PROVABLY EFFICIENT AND PRACTICAL SELF-PLAY FOR BETTER LLM ALIGNMENT

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement Learning with Human Feedback (RLHF) has gained significant attention for aligning AI behavior with human preferences. Self-play style RLHF has shown strong advantages, as highlighted by many studies. However, current self-play style RLHF approaches face several limitations, including the lack of provable sample efficiency, absence of active exploration, and limited diversity in training data. To address these challenges, we propose a novel RLHF framework that balances exploration and exploitation while providing theoretical guarantees. We introduce Two-Agent Nash Policy Optimization (TANPO) as an equivalent and easy-to-implement two-agent algorithm building on this framework. In TANPO, the two players are trained using different loss functions to ensure more diverse and informative data collection. We also propose Single-Agent Diversity-driven Optimization (SADPO), a single-agent approximation of TANPO, supported by both theoretical analysis and empirical evidence. Our theoretical analysis shows that our theoretical algorithm framework enjoys sublinear regret under general function approximation and mild structural conditions, with a detailed analysis provided for the linear case. Empirically, we implement TANPO and SADPO using Zephyr-7B-SFT as our base model, outperforming several baselines across multiple evaluation benchmarks, such as AlpacaEval 2.0, MT-Bench and various standard academic benchmarks. Our experiments also show that TANPO improves performance on AlpacaEval 2.0 over extended training epochs, demonstrating its ability to consistently improve and reduce overfitting.

032 033 034

035

043

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

1 INTRODUCTION

Large Language Models (LLMs) have shown significant proficiency in understanding and generat ing natural language. Reinforcement Learning with Human Feedback (RLHF) is key to improving
 LLMs by directly integrating human feedback into their training (Christiano et al., 2017; Ziegler et al., 2019). This process typically involves training the model using reinforcement learning tech niques to maximize the reward from human-labeled data (Ouyang et al., 2022). Many RLHF algo rithms treat this setup as a contextual bandit problem, where the prompt corresponds to the state, the generated response represents the action, and the feedback received acts as the reward.

Another approach, in addition to modeling RLHF as a contextual bandit problem, is to utilize self-044 play methods. Self-play is a technique in which one or more agents learn by competing against 045 themselves, allowing them to iteratively improve their strategies by evaluating and adapting to their 046 own responses. This approach has proven to be a powerful method in various fields, including 047 traditional reinforcement learning such as AlphaGo Zero (Silver et al., 2017) and generative models 048 such as GANs (Goodfellow et al., 2020). In the context of RLHF, self-play algorithms typically involve one or multiple agents generating multiple responses for each prompt. These responses compete against each other through feedback provided either by human evaluators or AI annotators, 051 which is then used to train the agents. Recently, a line of works (Rosset et al., 2024; Wu et al., 2024; Ye et al., 2024; Munos et al., 2023) have proposed a variety of self-play style RLHF algorithms. The 052 goal of these algorithms is to find the Nash equilibrium strategy. These works have demonstrated the effectiveness of self-play algorithms in improving LLM performance.

054 Despite recent advances, there are several limitations in current self-play style RLHF approaches. 055 *First*, there lacks theoretical guarantee on how these practical self-play algorithms can approximate 056 Nash equilibrium, or there is a significant gap between theoretically guaranteed algorithms and 057 practical implementations. Second, most existing algorithms lack active online exploration, which 058 limits their ability to efficiently gather informative data during the learning process. Theoretically, active exploration can provide formal guarantees for learning efficiency (Xiong et al., 2023; Ye et al., 2024). Practically, it enhances model performance by ensuring that the training data remains diverse 060 and novel, leading to better generalization and improved model performance (Zhang et al., 2024; 061 Xie et al., 2024). 062

Therefore, a key research problem is: Can we design an easy-to-implement and provably efficient
 self-play RLHF algorithm that approximates Nash equilibrium with active exploration?

In this paper, we propose a new self-play RLHF algorithm. To effectively balance the trade-off
between exploration and exploitation, the max-player aims to maximize the summation of (i) the
expected Nash equilibrium value function and (ii) the negative estimation loss of that reward function. Similarly, the min-player seeks to maximize the summation of (i) the expected best response
value function based on the max-player's strategy and (ii) the negative estimation loss of that reward
function. We provide theoretical guarantee for this framework, showing that it achieves a sublinear
regret under mild structural conditions.

We demonstrate that, under certain conditions, our algorithm framework is equivalent to an easyto-implement algorithm. In this practical implementation, the max-player optimizes an MLE loss, while the min-player optimizes an MLE loss with a simple exploration bonus. The min-player's inclination towards exploration leads to more diverse and novel outputs, whereas the max-player's responses tend to align more closely with the reference policy. This dynamic contrast enables both players to engage with a broader range of information, ultimately improving their overall performance. Supported by both theoretical analysis and empirical evidence, we propose a single-agent algorithm that mimics the behavior of the two-agent algorithm.

080 081

082

083

084

085

090

092

093

095

096

Contributions. The main contributions of our work are as follows.

- 1. We introduce a theoretical two-player RLHF framework that effectively balances exploitation and exploration while providing a theoretical guarantee. Building on this framework, we propose a practical and easy-to-implement two-agent algorithm TANPO, where both players have simple and practical objectives. Additionally, we propose a single-agent algorithm SADPO that approximates the two-agent algorithm.
- 2. We prove that our theoretical algorithm achieves sublinear regret under general function approximation and mild structural conditions. We specify this result to a linear case and then provide a detailed regret analysis, showing our theoretical algorithm achieves a sublinear regret.
- 3. We implement our algorithms, along with several baselines, using Zephyr-7B-SFT (Tunstall et al., 2023) as the base model and the UltraFeedback dataset for prompts. Our algorithm outperforms several baseline methods across multiple evaluation benchmarks, including AlpacaEval 2.0, MT-Bench, PairRM win rate and various academic benchmarks. Additionally, we demonstrate that our algorithm continues to improve performance during a second epoch on the same dataset, highlighting its ability to achieve consistent gains and mitigate overfitting.
- 097 098 099

Related Works. We refer readers to Appendix A for a detailed discussion.

100 101

102

2 PRELIMINARIES

RLHF pipeline. RLHF leverages human preferences to guide the training of a language model. A common approach is the pairwise preference model, where feedback is provided by comparing two model-generated responses to the same prompt. We define an LLM as a policy $\pi(\cdot|\cdot)$ in policy class II, where it takes a prompt x and generates a response a from distribution $\pi(\cdot|x)$. Given a prompt x from the state space \mathcal{X} , a language model π_{θ} generates two candidate responses a^1, a^2 from the action space \mathcal{A} according to its policy $\pi_{\theta}(\cdot|x)$. Human evaluators, or a reward model trained to approximate human preferences, provide feedback in the form of a binary label $y \in \{0, 1\}$, indicating a preference for $a^1 \succ a^2$ when y = 1 or $a^2 \succ a^1$ when y = 0. This preference is modelled probabilistically using BT model (Bradley & Terry, 1952)

111 112 113

114

$$\mathbb{P}_r(y=1|x,a^1,a^2) = \frac{\exp(r(x,a^1))}{\exp(r(x,a^1)) + \exp(r(x,a^2))} = \sigma(r(x,a^1) - r(x,a^2)).$$
(1)

Here, r(x, a) is the human-provided score or a score predicted by a reward model that reflects the quality or suitability of response *a* given the prompt *x*, and $\sigma(z) = 1/(1 + \exp(-z))$ denotes the sigmoid function.

In methods without a reward model, it has been shown that the preference loss can be expressed as a function of the policy. In preference optimization methods like DPO (Rafailov et al., 2024), the model is assumed to maximize a KL-regularized reward. Given a static dataset $\mathcal{D} = \{(x_i, a_i^+, a_i^-)\}_{i=1}^N$ of N preference pairs, the parameterized reward model is learned by minimizing the following logistic regression loss

126

138

139

148

149

150 151

152 153

154

 $\mathcal{L}(r|\mathcal{D}) = -\mathbb{E}_{(x,a^+,a^-)\sim\mathcal{D}}\left[\log\sigma(r(x,a^+) - r(x,a^-))\right].$ (2)

Two-Agent Zero-Sum Games. In a two-agent zero-sum game, two players, termed the *max-player* and the *min-player*, engage in a competitive interaction where the gain of one player is exactly offset by the loss of the other. The game is characterized by a general value function $V(\pi, \mu)$, where π and μ denote the mixed strategy probability distributions of the max-player and the min-player, respectively. In the Nash equilibrium, the max-player's strategy and the min-player's strategy are mutual best responses, meaning each is optimal given the strategy of the other (Nash et al., 1950). Formally, the max-player's strategy π^* and the min-player's strategy μ^* solve the optimization problem given by

$$(\pi^*, \mu^*) = \arg \max_{\pi \in \Pi} \min_{\mu \in \Pi} V(\pi, \mu),$$

where $V(\pi, \mu)$ is a general function that captures the payoffs based on the strategies π and μ . The strategies π^* and μ^* at this equilibrium are known as the Nash equilibrium strategies for the game.

140 **Performance Metric.** The goal of our learning algorithm is to find a policy π for the max-player 141 that is close enough to the Nash equilibrium. Consistent with the previous works (Ye et al., 2024; 142 Liu et al., 2024a; Xie et al., 2020), we define the corresponding regret after T episodes as

$$\operatorname{Regret}(T) = \sum_{t=1}^{T} \left[V(\pi^*, \mu^*) - V(\pi^t, \dagger) \right],$$

where π^t is the policy used by the max-player in the *t*-th episode and $V(\pi^t, \dagger) := \min_{\mu \in \Pi} V(\pi^t, \mu)$. The target of sample efficient self-play style algorithm is to achieve a sublinear regret with respect to *T*, as this would indicate that the strategy π^t effectively approaches the Nash equilibrium.

3 THEORY-MOTIVATED ALGORITHM

3.1 Setup

We formulate the RLHF problem as a two-agent zero-sum game. Suppose that there exists a deterministic but unknown reward function $r^*(x, a)$ that represents the quality of response a under prompt x. In practical applications, we want to ensure that the optimized policies π and μ are close to a common reference policy π_{ref} . Therefore, we employ the following KL-regularized objective

$$V(\pi,\mu) = \mathbb{E}_{x \sim d_0, a^1 \sim \pi(\cdot|x), a^2 \sim \mu(\cdot|x)} \left[r^*(x,a^1) - r^*(x,a^2) - \alpha \cdot D_{\mathrm{KL}} \left(\pi(\cdot|x) \| \pi_{\mathrm{ref}}(\cdot|x) \right) + \alpha \cdot D_{\mathrm{KL}} \left(\mu(\cdot|x) \| \pi_{\mathrm{ref}}(\cdot|x) \right) \right].$$
(3)

162 Suppose we have access to a hypothesis class $\mathcal{R} \subset (\mathcal{X} \times \mathcal{A} \times \mathcal{A} \to \mathbb{R})$, which gives us a set of 163 candidates to approximate the true reward function r^* . We define the value function under reward 164 function r as $V_r(\cdot, \cdot)$, and define $V_r(\pi, \dagger)$ as the value function induced by π and its best response, 165 i.e., $V_r(\pi, \dagger) = \min_{\mu} V_r(\pi, \mu)$.

