expression to take an expectation
over the same distribution (regardless of the input set) by
applying a change-of-(set)-variable and Lemma 1.

However, during earlier rounds of DADS, we would not
know the selected set K to set pB accordingly. To
circumvent this issue, we (a) apply Prop. 2 (a modification
of Prop. 1) which impose conditions on the pmf pM instead
in Sec. 4.1 and unique use cases in App. E or (b) enforce that
the pmf only depends on the size k (instead of the specific
set K) and use (monotone) submodularity for sets up to size
k in Sec. 4.2.

Proposition 2. Let u be (monotone) submodular over the
feasible set M . If there exists a valid pmf pM such that
every pmf pB can be expressed as a marginalization over
the pmf pM , i.e., pB(A) =

∑
T⊆M\B pM (A ∪ T ) (‡), then

uE(B) := EA∼pB(·) [u(A)] = EC∼pM (·) [u(B ∩ C)] (5)

is (monotone) submodular.

Its proof is similar to Prop. 1 and in App. D.3. Thereafter,
the learner can maximize uE by applying the greedy

algorithm (Nemhauser et al., 1978) (see App. C.1): At
round t+ 1, when the set Kt has been selected, the learner
greedily selects the next element j ∈ M \ Kt with the
largest marginal gain ∆uE(j|Kt) := uE(Kt∪j)−uE(Kt) =
EC∼pK(·) [∆u(j ∩ C|Kt ∩ C)].

4.1. Independent Decisions

Let Ij be the indicator variable that indicates if owner j
stays. Since the expected EDADS objective can be rewritten
as an expectation over the joint pmf of {Ij}j∈M (5), i.e.,
pM (A) =

∏
j∈A sj

∏
ℓ∈M\A(1− sℓ) and

uE(B) = E{Ij}j∈B
[u ({j|Ij = 1})]

= E{Ij}j∈M
[u (B ∩ {j|Ij = 1})] , (6)

it is (monotone) submodular by Prop. 2. Intuitively, the
realization of the indicator variables of unselected owners
{Iℓ}ℓ∈M\B can be ignored. However, their inclusion makes
the RHS an expectation over the same distribution pM .

Interpretation of marginal gain. In App. D.4, we simplify
the marginal gain ∆uE(j|Kt) of owner j to the product of
its staying probability and expected marginal contribution
to subsets of Kt:

∆uE(j|Kt) = sj × EA∼pKt (·) [∆u(j|A)] . (7)

So, an owner j is preferred when it has a higher staying
probability, or leads to a strictly higher marginal gain to
some staying subset A and at least the same gain to other
subsets. In our experiments in Sec. 5.1, the EDADS objective
still selects owners with lower staying probability due to
their larger expected marginal contribution (e.g., due to few
owners with similar data anticipated to stay present).

4.2. Dependent Decisions

In Sec. 3.2, we suggest that the learner can assume each data
owner is equally likely to delete their data. This assumption
allows us to simplify the probability of only set A of size a
(in Bk of size k) staying present from pBk

(A) = r|A|/
(

k
|A|

)
to pk(a) = ra/

(
k
a

)
for notational convenience. Now, we

will outline how to decide the pmf’s pt for sizes t < k.

The learner should apply Prop. 1 to decide the pmf’s
{pt}k−1

t=1 of earlier rounds (with < k selected), and obtain
a (monotone) submodular set function for sets up to size k.
For any a, the probability pt(a) of a subset of size a (out of
t) staying present can be more conveniently computed in a
recursive manner using Cor. 1 below, as proven in App. D.5:

Corollary 1. (‡) is equivalent to “owner j’s decision to
stay/delete does not affect the probability of any other subset
A ⊆ B staying present”. Formally,

∀A ⊆ B ∀j ∈ K\B [pB(A) = pB∪j(A)+pB∪j(A∪j)] .
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The learner starts by computing the probability pk−1(a) of a
subset of size a < k (out of (k−1) selected) staying present
from the decided probability of a subset of size a or a+ 1
(out of k) staying present: pk−1(a) = pk(a)+ pk(a+1) =
ra/

(
k
a

)
+ ra+1/

(
k

a+1

)
. Next, the probability pk−2(a) can

be computed as pk−1(a) + pk−1(a+ 1), and so forth.

Example from Sec. 3.2 (I). Consider the startup that tolerates
≤ z deletions and sets ra = 0 for a < k − z and ra > 0
otherwise. Then, the probability pk−1(a) = 0 iff a <
k−1−z. Recursively, the probability pt(a) is only positive
for the z largest subsets out of t.

Example from Sec. 3.2 (II). Consider the learner who less
confidently estimates the common staying probability and
sets ra = BetaBin(a|k,α,β). In App. D.6, we prove that
setting pt(a) = BetaBin(a|t,α,β)/

(
t
a

)
for each t < k

satisfies Cor. 1. Thus, pt(a) can be directly computed
instead without knowing k in advance: the learner can more
flexibly consider that the number of data owners staying in
different groups (e.g., classes) follows different independent
distributions without knowing the number selected per
group in advance. For example, the learner can model
that the positive class stays with probability s+ where
s+ ∼ Beta(α,β) and the negative class always stays, as
empirically shown in Fig. 17.

In App. G, we highlight interesting connections between
the marginal gain ∆uE(j|Kt) in round t + 1 and
cooperative game theory (CGT) based data valuation (DV)
(Chalkiadakis et al., 2011; Sim et al., 2022). For example,
when the learner considers each owner equally likely to
delete its data and any number of deletions equally likely
(Sec.3.2 (I)), in each round, our EDADS objective will select
the owner with the largest Shapley value (Shapley, 1953)
which is an equitable data value (Ghorbani & Zou, 2019).

4.3. Risk-Averse DADS

Moreover, when the learner considers independent decisions
(Sec. 4.1) or sets the dependent decisions’ pmf’s via Sec. 4.2,
we can use Prop. 1 to express the RAα-DADS objective (3)
as an expectation over the same distribution. RAα-DADS
can then be approximated by taking n samples Ci ∼ pK(·):

max
τ≥0

H(B, τ) := τ − 1

α
EC∼pK(·) [max(0, τ − u(B ∩ C))]

≈ τ − 1

αn

n∑
i=1

max(0, τ − u(B ∩ Ci)) .

Zhou & Tokekar (2022) have proven that for any τ , H(B, τ)
preserves the set function u’s monotone increasing and
submodularity (over B) properties, and for any set B,
H(B, τ) is concave in τ . Consequently, Zhou & Tokekar
(2022) have proposed using the greedy algorithm at regular
intervals of τ and selecting (B, τ) with the best sampled

objective value. The approximation quality is better when
risk aversion is low (i.e., α is close to 1) and the curvature of
the submodular function u is low.4 The learner can improve
the optimality guarantee by increasing n or decreasing the
separation between the evaluated τ ’s. We propose that the
learner can achieve the latter by finding τ that maximizes
H ′(τ) := maxB H(B, τ) using numerical optimization
techniques like Brent’s method (Brent, 2013).

4.4. Efficient Evaluation of uE

Computing the set functions (4) and (6) in the DADS
objectives exactly and naı̈vely requires exponential O(2k)
time and is therefore intractable for a larger maximum
selected size k. To avoid this cost, we consider the following
solutions.

Sample average approximation (SAA) is a general
technique that would work for any data utility function u
and pmf pK satisfying Prop. 1. SAA replaces uE(B) =
EC∼pK(·) [u(B ∩ C)] with the mean computed from n
i.i.d. samples of subsets Ci ⊆ K, i.e., uavg(B) :=
n−1

∑n
i=1 u(B ∩Ci). So, its computational cost is n times

that of evaluating the DS objective. The probability the SAA
solution is optimal for the original problem approaches
1 exponentially fast (Kleywegt et al., 2002): Theorem
3 of Yu & Ahmed (2016) suggests that an algorithm
that solves the SAA problem (i.e., maxB uavg(B)) with
an approximation ratio ρ (e.g., 1 − 1/e) also achieves a
[ρ(1−ϵ)−ϵ]-optimal solution on the original problem (i.e.,
uE) with probability at least 1 − 2δ. This approximation
requires 2kσ2ϵ−2 log(|M |/δ) samples where ϵ bounds the
scaled absolute difference |uavg(A)−uE(A)|/maxB uE(B)
across every set A of size ≥ k and σ2 is a problem
specific constant. Let the marginal gain of data owner
j ∈ M \ Kt to the selected set Kt be the independent
r.v. δij := u((Kt∪j)∩Ci)−u(Kt∩Ci) bounded below by
0 (due to monotonicity) and above by the largest marginal
gain ∆t−1 = maxj∈M\Kt−1

∆u(j|Kt−1) in round t − 1
(due to submodularity). Then, we can apply Hoeffding’s
inequality (Hoeffding, 1963) to obtain

P
(∣∣n−1

∑n
i=1 δ

i
j −∆uE(j|Kt)

∣∣≥ε∆t−1

)
≤2 exp

(
−2nε2

)
.

For example, with n = 5000 samples, the estimated
marginal gain will deviate from the true expected gain
by more than ε = 2% of ∆t−1 with probability at most
2 exp

(
−2nε2

)
= 3.7%. So, SAA can distinguish between

data owners with significantly different marginal gains.

How should the learner sample the staying subset Ci

without knowing K? We propose that the learner can

4For submodular functions, increasing the selected size k may
decrease the minimum marginal gain of each element j to any set A
(of size < k), increase the curvature and worsen the approximation
guarantee.
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incrementally construct Ci as follows. At round t+ 1 when
Kt has been selected, the learner should sample whether to
add owner j ∈M \Kt to Ci from the Bernoulli distribution
with success probability sj for the case of independent
decisions (Sec. 4.1) and pt+1(|Ci| + 1)/pt(|Ci|) ∈ [0, 1]
(Cor. 1) for the case of dependent decisions (Sec. 4.2). Note
that the learner does not resample whether owners in Kt stay.
Thus, when deletion (i.e., no addition) is sampled, no update
is needed. Otherwise, we can reuse DS’ efficient techniques
and compute the utility of the updated sampled staying
subset Ci incrementally. For example, for the diversity
data utility function (App. C.2), incrementally updating
the Cholesky factor (Chen et al., 2018b) (with stored
information from the Cholesky decomposition) reduces the
time complexity per round from O(|M |3) to O(t|M |).

Alternatively, when the utility function u (e.g., nearest
neighbor submodular function) is a linear combination of
polytime-computable multilinear functions, the learner
can apply Cor. 2 (proven in App. D.7 and adapted from the
study of multilinear extension of submodular functions) to
efficiently compute the EDADS exactly:

Corollary 2 (Expectation of multilinear functions).
Consider the vector v := (vj)j∈M and the multilinear
function µ : v ∈ R|M | 7→ R≥0. A multilinear function is a
polynomial in which each component vj has a degree of 0

or 1 in every monomial, i.e., µ(v) :=
∑L

ℓ=1

(
cℓ
∏

j∈Jℓ
vj

)
with weight cℓ and Jℓ ⊆M for ℓ = 1, . . . , L.

Independent decisions.(Lemma 4.1 of of (Özcan et al.,
2021)) Let i := (ij)j∈M ∈ {0, 1}|M | be a random
vector of independent Bernoulli variables parameterized
by s := (sj)j∈M ∈ [0, 1]|M |. The j-th component ij
indicates if owner j stays and is 1 with probability sj . Then,
Ei∼Bern(s) [µ(i)] = µ(s).

Dependent decisions. Let i := (ij)j∈M ∈ {0, 1}|M | be
a vector whose j-th component ij indicates if owner j is
selected and stays. For any set Bk of k selected owners, i
can be decomposed into the random vector iBk

:= (ij)j∈Bk

of dependent variables and the zero vector corresponding
to the unselected owners. Also, let pk(

∑
j∈Bk

ij) sums to 1
over all realizations of iBk

, and pk be as defined in Sec. 4.2.
Then, EiBk

∼pk(·) [µ(i)] =
∑L

ℓ=1 cℓ I [Jℓ ⊆ Bk] p|Jℓ|(|Jℓ|)
where the probability p|Jℓ|(|Jℓ|) of |Jℓ| owners (out of |Jℓ|)
staying present satisfies Prop. 1 (e.g., computed recursively
as described in Sec. 4.2).

5. Experiments
In this section, we focus on the empirical performance of
supervised data subset selection (which use data labels)
and defer results on active learning data utility functions
(e.g., variance reduction for Gaussian processes), which do

not use data labels, to App. H.6. As our approach should
improve the post-deletion utility of any non-anticipative DS
objectives (which often correspond to some submodular
data utility function to be maximized), we only consider the
following (submodular function-dataset) combinations to
compare the performance of our deletion-anticipative DADS
objectives vs. the conventional DS objective:

(NN-S) nearest neighbor (NN) submodular function on a
2-class Synthetic dataset.

(NN-H) NN submodular function on the combined Heart
disease dataset (Lapp, 2019). The selected set is used to
train an NN classifier to predict if a patient has heart disease.
We consider that a patient without the disease will never
delete its data (i.e., staying probability s− = 1) and vary the
staying probability s+ of every patient with the disease.5

The learner measures the F1 score metric, which balances
the precision and recall of identifying heart disease patients,
on the validation set.

(NN-F) NN submodular function on the benchmark Fashion
MNIST image dataset (Xiao et al., 2017) with |M | = 60000.
The selected set is used to train an NN classifier and
predict the clothing type. We vary the common staying
probability s across all image owners in the feasible set.
This experiment simulates learners using the NN objective
to select other image data (e.g., CT scans) in practice. The
learner measures the accuracy metric on the validation set.

(NB-A) naı̈ve Bayes (NB) submodular function on the
Adults income dataset (Becker & Kohavi, 1996) with
|M | = 30718. The selected set is used to train a Categorical
NB model to predict whether a person has an income of at
least 50k. We vary the common staying probability s across
all data owners in the feasible set. The learner measures the
balanced accuracy metric on the validation set.

In these applications, each owner owns a single datum and
may want to delete its data with sensitive attributes (e.g.,
blood pressure, education, income). We provide details
on the submodular functions and experimental setup in
App. C.2 and App. H.1, respectively.

5.1. Independent Decisions

2D visualization with (NN-S). In Fig. 3, we mark the k =
10 data points (red) selected by EDADS and DS objectives
under varying common staying probability s. It can be
observed that as s decreases, EDADS selects data closer to
one another and the center of the class because the centers
have higher net similarity to others and help preserve higher

5For simplicity, we fix the same staying probability across all
data of the same class. However, in practice, DADSwill work when
the probabilities vary across owners and inherently prefer owners
with higher probabilities of staying. In contrast, naı̈ve heuristics
(e.g., manually selecting more of a class) may not work well.
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s=0.2 s=0.5 s=0.8 s=1

Figure 3: (NN-S) 10 data points (red) selected by EDADS
with varying s where s = 1 corresponds to DS objective.
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Figure 4: Graphs of mean validation set metric scores (with
2× standard error (shaded) across 2500 simulations) with
an increasing no. of data owners (horizontal axis) selected
by DS and EDADS (with varying s) for various datasets (a-c)
when owners stay with simulated staying probability s̄.

NN objective value if other selected owners delete their data
as anticipated. Moreover, when the staying probability s
is too low (e.g., = 0.2), EDADS will forego the smaller
green cluster to cover more of the larger green cluster. We
have included other visualization experiments (e.g., when
the probability differs across classes and owners and when
owners make dependent decisions) in App. H.

Observations. In Fig. 4, we plot the validation set metrics
with and without anticipated deletions. It can be observed
that when owners stay according to our probability model
(non-beige curves), our EDADS objective outperforms DS
on various validation set metrics. This advantage (i.e., the
gap between curves) is more evident when fewer owners
are selected (left of graphs) or when the simulated staying
probability s̄ is lower (orange case). In App. H.3, we have
shown that this better performance after deletions is due to
selecting more redundant data in important regions likely
to be deleted (e.g., positive class in (NN-H)). However, we
often observe that such an advantage comes with a trade-off:
Without deletions (beige curves), EDADS may achieve a
poorer validation set metric score than DS. In App. H.3, we
have also compared against the random selection baseline.

5.2. Dependent Decisions

Next, in Fig. 5, we plot the validation set metrics vs. the
number of deletions when the learner considers, in Sec. 3.2,
(I) tolerance to ≤ / > z deletions or (II) uncertainty in
the staying probability. The number of owners staying
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Figure 5: Graphs of mean validation set metric scores (with
2× standard error (shaded) across 500 simulations) with
an increasing no. of deletions (horizontal axis) for various
datasets (a-c). k owners are selected by DS or EDADS. For
EDADS, the no. of owners staying (out of k) follows various
distributions given in the legend.
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Figure 6: Graphs of mean validation set metrics obtained
from the selections of k data owners by EDADS and
RAα-DADS (with varying α) (and additionally their
differences) across 500 simulations with an increasing no. of
deletions for various datasets (a-b).

follows (I) Uniform U or Dirac delta δ distribution and
(II) BetaBin distribution, respectively. It can be observed
that for different anticipated probabilities, the validation
set metric falls at different rates as the number of deletions
increases. DS has the best metric score with no deletions
(leftmost of graphs) but has the steepest fall and worst metric
with many deletions. In contrast, EDADS achieves a better
metric score than DS under moderate and more deletions.
Moreover, as the anticipated deletions increase (see darker
curves corresponding to U(0, ·) and lower α/(α + β)
in BetaBin), the metric under no deletions (leftmost)
worsens but the performance falls at a slower rate. In
App. H.4, we have verified that when owners stay present
according to our probability model, EDADS preserves higher
expected objective values and metric scores than DS.

5.3. Risk-Averse DADS

Now, we fix the anticipated staying probability distributions
and vary α in the RAα-DADS objectives. We use (NN-
H) with k = 240 to consider the case of independent
decisions with s+ = 0.5 and s− = 1.0, and (NN-F) with
k = 500 to consider the case of dependent decisions with
pk(a) = BetaBin(a|500, 4, 2). In Fig. 6, it can be verified
that smaller α (darker curves) leads to better metric scores
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in the worst cases with more deletions. However, with
no deletions, the scores decrease. We observe that the
decrease from lowering α is less drastic than the decrease
from lowering the staying probability s. Thus, the learner
can vary α in the RAα-DADS objectives to improve the
metric score in the worst cases without calibrating s and
without markedly impacting the metric when there are
few deletions. In App. H.5, we have further verified that
RAα-DADS ’s selection leads to a higher CVaR at level α
of the objective value and metric than EDADS for the same
staying probability distribution.

6. Conclusion
This paper describes how ML model learners should
anticipate deletions in practice and maximize the expected
or risk-averse DADS objective to preserve higher data utility
after anticipated deletions. A limitation of the work is
that the reliance on sampling for some utility functions
and RAα-DADS increases the computational cost and only
returns an approximate solution. This limitation can be
mitigated by taking the average/best of more parallel runs or
future work that considers more advanced sampling methods
(e.g., stratified sampling (Maleki et al., 2013; Wu et al.,
2023)) that can still benefit from an efficient incremental
update of the utility function. Future work can also explore
the behavior of the deletion-anticipative version of other
data selection algorithms (Wei et al., 2015; Killamsetty et al.,
2021; Mirzasoleiman et al., 2020) (e.g., algorithms which
select a new batch every few epochs) and improve DADS
performance by accounting for class imbalance. App. I
additionally discusses some questions a reader may have.
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Impact Statement
When learners use DADS in place of DS to reduce the time
and cost incurred in labelling data and training an ML model,
one potential ethical concern is that they may select a dataset
with an imbalanced number of points from groups with
different deletion probabilities (e.g., race, health status).
This may create unfairness across groups and classes. To
mitigate the imbalance and correct for any bias, the learner
should consider works that address fairness across groups
(Yan et al., 2020; Farrand et al., 2020).

We foresee more new concerns when data owners are
surveyed on their staying probability and stand to receive
monetary compensation for their selection. Data owners

may commit to binding contracts, request deletions less
frequently to maintain a better history or misreport their
staying probability to increase their chance of selection.
The former is undesirable as the data owners would have
to temporarily forego their right to erasure. The latter
is undesirable as the set selected by EDADS may be sub-
optimal and have negative consequences on the unselected
data owners and the ML model users. To mitigate the former,
the learner or the data sharing platforms should educate the
data owners. To mitigate the latter, the learner or the data
sharing platforms can make use of historical behavior and a
more thorough audit.
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Domenech, M., Giménez, J. M., and Puente, M. A.
Some properties for probabilistic and multinomial
(probabilistic) values on cooperative games. Optimization,
65(7):1377–1395, 2016.

Dütting, P., Fusco, F., Lattanzi, S., Norouzi-Fard, A.,
and Zadimoghaddam, M. Deletion robust submodular
maximization over matroids. In Proc. ICML, pp. 5671–
5693, 2022.

Farrand, T., Mireshghallah, F., Singh, S., and Trask, A.
Neither private nor fair: Impact of data imbalance on
utility and fairness in differential privacy. In Proc. CSS
Workshop on Privacy-Preserving Machine Learning in
Practice, pp. 15–19, 2020.

Feige, U., Mirrokni, V. S., and Vondrák, J. Maximizing
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Gharan, S. O. and Vondrák, J. Submodular maximization
by simulated annealing. In Proc. SODA, pp. 1098–1116,
2011.

Ghorbani, A. and Zou, J. Data Shapley: Equitable valuation
of data for machine learning. In Proc. ICML, pp. 2242–
2251, 2019.

Golovin, D. and Krause, A. Adaptive submodularity:
Theory and applications in active learning and stochastic
optimization. JAIR, 42:427–486, 2011.

Guo, C., Zhao, B., and Bai, Y. Deepcore: A comprehensive
library for coreset selection in deep learning. In
International Conference on Database and Expert
Systems Applications, pp. 181–195. Springer, 2022.

Hemachandra, A., Dai, Z., Singh, J., Ng, S.-K., and Low,
B. K. H. Training-free neural active learning with
initialization-robustness guarantees. In Proc. ICML,
2023.

Hoeffding, W. Probability inequalities for sums of bounded
random variables. JASA, 58(301):13–30, 1963.

Jia, R., Dao, D., Wang, B., Hubis, F. A., Hynes, N., Gurel,
N. M., Li, B., Zhang, C., Song, D., and Spanos, C.
Towards efficient data valuation based on the Shapley
value. In Proc. AISTATS, pp. 1167–1176, 2019.

Kazemi, E., Zadimoghaddam, M., and Karbasi, A.
Scalable deletion-robust submodular maximization: Data
summarization with privacy and fairness constraints. In
Proc. ICML, pp. 2544–2553, 2018.

Killamsetty, K., Sivasubramanian, D., Ramakrishnan, G.,
and Iyer, R. Glister: Generalization based data subset
selection for efficient and robust learning. In Proc. AAAI,
pp. 8110–8118, 2021.

Kleywegt, A. J., Shapiro, A., and Homem-de Mello, T.
The sample average approximation method for stochastic
discrete optimization. SIAM Journal on Optimization, 12
(2):479–502, 2002.

Krause, A. and Golovin, D. Submodular function
maximization. Tractability, 3:71–104, 2014.

Krause, A., McMahan, H. B., Guestrin, C., and Gupta, A.
Robust submodular observation selection. JMLR, 9(93):
2761–2801, 2008.

Krause, A., Roper, A., and Golovin, D. Randomized sensing
in adversarial environments. In Proc. IJCAI, pp. 2133–
2139, 2011.

Kwon, Y. and Zou, J. Beta Shapley: a unified and noise-
reduced data valuation framework for machine learning.
Technical report, 2021.

Lapp, D. Heart Disease Dataset. URL https://
www.kaggle.com/datasets/johnsmith88/
heart-disease-dataset, 2019.

Maleki, S., Tran-Thanh, L., Hines, G., Rahwan, T., and
Rogers, A. Bounding the estimation error of sampling-
based Shapley value approximation. arXiv:1306.4265,
2013.

Minoux, M. Accelerated greedy algorithms for maximizing
submodular set functions. In Stoer, J. (ed.), Optimization
Techniques, volume 7 of Lecture Notes in Control and
Information Sciences, pp. 234–243. Springer Berlin
Heidelberg, 1978.

Mirchandani, P. B. and Francis, R. L. Discrete Location
Theory. Wiley, 1990.

Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák,
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A. Suitable Scenarios
In Sec. 5 and App. H, we show that DADS leads to a more apparent improvement in post-deletion predictive performance
when fewer data can be selected (a limited budget), the staying probability is low or the staying probabilities vary across
data owners (there exists similar data with different staying probabilities).

In Tab. 1 and Fig. 1, we describe some scenarios where DADS will be more useful. On the other hand, DADS may be less
relevant when the learner does not require consent to access and train the data and does not have a limited budget constraint.
For example, if only 1000 points are needed to achieve a high model accuracy and the learner has the budget to acquire
5000 data, deletions may not affect model accuracy significantly.

Setting Example Impact of DADS

1) Learner requires data owners’ legal
consent to access and train on their
data. Data owners would only grant
learners temporary access to data for
DS as continued access risks privacy
and unauthorized use. After the data
acquisition period, the learner can
only access and train on the data of
selected owners.