166 167

168

177 178

179

188

189

191

194

201 202 203

204

205 206

3.2 THEORETICAL ALGORITHM FRAMEWORK

Motivated by studies about exploration-exploitation trade-off from a practical perspective in tradi-169 tional RL (Bellemare et al., 2016; Pathak et al., 2017), we propose our algorithm framework for 170 online RLHF. The core idea is to optimize a single and unconstrained objective that simultaneously 171 handles estimation and planning, thereby balancing exploration and exploitation. Specifically, the 172 framework employs different strategies for each player: the max-player focuses on approximating 173 the Nash equilibrium strategy, while the min-player aims to approximate the best response to the 174 max-player's strategy. Both players plan with active exploration. In the k-th episode, the algorithm 175 involves the following stages: 176

At the first stage, the max-player chooses the reward function \hat{r}_t^1 by maximizing the objective

$$\hat{r}_t^1 = \arg\max_{r \in \mathcal{R}} \left\{ V_r - \eta \cdot \mathcal{L}_{t-1}(r) \right\}.$$
(4)

To balance exploitation of historical data with exploration for the future, objective (4) consists of two components: (i) the negative loss function $-\mathcal{L}_{t-1}(r)$, the negative logistic regression loss in 181 (2) computed on the data from the first t-1 episodes for the reward function r, to encourage 182 exploitation, and (ii) the Nash equilibrium value V_r associated with the reward function r, which 183 promotes active exploration for the player. The algorithm balances the exploitation and exploration through a hyperparameter η . 185

With the max-player reward function \hat{r}_t^1 , the max-player policy is set to be the Nash equilibrium 186 max-player policy with respect to \hat{r}_t^1 , i.e., 187

$$\pi^{t} = \arg\max_{\pi \in \Pi} \min_{\mu \in \Pi} V_{\hat{r}_{t}^{1}}(\pi, \mu) = \arg\max_{\pi \in \Pi} \min_{\mu \in \Pi} \max_{r \in \mathcal{R}} \left\{ V_{r} - \eta \cdot \mathcal{L}_{t-1}(r) \right\}.$$
(5)

190 At the second stage, after obtaining the max-player policy π^t , the min-player chooses another reward function \hat{r}_t^2 aiming to find the best response of the max-player policy. Specifically, it chooses 192 by minimizing the target 193

$$\hat{r}_t^2 = \arg\min_{r\in\mathcal{R}} \left\{ V_r(\pi^t, \dagger) + \eta \cdot \mathcal{L}_{t-1}(r) \right\}.$$
(6)

Objective (6) also has two components: (i) the loss function $\mathcal{L}_{t-1}(r)$ computed on historical data 196 for the reward function r to encourage exploitation, and (ii) the best response value $V_r(\pi^t, \dagger)$ to 197 encourage active exploration.

With the min-player reward function \hat{r}_t^2 , the min-player policy is set to be the best response of 199 min-player policy under reward function \hat{r}_t^1 , i.e., 200

$$\mu^{t} = \arg\min_{\mu \in \Pi} V_{\hat{r}_{t}^{2}}(\pi^{t}, \mu) = \arg\min_{\mu \in \Pi} \min_{r \in \mathcal{R}} \left\{ V_{r}(\pi^{t}, \dagger) + \eta \cdot \mathcal{L}_{t-1}(r) \right\}.$$
(7)

At the final stage, the max-player and min-player sample a batch of new responses $\{(a_i^1, a_i^2)\}_{i=1}^N$ conditioned on prompts $\{x_i\}_{i=1}^N$ from the joint policy (π^t, μ^t) respectively. By querying human feedback or AI annotations $\{y_i\}_{i=1}^N$, we construct a new dataset $\mathcal{D}_t = \{x_i, a_i^1, a_i^2, y_i\}_{i=1}^N$ to update the loss function $\mathcal{L}_t(r)$.

207 208 209

210

4 EQUIVALENT AND IMPLEMENTATION-FRIENDLY ALGORITHMS

4.1 TWO-AGENT NASH POLICY OPTIMIZAION 211

212 In this section, we introduce easy-to-implement objectives and algorithms that are equivalent to the 213 algorithm framework in Section 3.2. 214

Objective for the Max-Player. We first examine the max-player objective in (5). If the reward 215 function class \mathcal{R} satisfies Assumption 4, the minimax theorem applies to optimization problem (5). We refer readers to Appendix C for a detailed discussion. Hence, we interchange the *max* and *min* operations in (5), yielding an equivalent objective given by

$$\max_{r \in \mathcal{R}} \max_{\pi \in \Pi} \min_{\mu \in \Pi} \left\{ V_r - \eta \cdot \mathcal{L}_{t-1}(r) \right\} = \max_{r \in \mathcal{R}} \left\{ \max_{\pi \in \Pi} \left\{ F(\pi; r) \right\} + \min_{\mu \in \Pi} \left\{ -F(\mu; r) \right\} - \eta \cdot \mathcal{L}_{t-1}(r) \right\},\tag{8}$$

where

$$F(\pi; r) := \mathbb{E}_{x \sim d_0, a \sim \pi(\cdot|x)} \left[r(x, a) - \alpha \cdot D_{\mathrm{KL}} \left(\pi(\cdot|x) \| \pi_{\mathrm{ref}}(\cdot|x) \right) \right]$$

for any policy $\pi \in \Pi$ and $r \in \mathcal{R}$.

We first solve the inner optimization problem in (8), which enjoys the following closed-form solution as discussed in Rafailov et al. (2024):

$$\pi_r(a|x) = \arg\max_{\pi \in \Pi} F(\pi; r) = \frac{1}{Z_r(x)} \cdot \pi_{\mathrm{ref}}(a|x) \exp(r(x, a)/\alpha),\tag{9}$$

where we denote the partition function of π_r as $Z_r(x) = \mathbb{E}_{a \sim \pi_{ref}(\cdot|x)} [\exp(r(x, a)/\alpha)]$. Adopting the reparametrization technique as in Rafailov et al. (2024), we express the reward function r by the optimal solution π_r , i.e.,

$$r(x,a) = \alpha \log\left(\frac{\pi_r(a|x)}{\pi_{\rm ref}(a|x)}\right) + \alpha \log Z_r(x).$$
(10)

We observe that, for a fixed reward function r, the two inner optimization problems in (8) have the same structure but opposite signs, and thus they cancel each other out, leaving only negative loss function term. Consequently, the max-player only needs to minimize the loss function on the historical data. Therefore, if we adopt the negative log-likelihood loss, the max-player's objective coincides with the objective of DPO algorithm, i.e.,

$$\min_{\pi \in \Pi} \left\{ \mathcal{L}_{\max}(\pi) \coloneqq \eta \cdot \mathcal{L}_{t-1}\left(\alpha \log\left(\frac{\pi(a|x)}{\pi_{\mathrm{ref}}(a|x)}\right)\right) \right\}.$$
 (11)

Objective for the Min-Player. The min-player optimization is a bilevel optimization problem and can be formulated as (we omit the terms independent of μ and r)

$$\min_{\mu \in \Pi} \min_{r \in \mathcal{R}} \left\{ V_r(\pi^t, \mu) + \eta \cdot \mathcal{L}_{t-1}(r) \right\} = \min_{r \in \mathcal{R}} \min_{\mu \in \Pi} \left\{ V_r(\pi^t, \mu) + \eta \cdot \mathcal{L}_{t-1}(r) \right\}$$

$$= \min_{r \in \mathcal{R}} \left\{ \mathbb{E}_{x \sim d_0, a \sim \pi^t(\cdot|x)} \left[r(x, a) \right] + \eta \cdot \mathcal{L}_{t-1}(r) + \min_{\mu \in \Pi} \left\{ -F(\mu; r) \right\} \right\}.$$
(12)

We note that the inner optimization has the same structure as (9) and therefore enjoys the same closed-form solution. By substituting (9) into (12), using the reparameter technique in (10) and omitting irrelevant terms, we transform (12) into a single-level optimization to obtain the following min-player objective

$$\min_{\mu \in \Pi} \left\{ \mathcal{L}_{\min}(\mu) \coloneqq \alpha \cdot \mathbb{E}_{x \sim d_0, a \sim \pi^t(\cdot|x)} \left[\log \mu(a|x) \right] + \eta \cdot \mathcal{L}_{t-1} \left(\alpha \log \left(\frac{\mu(a|x)}{\pi_{\mathrm{ref}}(a|x)} \right) \right) \right\}.$$
(13)

Hence, we summarize the Two-Agent Nash Policy Optimization (TANPO) algorithm in Algorithm 1.

Algorithm 1 Two-Agent Nash Policy Optimization (TANPO)

Input: Reference policy $\pi_{ref}(\cdot)$, baseline policies $\pi^1(\cdot), \mu^1(\cdot)$ and parameters α, η . 272 1: for t = 1, 2, ..., T do 273 2: 274 3: 275 4: 276

5:

Update max-player policy according to (14), $\pi^{t+1} \leftarrow \arg\min_{\pi \in \Pi} \left\{ \eta \cdot \mathcal{L} \left(\alpha \log \left(\frac{\pi(\cdot|\cdot)}{\pi_{\mathrm{ref}}(\cdot|\cdot)} \right) \middle| \mathcal{D}_t \right) \right\}.$ (14)

279 281

277

278

270

271

$$\mu^{t+1} \leftarrow \arg\min_{\mu \in \Pi} \left\{ \eta \cdot \mathcal{L}\left(\alpha \log\left(\frac{\mu(\cdot|\cdot)}{\pi_{\mathrm{ref}}(\cdot|\cdot)}\right) \middle| \mathcal{D}_t \right) + \alpha \cdot \mathbb{E}_{x \sim d_0, a \sim \pi^{t+1}(\cdot|x)} \left[\log \mu(a|x) \right] \right\},\tag{15}$$

where $\mathcal{L}(\cdot|\cdot)$ denotes the logistic regression loss in (2). 6: end for

Update min-player policy according to (15),

285 287

288 289

283

284

DATA DIVERSITY AND SINGLE-AGENT APPROXIMATION 4.2

It is observed that although the min-player in TANPO benefits from an exploration bonus term, the 290 max-player's objective in TANPO remains identical to DPO objective. This raises a question: How 291 does TANPO offer improvements over DPO? 292

Sample $a_i^1 \sim \pi^t(\cdot), a_i^2 \sim \mu^t(\cdot)$ from updated policies for each prompt x_i .

Rank responses a_i^1, a_i^2 to form training dataset $\mathcal{D}_t = \{x_i, a_i^+, a_i^-\}_{i=1}^N$

The key lies in the fact that TANPO generates more diverse training data. While the max-player does 293 not have an explicit exploration bonus, it can still benefit from the increased diversity in the training data. In the original two-agent setup, both the max-player and min-player are trained on the same 295 dataset but pursue different optimization objectives. The max-player focuses solely on minimizing 296 the MLE loss function, aiming to maximize reward while closely approximate the reference policy 297 $\pi_{\rm ref}$. In contrast, the min-player incorporates an additional exploration bonus term $\mathbb{E}\left[\log \mu(a|x)\right]$ 298 into its objective, encouraging it to sample from less likely regions of the action distribution. As a 299 result, the response pairs (a^1, a^2) exhibit greater diversity and contrast. 300

Empirically, we demonstrate that TANPO leads to more diverse training data. To illustrate this, we 301 sample 500 response pairs from the training datasets of online DPO and TANPO, respectively. For 302 each response pair (a^1, a^2) , we calculate the difference in their length-normalized log probabilities 303 under the reference policy, $|\log \pi_{\rm ref}(a^1) - \log \pi_{\rm ref}(a^2)|$, as a measure of diversity between responses. 304 As shown in Figure 1, TANPO achieves a larger $\log \pi_{ref}$ margin between response pairs, indicating 305 increased diversity in the training data. These findings further confirm that TANPO enhances data 306 diversity, thereby improving the overall performance. 307

To simplify this setup, we propose the Single-Agent Diversity-308 driven Policy Optimization (SADPO) algorithm as a single-agent 309 approximation of TANPO. The SADPO optimization objective is 310 similar to min-player objective (13). The core idea is to use a sin-311 gle policy to simulate the max-player policy and min-player policy 312 through rejection sampling. At each training iteration, the agent 313 samples K responses from the current policy for each prompt. We 314 then compute the probabilities $\pi_{ref}(a)$ for each of the K samples. 315 From the K responses, the response with the highest π_{ref} value is selected to approximate the behavior of the max-player, as this re-316 sponse is the most aligned with the reference policy. The response 317 with the lowest π_{ref} value is chosen to represent the min-player's 318 behavior, as it reflects more exploratory responses with lower like-319 lihood under π_{ref} . To mitigate the effect of response length, we cal-320 culate $\log \pi_{\rm ref}$ by averaging the log probability over the response 321 length. We summarize SADPO in Algorithm 2. 322

Figure 1: Length-normalized ref. policy log probability difference between response pairs.