A healthcare startup wants to acquire
sensitive health data/scans from the
local population as it is unavailable
online. Under the GDPR laws, the
startup needs a patient’s informed
consent to use her data. During
data acquisition, a patient grants
the startup temporary access to
her medical records stored on
the national database. However,
the patient would object to the
learner preserving her data without
compensation for her privacy loss and
contribution.

DADS helps the learner to make
good use of the temporary access
to identify and select data owners
whose data mitigate the fall in model
performance should other owners
delete in the future (e.g., DADS may
select more common data instead of
outlier data that only increase the
model accuracy on rare occasions).

2) Learner has a limited budget. We
argue that the learner should not
set aside part of its budget to
acquire replacement data later as it
undesirably sacrifices better current
data utility.

A startup may have limited funding
for data acquisition (in a year) and
can only afford to acquire data from
a subset of all feasible data owners.

DADS helps the learner to wisely
spend the budget on data owners who
are less likely to delete among owners
with similar data.

3) Learner does not have the logistics
to acquire more replacement data
after the initial data acquisition.
Alternatively, learners may also find
it tedious to attract and inform data
owners after every data deletion
and prefer doing data acquisition
at regular intervals (e.g., annually)
instead.

A startup may only want to do a
one-time data acquisition initiative
(e.g., advertisements and campaign)
to collect data from independent data
owners. They may not have the
resources to react to data deletions
subsequently e.g., publicize data
acquisition and communicate with
data owners to seek informed consent.
Data owners may also become
less interested and aware of the
data acquisition without these new
initiatives.

DADS helps to proactively maximize
the post-deletion data utility without
or before the next data acquisition.

Table 1: Description on scenarios where DADS is more useful.
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B. Overview and Summary of Notations

Figure 7: An overview of our DADS objectives and contributions from the learner’s perspective. The learner sets the
parameters (in blue) and follows our instructions/contributions (detailed in the referenced section) to decide on the
anticipated staying probabilities, DADS objective, and the optimization technique.

B.1. Direct Computation

If u is multilinear, the EDADS objective uE can be computed in closed form according to Cor. 2. Then, uE can be maximized
by using existing greedy algorithms.

13
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B.2. Sample Average Approximation for EDADS

In Sec. 4, we show that the EDADS objective will preserve the monotonicity and submodularity property of u if (i) the data
owners decide independently (Sec. 4.1) or (ii) the learner decides on the probability a number of owners stay out of k and
sets the other pmf’s using Sec. 4.2. Thus, the greedy algorithm can be applied.

We illustrate the greedy algorithm for monotone submodular functions in Algo. 1. The number of marginal gain evaluations
is O(k|M |n), thus the time complexity is O(k|M |n) multiplied by the time needed to compute a marginal gain (such as
O(k|M |) for the diversity data utility function mentioned in Sec. 4.4). In practice, it is possible to reduce the factor |M |
by using the lazy greedy algorithm (App. C.1). It is also possible to reduce the factor n when the data utility function (or
marginal gain) for multiple samples can be simultaneously computed using vectorization and matrix operations (e.g., nearest
neighbor submodular function (Wei et al., 2015), diversity function (Sim et al., 2020), variance-reduction function and
EV-GP criterion (Krause et al., 2008; Hemachandra et al., 2023)). Moreover, the learner should compute the marginal gain
∆u more efficiently (incrementally) by storing O(n) times the information than when computing the DS objective.

When data utility function u is non-monotone submodular, the learner could use other algorithms (Feige et al., 2011; Gharan
& Vondrák, 2011) instead.

Algorithm 1 Sample average approximation for EDADS.
Input: Number to select k, feasible set M , data utility function u, (optional) efficient function to compute marginal gain
∆u, the anticipated staying probability for (i) independent decisions {sj}j∈M or (ii) dependent decisions pk, number of
samples n.
Output: Selected set K ⊆M , |K| ≤ k to be acquired.

1: Initialize selected set K ← ∅
2: Initialize sampled subsets remaining out of selected set C = (C1, . . . , Cn)← (∅, . . . , ∅)

For dependent decisions, extend pk to other sizes t < k:
3: if dependent decisions then
4: for t in k − 1 . . . 0 do
5: for a in 0 . . . t do
6: Compute probability of a staying out of t: pt(a)← pt+1(a) + pt+1(a+ 1)
7: end for
8: end for
9: end if

Select k owners greedily:
10: for round t in 1 . . . k do
11: Initialize best index jmax ← null
12: Initialize n-tuple of singleton sets ιmax ← null, which denotes sampled presence/deletions of jmax in C1 . . . Cn

13: Initialize largest marginal gain δmax ← −∞
14: for j in M \K do
15: Initialize marginal gain δ ← 0
16: Initialize empty tuple of singleton sets recording j’s presence/deletions ιj ← ()
17: for sample Ci indexed i in 1 . . . n do
18: if independent decisions then
19: Use staying probability sj from Sec. 3.1
20: else
21: Compute dependent staying probability sj ← pt(|Ci|+1)

pt−1(|Ci|)
22: end if
23: Sample a random value ω ∼ U(0, 1) (s.t. ω < sj with a probability of sj)
24: if ω < sj then
25: δ ← δ +∆u(j|Ci)/n
26: Append the singleton set {j} to ιj , i.e., ιj ← ιj + ({j}, )
27: else
28: Append an empty set to ιj , i.e., ιj ← ιj + (∅, )
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29: end if
30: end for
31: if δ ≥ δmax then
32: jmax, δmax, ιmax ← j, δ, ιj
33: end if
34: end for
35: K ← K ∪ {jmax}
36: C ← C ·∪ ιmax where ·∪ denote the element-wise union
37: end for
38: return selected set K

B.3. Sample Average Approximation for RAα-DADS

In Sec. 4.3, we explain that the RAα-DADS objective can be maximized by optimizing H ′(τ) over τ using numerical
optimization techniques. To evaluate H ′ for some τ , we exploit the property that taking expectation over the same distribution
(ensured by Secs. 4.1 and 4.2) preserves monotonicity and submodularity of the set function u. Thus, the greedy algorithm
can be applied.

We illustrate the algorithm of Zhou & Tokekar (2022) for maximizing CVaRα on monotone submodular functions in
Algo. 2. The number of marginal gain evaluations is O(k|M |n) multiplied by the number of iterations for τ . In practice, it
is possible to reduce the factor |M | using the lazy greedy algorithm (App. C.1). It is also possible to reduce the factor n
when the data utility function marginal gains for multiple samples can be simultaneously computed using vectorization and
matrix operations.

Algorithm 2 Sample average approximation for RAα-DADS. The parameter τ is bounded above by max|B|≤k u(B) which
can be estimated from the result of DS.
Input: Number to select k, feasible set M , data utility function u, (optional) efficient function to compute marginal gain
∆u, the anticipated staying probability for (i) independent decisions {sj}j∈M or (ii) dependent decisions pk, risk-aversion
level α, level of absolute tolerance τϵ, number of samples n.
Output: Selected set K ⊆M , |K| ≤ k to be acquired.

For dependent decisions, extend pk to other sizes t < k:
1: if dependent decisions then
2: for t in k − 1 . . . 0 do
3: for a in 0 . . . t do
4: Compute probability of a staying out of t: pt(a)← pt+1(a) + pt+1(a+ 1)
5: end for
6: end for
7: end if

Repeatedly select k owners greedily till convergence:
8: while not converged within ±τϵ do
9: Select τ using a method that finds minimizer of scalar functions without derivatives, e.g., Brent’s method (Brent,

2013)
10: Initialize selected set K ← ∅
11: Initialize sampled subsets remaining out of selected set C = (C1, . . . , Cn)← (∅, . . . , ∅)
12: Initialize vector of sampled utility values v = (vi)ni=1 ← (0)ni=1

13: for round t in 1 . . . k do
14: Initialize best index jmax ← null
15: Initialize n-tuple of singleton sets ιmax ← null, which denotes sampled presence/deletions of jmax in C1 . . . Cn

16: Initialize vector of sampled utility values after adding jmax, vmax = (vi)ni=1 ← (0)ni=1

17: Initialize largest marginal gain δmax ← −∞
18: for j in M \K do
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19: Initialize marginal gain δ ← 0
20: Initialize empty tuple of singleton sets recording j’s presence/deletions ιj ← ()
21: Initialize vector of sampled utility values after adding j, vj = (vi)ni=1 ← (0)ni=1

22: for sample Ci indexed i in 1 . . . n do
23: if independent decisions then
24: Use staying probability sj from Sec. 3.1
25: else
26: Compute dependent staying probability sj ← pt(|Ci|+1)

pt−1(|Ci|)
27: end if
28: Sample a random value ω ∼ U(0, 1) (s.t. ω < sj with a probability of sj)
29: if ω < sj then
30: Compute new value vij ← vi +∆u(j|Ci)

31: Update the i-th component of vj to vij
32: Compute the threshold gain

∆H(j|Ci)← (τ − 1
α max(0, τ − vij))− (τ − 1

α max(0, τ − vi)) = 1
α (max(0, τ − vi)−max(0, τ − vij))

33: δ = δ +∆H(j|Ci)/n
34: Append the singleton set {j} to ιj , i.e., ιj ← ιj + ({j}, )
35: else
36: Append an empty set to ιj , i.e., ιj ← ιj + (∅, )
37: end if
38: end for
39: if δ ≥ δmax then
40: jmax, δmax, ιmax,vmax ← j, δ, ιj ,vj

41: end if
42: end for
43: K ← K ∪ {jmax}
44: C ← C ·∪ ιmax where ·∪ denote the element-wise union
45: end for
46: end while
47: return selected set K
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B.4. Table of Notations

Notation Meaning

Variables and Sets

A Subset of B that stays present after deletions
a Number of owners staying present
α VaR or CVaR risk-aversion level

α,β Beta-binomial distribution parameters
B Subset of M ; possible selected set
Bk Subset of M of size k
Bt Subset of M of size t; possible selected set in

round t
C Subset of K
Ci i-th sampled subset for sample average

approximation
D Set of deleted owners (Sec. 2)
d Maximum number of deletions (Sec. 2)
∆t Largest marginal gain computed in the t-th

round of selection (Sec. 4.4)
δij Random variable of the marginal gain (after

deletions) of adding owner j to the sampled
set Ci (Sec. 4.4)

ϵ Bound on the scaled absolute difference
|uavg(A)− uE(A)|/maxB uE(B)

ε Bounding term in Hoeffding’s inequality
γ Scale parameter in the mutual

information/diversity function
Ij Indicator variable that indicates if j stays
Iℓ Indicator variable that indicates if ℓ stays
i Random vector of 0 or 1 that indicates if every

element stays (Sec. 4.4)
Jℓ Subset of M (Sec. 4.4 definition of multilinear

functions)
j Data owner; element of M
K Selected training set
Kt Selected training set after round t
k Maximum number of owners to select
l Data owner; element of M
λ Weight used to “split” the pmf at uVaRα

(B)
M Feasible set to select owners from
n Number of i.i.d. samples of Ci

R≥0 Set of non-negative real numbers
ra Probability exactly a owners stay out of k

(ra)
k
0 Probabilities of exactly any number of owners

staying out of k, i.e., (r0, r1, . . . , rk)
ρ Approximation ratio for algorithm that solves

the SAA problem
s Independent staying probability
s Vector of independent staying probabilities
sj Independent staying probability of j

Notation Meaning

sℓ Independent staying probability of ℓ
s+ Independent staying probability of owners in

the positive class
s− Independent staying probability of owners in

the negative class
s̄ Simulated staying probability (Sec. 5)
σ2 Problem specific constant that affects the

number of SAA samples needed
T Subset of unselected owners
t t-th round of selection
τ Real number ≥ the random data utility u(A)

where A ∼ pB(·) with probability ≤ α
z Number of deletions

Functions and Distributions

|A| Cardinality of A
BetaBin(·) Beta-binomial distribution
∆u(j|A) Marginal gain in u of adding element j to set

A
δ(·) Dirac delta distribution

H(B, τ) Optimization objective in the alternative
definition of CVaR (Eq. 3)(

k
a

)
Number of ways to choose a elements out of
k, i.e., k!/(a!(k − a)!)