An important feature of SADPO is that it deliberately enlarges the 323 difference in π_{ref} between the selected responses. By systematically selecting the most and least likely responses according to $\pi_{\rm ref}$, SADPO increases the diversity of the training data. This helps the model explore a broader range of behaviors, ultimately improving its generalization and overall performance.

Inpu	ut: Reference policy $\pi_{ref}(\cdot)$, baseline policy τ	$\tau^1(\cdot)$ and parameters α, η, K .
1:	for $t = 1, 2,, T$ do	
2:	Sample K responses $\{a_i^k\}_{k=1}^K \sim \pi^t(\cdot)$ for	each prompt x_i .
3:	For each a_i^k , compute its probability unde	r the reference policy $\pi_{ref}(a_i^k x_i)$.
4:	Select two responses by	
	• $a_i^{\max} = \arg\max_k \pi_{\operatorname{ref}}(a_i^k x_i),$	approximating max-player behavior
	• $a_i^{\min} = \arg\min_k \pi_{\mathrm{ref}}(a_i^k x_i).$	▷ approximating min-player behavior
5.	Rank responses a^{\max}_{i} a^{\min}_{i} to form training	ng dataset $\mathcal{D}_{i} = \{ x; a^{+}, a^{-} \}^{N}$.
6:	Update the policy according to (16).	$a_i = [x_i, a_i, a_i]_{i=1}$
	$\pi^{t+1} \leftarrow \operatorname{argmin} \int n \int \left(\alpha \log \left(\frac{\pi(\cdot \cdot)}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$	$\left \mathcal{D}_{i} \right + \alpha \cdot \mathbb{E}$, $(1 \circ \pi (a x)) $
	$\pi \leftarrow \arg \min_{\pi \in \Pi} \eta \cdot \mathcal{L} \setminus \alpha \log \setminus \frac{\pi_{ref}(\cdot \cdot)}{\pi_{ref}(\cdot \cdot)}$	$\int \left[\mathcal{D}_t \right] + \alpha \cdot \mathbb{E}_{x \sim d_0, a \sim \pi_{\mathrm{ref}}(\cdot x)} \left[\log \pi(a x) \right] \right],$
		(16)
	where $\mathcal{L}(\cdot \cdot)$ denotes the logistic regression lo	ss as defined in (2).
7:	end for	

THEORETICAL ANALYSIS

In this section, we present the regret analysis for the theoretical two-player Nash RLHF algorithm introduced in Section 3.2. We first provide theoretical guarantees under the low TGEC conditions (Assumption 2). Next, we illustrate our results using a linear two-player zero-sum RLHF game as a concrete example. It is important to note that the theoretical analysis in this section also applies to TANPO (Algorithm 1), provided the reward function class \mathcal{R} meets Assumption 4 outlined in Appendix C.

5.1 REGRET ANALYSIS FOR TWO-PLAYER NASH RLHF

To derive the theorem, we first present two assumptions. The first assumption concerns the hypoth-esis class \mathcal{R} being finite, bounded and well-specified, meaning it contains the true hypothesis.

Assumption 1 (Realizability). We assume that the true reward model $r^* \in \mathcal{R}$, and \mathcal{R} is finite, i.e. $|\mathcal{R}| < +\infty$. Moreover, for regularization, we assume that the reward function is bounded: for any $r \in \mathcal{R}$ and any $(x, a^1, a^2) \in \mathcal{X} \times \mathcal{A} \times \mathcal{A}$, we have $|r(x, a^1) - r(x, a^2)| \leq R_0$ for some $R_0 > 0$.

Moreover, we make a structural assumption on the underlying two-player game that requires the game to have a low Two-player Generalized Eluder Coefficient (TGEC) $d_{TGEC}(\cdot)$. TGEC is the generalization of Generalized Eluder Coefficient (GEC) inspired by Zhong et al. (2022). In a two-agent Markovian game with low TGEC, the two agents can minimize the in-sample prediction error on historical data, thereby decreasing the out-of-sample prediction error. See the full statement in Assumption 2 in Appendix B.

With Assumptions 1 and 2, we now present our main theorem.

Theorem 1 (Online Regret of Two-agent Nash RLHF). Under Assumptions 1 and 2, by setting

$$\eta = \frac{1}{4} \sqrt{\frac{d_{\text{TGEC}}(1/\sqrt{T})}{T \log(|\mathcal{R}|/\delta)}},$$

the regret of our theoretical algorithm framework in Section 3.2 after T episodes is bounded by

$$\operatorname{Regret}(T) \le 2\left(\sqrt{d_{\operatorname{TGEC}}(1/\sqrt{T})\log(|\mathcal{R}|/\delta)} + \sqrt{d_{\operatorname{TGEC}}(1/\sqrt{T})} + 1\right)\sqrt{T}$$

with probability at least $1 - 2\delta$.

Theorem 1 provides a theoretical guarantee for the efficiency of the algorithm's learning process in RLHF problems that satisfy the low TGEC condition. When the iteration number T tends to infinity, the average regret $\operatorname{Regret}(T)/T$ tends to zero. This indicates that the resulting policy of TANPO is approximately a Nash equilibrium policy, demonstrating the sample efficiency of TANPO.

As a concrete example of Theorem 1, we further analyze the case of a linear two-player Nash
RLHF game. In this setting, we explicitly compute the TGEC bound and establish a sublinear regret
guarantee for the max-player in Corollary 1. This demonstrates that our theoretical framework
not only holds in general settings but also provides clear and provable efficiency in specific and
structured cases like linear games. We refer readers to Appendix B for detailed discussion.

387 388

389 390

391

392

393

6 EXPERIMENTS

In this section, we conduct detailed experiments to show the performances of our practical algorithms along with other baselines. Our experiments demonstrate three key findings: (i) Our algorithms consistently outperform baseline methods across various benchmarks. (ii) Our algorithms effectively mitigate overfitting. (iii) Our algorithms enhance model performance by improving the quality and diversity of the training data.

394 395 396

397

414

6.1 EXPERIMENT SETUP

We use UltraFeedback (Cui et al., 2023) as our training dataset, which consists of 61k high-quality 398 prompts and response pairs annotated by GPT-4. We split the UltraFeedback dataset into three 399 portions, and use only one portion on each iteration. We first conduct an offline DPO training on the 400 first portion of training dataset, and then conduct two iterations of online alignment on the other two 401 portions. For the base model of our training, we consider Zephyr series of LLMs (Tunstall et al., 402 2023). We choose Zephyr-7B-SFT as our base model, since the official Zephyr-7B- β has already 403 been fine-tuned on the same UltraFeedback dataset. The small-sized PairRM (Jiang et al., 2023) is 404 used as the preference model to provide AI feedback during online alignment. 405

In TANPO, we sample one response for each prompt from each of the two models. In SADPO, we 406 sample K = 4 responses for each prompt from the current policy, and select the responses with 407 the highest and lowest length-regularized reference policy log probability to form response pairs. 408 We choose the base model Zephyr-7B-SFT, online DPO, Hybrid GSHF (Xiong et al., 2023) and 409 SELM (Zhang et al., 2024) as baselines for fine-tuning LLM. For evaluation, we adopt AlpacaE-410 val 2.0 (Dubois et al., 2024), MT-Bench (Zheng et al., 2023) and several academic benchmarks, 411 including GSM8k (Cobbe et al., 2021), MMLU (Hendrycks et al., 2020), OpenBookQA (Mihaylov 412 et al., 2018), HellaSwag (Zellers et al., 2019) and WinoGrande (Sakaguchi et al., 2021). All the 413 implementation details are provided in Appendix E.

415 6.2 EXPERIMENT RESULTS

416 Our algorithms consistently improve the performance on dif-

417 ferent benchmarks. Our algorithms consistently improve the performance on different benchmarks. We present our main re-418 sult in Table 1. Here, we report the results of TANPO based on 419 the performance of the min-player. The full results, including the 420 performance of both players in TANPO, are provided in Table 2 421 in Appendix D. On AlpacaEval 2.0 results, TANPO achieves high 422 performance, with a length-controlled win rate of 27.66% and a 423 win rate of 27.08%, outperforming all baseline methods. Sim-424 ilarly, SADPO demonstrates strong results across all baselines, 425 achieving a length-controlled win rate of 28.43% and a win rate 426 of 26.21%. Besides, we compare TANPO and SADPO with other 427 online RLHF baselines on MT-Bench scores. Notably, TANPO 428 and SADPO achieve the first and second places respectively in 429 terms of average MT-Bench scores. Results on several academic benchmarks presented in Figure 2 show that our methods outper-430 form the baselines on average and across the majority of academic 431 benchmarks. The full results are reported in Table 3 in Appendix

Figure 2: Accuracy results on GSM8k,MMLU,OpenBookQA, HellaSwag and WinoGrande.

D. Furthermore, we examine the pairwise win rate among baseline models, single-agent models and two-agent models, using PairRM as the judge on 805 prompts from the AlpacaEval 2.0 dataset. The results are depicted in Figure 3.

Technique	AlpacaEv	ral 2.0	MT-Bench			
Technique	LC Win Rate	Win Rate	Average	1st Turn	2nd Turn	
Zephyr-7B-SFT (ref.)	6.59	3.66	6.14	6.34	5.95	
Online DPO	24.36	22.14	7.24	7.37	7.11	
Hybrid GSHF	25.29	22.61	7.28	7.26	7.30	
SELM	26.99	25.99	7.26	7.56	6.96	
SADPO	28.43	26.21	7.33	7.71	6.94	
TANPO	27.66	27.08	7.47	7.55	7.39	

Table 1: Results on AlpacaEval 2.0 and MT-Bench. LC Win Rate represents Length-Controlled Win Rate.

Our algorithms effectively mitigate overfitting. To further evaluate the performance of our proposed algorithm and investigate its robustness against overfitting, we conduct a second round of experiments on the same UltraFeedback dataset. Specifically, after completing the first three iterations, we continue training the model with additional three iterations on the same dataset, while monitoring AlpacaEval 2.0 metrics. Our results are shown in Figure 4, demonstrating that the model continues to improve during the second round of training, showing no signs of overfitting. The full results are presented in Table 4 in Appendix D. This suggests that our two-agent algorithm is capable of effectively utilizing the training data, even after an extended training period. We note that our algorithm optimizes two agents using distinct strategies while having them compete against each other throughout the training process. This competition leads to a natural increase in the diversity of the training data, as each agent generates responses based on different optimization paths, resulting in more varied and comprehensive scenarios. Additionally, the algorithm's active exploration mechanism prevents the agents from getting stuck in local minima. These findings highlight the ability of our approach in consistently improving performance and preventing overfitting.

Figure 3: Pairwise win rates among baseline models, single-agent models and twoagent models, using PairRM as a judge.

Figure 4: Performance of TANPO across 6 iterations (2 epochs) on win rate (W.R.) and lengthcontrolled win rate (L.C. W.R.) judged by GPT-4-Turbo.

Our algorithms enhance model performance by improving the quality and diversity of the training data. Our results show that TANPO (max-player) surpasses the online DPO by 0.69% and 1.34% in AlpacaEval 2.0 length-controlled win rate and win rate. Besides, TANPO (max-player) achieves a win rate of 51.3% against online DPO in pairwise comparison by PairRM. It is important to note that the max-player shares the same setup as the online DPO, with the only difference being the training data. We have shown in Figure 1 that TANPO achieves greater diversity in training

data than online DPO. These results suggest that our algorithm enhances model performance by
increasing the diversity of responses during training. By incorporating data generated from two
different policies, the model is exposed to a broader range of behaviors and strategies, which helps
it generalize better across different prompts.

490 491 492

501 502

523

7 CONCLUSION

493 In this work, we introduce Two-Agent Nash Policy Optimization (TANPO), a two-agent algorithm 494 that balances exploration and exploitation. Additionally, we present Single-Agent Diversity-driven 495 Optimization (SADPO) as a simplified approximation of TANPO, supported by theoretical and em-496 pirical results. Our theoretical analysis shows sublinear regret under general conditions, while em-497 pirical evaluations demonstrate that TANPO and SADPO outperform baseline methods across multi-498 ple benchmarks, highlighting their effectiveness in improving performance and reducing overfitting. We hope our work can provide insights for future research into designing provable efficient and 499 practical self-play RLHF methods. 500

- References
- Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic bandits. *Advances in neural information processing systems*, 24, 2011.
- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
 report. *arXiv preprint arXiv:2303.08774*, 2023.
- Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland, Michal Valko, and Daniele Calandriello. A general theoretical paradigm to understand learning from human preferences. In *International Conference on Artificial Intelligence and Statistics*, pp. 4447–4455. PMLR, 2024.
- 513
 514
 514
 515
 515
 516
 516
 517
 517
 518
 519
 519
 510
 510
 511
 511
 512
 513
 514
 514
 514
 515
 516
 517
 518
 519
 519
 519
 510
 510
 511
 511
 512
 514
 515
 515
 516
 517
 518
 519
 519
 510
 510
 511
 511
 512
 512
 514
 514
 515
 515
 516
 517
 518
 519
 514
 514
 514
 515
 516
 517
 518
 518
 519
 519
 510
 510
 511
 511
 512
 514
 514
 515
 515
 516
 517
 518
 518
 519
 514
 514
 515
 516
 517
 518
 518
 518
 519
 519
 514
 514
 514
 515
 514
 515
 515
 516
 517
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
 518
- Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
 Unifying count-based exploration and intrinsic motivation. *Advances in neural information processing systems*, 29, 2016.
- Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.
- Daniele Calandriello, Daniel Guo, Remi Munos, Mark Rowland, Yunhao Tang, Bernardo Avila
 Pires, Pierre Harvey Richemond, Charline Le Lan, Michal Valko, Tianqi Liu, et al. Human alignment of large language models through online preference optimisation. *arXiv preprint* arXiv:2403.08635, 2024.
- Shicong Cen, Jincheng Mei, Katayoon Goshvadi, Hanjun Dai, Tong Yang, Sherry Yang, Dale Schuurmans, Yuejie Chi, and Bo Dai. Value-incentivized preference optimization: A unified approach to online and offline rlhf. *arXiv preprint arXiv:2405.19320*, 2024.
- Xiaoyu Chen, Han Zhong, Zhuoran Yang, Zhaoran Wang, and Liwei Wang. Human-in-the-loop:
 Provably efficient preference-based reinforcement learning with general function approximation. In *International Conference on Machine Learning*, pp. 3773–3793. PMLR, 2022.
- Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-tuning converts weak language models to strong language models. *arXiv preprint arXiv:2401.01335*, 2024.
- Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.

549

556

570

571

572

- Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
- Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. *arXiv* preprint arXiv:2310.01377, 2023.
- 547 Nirjhar Das, Souradip Chakraborty, Aldo Pacchiano, and Sayak Ray Chowdhury. Provably sample
 548 efficient rlhf via active preference optimization. *arXiv preprint arXiv:2402.10500*, 2024.
- Simon Du, Sham Kakade, Jason Lee, Shachar Lovett, Gaurav Mahajan, Wen Sun, and Ruosong
 Wang. Bilinear classes: A structural framework for provable generalization in rl. In *International Conference on Machine Learning*, pp. 2826–2836. PMLR, 2021.
- 553 Yihan Du, Anna Winnicki, Gal Dalal, Shie Mannor, and R Srikant. Exploration-driven policy optimization in rlhf: Theoretical insights on efficient data utilization. *arXiv preprint* arXiv:2402.10342, 2024.
- Yann Dubois, Chen Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos Guestrin, Percy S Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for methods that learn from human feedback. *Advances in Neural Information Processing Systems*, 36, 2024.
- Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, and Aleksander Madry. Implementation matters in deep policy gradients: A case study on ppo and trpo. *arXiv preprint arXiv:2005.12729*, 2020.
- Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.
- Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the ACM*, 63(11):139–144, 2020.
 - Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training (rest) for language modeling. *arXiv preprint arXiv:2308.08998*, 2023.
- Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre
 Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, et al. Direct language model alignment from
 online ai feedback. *arXiv preprint arXiv:2402.04792*, 2024.
- 577
 578
 578
 578
 578
 579
 579
 579
 570
 570
 570
 570
 571
 572
 573
 574
 575
 575
 576
 577
 577
 578
 578
 578
 579
 579
 579
 570
 570
 570
 570
 571
 572
 572
 573
 574
 574
 575
 575
 576
 577
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
 578
- Jiwoo Hong, Noah Lee, and James Thorne. Reference-free monolithic preference optimization with odds ratio. *arXiv preprint arXiv:2403.07691*, 2024.
- Kaixuan Ji, Jiafan He, and Quanquan Gu. Reinforcement learning from human feedback with active queries. *arXiv preprint arXiv:2402.09401*, 2024.
- 586 Dongfu Jiang, Xiang Ren, and Bill Yuchen Lin. Llm-blender: Ensembling large language models 587 with pairwise ranking and generative fusion. *arXiv preprint arXiv:2306.02561*, 2023.
- Tianqi Liu, Yao Zhao, Rishabh Joshi, Misha Khalman, Mohammad Saleh, Peter J Liu, and Jialu Liu. Statistical rejection sampling improves preference optimization. arXiv preprint arXiv:2309.06657, 2023.
- Zhihan Liu, Miao Lu, Wei Xiong, Han Zhong, Hao Hu, Shenao Zhang, Sirui Zheng, Zhuoran Yang, and Zhaoran Wang. Maximize to explore: One objective function fusing estimation, planning, and exploration. *Advances in Neural Information Processing Systems*, 36, 2024a.

- Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi Guo, Yingxiang Yang, Jose Blanchet, and
 Zhaoran Wang. Provably mitigating overoptimization in rlhf: Your sft loss is implicitly an adversarial regularizer. *arXiv preprint arXiv:2405.16436*, 2024b.
- Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 electricity? a new dataset for open book question answering. *arXiv preprint arXiv:1809.02789*, 2018.
- Rémi Munos, Michal Valko, Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland,
 Zhaohan Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mesnard, Andrea Michi, et al. Nash
 learning from human feedback. arXiv preprint arXiv:2312.00886, 2023.
- John F Nash et al. Non-cooperative games. 1950.

619

626

632

633

634 635

636

637

- Ellen Novoseller, Yibing Wei, Yanan Sui, Yisong Yue, and Joel Burdick. Dueling posterior sampling for preference-based reinforcement learning. In *Conference on Uncertainty in Artificial Intelligence*, pp. 1029–1038. PMLR, 2020.
- Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022.
- Aldo Pacchiano, Aadirupa Saha, and Jonathan Lee. Dueling rl: reinforcement learning with trajectory preferences. *arXiv preprint arXiv:2111.04850*, 2021.
- Richard Yuanzhe Pang, Weizhe Yuan, Kyunghyun Cho, He He, Sainbayar Sukhbaatar, and Jason
 Weston. Iterative reasoning preference optimization. *arXiv preprint arXiv:2404.19733*, 2024.
- Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
 by self-supervised prediction. In *International conference on machine learning*, pp. 2778–2787.
 PMLR, 2017.
- Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances in Neural Information Processing Systems*, 36, 2024.
- Corby Rosset, Ching-An Cheng, Arindam Mitra, Michael Santacroce, Ahmed Awadallah, and
 Tengyang Xie. Direct nash optimization: Teaching language models to self-improve with general
 preferences. *arXiv preprint arXiv:2404.03715*, 2024.
- Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial winograd schema challenge at scale. *Communications of the ACM*, 64(9):99–106, 2021.
 - John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.
 - David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without human knowledge. *nature*, 550(7676):354–359, 2017.
- Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Cox, Yiming
 Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch with
 minimal human supervision. *Advances in Neural Information Processing Systems*, 36, 2024.
- Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable multimodal models. *arXiv preprint arXiv:2312.11805*, 2023.
- Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

648 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Shengyi Huang, Kashif Rasul, 649 Alvaro Bartolome, Alexander M. Rush, and Thomas Wolf. The Alignment Handbook. URL 650 https://github.com/huggingface/alignment-handbook. 651 Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes Belkada, 652 Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib, et al. Zephyr: Direct 653 distillation of lm alignment. arXiv preprint arXiv:2310.16944, 2023. 654 655 Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? arXiv preprint arXiv:2306.14111, 2023. 656 657 Runzhe Wu and Wen Sun. Making rl with preference-based feedback efficient via randomization. 658 arXiv preprint arXiv:2310.14554, 2023. 659 Yue Wu, Zhiqing Sun, Huizhuo Yuan, Kaixuan Ji, Yiming Yang, and Quanquan Gu. Self-play 660 preference optimization for language model alignment. arXiv preprint arXiv:2405.00675, 2024. 661 662 Qiaomin Xie, Yudong Chen, Zhaoran Wang, and Zhuoran Yang. Learning zero-sum simultaneous-663 move markov games using function approximation and correlated equilibrium. In Conference on 664 learning theory, pp. 3674-3682. PMLR, 2020. 665 Tengyang Xie, Dylan J Foster, Akshay Krishnamurthy, Corby Rosset, Ahmed Awadallah, and 666 Alexander Rakhlin. Exploratory preference optimization: Harnessing implicit q*-approximation 667 for sample-efficient rlhf. arXiv preprint arXiv:2405.21046, 2024. 668 669 Wei Xiong, Hanze Dong, Chenlu Ye, Han Zhong, Nan Jiang, and Tong Zhang. Gibbs sam-670 pling from human feedback: A provable kl-constrained framework for rlhf. arXiv preprint arXiv:2312.11456, 2023. 671 672 Jing Xu, Andrew Lee, Sainbayar Sukhbaatar, and Jason Weston. Some things are more cringe than 673 others: Preference optimization with the pairwise cringe loss. arXiv preprint arXiv:2312.16682, 674 2023. 675 Yichong Xu, Ruosong Wang, Lin Yang, Aarti Singh, and Artur Dubrawski. Preference-based re-676 inforcement learning with finite-time guarantees. Advances in Neural Information Processing 677 Systems, 33:18784-18794, 2020. 678 679 Chenlu Ye, Wei Xiong, Yuheng Zhang, Nan Jiang, and Tong Zhang. A theoretical analysis of 680 nash learning from human feedback under general kl-regularized preference. arXiv preprint 681 arXiv:2402.07314, 2024. 682 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-683 chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019. 684 Wenhao Zhan, Masatoshi Uehara, Nathan Kallus, Jason D Lee, and Wen Sun. Provable offline 685 preference-based reinforcement learning. arXiv preprint arXiv:2305.14816, 2023. 686 687 Shenao Zhang, Donghan Yu, Hiteshi Sharma, Ziyi Yang, Shuohang Wang, Hany Hassan, and Zhao-688 ran Wang. Self-exploring language models: Active preference elicitation for online alignment. 689 arXiv preprint arXiv:2405.19332, 2024. 690 Tong Zhang. Mathematical analysis of machine learning algorithms. Cambridge University Press, 691 2023. 692 693 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, 694 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023. 696 Han Zhong, Wei Xiong, Sirui Zheng, Liwei Wang, Zhaoran Wang, Zhuoran Yang, and Tong Zhang. 697 Gec: A unified framework for interactive decision making in mdp, pomdp, and beyond. arXiv preprint arXiv:2211.01962, 2022. 699 Banghua Zhu, Michael Jordan, and Jiantao Jiao. Principled reinforcement learning with human feed-700 back from pairwise or k-wise comparisons. In International Conference on Machine Learning, 701 pp. 43037-43067. PMLR, 2023.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv* preprint arXiv:1909.08593, 2019.