µ(v) Multilinear function over vector v
O(·) Big O complexity
pB(A) pmf that maps each subset A ⊆ B to the

probability only A stays (out of B)
pK(C) pmf that maps each subset C ⊆ K to the

probability only C stays (out of K)
pk(a) pmf over {0, 1, . . . , k} that maps each a to

the probability only a specific subset of size a
(out of k) stays present (= ra/

(
k
a

)
)

pM (·) pmf that maps each subset · ⊆ M to the
probability that only · stays (out of M )

pt(a) pmf over {0, 1, . . . , t} that maps each a to the
probability only a specific subset of size a
(out of t) stays present (used in round t)

U(·, ·) Uniform distribution over [·, ·]
u(·) Data utility function used to evaluate set ·

uavg(·) Mean data utility computed from n i.i.d
samples of Ci

uE(·) Expected data utility function used to evaluate
set · ; EDADS objective

uVaRα
(·) VaR of data utility function used to evaluate

set ·
uCVaRα

(·) Risk-averse data utility function used to
evaluate set · ; RAα-DADS objective

Table 2: Summary of notations used in this paper.
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C. Background and Related Works
C.1. Properties of Submodular Functions

Lemma 1 (Basic set operations preserve submodularity (Yu, 2015)). Let the set function u that maps any subset A ⊆M
to a non-negative value be (monotone) submodular. Then, for any subset S ⊆M , the functions g and h that, respectively,
consider the union and intersection with S, i.e.,

g(B) = u(S ∪B), h(B) = u(S ∩B)

are (monotone) submodular.

Lemma 2 (Non-negative linear combinations preserve submodularity). Given r (monotone) submodular functions and
non-negative weights w1, . . . , wr, the sum function f defined such that fΣ(B) =

∑r
i=1 wifi(B) is (monotone) submodular.

Consider that each (monotone) submodular function fi is generated from the same underlying function f but with different
parameters ξ, i.e., fi(B) = f(B; ξ). Given the distribution pξ over ξ, the expectation Eξ∼pξ(·)[f(B; ξ)] is (monotone)
submodular as the weights correspond to non-negative probabilities.

The maximization of submodular functions under cardinality constraints has been studied extensively.

Monotone submodular functions. For non-negative and monotone functions, the greedy algorithm (Nemhauser et al.,
1978) iteratively selects the element with the largest marginal gain and returns a solution with a value at least (1− 1/e) of
the optimal solution. The greedy algorithm has a complexity of O(k|M |) where k is the number of elements selected and
|M | is the size of the feasible set. This complexity may be computationally expensive when evaluating the set function
u is costly. In practice, the lazy greedy algorithm (Minoux, 1978) can be an order of magnitude faster than the greedy
algorithm. The lazy greedy algorithm maintains a priority queue of unselected elements. Each element’s priority is its
last evaluated marginal gain. At each round t, let Kt−1 denote the set of elements selected before round t. The algorithm
repeatedly dequeues the element (denoted as j) with the largest priority, evaluates its marginal gain ∆(j|Kt−1) in round t,
and re-inserts it into the priority queue. The evaluations pause when an element jt is dequeued twice and the algorithm
selects jt (i.e., Kt = Kt−1 ∪ {jt}). The justification is: jt’s marginal gain ∆(jt|Kt−1) is greater than (or equal to) the
last evaluated marginal gain of every other unselected element j in M \Kt−1. By the definition of submodularity, j’s last
evaluated marginal gain is at least its marginal gain in round t. Thus, the lazy greedy algorithm has selected the element jt
with the largest marginal gain in round t without evaluating all marginal gains. Mirzasoleiman et al. (2015) proposes the
stochastic greedy algorithm to further reduce the number of evaluations but can only achieve a slightly weaker approximation
guarantee.

Constraints. In our paper, we mainly focus on the cardinality constraint — the selected set size must not exceed k. However,
it is possible that the elements (e.g., data owners) have non-uniform costs and the learner maximizes the data utility function
u subject to the knapsack constraint that the total cost cannot exceed a budget.

We refer the reader to (Krause & Golovin, 2014) for a more complete survey on submodular function maximization,
including algorithms to maximize non-monotone submodular functions (Feige et al., 2011; Gharan & Vondrák, 2011) and
algorithms to maximize monotone submodular functions under knapsack constraints (Sviridenko, 2004).

C.2. Supervised Data Selection and Active Learning Submodular Functions

The nearest neighbor (NN) submodular function (Wei et al., 2015) measures the representativeness of a set S about the
data partition for every class. When there is only 1 class, the NN submodular function corresponds to the facility location
function (Mirchandani & Francis, 1990). The NN submodular function is

uNN (S) =
∑
y∈Y

∑
i∈My

max
j∈S∩My

w(i, j) ,

where w is the similarity measure (that returns a non-negative similarity value), Y is the set of possible classes and My is
the part of the feasible set of class y. For example, w(i, j) can be defined as pairwise distance between (i, j) subtracted
from the maximum pairwise distance. As the NN submodular function is multilinear (Özcan et al., 2021), its expectation can
be computed exactly and efficiently as described in Sec. 4.4. Alternatively, when we save the maximum similarity between
each data point i ∈M and the set Kt, w̄i,Kt

:= maxj∈Kt w(i, j), we can incrementally compute the maximum similarity
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with set Kt ∪ {j′} by taking the maximum of the pair (w(i, j′), w̄i,Kt
). During sample average approximation, we can use

this incremental computation trick (and vectorize over samples) for greater efficiency.

CRAIG (Mirzasoleiman et al., 2020), a method to select a weighted coreset of the training data that closely estimates the
full gradient, also involves maximizing the facility location function.

The naı̈ve Bayes submodular function (Wei et al., 2015) measures the diversity of the feature coverage in S and is
computed solely from the frequencies of data in the feasible set with class y and j-th feature value xj . Formally, we denote
the subset of the set S with class y and j-th feature value xj as S(y,xj), then,

uNB(S) =
∑
y∈Y

∑
j

∑
xj∈Xj

|M (y,xj)| log |S(y,xj)| .

When each owner is equally likely to delete their data (e.g., pt(A) = BetaBin(a|t,α,β)/
(
t
a

)
), we can compute

EA∼pB(·)
[
uNB(A)

]
=

∑
y∈Y

∑
j

∑
xj∈Xj

|M (y,xj)|EA∼p
S
(y,xj)

(·) [log |A|] in closed form from the counts |S(y,xj)| and
known probabilities (e.g., BetaBin pmf).

The mutual information (diversity) function (Mirzasoleiman et al., 2017; Sim et al., 2020) measures the diversity of S or
the entropy reduction of a Gaussian Process model from observing S. The function is

uMI(S) = log det(I+ γKS) ,

where KS is a principal submatrix (indexed by S) of the positive semi-definite similarity kernel K and γ > 0 is a scale
parameter. The mutual information function is monotone submodular as the matrix I+ γKS has a minimum eigenvalue
≥ 1.

The variance reduction function (Krause et al., 2008; Hemachandra et al., 2023) measures the total reduction in predictive
variance across a target set T after observing S.6 Let σ2

M(x|S) denote the (predictive) output variance at x after training the
modelM on data points from the set S. The function is

uV R(S) =
∑
x∈T

σ2
M(x|∅)− σ2

M(x|S) .

Das & Kempe (2008) have shown that, in most cases, the variance reduction at any particular location is submodular.
The function corresponds to the expected variance with Gaussian process (EVGP) criterion for neural active learning
(Hemachandra et al., 2023) . EVGP is theoretically guaranteed to select data points which lead to trained neural networks
with both good predictive performances and initialization robustness while not needing neural network training during data
selection.

We approximate the EDADS objective for mutual information (diversity) function and variance reduction function
with sample average approximation. We adopt (Chen et al., 2018b) approach of incrementally updating the Cholesky
factor to efficiently compute the utility or marginal gain with a larger sampled staying subset. Moreover, we vectorize the
computations over multiple staying subsets.

See (Guo et al., 2022; Zhan et al., 2022) for other supervised data subset selection and active learning functions.

C.3. Further Comments on Related Works

Our work does not fit the adaptive setting in that of Asadpour et al. (2008) and Golovin & Krause (2011). The adaptive
setting differs from the non-adaptive setting as (i) it assumes that the learner will observe the state/realization of an element
after it is selected, and (ii) the goal is to design an optimal, possibly non-deterministic, policy to select the next element
based on the observed states so far. In our scenario, the learner will only know if any owner j deletes data after DS is over.
Thus, the realization cannot influence the selection in the next round.

6If the learner does not have a target set for which the learner is particularly interested in accurate predictions, the target set T can be
defined as the training set.

19



Deletion-Anticipative Data Selection with a Limited Budget

Our work also differs from the setting where the learner randomizes their selection. Krause et al. (2011) propose that the
learner should find the optimal distribution p∗ over feasible sets to maximize the expected worse-case objective value in
adversarial environments (where the adversary has a finite number of strategies with different objective functions). In our
work, we maximize the expected and conditional value-at-risk (instead of the adversarial case) based on the anticipated
deletion probabilities and deterministically select a set of data owners.

D. Proofs for Sec. 4
D.1. Counterexamples

Consider a monotone submodular function u with u(∅) = 0. We give some (extreme) counterexamples which show that
flexibly/freely setting {pB}B⊆M may violate monotonicity and submodularity.

Monotonicity. Let A ⊂ B ⊂ C. By setting

pB(S) =

{
1, if S = B

0, otherwise
and pC(S) =

{
1, if S = A

0, otherwise
,

the expected EDADS objective on the smaller subset B is not less than the larger subset C,

uE(B) = u(B) ≥ uE(C) = u(A) .

Submodularity. Let {a} and {b} be singleton sets with elements (e.g., data owners) a and b, respectively. Let C = {a, b},
u({b}) = uE({b}) = 0 and u({a}) > 0. By setting

p{a}(S) =

{
0.1, if S = {a}
0.9, if S = ∅

and pC(S) =

{
1, if S = {a}
0, otherwise

,

(the presence of b encourages a to stay present), we have a larger marginal gain to the larger subset ({b} vs. ∅),

∆uE(a|∅) = uE({a}) = 0.1 · u({a}) ,
∆uE(a|{b}) = uE(C) = u({a}) > ∆uE(a|∅) .

D.2. Proof of Proposition 1

For any set B ⊆ K,

uE(B) = EA∼pB(·) [u(A)]

=
∑
A⊆B

pB(A) u(A)

1
=

∑
A⊆B

∑
T⊆K\B

pK(A ∪ T ) u(A)

2
=

∑
C⊆K

pK(C) u(A = (B ∩ C))

= EC∼pK(·) [u(B ∩ C)] .

In Step 1, we make use of pB(A) =
∑

T⊆K\B pK(A ∪ T ) for any B ⊆ K. In Step 2, both summations are combined by
letting C := A ∪ T . The set A can then be recovered by taking the intersection of B and C.

The set function uE is (monotone) submodular as for each C, hC(B) = u(C ∩B) is (monotone) submodular by Lemma 1.
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D.3. Proof of Proposition 2

For any set B,

uE(B) = EA∼pB(·) [u(A)]

=
∑
A⊆B

pB(A) u(A)

1
=

∑
A⊆B

∑
T⊆M\B

pM (A ∪ T ) u(A)

2
=

∑
C⊆M

pM (C) u(A = (B ∩ C))

= EC∼pM (·) [u(B ∩ C)] .

In Step 1, we make use of pB(A) =
∑

T⊆M\B pM (A ∪ T ) (‡) for any B ⊆M . In Step 2, by letting C = A ∪ T , the set A
can be recovered by taking the intersection of B and C.

The set function uE is (monotone) submodular as for each C, hC(B) = u(C ∩B) is (monotone) submodular by Lemma 1.

D.4. Marginal Gain

For notational convenience, we denote A ∪ {j} as A ∪ j.

When each data owner decides to delete their data independently, the expected marginal gain from adding j to the selected
set Kt is

∆uE(j|Kt) = uE(Kt ∪ j)− uE(Kt)

= EA∼pKt∪j(·) [u(A)]− EA∼pKt (·) [u(A)]

= EA∼pKt (·) [sj u(A ∪ j) + (1− sj) u(A)− u(A)]

= sj EA∼pKt (·) [u(A ∪ j)− u(A)]

= sj EA∼pKt (·) [∆u(j|A)] .

When each data owner’s decision may depend on others, the expected marginal gain from adding j to the selected set Kt is

∆uE(j|Kt) = uE(Kt ∪ j)− uE(Kt)

= EA∼pKt∪j(·) [u(A)]− EA∼pKt (·) [u(A)]

= EA∼pKt (·)
[
pj|A u(A ∪ j) + (1− pj|A) u(A)− u(A)

]
= EA∼pKt (·)

[
pj|A [u(A ∪ j)− u(A)]

]
.

Note that pj|A may differ for A of different sizes and is equal to
pKt∪j(A ∪ j)

pKt(A)
.

D.5. Proof of Cor. 1

Direction 1: Assume ∀B ⊆ K, pB(A) =
∑

T⊆K\B pK(A ∪ T ). Prove ∀B ⊆ K, j ∈ K \ B, pB(A) = pB∪j(A) +

pB∪j(A ∪ j).

For any j ∈ K \B,

pB(A) =
∑

T⊆K\B

pK(A ∪ T )

=
∑

T⊆K\(B∪j)

pK(A ∪ T ) +
∑

T⊆K\(B∪j)

pK(A ∪ j ∪ T )

= pB∪j(A) + pB∪j(A ∪ j) .
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Direction 2: Assume ∀B ⊆ K, j ∈ K\B, pB(A) = pB∪j(A)+pB∪j(A∪j). Prove ∀B ⊆ K, pB(A) =
∑

T⊆K\B pK(A∪
T ) by recursively splitting each term on the RHS into two.

D.6. Proof: Beta-Binomial Distribution Satisfies Cor. 1

In Sec. 4.2, we simplify the probability of only set A of size a staying out of Bk of size k, pBk
(A) = r|A|/

(
k
|A|

)
, to

pk(a) = ra ·
(
k
a

)−1
for notational convenience. Similarly, let pt(a) denote the probability of a subset of size a (out of t)

staying present.

Let pBt(A) = pt(a) = BetaBin(a|t,α,β)/
(
t
a

)
. Similarly,

pBt
(A ∪ j) = pt(a+ 1) = BetaBin(a+ 1|t,α,β)/

(
t

a+ 1

)
,

pBt−1(A) = pt−1(a) = BetaBin(a|t− 1,α,β)/

(
t− 1

a

)
.

Let B denote the Beta function and Γ denote the gamma function, then

pBt(A) + pBt(A ∪ j)

=BetaBin(a|t,α,β)/
(
t

a

)
+ BetaBin(a+ 1|t,α,β)/

(
t

a+ 1

)
=

1

B(α,β)
[B(a+ α, t− a+ β) + B(a+ 1 + α, t− a− 1 + β)]

=
1

B(α,β)Γ(a+ α+ β)
[Γ(a+ α)Γ(t− a+ β) + Γ(a+ 1 + α)Γ(t− a− 1 + β)]

=
Γ(a+ α)Γ(t− a− 1 + β)

B(α,β)Γ(t+ α+ β)
[(t− a− 1 + β) + (a+ α) ]

=
Γ(a+ α)Γ(t− a− 1 + β)

B(α,β)Γ(t+ α+ β)
[(t− 1 + β+ α) ]

=
Γ(a+ α)Γ(t− a− 1 + β)

B(α,β)Γ(t− 1 + α+ β)

=
B(a+ α, t− 1− a+ β)

B(α,β)

=BetaBin(a|t− 1,α,β)/

(
t− 1

a

)
=pBt−1

(A) .

D.7. Proof of Cor. 2

The proof of the case of independent decisions is reproduced from that of Özcan et al. (2021). As µ is multilinear,
µ(v) =

∑L
ℓ=1

(
cℓ
∏

j∈Jℓ
vj

)
with Jℓ ⊆M for ℓ = 1, . . . , L for some L. Then,

Ei∼Bern(s) [µ(i)] =

L∑
ℓ=1

cℓ Ei∼Bern(s)

 ∏
j∈Jℓ

ij


=

L∑
ℓ=1

cℓ
∏
j∈Jℓ

Ei∼Bern(s) [ij ]

=

L∑
ℓ=1

cℓ
∏
j∈Jℓ

sj

= µ(s) .
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The first equality is due to linearity of expectation. The second equality is because the expectation is a product of independent
variables. The third equality is based on the expectation of Bernoulli random variables.

For the case of dependent decisions,

E iBk
∼pk(·) [µ(i)] =

L∑
ℓ=1

cℓ EiBk
∼pk(·)

 ∏
j∈Jℓ

ij


=

L∑
ℓ=1

cℓ P [∧j∈Jℓ
(ij = 1)]

=

L∑
ℓ=1

cℓ I [Jℓ ⊆ Bk] P [∧j∈Jℓ∩Bk
(ij = 1)]

=

L∑
ℓ=1

cℓ I [Jℓ ⊆ Bk]
∑

{ιj′∈[0,1]}j′∈Bk\Jℓ

P
[
∧j∈Jℓ∩Bk

(ij = 1) ∧j′∈Bk\Jℓ
(ij′ = ιj′)

]

=
L∑

ℓ=1

cℓ I [Jℓ ⊆ Bk]
∑

T⊆Bk\Jℓ

pk(|Jℓ|+ |T |)

=

L∑
ℓ=1

cℓ I [Jℓ ⊆ Bk] p|Jℓ|(|Jℓ|) .

The first equality is due to linearity of expectation. The second equality is because
∏

j∈Jℓ
ij is only non-zero when every

ij is 1. The third equality is because any unselected owner j′ ∈ Jℓ would make the probability P [∧j∈Jℓ
(ij = 1)] = 0.

Thus, the probability may only be positive when Jℓ ⊆ Bk. The last equality is because the probability p|Jℓ|(|Jℓ|) of all |Jℓ|
owners staying present (out of Jℓ) is set according to Cor. 1 and Prop. 1.

E. Other Use Cases
Prop. 2 enables other unique use cases. Firstly, the learner can choose to maximize the DADS objective to actively select
the set K but assume that subsequently selected points (set K ′) are unlikely to be deleted. This is achieved by setting
pM (A∪(M \K)) = pk(A) for all subsets A of K and 0 otherwise (i.e., pM (B) = 0 when (M \K) ⊈ B) while optimizing
for K ′. Points similar to K might be selected in K ′ (in anticipation of their deletions) but there will be less redundancy
within K ′.

Next, the learner can model group behavior. Suppose the M data owners can be partitioned into non-intersecting sets
{Ei}ni=1 such that

⋃
i=1...n Ei = M . Suppose every owner in the same set Ei will not delete their data together and stays

with probability sEi
. Then, we can set the probability to 0 when A is not a union of {Ei}ni=1, i.e., pM (A) = 0 if A ̸=

⋃
Ei.

Else, pM (A) =
∏

i:Ei⊆A sEi

∏
ℓ:Eℓ⊈A(1− sEℓ

). The other pmf’s can be computed using Prop. 2.

F. Example of Suboptimality of the Greedy Algorithm on EDADS vs. DS
In this section, we construct a toy dataset to understand why EDADS may be suboptimal vs. DS sometimes. We assume that
every owner of a point has an independent staying probability s.

F.1. Independent Decisions

Num of deletions Probability u({m, e}) u({m1,m2})
0 s2 3 + v 2 + 2v
1 s(1− s) (2 + 2v) + (1 + 2v) = 3 + 4v (2 + 2v) + (2 + 2v) = 4 + 4v

Table 3: Probability of utilities when selecting 2 points: {m, e} and {m1,m2} respectively.
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e1 m1

m2

e2v
v

v
v

Subset S u(S)

{m1}, {m2} or {m1,m2} 2 + 2v
{e1} or {e2} 1 + 2v
{e1, e2} 2 + 2v
{m1, e1}, {m1, e2}
{m2, e1}, {m2, e1}

3 + v

{m2, e1, e2} or {m2, e1, e2}
{m1,m2, e1, e2}

4

Figure 8: Let the similarity between any point and itself (and between (m1,m2)) be 1 and the similarity between any m
and e, w(m, e) is v < 1. Let u be the facility location utility function, u(S) =

∑
i∈{m1,m2,e1,e2} maxj∈S w(i, j), which is

submodular. The set function is given in the table.

The greedy algorithm for DS will select {m, e} in that order while that for EDADS will optimally select 2 similar points
{m1,m2} when uE({m1,m2}) > uE({m, e}). This condition holds when s2[(2 + 2v)− (3 + v)] + s(1− s)[(4 + 4v)−
(3 + 4v)]) = s2[v − 1] + s(1− s)[1] > 0 or equivalently, the probability of staying s < 1

2−v (*) is small.

Num of deletions Probability u({m, e1, e2}) u({m1,m2, e})
0 s3 4 3 + v
1 s2(1− s) 2(3 + v) + (2 + 2v) = 8 + 4v 2(3 + v) + (2 + 2v) = 8 + 4v
2 s(1− s)2 (2 + 2v) + 2(1 + 2v) = 4 + 6v 2(2 + 2v) + (1 + 2v) = 5 + 6v

Table 4: Probability of utilities when selecting 3 points: {m, e1, e2} and {m1,m2, e} respectively.

The greedy algorithm for DS will select {m, e1, e2}. Given (*), the greedy algorithm for EDADS will select {m1,m2, e}
However, the former (i.e., set {m, e1, e2}) is optimal for the EDADS objective if s3[1 − v] − s(1 − s)2[1] > 0, i.e.
−vs2 + 2s− 1 > 0, or equivalently, the probability of staying is high enough s > 1−

√
1−v
v (*).

Thus, the greedy algorithm for EDADS may underperform when s ∈ ( 1−
√
1−v
v , 1

2−v ). For example, when v = .5,
s ∈ (0.568, 0.666). This is due to the myopic nature of greedy algorithm in introducing redundancy.

F.2. Dependent Decisions

Suppose we are selecting 3 points and only tolerant to ≤ 1 deletion.

Num of deletions Probability u({m, e}) u({m1,m2})
0 1− 2r 3 + v 2 + 2v
1 r (2 + 2v) + (1 + 2v) = 3 + 4v (2 + 2v) + (2 + 2v) = 4 + 4v

Table 5: Probability of utilities when selecting 2 points: {m, e} and {m1,m2} respectively.

The greedy algorithm for DS will select {m, e} in that order while that for EDADS will optimally select {m1,m2} when
uE({m1,m2}) > uE({m, e}). This condition holds when (1 − 2r)(v − 1) + r > 0 or equivalently, the probability of a
subset with one deletion r > 1−v

3−2v (*). (When the probability is high (and deletions happen more often), more redundancy
is preferred.)
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Num of deletions Probability u({m, e1, e2}) u({m1,m2, e})
0 1− 3r 4 3 + v
1 r 2(3 + v) + (2 + 2v) = 8 + 4v 2(3 + v) + (2 + 2v) = 8 + 4v

Table 6: Probability of utilities when selecting 3 points: {m, e1, e2} and {m1,m2, e} respectively.

The greedy algorithm for DS will select {m, e1, e2}. Given (*), the greedy algorithm for EDADS have selected {m1,m2}
and will select {m1,m2, e} by the last round.

However, as the set {m, e1, e2} is always optimal for the EDADS objective, the greedy algorithm for EDADS may
underperform when r > 1−v

3−2v . For example, when v = .5, r ∈ (.25, .333).

G. Connection to Cooperative Game Theory and Data Valuation
G.1. Cooperative Game Theory

Let N be a finite set of n players. A cooperative game on N is defined as a tuple ⟨N, v⟩. Here, the characteristic function v
maps any subset (or coalition) C of players to a real number. The quantity v(C) should interpreted as the value coalition C
can achieve (in the absence of the remaining players). Let GN denote the set of all cooperative games on players N . A value
(function ϕ) on GN maps each game with characteristic function v to a payoff vector ϕ[v] which assigns a value ϕi[v] to
player i.

(Weber, 1988) defines a probabilistic value as a value that satisfies the following axioms:

• Linearity. For any characteristic functions v and v′ and real number λ, ϕ[v + v′] = ϕ[v] + ϕ[v′] and ϕ[λv] = λϕ[v];
• Positivity. If v is monotonic, then ϕ[v] ≥ 0;
• Dummy player property. A dummy player i’s marginal contribution always equates its value, i.e., for any coalition
C ⊆ N \ i, v(C ∪ i)− v(C) = v(i). If player i ∈ N is a dummy, then ϕi[v] = v(i).

Probabilistic value can be characterized by the weighting coefficients {wi
C | i ∈ N, C ⊆ N \ i} and the expression

∀i ∈ N ϕi[v] =
∑

C⊆N\i

wi
C [v(C ∪ i)− v(C)]

where the 2n−1 weighting coefficients for every player i must be non-negative and sum to 1, i.e.,
∑

C⊆N\i w
i
C = 1. The

probabilistic value is a weighted sum of marginal contributions.

Semivalues are probabilistic values that satisfy the following additional property:

• Anonymity. For any permutation π that maps each player i in N to another player and permuted characteristic function
πv such that πv(C) = v({π(j) | j ∈ C}), ϕi[πv] = ϕπ(i)[v].

Semivalues can be characterized by fewer weighting coefficients {wc}n−1
c=0 and the expression

∀i ∈ N ϕi[v] =
∑

C⊆N\i

w|C| [v(C ∪ i)− v(C)]

where all coalitions of a common size must share a common non-negative weight and
∑n−1

c=0 wc

(
n−1
c

)
= 1. For example,

the Shapley value (Shapley, 1953) is a semivalue with wc = 1/(n×
(
n−1
c

)
).

Multinomial probabilistic values are probabilistic values where the weighting coefficients

∀i ∈ N, C ⊆ N \ i wi
C =

∏
j∈C

sj
∏

ℓ∈N\(C∪i)

(1− sℓ) .