705 706

707 708

A RELATED WORKS

709 710 711

712

A.1 THEORETICAL STUDIES ABOUT RLHF

713 Theoretical research on RLHF largely originates from foundational work in dueling bandits and 714 dueling reinforcement learning (Xu et al., 2020; Novoseller et al., 2020; Pacchiano et al., 2021; Wu 715 & Sun, 2023; Zhan et al., 2023). Recently, there has been growing interest in exploring RLHF theory 716 across diverse settings. Many previous works only consider tabular settings and linear settings (Du 717 et al., 2024; Das et al., 2024; Xiong et al., 2023), which do not fully capture the complexities of real-718 world scenarios. Beyond the tabular and linear settings, some recent research has explored RLHF 719 theory under general function approximation (Chen et al., 2022; Wang et al., 2023; Zhu et al., 2023; 720 Liu et al., 2024b).

721 Among these researches, most approaches use a contextual bandit framework. Close to our ap-722 proach, some studies give algorithms and theoretical guarantees under two-agent zero-sum game 723 setting (Wang et al., 2023; Ye et al., 2024). Ye et al. (2024) considered a reverse-KL regularized 724 minimax game between two LLMs and gave a sample-efficient algorithm, and Wang et al. (2023) 725 gave guarantees for RLHF algorithm under general arbitrary preferences settings. However, their 726 algorithms contain theoretical confidence bounds that are hard to compute, thus are unable to be implemented in experiments. Liu et al. (2024a) proposed a two-agent algorithm framework which 727 approximates Nash equilibrium with active exploration and proved the algorithm has a sublinear 728 guarantee. Different from ours, their work only focused on MDP and Markov game settings. 729

- 730
- 731 732

733

A.2 EMPIRICAL ALGORITHMS FOR RLHF

734 RLHF has gained significant traction in the deployment of large-scale models, such as ChatGPT 735 (Achiam et al., 2023), Gemini (Team et al., 2023) and Llama (Touvron et al., 2023), where it has been 736 employed to align model behavior with human preferences effectively. A widely used algorithm in this context is Proximal Policy Optimization (PPO) (Schulman et al., 2017), which iteratively up-737 dates the model feedback from a learned reward model. However, while PPO has demonstrated 738 success in many practical applications, it also has notable limitations, such as high sample com-739 plexity and sensitivity to hyperparameters (Engstrom et al., 2020), which can affect its stability and 740 performance. To address these shortcomings, recent work has proposed alternative approaches like 741 Direct Preference Optimization (DPO) (Rafailov et al., 2024), which directly optimizes the model 742 based on human preferences. In addition to the initial formulation of the DPO algorithm, researchers 743 have developed a wide range of variants (Liu et al., 2023; Azar et al., 2024; Ethayarajh et al., 2024; 744 Hong et al., 2024; Liu et al., 2024b), each tailored to specific optimization problems or designed to 745 enhance certain aspects of the algorithm's performance.

⁷⁴⁶ Unlike offline RLHF, which is constrained by a static dataset, online RLHF (Ouyang et al., 2022; 747 Guo et al., 2024; Bai et al., 2022; Xu et al., 2023; Gulcehre et al., 2023; Xiong et al., 2023; Calan-748 driello et al., 2024; Pang et al., 2024; Sun et al., 2024; Chen et al., 2024; Ji et al., 2024) continually 749 generates better and more diverse learning data as the model learns and adapts over time, allowing 750 the model to refine its understanding through real-time human feedback. In online RLHF, explo-751 ration plays a critical role by allowing the model to avoid being trapped in local minima, contin-752 uously encouraging it to seek new actions and learn from a more diverse set of responses. Zhang 753 et al. (2024); Xie et al. (2024); Cen et al. (2024) propose algorithms that add DPO with exploration bonuses similar to ours. Liu et al. (2024b) also utilize a similar confidence bound but aim to 754 avoid overoptimization in offline RLHF. Unlike our work, these works only focus on single-agent 755 contextual bandit settings.

756 B THEORETICAL ANALYSIS

765

770 771

778

779

783 784

791

792

793 794

796

797 798

799 800

801 802 803

804

805

808

809

To conduct the theoretical analysis for our theoretical algorithm framework proposed in Section 3.2, we introduce a more general reward model under which the reward model (1) is a special case.

761 **Preference Model.** Given any reward function $R : \mathcal{X} \times \mathcal{A} \times \mathcal{A} \to \mathbb{R}$ which represents the "human's 762 rating" of LLM responses given some prompts, we denote that given a prompt $x \in \mathcal{X}$ and two 763 response $a^1, a^2 \in \mathcal{A}$, the probability of a^1 being preferred to a^2 (denoted by y = 1, and otherwise 764 by y = 0) is given by

$$\mathbb{P}_{R}(y=1|x,a^{1},a^{2}) = \sigma(R(x,a^{1},a^{2})), \tag{17}$$

where $\sigma(z) = 1/(1 + \exp(-z))$ is the sigmoid function. Clearly, $\mathbb{P}_R(y = 0|x, a^1, a^2) = \sigma(-R(x, a^1, a^2))$. We denote the underlying reward model as R^* , and the corresponding preference oracle as $\mathcal{P}^* := \mathbb{P}_{R^*}$. Notably, a special case for the reward function R is by assuming that there exists a function $r : \mathcal{X} \times \mathcal{A} \to \mathbb{R}$ such that

$$R(x, a^1, a^2) = r(x, a^1) - r(x, a^2) \quad \text{for any } x \in \mathcal{X} \text{ and } a^1, a^2 \in \mathcal{A}$$
(18)

holds, which coincides with the reward model (1) in the main text.

Nash Equilibrium and Best Response. As discussed in the main text, RLHF is formulated as a two-player Game between the max-player LLM π and the min-player LLM μ . In application, we want the resulting LLMs (π, μ) to be close to (π_{ref}, π_{ref}) , and the ultimate value function is given by

$$V_{R^*,\alpha,\beta}(\pi,\mu) = \mathbb{E}_{x \sim d_0,a^1 \sim \pi(\cdot|x),a^2 \sim \mu(\cdot|x)} \left[R^*(x,a^1,a^2) -\alpha \cdot D_{\mathrm{KL}}\left(\pi(\cdot|x)\right) \|\pi_{\mathrm{ref}}(\cdot|x)\right) + \alpha \cdot D_{\mathrm{KL}}\left(\mu(\cdot|x)\right) \|\pi_{\mathrm{ref}}(\cdot|x)\right) \right].$$
(19)

For simplicity, we denote $V_{R^*,\alpha,\beta}(\cdot,\cdot)$ as $V(\cdot,\cdot)$ when there is no ambiguity. The value function (19) under the reward model R coincides with the value function (3) under the reward model r by (18). We denote the unique Nash equilibrium (NE) as the solution of the following minimax problem as

$$(\pi^*, \mu^*) = \arg\max_{\pi \in \Pi} \arg\min_{\mu \in \Pi} V(\pi, \mu)$$

For function V and policy π , the best response to π is $\arg \min_{\mu \in \Pi} V(\pi, \mu)$, and the value is denoted by $V(\pi, \dagger) = \min_{\mu \in \Pi} V(\pi, \mu)$. Similarly, for μ , we have $V(\dagger, \mu) = \max_{\pi \in \Pi} V(\pi, \mu)$.

Function Approximation. For convenience, we introduce the following notations. We have access to a function class $\mathcal{R} \subset (\mathcal{X} \times \mathcal{A} \times \mathcal{A} \to \mathbb{R})$ to approximate R^* . Specifically, given parameter α , for any $R \in \mathcal{R}$:

1. we denote the corresponding reward function as $R(x, a^1, a^2)$, and corresponding value function as

$$V_R(\pi,\mu) = \mathbb{E}_{x \sim d_0, a^1 \sim \pi(\cdot|x), a^2 \sim \mu(\cdot|x)} \left[R(x,a^1,a^2) -\alpha \cdot D_{\mathrm{KL}} \left(\pi(\cdot|x) \| \pi_{\mathrm{ref}}(\cdot|x) \right) + \alpha \cdot D_{\mathrm{KL}} \left(\mu(\cdot|x) \| \pi_{\mathrm{ref}}(\cdot|x) \right) \right];$$

2. we denote the corresponding NE value function as

$$V_R = \max_{\pi \in \Pi} \min_{\mu \in \Pi} V_R(\pi, \mu), \tag{20}$$

and we denote the corresponding NE max-player policy as

$$\pi_R = \arg\max_{\pi \in \Pi} \min_{\mu \in \Pi} V_R(\pi, \mu); \tag{21}$$

3. given a policy as the max-player $\pi \in \Pi$, we define $V_R(\pi, \dagger)$ as the value function induced by R, π and its best response, i.e.

$$V_R(\pi,\dagger) = \min_{\mu \in \Pi} V_R(\pi,\mu), \tag{22}$$

and we denote the corresponding best response min-player policy as

$$\mu_{R,\pi} = \arg\min_{\mu \in \Pi} V_R(\pi,\mu); \tag{23}$$

Algorithm 3 Theoretical Algorithm **Input:** Parameters $\alpha, \beta, \eta > 0$, prompt distribution d_0 , time horizon T, reference policy π_{ref} . 1: Set $\pi^0 = \mu^0 = \pi_{ref}$. 2: for step $t = 0, 1, 2, \dots, T$ do 3: Define the loss function $\mathcal{L}_{t-1}(R)$ in (28). 4: Solve R_1^t via $R_1^t = \arg \max_{R \in \mathcal{R}} \bigg\{ V_R - \eta \cdot \mathcal{L}_{t-1}(R) \bigg\}.$ (24)5: Set the max-player policy as $\pi^t = \pi_{R_1^t}.$ (25)6: Solve R_2^t via $R_2^t = \arg\min_{R \in \mathcal{R}} \left\{ V_R(\pi^t, \dagger) + \eta \cdot \mathcal{L}_{t-1}(R) \right\}.$ (26)7: Set the min-player policy as $\mu^t = \mu_{R_2^t, \pi^t}.$ (27)

8: Collect
$$\mathcal{D}_t = \{x_t, a_t^1, a_t^2, y_t\}$$
 by $x_t \sim d_0, a_t^1 \sim \pi^t(\cdot | x_t), a_t^2 \sim \mu^t(\cdot | x_t), y_t \sim \mathcal{P}^*(\cdot | x_t, a_t^1, a_t^2).$
9: end for

4. we denote the NE value function under the true reward R^* as V_{R^*} .

With the reward model (18), the theoretical algorithm framework in Section 3.2 can be rewritten into Algorithm 3, where we specify the loss function in the t-th episode as the negative log-likelihood function of the preference model (17), defined as

$$\mathcal{L}_{t-1}(R) = -\sum_{s=1}^{t-1} \log \mathbb{P}_R \left(y = y_s | x_s, a_s^1, a_s^2 \right) = -\sum_{s=1}^{t-1} \left[y_s \cdot \log \left(\sigma \left(R(x_s, a_s^1, a_s^2) \right) \right) + (1 - y_s) \cdot \log \left(\sigma \left(-R(x_s, a_s^1, a_s^2) \right) \right) \right],$$
(28)

which coincides with the logistic regression loss (2) by (18). Therefore, to prove Theorem 1, it suffices to analyze the regret bound of Algorithm 3.