Let (w−j)iC denote the weighted coefficients for the cooperative game with n− 1 players N \ j. A probabilistic value ϕ on
GN is hereditary iff
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∀C ⊆ N \ {i, j} (w−j)iC = wi
C + wi

C∪j . (8)

The hereditary property entails that if player j is a null player (dummy player with no value and no marginal contribution,
i.e., v(j) = 0), the probabilistic value and payoff of all players are not impacted by j’s inclusion or exclusion. Multinomial
probabilistic values satisfy the hereditary property. See (Domenech et al., 2016) for other properties of semivalues.

We observe that the hereditary property (Eq. 8) has the same structure as our recursive formula in Cor. 1.

G.2. Data Valuation

We can model the data valuation problem as a cooperative game where every data owner (or data) is a player. The
characteristic function is the data utility function. For example, the value v(C) can be the prediction performance (such as
validation accuracy) of the model trained with data from C. A data owner’s value is often set as the Shapley value (Ghorbani
& Zou, 2019; Jia et al., 2019) or other semivalues such as the Beta Shapley value (Kwon & Zou, 2021). These semivalues
ensure fairness — a null player will get no reward and two symmetric players with equal marginal contributions will get
equal rewards.

G.3. Connection with Data Selection

At round t+ 1 of greedy data selection, we can consider a cooperative game from CGT with (t+ 1) players (i.e., owners in
the selected set Kt and another owner j ∈M \Kt) and define its characteristic function as the data utility function.

Conventional DS will select owner j with the largest marginal gain ∆u(j|Kt). This corresponds to the leave-one-out value
in data valuation.

Our EDADS objective with independent decisions will select owner j with the largest product of staying probability sj and
j’s multinomial probabilistic value (Eq. 7) (Carreras & Puente, 2015). When each owner is equally likely to delete its data,
our EDADS objective with dependent decisions will select owner j with the largest semivalue (with weight pt(a) on each
subset of size a). For example, when the learner considers any number of deletions equally likely (Sec. 3.2 (I)), the selected
owner j has the largest Shapley value (Shapley, 1953). So, our selection aligns with Ghorbani & Zou (2019) suggestion
to improve a model by acquiring new data with high predicted Shapley value (an equitable data value). Ghorbani & Zou
(2019) has shown that adding data with the largest Data Shapley (for the cooperative game with M players) leads to a faster
increase in model performance than a random order or adding data with the highest leave-one-out value.

Differences. Our DADS approach is (i) tailored for the staying/deletion probability and (2) considers multiple games
sequentially based on the selected data owners only. In Data Shapley, unselected owners (including duplicates) would affect
the valuation and the selection.

Our work offers new suggestions for DV: Choose the semivalues based on the staying probabilities and consider multiple
cooperative games based on the selected owners only.

On the other hand, our work can also benefit from concepts in DV and CGT. The ML learner can use the weights from
semivalues in CGT/DV that satisfy the hereditary property (Domenech et al., 2016) (and hence our Cor. 1) to directly set
pt(a) in the EDADS objective. For example, the learner can use the Shapley value’s weight 1/

(
(t+ 1)×

(
t
a

))
on each

subset of size a.

H. Experiments
H.1. Experimental Details

We compare the performance of our deletion-anticipative DADS objectives vs. its corresponding conventional DS objective
on a few (submodular function-dataset) combinations detailed below. We demonstrate the feasibility of our approach
on multiple supervised data subset selection and active learning data utility functions that are easier to implement and
understand. The datasets are chosen to demonstrate intended realistic applications of the DADS objectives (on health and
income data) and the feasibility/performance on a large benchmark dataset.

(NN-S) the nearest neighbor (NN) submodular function on a 2-class Synthetic dataset. Each class has 50 points and the
green class has 2 clusters (isotropic Gaussian blobs) with 35 and 15 points respectively. We design this dataset to
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consider different staying probabilities across classes and observe the selection of points in the large and small clusters.

(NN-H) the NN submodular function on the combined Heart Disease dataset (Lapp, 2019) from four databases: Cleveland,
Hungary, Switzerland, and Long Beach. The Heart Disease dataset consists of 1025 data points with 13 health features
(e.g., chest pain type, resting blood pressure) and a target (of whether a patient has heart disease). We set aside 25% of
the data as the validation set and use the remaining 75% as the feasible set (each owner owns a single datum, hence
|M | = 768). We pre-process the data by min-max scaling to the [0, 1] range. The selected subset is used to train an NN
classifier with L2 as the distance metric.

We consider that a patient without the disease will never delete its data (i.e., staying probability s− = 1) and vary the
staying probability s+ of every positive patient with the disease. The learner measures the F1 score, which balances the
precision and recall of identifying heart disease patients, on the validation set.

To evaluate the RAα-DADS objective, we set the number selected k = 240, the staying probability s+ of a patient with
the disease = .5 and use n = 20000 samples to estimate the expectation in the RAα-DADS objective.

(NN-F) the NN submodular function on the benchmark Fashion MNIST (FMNIST) dataset (Xiao et al., 2017). The
FMNIST dataset consists of 10 classes of clothing, each with 6000 training images and 1000 test/validation images.
Each image is 28× 28 pixels. We use the training images as the feasible set (|M | = 60000) and select a subset to train
an NN classifier with L2 as the distance metric.

We vary the common staying probability s across all image owners in the feasible set. The learner measures the
accuracy score on the validation set.

To evaluate the RAα-DADS objective, we set the number selected k = 500, and model that the number of owners
staying present out of 500 follows the distribution BetaBin(n = 500,α = 4,β = 2). We only include 2000 training
images of each class in the feasible set (|M | = 20000) to reduce the computation time. We use n = 20000 samples to
estimate the expectation in the RAα-DADS objective.

(NB-A) the naı̈ve Bayes (NB) submodular function on the Adults Income dataset (Becker & Kohavi, 1996). After dropping
data with missing entries, the dataset consists of |M | = 30718 points in the feasible set and 15315 points in the
validation set. Our dataset contains 10 categorical features (e.g., age, education, occupation) after removing redundant
features (fnlwgt, number of years of education, native country and work country) and discretizing numerical features
(e.g., capital gain, age, hours per week). The selected subset is used to train a Categorical NB model to predict whether
a person has an income of at least 50k. We fix the class prior based on the ratio in the feasible set (i.e., it does not
depend on the selected set) and use a Laplace smoothing factor of .01.

We vary the common staying probability s across all image owners in the feasible set. As the dataset is imbalanced
(e.g., only 7650 points of the positive class in the feasible set), the learner measures the balanced accuracy score on the
validation set.

To evaluate the RAα-DADS objective, we set the number selected k = 140, the staying probability s of a data owner
= .6 and use n = 10000 samples to estimate the expectation in the RAα-DADS objective.

(MI-S), (VR-S) the mutual information (MI) (diversity) submodular and variance reduction (VR) functions on the
Singapore traffic dataset (Chen et al., 2013). The dataset includes 2506 input regions. Each region has a tuple
of horizontal and vertical coordinates (x0, x1). Possible applications include the learner collecting data on traffic
or environmental conditions (e.g., congestion, taxi demand) from owners (e.g., companies, taxi drivers) who have
deployed a camera/sensor at each region. We consider a Gaussian process model with a squared exponential kernel.
The lengthscales for the dimensions are set at 5 and 8, respectively. Other hyperparameters are specified in the code.
We use n = 10000 samples to estimate the expectation in the EDADS objective.

(MI-F) the MI (diversity) submodular function on the synthetic Friedman dataset (Friedman, 1991) with 5 input features
and outputs perturbed by Gaussian noise with a standard deviation of .8. Our feasible and validation set consists of
3000 and 2000 points respectively. We standardize the output variable on the feasible set to have zero mean and unit
variance.

We consider a Gaussian process model with an exponential kernel. We use a Gaussian likelihood and assume that
the model hyperparameters (including separate lengthscales for each feature) are known or learned using maximum
likelihood estimation. The hyperparameters are specified in the code. We use n = 10000 samples to estimate the
expectation in the EDADS objective.
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The learner measures the log (Gaussian) predictive density (Rasmussen & Williams, 2006) on the validation set. A
higher log predictive density means that it is more likely to observe the validation set given that we observe the training
set. This occurs when the model makes confident and accurate predictions (with low mean squared error and predictive
variance).

(VR-C) the VR function on the Californian housing dataset (Pace & Barry, 1997). The housing dataset consists of 20640
data points with 8 features (e.g., median income, latitude, longitude) and the output variable is the housing prices. To
speed up computation, we select 2 sets of 6000 points as the feasible and the validation set. Each input and output
variable is standardized to have zero mean and unit variance on the feasible set.

We consider a Gaussian process model and use a linear kernel for the median income feature and an exponential kernel
for the rest. We use a Gaussian likelihood and assume that the model hyperparameters (including separate lengthscales
for each feature) are known or learned using maximum likelihood estimation. The hyperparameters used are specified
in the code. We use n = 10000 samples to estimate the expectation in the EDADS objective.

The learner measures the log (Gaussian) predictive density (Rasmussen & Williams, 2006) on the validation set.

(EVGP-C) the expected variance with Gaussian process (EVGP) function (Hemachandra et al., 2023) on the Californian
housing dataset (Pace & Barry, 1997). The description of the dataset is the same as the previous bullet.

We consider a neural network with 2 hidden layers with 128 and 32 units and ReLu activation. The neural network is
pre-trained on a small dataset (500 data points), simulating a historic or public dataset (Sim et al., 2020). Then, we
compute its empirical neural tangent kernel to derive the EVGP objective. We use n = 10000 samples to estimate the
expectation in the EDADS objective.

The learner measures the mean squared error on the test set achieved by the neural network after further training on
data from the selected owners.

In the main paper, we compare the DADS objectives against the DS objective (as the baseline). In App. H.3, we also
compared against random selection.

H.2. Computational Resources and Code

The experiments are run on a machine with Ubuntu 22.04.3 LTS, 2 x Intel Xeon Silver 4116 (2.1 GHz), and NVIDIA Titan
RTX GPU (Cuda 11.7). The software environments used are Miniconda and Python. Please refer to our Github respository
for the implementation details.

H.3. Independent Decisions

2D VISUALIZATION WITH UNEQUAL STAYING PROBABILITIES ACROSS CLASSES

In Fig. 9, we mark the k = 10 points selected by EDADS and DS objective when u is the NN submodular function7 and
each green data owner independently decides to stay with probability s. We assume that the blue points will always stay (i.e.
not be deleted).

We observe that as the staying probability s decreases, EDADS selects fewer of the blue data and more green data instead.
This is because the additional green data can help preserve the representativeness of the green class if other selected owners
delete their data as anticipated. Moreover, as the staying probability s decreases, the data selected are closer to the center
of the class. As described earlier, these centers have higher net similarity to other green data and help preserve higher
objective value if other selected green data owners delete their data as anticipated. This redundancy is achieved by forgoing
the selection of data on the edge of the cluster (which have lower net similarity to all data).

7The NN submodular function (App. C.2) will actively select a subset that is representative of the feasible set.
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sgreen=0.2 sgreen=0.5 sgreen=0.8 sgreen=1

Figure 9: (NN-S) 10 data points (red) selected by EDADS with varying staying probability of the green class where s = 1
corresponds to the DS objective.

2D VISUALIZATION WITH UNEQUAL STAYING PROBABILITIES ACROSS DATA OWNERS

From Fig. 9, we observe that EDADS selects darker points with higher staying probability, thus preserving higher objective
value if deletions happen as anticipated.

Figure 10: (NN-S) 10 data points (red) selected by EDADS with varying staying probability across data owners. Data with
higher staying probability (i.e., less likely to be deleted) are plotted in a darker (more opaque) color.

NUMBER OF (NN-H) POSITIVE PATIENTS SELECTED

From Fig. 11, we observe that EDADS selects more positive patients (with the disease) than DS and a larger number when
the staying probability s+ is lower. Thus, when deletions happen as anticipated, EDADS leads to a higher F1 score than DS
(Fig. 4). We also include staying probability s+ = .8 for a greater contrast against s+ = .5.

100 200 300
Total selected

50

100

150

Po
sit

iv
e 

se
le

ct
ed

DS
EDADS s+ = . 8
EDADS s+ = . 6
EDADS s+ = . 5

Figure 11: Number of positive patients selected vs. the total number of patients selected by DS and EDADS (under varying
staying probability s+) in the (NN-H) experiment.