To define TGEC, we first introduce the discrepancy function $l(R;\xi) : \mathcal{R} \times (\mathcal{X} \times \mathcal{A} \times \mathcal{A}) \mapsto \mathbb{R}$ to characterize the bellman residuals of both players. We choose Hellinger distance as the discrepancy function. For any data $\xi = (x, a^1, a^2)$, we define

$$l(R;\xi) = D_{\mathrm{H}}\left(\mathcal{P}^{*}(\cdot|\xi) \| \mathbb{P}_{R}(\cdot|\xi)\right),\tag{29}$$

where $D_{\rm H}(\cdot \| \cdot)$ denotes the Hellinger distance: for two discrete probability distributions $P = (p_1, \ldots, p_k)$ and $Q = (q_1, \ldots, q_k)$, the Hellinger distance is defined as

$$D_{\rm H}(P||Q) = \frac{1}{2} \sum_{i=1}^{k} (\sqrt{p_i} - \sqrt{q_i})^2.$$
(30)

Assumption 2 (Low Two-Player Generalized Eluder Coefficient). Given any $\epsilon > 0$, there exists a finite $d(\epsilon) \in \mathbb{R}_+$, such that for any sequence $\{(R_1^t, R_2^t)\}_{t=1}^T$ and corresponding policies $\{\pi^t, \mu^t\}_{t=1}^T$ by (25) and (27) respectively, it holds that

$$\sum_{t=1}^{T} \left[V_{R_{1}^{t}} - V(\pi^{t}, \mu^{t}) \right] \leq \inf_{\zeta > 0} \left\{ \frac{\zeta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_{s} \sim (d_{0}, \pi^{s}, \mu^{s})} \left[l(R_{1}^{t}; \xi_{s}) \right] + \frac{d(\epsilon)}{2\zeta} + \sqrt{d(\epsilon)T} + \epsilon T \right\}.$$

It also holds that

$$\sum_{t=1}^{T} \left[V(\pi^{t}, \mu^{t}) - V_{R_{2}^{t}}(\pi^{t}, \dagger) \right] \leq \inf_{\zeta > 0} \left\{ \frac{\zeta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_{s} \sim (d_{0}, \pi^{s}, \mu^{s})} \left[l(R_{2}^{t}; \xi_{s}) \right] + \frac{d(\epsilon)}{2\zeta} + \sqrt{d(\epsilon)T} + \epsilon T \right\}$$

We denote the smallest $d(\epsilon) \in \mathbb{R}_+$ satisfying this condition as $d_{\text{TGEC}}(\epsilon)$.

Moreover, by taking the decomposable reward function in (3), through some basic algebra we can derive the equivalent TGEC assumption under Nash RLHF setting.

Assumption 3 (Low Two-player Generalized Eluder Coefficient under Nash RLHF). Given any $\epsilon > 0$, there exists a finite $d(\epsilon) \in \mathcal{R}_+$, such that for any sequence $\{(R_1^t, R_2^t)\}_{t=1}^T$ with form of

$$R_1^t(x, a, b) = r_1^t(x, a) - r_1^t(x, b), \ R_2^t(x, a, b) = r_2^t(x, a) - r_2^t(x, b)$$

and corresponding policies $\{\pi^t, \mu^t\}_{t=1}^T$ by (25) and (27) respectively, it holds that

$$-\sum_{t=1}^{T} \mathbb{E}_{(x,a_1,a_2)\sim(d_0,\pi^t,\mu^t)} \left[r^*(x,a^1) - r^*(x,a^2) + \alpha \left[\log \left(\frac{\mu^t(a^2|x)}{\pi_{\mathrm{ref}}(a^2|x)} \right) - \log \left(\frac{\pi^t(a^1|x)}{\pi_{\mathrm{ref}}(a^1|x)} \right) \right] \right]$$
$$\leq \inf_{\zeta>0} \left\{ \frac{\zeta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{(x,a_1,a_2)\sim(d_0,\pi^t,\mu^t)} \left[l(R_1^t;\xi_s) \right] + \frac{d(\epsilon)}{2\zeta} + \sqrt{d(\epsilon)T} + \epsilon T \right\}.$$

It also holds that

$$\sum_{t=1}^{T} \mathbb{E}_{(x,a_1,a_2)\sim(d_0,\pi^t,\mu^t)} \left[r^*(x,a^1) - r^*(x,a^2) + \alpha \left[\log \left(\frac{\mu^t(a^2|x)}{\pi_{\mathrm{ref}}(a^2|x)} \right) - \log \left(\frac{\mu^t(a^1|x)}{\pi_{\mathrm{ref}}(a^1|x)} \right) \right] \right]$$
$$\leq \inf_{\zeta>0} \left\{ \frac{\zeta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{(x,a_1,a_2)\sim(d_0,\pi^t,\mu^t)} \left[l(R_1^t;\xi_s) \right] + \frac{d(\epsilon)}{2\zeta} + \sqrt{d(\epsilon)T} + \epsilon T \right\}.$$

B.1 LINEAR TWO-PLAYER ZERO-SUM NASH RLHF GAME

In this section, we introduce the linear two-player Nash RLHF game as a concrete example (Xie et al., 2020), for which we can explicitly specify its TGEC, thus specify Theorem 1 for linear two-player Nash RLHF game case.

Definition 1 (Linear two-player zero-sum Nash RLHF game). A *d*-dimensional linear two-player zero-sum Nash RLHF game satisfies that $R(x, a^1, a^2) = \phi(x, a^1, a^2)^\top \lambda$ for some known feature mapping $\phi(x, a^1, a^2) \in \mathbb{R}^d$ and some unknown vector $\lambda \in \mathbb{R}^d$ satisfying $\|\phi(x, a^1, a^2)\|_2 \leq 1$ and $\|\lambda\|_2 \leq \sqrt{d}$ for any $(x, a^1, a^2) \in \mathcal{X} \times \mathcal{A} \times \mathcal{A}$.

898 For a linear two-player zero-sum Nash RLHF game, we choose the reward hypothesis class as

$$\mathcal{R} = \left\{ \phi(\cdot, \cdot, \cdot)^{\top} \lambda : \|\lambda\|_2 \le \sqrt{d} \right\}.$$
(31)

The following proposition gives the TGEC of a linear two-player zero-sum Nash RLHF game with hypothesis class \mathcal{R} .

Proposition 1 (TGEC of linear two-player zero-sum Nash RLHF game). For a linear two-player zero-sum Nash RLHF game with hypothesis class \mathcal{R} , it holds that

$$d_{\mathrm{TGEC}}(1/\sqrt{T}) \le 4\kappa^2 d \cdot \log\left(1 + \frac{T^{2/3}}{d}\right) \lesssim d\log T,$$

909 where the constant $\kappa = (e^{R_0/2} + e^{-R_0/2})^2$.

Thus, we can specify Theorem 1 for linear two-player zero-sum games as follows.

Corollary 1 (Online regret: linear two-player zero-sum Nash RLHF game). By setting $\eta = \widetilde{\Theta}(1/\sqrt{T})$, the regret of our theoretical algorithm for a d-dimensional linear two-player zero-sum Nash RLHF game after T episodes is upper bounded by

915
916 Regret(T)
$$\leq 2\sqrt{T} \left(4\kappa^2 d \cdot \log\left(1 + T^{2/3}/d\right) \log(|\mathcal{R}|/\delta) + 2\sqrt{2\max\{R_0, 1\}d \cdot \log\left(1 + T^{2/3}/d\right)} + d \right)$$

with probability at least $1 - \delta$ and the constant $\kappa = (e^{R_0/2} + e^{-R_0/2})^2$.

918 B.2 PROOF OF THEOREM 1

Proof of Theorem 1. This is a similar proof to that of Theorem 4.4 in Liu et al. (2024a). It suffices to analyze the regret bound of Theorem 3 under the general reward model (18). We first show a proposition for loss difference.

Proposition 2. Under Assumption 1, with probability at least $1 - \delta$, for any $R \in \mathcal{R}$, it holds that

$$\sum_{t=1}^{T} \left[\mathcal{L}_{t-1}(R^*) - \mathcal{L}_{t-1}(R) \right] \le -2 \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_s \sim (d_0, \pi^s, \mu^s)} \left[\ell(R; \xi_s) \right] + 2T \log(|\mathcal{R}|/\delta),$$

where \mathcal{L}_{t-1} and ℓ are defined in (28) and (29) respectively.

Proof of proposition 2. This is a similar proof to that of Proposition C.13 in Liu et al. (2024a). Given $R \in \mathcal{R}$, we denote the random variables X_R^s as

$$X_R^s = \log \frac{\mathcal{P}^*(y = y_s | x_s, a_s^1, a_s^2)}{\mathbb{P}_R(y = y_s | x_s, a_s^1, a_s^2)}.$$
(32)

By the definition of \mathcal{L}_{t-1} in (28), we have

$$\sum_{t=1}^{T} \left[\mathcal{L}_{t-1}(R^*) - \mathcal{L}_{t-1}(R) \right] = -\sum_{t=1}^{T} \sum_{s=1}^{t-1} X_R^s.$$

We next define a filtration $\{\mathcal{F}_t\}_{t=1}^T$ for each $t \in [T]$ with

$$\mathcal{F}_t = \sigma\left(\bigcup_{s=1}^t \mathcal{D}_s\right).$$

Then by (32) we have that $X_R^t \in \mathcal{F}_t$ for each $t \in [T]$. Therefore, by Lemma B.3, with probability at least $1 - \delta$, for any $R \in \mathcal{R}$ and $t \in [T]$, we have that

$$-\frac{1}{2}\sum_{s=1}^{t-1} X_R^s \le \sum_{s=1}^{t-1} \log \mathbb{E}\left[\exp\left(-\frac{1}{2}X_R^s\right) \middle| \mathcal{F}_{s-1}\right] + \log(|\mathcal{R}|/\delta).$$
(33)

Moreover, the conditional expectation in (33) has the expression

$$\mathbb{E}\left[\exp\left(-\frac{1}{2}X_{R}^{s}\right)\middle|\mathcal{F}_{s-1}\right] \\
= \mathbb{E}\left[\sqrt{\frac{\mathbb{P}_{R}(y=y_{s}|x_{s},a_{s}^{1},a_{s}^{2})}{\mathcal{P}^{*}(y=y_{s}|x_{s},a_{s}^{1},a_{s}^{2})}}\middle|\mathcal{F}_{s-1}\right] \\
= \mathbb{E}_{x_{s}\sim d_{0},a_{s}^{1}\sim\pi^{s}(\cdot|x_{s}),a_{s}^{2}\sim\mu^{s}(\cdot|x_{s})}\left[\sqrt{\frac{\mathbb{P}_{R}(y=y_{s}|x_{s},a_{s}^{1},a_{s}^{2})}{\mathcal{P}^{*}(y=y_{s}|x_{s},a_{s}^{1},a_{s}^{2})}}\right] \\
= \mathbb{E}_{x_{s}\sim d_{0},a_{s}^{1}\sim\pi^{s}(\cdot|x_{s}),a_{s}^{2}\sim\mu^{s}(\cdot|x_{s})}\left[\sqrt{\frac{\mathbb{P}_{R}(y=y_{s}|x_{s},a_{s}^{1},a_{s}^{2})}{\mathcal{P}^{*}(y=y_{s}|x_{s},a_{s}^{1},a_{s}^{2})}}\right] \\
= 1 - \frac{1}{2}\mathbb{E}_{x_{s}\sim d_{0},a_{s}^{1}\sim\pi^{s}(\cdot|x_{s}),a_{s}^{2}\sim\mu^{s}(\cdot|x_{s})}\left[\sum_{y_{s}=0,1}\left(\sqrt{\mathbb{P}_{R}(y=y_{s}|x_{s},a_{s}^{1},a_{s}^{2})} - \sqrt{\mathcal{P}^{*}(y=y_{s}|x_{s},a_{s}^{1},a_{s}^{2})}\right)^{2}\right] \\
= 1 - \mathbb{E}_{x_{s}\sim d_{0},a_{s}^{1}\sim\pi^{s}(\cdot|x_{s}),a_{s}^{2}\sim\mu^{s}(\cdot|x_{s})}\left[D_{H}\left(\mathcal{P}^{*}(\cdot|x_{s},a_{s}^{1},a_{s}^{2})\right)\right]\mathbb{P}_{R}(\cdot|x_{s},a_{s}^{1},a_{s}^{2}))\right],$$
(34)