RANDOM SELECTION

As an additional benchmark, we compare EDADS and DS against random selection (RS) that selects the same proportion of
each class as their proportion in the feasible set M . The metric score for RS is averaged over 10 random selection runs.
From Fig. 12, we observe that EDADS outperforms RS when evaluated with and without deletions.
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Figure 12: Graphs of mean validation set metric scores (with 2× standard error (shaded) across 2500 simulations) with
an increasing no. of data owners (horizontal axis) selected by DS, EDADS (with varying s) and random selection (RS) for
various datasets (a-c) when owners stay with simulated staying probability s̄.

OBJECTIVE VALUES

In Sec. 5, we plot the validation set metrics (with and without deletions) against the number of owners selected. Now, we
will verify the properties of EDADS and DS using the objective function values. In Fig. 13, we plot the difference in the
expected objective value of the sets selected by EDADS and DS when points (of the positive class for (NN-H) and all for
others) stay with simulated probability s̄.

When owners stay with simulated probability s̄, the subset selected by EDADS that optimizes for staying probability s = s̄
achieves the highest objective value and is better than DS. This is consistent with Sec. 5.1 where EDADS outperforms DS on
the validation set metrics.

When there are no deletions (s̄ = 1.), EDADS has a lower objective value than DS. This is consistent with the trade-off
observed in Sec. 5.1 – EDADS achieves a poorer validation set metric than DS without deletions.
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Figure 13: Difference in EDADS’ (with different s) and DS’s expected objective value for various datasets (a-c) when owners
stay with simulated probability s̄.

H.4. Dependent Decisions

VALIDATION SET METRICS VS. NUMBER OF DELETIONS

In Fig. 14 (extension of Fig. 5), we plot the validation set metrics vs. the number of deletions when the learner considers
Sec. 3.2, (I) tolerance to z deletions or (II) uncertainty in the staying probability. We observe that for different anticipated
probabilities, the validation set metric falls at different rates as the number of deletions increases. DS has the steepest fall
and worst metric when there are many deletions. In contrast, EDADS achieves a better metric score than DS when there are
moderate and more deletions. Moreover, as the anticipated deletions increase (see darker lines corresponding to U(0, ·) and
lower α

α+β
in BetaBin), the performance falls at a slower rate.
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Figure 14: Graphs of mean validation set metric scores (with 2× standard error (shaded) across 500 simulations) with an
increasing no. of deletions (horizontal axis) for various datasets (a-c). k owners are selected by DS or EDADS. For EDADS,
the no. of owners staying (out of k) follows (I) Uniform U or Dirac delta δ distribution and (II) BetaBin distribution.

EXPECTED OBJECTIVE VALUE AND METRIC WITH DELETIONS

Across all experiments (see Tabs. 7-10), we observe that EDADS achieves a higher expected objective value than DS.
Moreover, EDADS achieves a better metric than DS most of the time. There is an exception for (NN-H) when 300 patients
are selected (see Tab. 8). We hypothesize that this is due to a lower correlation between the objective value and validation set
metric when many data owners have been selected. This low correlation happens because the validation set metric plateaus
but slightly fluctuates after sufficient data is selected.

Distributions EDADS uE DS uE EDADS expected F1 DS expected F1

δ(100) 4672.9978 4660.7088 0.8333 ± 0.0306 0.8214± 0.0372
U(100, 200) 4744.8274 4742.6873 0.8829± 0.0415 0.8877 ± 0.0473
U(0, 99) 4367.9313 4329.2518 0.7756 ± 0.1167 0.7362± 0.1199
BetaBin(200, 10, 10) 4666.1810 4654.2744 0.8277 ± 0.0384 0.8218± 0.0479
BetaBin(200, 4, 16) 4462.3355 4412.6679 0.7820 ± 0.0663 0.7360± 0.0785
BetaBin(200, 16, 4) 4759.7544 4758.9481 0.9027 ± 0.0323 0.8996± 0.0351
BetaBin(200, 1, 1) 4546.3604 4536.9980 0.8182 ± 0.1054 0.8124± 0.1131

Table 7: (NN-H) The expected objective value uE (exact) and F1 score (averaged over 2500 simulations) when 200 patients
are selected. The number of owners staying follows the distribution column.
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Distributions EDADS uE DS uE EDADS expected F1 DS expected F1

δ(150) 4723.9851 4702.4362 0.8655± 0.0286 0.8870 ± 0.0218
U(150, 300) 4782.2684 4773.5301 0.9395± 0.0399 0.9450 ± 0.0363
U(0, 150) 4463.6384 4439.5500 0.7992± 0.1072 0.8087 ± 0.0932
BetaBin(300, 10, 10) 4717.7756 4697.3919 0.8652± 0.0423 0.8861 ± 0.0357
BetaBin(300, 4, 16) 4537.0203 4501.9433 0.7974± 0.0577 0.8046 ± 0.0455
BetaBin(300, 16, 4) 4794.7828 4787.6772 0.9510± 0.0276 0.9574 ± 0.0238
BetaBin(300, 1, 1) 4617.7797 4607.0948 0.8552± 0.1032 0.8757 ± 0.0996

Table 8: (NN-H) The expected objective value uE (exact) and F1 score (averaged over 2500 simulations) when k=300
patients are selected. The number of owners staying follows the distribution column.

Distributions EDADS uE DS uE EDADS expected accuracy DS expected accuracy

δ(300) 1.771008e12 1.770023e12 0.75288 ± 0.00692 0.74605± 0.00762
U(300, 600) 1.778268e12 1.778143e12 0.77506 ± 0.01261 0.77338± 0.01458
U(0, 299) 1.685616e12 1.677902e12 0.68815 ± 0.11339 0.65207± 0.11589
BetaBin(600, 10, 10) 1.770155e12 1.769113e12 0.75304 ± 0.01553 0.74384± 0.01952
BetaBin(600, 4, 16) 1.738350e12 1.730641e12 0.70435 ± 0.04659 0.65968± 0.05495
BetaBin(600, 16, 4) 1.779854e12 1.779752e12 0.77935 ± 0.00835 0.77888± 0.00900
BetaBin(600, 1, 1) 1.731039e12 1.728106e12 0.72808 ± 0.09720 0.71175± 0.10378

Table 9: (NN-F) The expected objective value uE (exact) and accuracy score (averaged over 2500 simulations) when k=600
image owners are selected. The number of owners staying follows the distribution column.

Distributions EDADS uE DS uE EDADS expected balanced acc. DS expected balanced acc.

δ(60) 681161.5499 675973.9621 0.72219 ± 0.03158 0.70437± 0.03223
U(60, 120) 818162.0060 816669.6247 0.76095 ± 0.03027 0.75243± 0.03340
U(0, 59) 249239.7757 244108.7184 0.66561 ± 0.06711 0.65098± 0.06470
BetaBin(120, 10, 10) 666858.1633 662290.6454 0.72194 ± 0.04122 0.70401± 0.04143
BetaBin(120, 4, 16) 250173.9232 241441.1907 0.67165 ± 0.05032 0.65067± 0.05264
BetaBin(120, 16, 4) 845700.3327 844590.7931 0.76996 ± 0.02054 0.76202± 0.02387
BetaBin(120, 1, 1) 534420.8463 532755.1257 0.71145 ± 0.07027 0.69995± 0.07383

Table 10: (NB-A) The expected objective value uE (exact) and balanced accuracy score (averaged over 2500 simulations)
when k=120 data owners are selected. The number of owners staying follows the distribution column.

2D VISUALIZATION

In Fig. 15, we mark the 10 points selected by EDADS and DS objectives when u is the NN submodular function and the
number of owners staying follows some Uniform U, Dirac delta δ or BetaBin distribution. Note that across each row in
Fig. 15, the weights of smaller subsets increase, i.e., more deletions are anticipated (see Fig. 16). We observe that as the
weights of smaller subsets increase, the data selected are closer together and to the center of the class. As described earlier,
these centers have higher net similarity to other data and help preserve higher objective value if other selected owners delete
their data as anticipated. This redundancy is achieved by forgoing the selection of data on the edge of the cluster (which
have lower net similarity to others).
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Figure 15: (NN-S) 10 data points (red) selected by EDADS when the learner considers the number of owners staying follows
the distribution below each sub-figure in the EDADS objective. Across each row (towards the right), the weights on smaller
subsets increase, i.e., more deletions are anticipated.
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Figure 16: The learner’s relative priority/weights on different numbers of data owners staying out of k = 10 for the
distributions considered in Fig. 15.

NUMBER OF (NN-H) POSITIVE PATIENTS STAYING FOLLOWS A DIFFERENT DISTRIBUTION

We consider that a patient without the disease will never delete its data (i.e., staying probability s− = 1) while the learner is
uncertain about the staying probability of positive patients. Thus, the number of positive patients staying out of t positive
patients is assumed to follow BetaBin(t,α,β) for different values of (α,β) as described in Sec. 4.2.

In Fig. 17, we observe that with more anticipated deletions (lower α
α+β

in BetaBin), the metric under no deletions
(leftmost) worsens but the performance falls at a slower rate as the number of deletions increases. We verify that when
deletions happen according to our probability model, EDADS preserves a higher expected objective value and metric than
DS in Tab. 11.
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Figure 17: Graphs of mean F1 score achieved by DS and EDADS (when no. of positive patients staying follows different
BetaBin distributions) vs. no. of deletions by positive patients.

(α,β) EDADS uE DS uE EDADS expected F1 DS expected F1

(10, 10) 4745.669953 4739.439621 0.84771 ± 0.04650 0.83040± 0.06256
(4, 16) 4654.436398 4625.224034 0.72210 ± 0.11058 0.60889± 0.14199
(16, 4) 4787.392586 4786.883940 0.93048 ± 0.02706 0.92041± 0.02959
(1, 1) 4690.061959 4680.885183 0.81030 ± 0.18192 0.76795± 0.20792

Table 11: (NN-H) The expected objective value uE (exact) and F1 score (averaged over 2500 simulations) when k=200
patients are selected. The number of positive patients staying follows a BetaBin distribution with parameters in the first
column.

H.5. Risk-Averse DADS

EXPERIMENT ON (NB-A)

We select k = 140 data owners and consider the case of independent decisions with s = .6. It can be verified that smaller α
leads to better balanced accuracy in the worse cases with more deletions.
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Figure 18: Graphs of mean validation set metrics obtained from the selections of k = 140 data owners by EDADS and
RAα-DADS (with varying α) (and additionally their differences) across 500 simulations with an increasing no. of deletions
for (NB-A).

CVAR OBJECTIVE VALUE AND METRIC WITH DELETIONS

Across all experiments (see Tabs. 12 and 13), we observe that RAα-DADS achieves a higher CVaRα objective value and
metric than EDADS.
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α RAα-DADS uCVaRα
EDADS uCVaRα

RAα-DADS CVaRα F1 EDADS CVaRα F1

0.2 4756.3682 ± 0.1186 4756.1135± 0.1641 0.8411 ± 0.0008 0.8404± 0.0007
0.4 4760.0607 ± 0.1092 4759.9601± 0.1242 0.8571 ± 0.0006 0.8566± 0.0009
0.6 4762.6318 ± 0.0967 4762.6228± 0.1038 0.8695 ± 0.0003 0.8678± 0.0004
0.8 4764.9332 ± 0.0959 4764.9111± 0.0952 0.8762± 0.0004 0.8770 ± 0.0004

Table 12: (NN-H) The CVaRα objective value and F1 score (averaged over 50 runs, CVaRα computed with 10000 samples)
when k=240 patients are selected and the staying probabilities are s+ = .5, s− = 1.

α RAα-DADS uCVaRα EDADS uCVaRα RAα-DADS CVaRα acc EDADS CVaRα acc

0.2 5.63728e11 ± 7.13815e7 5.63562e11± 7.15768e7 0.7294 ± 0.0008 0.7220± 0.0008
0.4 5.65367e11 ± 3.88493e7 5.65303e11± 4.38197e7 0.7411 ± 0.0005 0.7365± 0.0005
0.6 5.66309e11 ± 2.85203e7 5.66287e11± 3.26483e7 0.7480 ± 0.0004 0.7448± 0.0004
0.8 5.67001e11 ± 2.39820e7 5.66994e11± 2.60371e7 0.7523 ± 0.0003 0.7507± 0.0003

Table 13: (NN-F) The CVaRα objective value and accuracy score (averaged over 50 runs, CVaRα computed with 10000
samples) when k=500 owners are selected. The number of owners staying present follows BetaBin(500, 4, 2).

α RAα-DADS uCVaRα
EDADS uCVaRα

RAα-DADS CVaRα bal acc EDADS CVaRα bal acc

0.2 2.17679e6 ± 4.35455e2 2.17663e6± 4.55329e2 0.7162 ± 0.0005 0.7131± 0.0006
0.4 2.18866e6 ± 3.34645e2 2.18858e6± 3.61646e2 0.7292 ± 0.0004 0.7266± 0.0004
0.6 2.19707e6 ± 2.91878e2 2.19704e6± 3.06494e2 0.7350± 0.0003 0.7355 ± 0.0003
0.8 2.20447e6 ± 2.52436e2 2.20446e6± 2.71833e2 0.7425± 0.0003 0.7427 ± 0.0003

Table 14: (NB-A) The CVaRα objective value and balanced accuracy score (averaged over 50 runs, CVaRα computed with
10000 samples) when k=140 owners are selected. Each owner decides to stay present (independently) with probability
s = .6.