where $D_{\rm H}(\cdot \| \cdot)$ is Hellinger distance defined in (30). Thus by combining (33) and (34), we can derive that with probability at least $1 - \delta$, for any $R \in \mathcal{R}$, any $t \in [T]$,

$$-\frac{1}{2}\sum_{s=1}^{t-1} X_R^s \le \sum_{s=1}^{t-1} \left[\mathbb{E}\left[\exp\left(-\frac{1}{2}X_R^s\right) \middle| \mathcal{F}_{s-1} \right] - 1 \right] + \log(|\mathcal{R}|/\delta)$$
$$= -\sum_{s=1}^{t-1} \mathbb{E}\left[\exp\left(-\frac{1}{2}X_R^s\right) \middle| \mathcal{F}_{s-1} \right] - 1 + \log(|\mathcal{R}|/\delta)$$

where the first inequality comes from the fact that $\log x \leq x - 1$. Finally, by plugging in the definition of X_R^s , we have that with probability at least $1 - \delta$, for any $R \in \mathcal{R}$, it holds that

$$\sum_{t=1}^{T} \left[\mathcal{L}_{t-1}(R^*) - \mathcal{L}_{t-1}(R) \right] = -\sum_{t=1}^{T} \sum_{s=1}^{t-1} X_R^s$$

$$\leq -2 \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{x_s \sim d_0, a_s^1 \sim \pi^s(\cdot | x_s), a_s^2 \sim \mu^s(\cdot | x_s)} D_{\mathrm{H}} \left(\mathcal{P}^*(\cdot | x_s, a_s^1, a_s^2) \right) \| \mathbb{P}_R(\cdot | x_s, a_s^1, a_s^2) \right) + 2T \log(|\mathcal{R}|/\delta)$$

$$= -2 \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_s \sim (d_0, \pi^s, \mu^s)} \left[\ell(R; \xi_s) \right] + 2T \log(|\mathcal{R}|/\delta).$$

This finishes the proof of Proposition 2.

 $\operatorname{Regret}(T)$

Back to the proof of Theorem 1. We have the following decomposition of the regret,

$$= \sum_{t=1}^{T} \left[V(\pi^{*}, \mu^{*}) - V(\pi^{t}, \dagger) \right]$$

$$= \sum_{t=1}^{T} \left[V(\pi^{*}, \mu^{*}) - V(\pi^{t}, \mu^{t}) \right] + \sum_{t=1}^{T} \left[V(\pi^{t}, \mu^{t}) - V(\pi^{t}, \dagger) \right]$$

$$= \underbrace{\sum_{t=1}^{T} \left[V(\pi^{*}, \mu^{*}) - V_{R_{1}^{t}} \right]}_{(\heartsuit)} + \underbrace{\sum_{t=1}^{T} \left[V_{R_{1}^{t}} - V(\pi^{t}, \mu^{t}) \right]}_{(\diamondsuit)}$$

$$+ \underbrace{\sum_{t=1}^{T} \left[V_{R_{2}^{t}}(\pi^{t}, \dagger) - V(\pi^{t}, \dagger) \right]}_{(\diamondsuit)} + \underbrace{\sum_{t=1}^{T} \left[V(\pi^{t}, \mu^{t}) - V_{R_{2}^{t}}(\pi^{t}, \dagger) \right]}_{(\diamondsuit)}.$$
(35)

1003 We now prove the bound for $(\heartsuit, \diamondsuit, \diamondsuit, \diamondsuit)$ in (35).

To bound (\heartsuit). Note that $V_{R^*} = V(\pi^*, \mu^*)$. Thus we can rewrite (\heartsuit) as 1005

$$(\heartsuit) = \sum_{t=1}^{T} \left[V_{R^*} - V_{R_1^t} \right].$$
(36)

By the choice of R_1^t in (24) and Assumption 1, we have that for each $t \in [T]$,

$$V_{R^*} - \eta \cdot \mathcal{L}_{t-1}(R^*) \le V_{R_1^t} - \eta \cdot \mathcal{L}_{t-1}(R_1^t).$$
(37)

¹⁰¹² By combining (36) and (37), we obtain that

$$(\heartsuit) \le \eta \cdot \sum_{t=1}^{T} \left[\mathcal{L}_{t-1}(R^*) - \mathcal{L}_{t-1}(R_1^t) \right].$$
(38)

By Proposition 2, we can derive from (38) that with probability at least $1 - \delta$,

$$(\heartsuit) \leq -2\eta \cdot \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_s \sim (d_0, \pi^s, \mu^s)} \left[\ell(R_1^t; \xi_s) \right] + 2\eta T \log(|\mathcal{R}|/\delta).$$
(39)

To bound (\blacklozenge). We apply Assumption 2 and obtain that, for any $\epsilon > 0$,

$$(\bigstar) \leq \inf_{\zeta>0} \left\{ \frac{\zeta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_s \sim (d_0, \pi^s, \mu^s)} \left[\ell(R_1^t; \xi_s) \right] + \frac{d(\epsilon)}{2\zeta} + \sqrt{d(\epsilon)T} + \epsilon T \right\}.$$

By taking $\zeta/2 = 2\eta$, we can further derive that

$$(\bigstar) \le 2\eta \cdot \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_s \sim (d_0, \pi^s, \mu^s)} \left[\ell(R_1^t; \xi_s) \right] + \frac{d(\epsilon)}{8\eta} + \sqrt{d(\epsilon)T} + \epsilon T.$$
(40)

To bound (\diamondsuit). Note that $V_{R^*}(\pi^t, \dagger) = V(\pi^t, \dagger)$. Thus we can rewrite (\diamondsuit) as

$$(\diamondsuit) = \sum_{t=1}^{T} \left[V_{R_2^t}(\pi^t, \dagger) - V_{R^*}(\pi^t, \dagger) \right].$$
(41)

By the choice of R_2^t in (26) and Assumption 1, we have that for each $t \in [T]$,

$$V_{R_{2}^{t}}(\pi^{t},\dagger) + \eta \cdot \mathcal{L}_{t-1}(R_{2}^{t}) \leq V_{R^{*}}(\pi^{t},\dagger) + \eta \cdot \mathcal{L}_{t-1}(R^{*}).$$
(42)

By combining (41) and (42), we derive that

$$(\diamondsuit) \le \eta \cdot \sum_{t=1}^{T} \left[\mathcal{L}_{t-1}(R^*) - \mathcal{L}_{t-1}(R_2^t) \right].$$
(43)

Now by Proposition 2, it further follows from (43) that with probability at least $1 - \delta$,

$$(\diamondsuit) \le -2\eta \cdot \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_s \sim (d_0, \pi^s, \mu^s)} \left[\ell(R_2^t; \xi_s) \right] + 2\eta T \log(|\mathcal{R}|/\delta).$$
(44)

To bound (**4**). By Assumption 2, we have that for any $\epsilon > 0$,

$$(\clubsuit) \leq \inf_{\zeta>0} \left\{ \frac{\zeta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_s \sim (d_0, \pi^s, \mu^s)} \left[\ell(R_2^t; \xi_s) \right] + \frac{d(\epsilon)}{2\zeta} + \sqrt{d(\epsilon)T} + \epsilon T \right\}.$$

 By taking $\zeta/2 = 2\eta$, we can further derive that

$$(\clubsuit) \le 2\eta \cdot \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi_s \sim (d_0, \pi^s, \mu^s)} \left[\ell(R_2^t; \xi_s) \right] + \frac{d(\epsilon)}{8\eta} + \sqrt{d(\epsilon)T} + \epsilon T.$$
(45)

Combining (\heartsuit) , (\clubsuit) , (\diamondsuit) , and (\clubsuit) . Finally, combining (39), (40), (44) and (45), taking $\epsilon = 1/\sqrt{T}$ and

$$\eta = \frac{1}{4} \sqrt{\frac{d_{\text{TGEC}}(1/\sqrt{T})}{T \cdot \log(|\mathcal{R}|/\delta)}}$$

we can finally derive that with probability at least $1 - 2\delta$,

$$\operatorname{Regret}(T) \le 2\left(\sqrt{d_{\operatorname{TGEC}}(1/\sqrt{T})\log(|\mathcal{R}|/\delta)} + \sqrt{d_{\operatorname{TGEC}}(1/\sqrt{T})} + 1\right)\sqrt{T}.$$

Thus, we finish the proof of Theorem 1.

Proof of Proposition 1. This is a similar proof to that of Proposition C.11 in Liu et al. (2024a). To prove Proposition 1, we need two performance difference lemmas in the two-player zero-sum game. Given $R \in \mathcal{R}$, we define the error of R with respect to the true reward R^* as

$$\mathcal{E}(R;\xi) = R(x,a^1,a^2) - R^*(x,a^1,a^2), \tag{46}$$

and $\xi = (x, a^1, a^2)$. Also, we define another discrepancy function $\Delta(\cdot; \cdot)$ for theoretical analysis as

$$\Delta(R;\xi) = \left| R(x,a^1,a^2) - R^*(x,a^1,a^2) \right|^2.$$
(47)

1080 **Lemma B.1** (Value decomposition for the max-player). Let $\pi = \pi_{R_1}$ and μ be an arbitrary policy 1081 taken by the min-player. It holds that 1082

$$V_{R_1} - V(\pi, \mu) \le \mathbb{E}_{\xi \sim (d_0, \pi, \mu)} \left[\mathcal{E}(R_1; \xi) \right],$$
(48)

1084 where $\mathcal{E}(\cdot; \cdot)$ is defined in (46) and $\xi = (x, a^1, a^2)$. 1085

1083

1108

$$\begin{array}{ll} \text{Proof of Lemma B.1. By the definition of } V_R \text{ in } (20) \text{ and } V(\pi,\mu) \text{ in } (3), \text{ we have that} \\ V_{R_1} - V(\pi,\mu) \\ \\ \text{1089} &= \max_{\pi \in \Pi} \min_{\mu \in \Pi} \mathbb{E}_{d_0(x), \pi(a^1|x), \mu(a^2|x)} \left[R_1(x,a^1,a^2) - \alpha D_{\text{KL}} \left(\pi(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1090} &- \mathbb{E}_{d_0(x), \pi(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) - \alpha D_{\text{KL}} \left(\pi(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1092} &= \min_{\mu \in \Pi} \mathbb{E}_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R_1(x,a^1,a^2) - \alpha D_{\text{KL}} \left(\pi_{R_1}(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1093} &- \mathbb{E}_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) - \alpha D_{\text{KL}} \left(\pi_{R_1}(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1094} &- \mathbb{E}_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1095} &= \min_{\mu \in \Pi} \mathbb{E}_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1096} &= \sum_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1097} &- \mathbb{E}_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1098} &\leq \mathbb{E}_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1099} &= \mathbb{E}_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1000} &- \mathbb{E}_{d_0(x), \pi_{R_1}(a^1|x), \mu(a^2|x)} \left[R^*(x,a^1,a^2) + \beta D_{\text{KL}} \left(\mu(\cdot|x) \| \pi_{\text{ref}}(\cdot|x) \right) \right] \\ \\ \text{1101} &= \mathbb{E}_{\xi \sim (d_0, \pi, \mu)} \left[\mathcal{E}(R_1; \xi) \right], \end{aligned}$$

1103 where the second equality is by the definition of π_{R_1} in (21).