2D VISUALIZATION

In Fig. 19, we mark the k = 10 points selected by RAα-DADS with different α. Note that α = 1 corresponds to the EDADS
objective. We set the staying probability s of every owner = .5 and u as the NN submodular function.

α=0.3 α=0.5 α=0.7 α=1.0

Figure 19: (NN-S) 10 data points (red) selected by RAα-DADS when varying α where α = 1 corresponds to the EDADS
objective. Each owner stays with probability s = .5.

We observe that as α decreases (risk-aversion level increases), the data selected move slightly closer together (the difference
is less drastic than changing the staying probability s). When α = 0.3, RAα-DADS will forego the smaller green cluster to
cover more of the larger green cluster.
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H.6. Active Learning

In this section, we consider the use of two active learning (AL) data utility functions: the mutual information and the
variance reduction submodular functions (see App. C.2). To distinguish between both functions, we let MI and VR denote
respective DS objectives and DAMI and DAVR denote the corresponding deletion-anticipative DADS objectives.

2D VISUALIZATION FOR (MI-S), (VR-S) WITH EQUAL STAYING PROBABILITIES FOR ALL INPUT REGIONS

• (MI vs. DAMI). In Figs. 20a&c, we do not observe a significant difference in the points selected by MI vs. DAMI for
both choices of staying probabilities. This may be because MI seeks to maximize the diversity of the points (instead of
the representativeness of the feasible set considered by the NN submodular function). Thus, when all points are equally
likely to stay or be deleted, they affect the diversity metric equally.

• (VR vs. DAVR). In Figs. 20b&d, we do not observe a significant difference in the points selected by VR vs. DAVR
for s = .6. However, when the staying probability is lower (for s = .2), DAVR seems to select regions closer to each
other and the center. This is expected as the variance reduction function cares about the variance reduction at all input
regions.
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Figure 20: 40 regions selected by MI or VR and DAMI or DAVR under different staying probability s.

Next, we will observe that the DADS objectives have a greater impact on the selection using these AL submodular functions
when the probabilities vary across input regions.

2D VISUALIZATION FOR (MI-S), (VR-S) WITH UNEQUAL STAYING PROBABILITIES ACROSS ALL INPUT REGIONS

From the visualization in Fig. 21, we observe that both DAMI and DAVR prefer selecting owners with data in the right region.
Both objectives select more regions along the border where x0 = 30 to “cover” (reduce the output variance of) the region
with x0 < 30 with higher probability. Regions with 20 < x0 < 30 are almost never selected.
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Figure 21: 40 regions selected by MI or VR and DAMI or DAVR when the staying probabilities differ across regions. The
region on the right with x0 ≥ 30 will not be deleted with certainty.
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Figure 22: Number of regions with x0 < 30 (of staying probability s) selected vs. the total number of regions selected for
the DA objective while varying s. Note that s = 1 corresponds to the non-anticipative MI/VR objective. The regions on the
right will not be deleted with certainty.

From Fig. 22, we observe when the staying probability of the left regions s decreases (lighter lines):

• DAMI will select fewer of the left regions. This may be because the mutual information function uMI in App. C.2 only
depends on S (the selected set that stays undeleted) and does not depend on the feasible set M . A region with higher
staying probability will result in a larger staying subset S, contribute a > 1 eigenvalue in I+ γKS) and increase the
mutual information more frequently.

• DAVR will select fewer of the left regions initially (when the total selected is < 60) but more subsequently (more than
VR from s = 1). The explanation is: Initially, regions with higher staying probability are more likely to contribute to
variance reduction of neighbouring points. However, when those output variances are sufficiently low, DAVR selects
inputs from the lower staying probability region as they contribute a larger variance reduction if they stay.

EXPERIMENT ON (MI-F)

We randomly assign each owner j (of a datum) a staying probability sj by sampling from the distribution U(0, 1). From
Fig. 23a&b, we observe that when owners stay according to our probability model (green line), our DAMI objective
outperforms MI on both the log predictive density and objective function value. However, we observe that the advantage
comes with a trade-off — when there are no deletions (beige lines), MI has a higher validation set metric and performance.
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In addition, from Fig. 23c, we observe that unlike MI which selects an equal number of owners with different staying
probabilities, DAMI strongly prefers owners with higher staying probabilities. However, DAMI may select some owners
with lower staying probability, e.g., 0.7, as they may contribute a larger gain in mutual information.
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Figure 23: Graphs of (a) mean validation set metric scores (with 2× standard error (shaded) across 2500 simulations), (b)
mean objective function value (approximated by uavg) with an increasing no. of data owners (horizontal axis) selected by MI
and DAMI. Each data owner j’s staying probability sj is drawn the uniform distribution U(0, 1) and the simulated staying
probabilities s̄j include 1 and sj . (c) Histogram of the staying probability of the owners selected by MI and DAMI.

EXPERIMENT ON (VR-C)

We assign each owner j (of a datum) a staying probability sj dependent on the min-max scaled version of its median income
(the 0th feature), xj

0, as follows: sj = fc(x0) = .5 − .5 cos(4πx0). This staying probability model encodes that owners
with the smallest, largest or middle income are less likely to stay while owners with the lower and upper quartile incomes
are more likely to stay.

From Fig. 24a&b, we observe that when owners stay according to our probability model (green line), our DAVR objective
outperforms VR on both the log predictive density and objective function value. However, we observe that the advantage
comes with a trade-off — when there are no deletions (beige lines), VR usually gives a higher validation set metric and
performance.

In addition, from Fig. 24c, we observe that unlike VR which selects the same proportion of owners with different staying
probabilities (as in M ), DAVR more strongly prefers owners with higher staying probabilities. However, DAVR may select
some owners with slightly lower staying probability as they may contribute a larger variance reduction.
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Figure 24: Graphs of (a) mean validation set metric scores (with 2× standard error (shaded) across 2500 simulations), (b)
mean objective function value (approximated by uavg) with an increasing no. of data owners (horizontal axis) selected by VR
and DAVR. Each data owner j’s staying probability sj is fc(xj) and the simulated staying probabilities s̄j include 1 and sj .
(c) Histogram of the staying probability of the owners selected by VR and DAVR.
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EXPERIMENT ON (EVGP-C)

We assign 50%, 40% and 10% of the data owners with a staying probability of .8, .5 and .9, respectively. From Fig. 25a&b,
we observe that when owners stay according to our probability model (green line), our DAEVGP objective outperforms
EVGP on both the negated mean squared error (MSE) and objective function value. When there are no deletions (beige
lines), EVGP may sometimes give a higher test negated MSE (i.e., lower MSE).

In addition, from Fig. 25c, we observe that DAEVGP more strongly prefers owners with higher staying probabilities.
However, DAEVGP may select some owners with slightly lower staying probability (0.8), as they may contribute a larger
variance reduction.
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Figure 25: Graphs of (a) mean validation set metric scores (with 2× standard error (shaded) across 2000 simulations), (b)
mean objective function value (approximated by uavg) with an increasing no. of data owners (horizontal axis) selected by
EVGP and DAEVGP. Each data owner j’s staying probability sj is either .5, .8 or .9 and the simulated staying probabilities
s̄j include 1 and sj . (c) Histogram of the staying probability of the owners selected by EVGP and DAEVGP.

I. Other Questions
1. When are the DADS objectives most useful over DS?

We believe that DADS objective is especially useful over DS when the number of points selected is moderate (i.e. not
large, see Fig. 4).

This may be because (i) for monotone submodular functions, more points may lead to a higher submodular curvature,
thus the approximation guarantee of the greedy algorithm for DADS is worse and (ii) with more points, the accuracy or
other validation set metric will saturate at the best possible value (thus, even DS is tolerant to a few deletions beyond
the saturation point). Thus, DADS’s higher data utility values may not translate to a higher validation set metric score.

2. Are there parts of the work that are unique to ML applications?
The use cases in Sec. 3 are specifically for data acquisition problems. We also empirically demonstrate the results of
using our DADS objectives on the validation set metric of ML models in Sec. 5.

In Sec. 4.4, we highlighted that (1) in DS applications, it is best to only resample the inclusion of the newly added
points as we can compute the marginal gain more efficiently incrementally and (2) some data utility set functions used
in ML are a linear combination of multilinear functions and can be computed exactly and efficiently.

3. How would the learner decide the staying/deletion probability in advance?
See Fig. 7 for an overview.

As explained in Sec. 3.1, the learner can survey each owner j indirectly on its privacy preferences to predict the staying
probability; query the data deletion history on trusted data sharing platforms; or sign binding contracts with data owners
to enforce the staying probability.

Moreover, in Sec. 3.2, we propose how the learner can set the probability distribution over staying subsets less precisely
with less accurate knowledge. For example, the learner can decide that it only wants to tolerate z deletions or capture
the uncertainty in the staying probability sj using a Beta distribution whose prior depends on the observations/survey
of a small set of data owners. This also allows some small errors in estimating the probabilities.
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Lastly, the learner can instead define owner j’s staying probability as the probability that j’s data is credible. The
probability corresponds to the probability that the learner and future data auditors (instead of owner j) would not
request deletion/unlearning of j’s data. This interpretation is useful when it is easy for the learner to identify how
anomalous data is (e.g., by high Z-score for some features or low entropy of the image pixel values) but the learner
can only accurately tell if the data is useful for predictions after training the ML model and evaluating the predictive
performance. Thus, our DADS objectives can be used to balance between selecting data that are more credible vs. data
with higher utility values.

4. Why does Sec. 3.2 suggest that the learner decide pK instead of pM (over the feasible set)?
Firstly, if pM is used, the learner has to set more probability parameters and more computation is needed to evaluate
EpM

. Next, it may be less intuitive to decide the probability (or its relative concern) for deletions in M as it includes
some unselected data. How should duplicate data be handled? If the learner selects a subset B, is the probability of B
staying just pM (B)?
However, in App. E, we gave a use case example where the learner sets pM instead.

5. What are the limitations of a simple extension of existing DS methods, such as multiplying the marginal gain by
the staying probability sj?
There are three limitations:

• The trivial approach would not work when each data owner’s decision to stay present or delete their data depends
on others’ decisions (as in Sec. 4.2).

• The learner has to optimize and choose between different formulas, e.g., multiplying by sj or s2j .
• The learner does not always prefer selecting the owner with a higher staying probability. Additionally, the learner

needs to consider the expected marginal contribution (i.e., probabilistic value) (see Sec. 4.1) of each owner, which
depends on the probability of deletions of others and the objective function.
For example, from the histogram in Fig. 23c, we note that the deletion-anticipative objective did not select all the
data of the highest staying probability.
In Fig. 11, we observe that the learner selects more data of the lower staying probability for the nearest neighbor
submodular function. However, in Fig. 22, we observe that the learner selects more data of the higher staying
probability for the mutual information function.

6. Can our method handle deletions that happen consecutively (separately) instead of happening together in a
batch?
Yes, as mentioned in Sec. 2, the learner is subsequently free to use any unlearning technique and handle deletions
consecutively or in batch mode.
Proactively optimizing the DADS objectives in the active learning or data acquisition stage averts a future greater loss
in model performance from deletions.

7. How does our work relate to existing work on data valuation?
See Sec. G.

8. Do we assume that the data utility function u is (monotone) submodular?
No, the aim of our work is to prove or construct set functions for the DADS objectives such that they preserve
monotonicity, submodularity and weak submodularity (Chen et al., 2018a), etc. Our work realizes this aim by ensuring
that expectation is over the same distribution (thus a positive weighted sum of functions that share the same property).

9. Using sample average approximation (SAA) with n samples, the cost of evaluating the DADS objectives are n
times the cost of evaluating the DS objective. Is the computation cost still feasible? Can the computation cost be
reduced in practice?
Yes, the data utility functions for different sampled staying subsets can be evaluated in parallel.
In particular, there are a few data utility functions (e.g., nearest neighbor submodular function (Wei et al., 2015),
diversity function (Sim et al., 2020), variance-reduction function and EV-GP criterion (Krause et al., 2008; Hemachandra
et al., 2023)) which are (i) training-free (i.e., do not require training of ML models) during data selection and (ii) lend
themselves to efficient incremental updates that can be vectorized across samples. Thus, in our experiments, we can
simultaneously compute the utility of many sampled staying subsets with matrix operations on GPU.
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