1104 **Lemma B.2** (Value decomposition for the min-player). Suppose that $\pi = \pi_{R_1}$ is taken by the max-1105 player and R_2 is the hypothesis selected by the min-player. Let $\mu = \mu_{R_2,\pi}$ be the policy taken by 1106 the min-player. It holds that 1107

$$V(\pi,\mu) - V_{R_2}(\pi,\dagger) = -\mathbb{E}_{\xi \sim (d_0,\pi,\mu)} \left[\mathcal{E}(R_2;\xi) \right],$$
(49)

1 7 7 /

\ · (**a**)

1109 where $\mathcal{E}(\cdot; \cdot)$ is defined in (46) and $\xi = (x, a^1, a^2)$. 1110

$$\begin{array}{llllll} & Proof of Lemma B.2. \text{ By the definition of } V_{R}(\pi,\dagger) \text{ in } (22) \text{ and } V(\pi,\mu) \text{ in } (3), \text{ we have that} \\ & V(\pi,\mu) - V_{R_{2}}(\pi,\dagger) \\ & = \mathbb{E}_{d_{0}(x),\pi(a^{1}|x),\mu(a^{2}|x)} \left[R^{*}(x,a^{1},a^{2}) - \alpha D_{\mathrm{KL}}(\pi(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) + \beta D_{\mathrm{KL}}(\mu(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) \right] \\ & -\min_{\mu\in\Pi} \mathbb{E}_{d_{0}(x),\pi(a^{1}|x),\mu(a^{2}|x)} \left[R_{2}(x,a^{1},a^{2}) - \alpha D_{\mathrm{KL}}(\pi_{R_{1}}(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) + \beta D_{\mathrm{KL}}(\mu(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) \right] \\ & = \mathbb{E}_{d_{0}(x),\pi_{R_{1}}(a^{1}|x),\mu_{R_{2},\pi_{R_{1}}}(a^{2}|x)} \left[R^{*}(x,a^{1},a^{2}) + \beta D_{\mathrm{KL}}(\mu_{R_{2},\pi_{R_{1}}}(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) \right] \\ & -\min_{\mu\in\Pi} \mathbb{E}_{d_{0}(x),\pi_{R_{1}}(a^{1}|x),\mu(a^{2}|x)} \left[R^{*}(x,a^{1},a^{2}) + \beta D_{\mathrm{KL}}(\mu(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) \right] \\ & = \mathbb{E}_{d_{0}(x),\pi_{R_{1}}(a^{1}|x),\mu_{R_{2},\pi_{R_{1}}}(a^{2}|x)} \left[R^{*}(x,a^{1},a^{2}) + \beta D_{\mathrm{KL}}(\mu_{R_{2},\pi_{R_{1}}}(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) \right] \\ & -\mathbb{E}_{d_{0}(x),\pi_{R_{1}}(a^{1}|x),\mu_{R_{2},\pi_{R_{1}}}(a^{2}|x)} \left[R_{2}(x,a^{1},a^{2}) + \beta D_{\mathrm{KL}}(\mu_{R_{2},\pi_{R_{1}}}(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) \right] \\ & -\mathbb{E}_{d_{0}(x),\pi_{R_{1}}(a^{1}|x),\mu_{R_{2},\pi_{R_{1}}}(a^{2}|x)} \left[R_{2}(x,a^{1},a^{2}) + \beta D_{\mathrm{KL}}(\mu_{R_{2},\pi_{R_{1}}}(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) \right] \\ & -\mathbb{E}_{d_{0}(x),\pi_{R_{1}}(a^{1}|x),\mu_{R_{2},\pi_{R_{1}}}(a^{2}|x)} \left[R_{2}(x,a^{1},a^{2}) + \beta D_{\mathrm{KL}}(\mu_{R_{2},\pi_{R_{1}}}(\cdot|x)) \|\pi_{\mathrm{ref}}(\cdot|x)) \right] \\ & = -\mathbb{E}_{\xi \sim (d_{0},\pi,\mu)} \left[\mathcal{E}(R_{2};\xi) \right], \\ \end{array}$$
where the third equality is by the definition of $\mu_{R,\pi}$ in (23).

1) . (22)

Note that the right side of (49) is a general version of the right side of (48) when choosing $\mu =$ 1127 $\mu_{R_2,\pi_{R_1}}$. Now we are ready to prove Proposition 1. Lemmas B.1 and B.2 suggest that we only need 1128 to upper-bound the term $\sum_{t=1}^{T} |\mathbb{E}_{\xi \sim (d_0, \pi^t, \mu^t)}[\mathcal{E}(R_2^t; \xi)]|$. To this end, we provide a more general result given by the following Proposition 3. 1129 1130

1131 Proposition 3. For a d-dimensional two-player zero-sum game, we assume that its expected error 1132 in (46) can be decomposed as follows 1133

$$\mathbb{E}_{\xi \sim (d_0, \pi^t, \mu^t)} \left[\mathcal{E}(R_2; \xi) \right] = \langle W(R_2), X(R_2, (\pi^t, \mu^t)) \rangle, \tag{50}$$

for some $W(R_2), X(R_2, (\pi^t, \mu^t)) \in \mathbb{R}^d$, and the discrepancy function $\Delta(R_2; \xi)$ defined in (47) can be lower bounded as follows

$$|\langle W(R_2), X(R'_2, (\pi, \mu)) \rangle|^2 \le \mathbb{E}_{\xi \sim (d_0, \pi, \mu)} [\Delta(R_2; \xi)].$$
 (51)

Also, we assume that $||W(\cdot)||_2 \leq B_W$, $||X(\cdot, \cdot)||_2 \leq B_X$ for some B_W , $B_X > 0$. Then it holds that

$$\sum_{t=1}^{T} \left| \mathbb{E}_{\xi \sim (d_0, \pi^t, \mu^t)} [\mathcal{E}(R_2^t; \xi)] \right| \le \frac{\tilde{d}(\epsilon)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_0, \pi^s, \mu^s)} \left[\Delta(R_2^t; \xi) \right] \\ + \frac{\epsilon T B_W^2}{4} + 2 \min \left\{ 2 \max\{R_0, 1\} \tilde{d}(\epsilon), T \right\}$$

for all $\epsilon \in [0,1], \eta > 0$, and $\tilde{d}(\epsilon) := d \log(1 + TB_X^2/(d\epsilon))$.

Proof of Proposition 3. This is a similar proof to that of Proposition F.3 in Liu et al. (2024a). We denote that

$$\Sigma_t = I_d + \frac{1}{\epsilon} \sum_{s=1}^t X(R_2^s, (\pi^s, \mu^s)) X(R_2^s, (\pi^s, \mu^s))^\top.$$

By Lemmas B.4 and B.5, we have the estimate

$$\sum_{s=1}^{t} \min\left\{ \|X(R_2^s, (\pi^s, \mu^s))\|_{\Sigma_s^{-1}}, 1 \right\} \le 2\tilde{d}(\epsilon)$$
(52)

for all $\epsilon \in [0, 1]$, where $\tilde{d}(\epsilon)$ is defined in Proposition 3. Since the reward is bounded by $[0, R_0]$ by Assumption 1, we have that,

$$\sum_{t=1}^{T} \left| \mathbb{E}_{\xi \sim (d_{0}, \pi^{t}, \mu^{t})} [\mathcal{E}(R_{2}^{t}; \xi)] \right|$$

$$= \sum_{t=1}^{T} \min \left\{ R_{0}, \langle W(R_{2}^{t}), X(R_{2}^{t}, (\pi^{t}, \mu^{t})) \rangle \right\} \mathbf{1} \left\{ \| X(R_{2}^{t}, (\pi^{t}, \mu^{t})) \|_{\Sigma_{t}^{-1}} \leq 1 \right\}$$

$$+ \sum_{t=1}^{T} \min \left\{ R_{0}, \langle W(R_{2}^{t}), X(R_{2}^{t}, (\pi^{t}, \mu^{t})) \rangle \right\} \mathbf{1} \left\{ \| X(R_{2}^{t}, (\pi^{t}, \mu^{t})) \|_{\Sigma_{t}^{-1}} > 1 \right\}$$

$$\leq \sum_{t=1}^{T} \langle W(R_{2}^{t}), X(R_{2}^{t}, (\pi^{t}, \mu^{t})) \rangle \mathbf{1} \left\{ \| X(R_{2}^{t}, (\pi^{t}, \mu^{t})) \|_{\Sigma_{t}^{-1}} \leq 1 \right\} + \min\{T, 2R_{0}\tilde{d}(\epsilon)\}$$

$$\leq \sum_{t=1}^{T} \underbrace{\| W(R_{2}^{t}) \|_{\Sigma_{t}} \min \left\{ \| X(R_{2}^{t}, (\pi^{t}, \mu^{t})) \|_{\Sigma_{t}^{-1}}, 1 \right\}}_{(A)_{t}} + \min\{T, 2R_{0}\tilde{d}(\epsilon)\}, \tag{53}$$

where the first equality is due to the assumption in Proposition 3, the second inequality follows from (52), and the last inequality is from Cauchy-Schwarz inequality. Now we expand term $(A)_t$ in (53):

1186
1187
$$\|W(R_2^t)\|_{\Sigma_t} \le \sqrt{\epsilon} B_W + \left[\sum_{s=1}^{t-1} \left| \langle W(R_2^t), X(R_2^t, (\pi^t, \mu^t)) \rangle \right|^2 \right]^{1/2},$$

where we use $||W(R_2^t)||_2 \le B_W$. Then we obtain that

$$\begin{split} &\sum_{t=1}^{T} (\mathbf{A})_{t} \\ &\leq \sum_{t=1}^{T} \left(\sqrt{\epsilon} B_{W} + \left[\sum_{s=1}^{t-1} \left| \langle W(R_{2}^{t}), X(R_{2}^{s}, (\pi^{s}, \mu^{s})) \rangle \right|^{2} \right]^{1/2} \right) \cdot \min \left\{ \|X(R_{2}^{t}, (\pi^{t}, \mu^{t}))\|_{\Sigma_{t}^{-1}}, 1 \right\} \\ &\leq \left[\sum_{t=1}^{T} \epsilon B_{W}^{2} \right]^{1/2} \cdot \left[\sum_{t=1}^{T} \min \left\{ \|X(R_{2}^{t}, (\pi^{t}, \mu^{t}))\|_{\Sigma_{t}^{-1}}, 1 \right\} \right]^{1/2} \\ &+ \left[\sum_{t=1}^{T} \sum_{s=1}^{t-1} \left| \langle W(R_{2}^{t}), X(R_{2}^{t}, (\pi^{t}, \mu^{t})) \rangle \right|^{2} \right]^{1/2} \cdot \left[\sum_{t=1}^{T} \min \left\{ \|X(R_{2}^{t}, (\pi^{t}, \mu^{t}))\|_{\Sigma_{t}^{-1}}, 1 \right\} \right]^{1/2} \\ &\leq \sqrt{TB_{W}^{2} \epsilon \cdot \min\{2\tilde{d}(\epsilon), T\}} + \left[2\tilde{d}(\epsilon) \sum_{t=1}^{T} \sum_{s=1}^{t-1} \left| \langle W(R_{2}^{t}), X(R_{2}^{s}, (\pi^{s}, \mu^{s})) \rangle \right|^{2} \right]^{1/2} \\ &\leq \sqrt{TB_{W}^{2} \epsilon \cdot \min\{2\tilde{d}(\epsilon), T\}} + \left[2\tilde{d}(\epsilon) \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_{0}, \pi^{s}, \mu^{s})} [\Delta(R_{2}^{t}; \xi)] \right]^{1/2} \end{split}$$

where the second inequality comes from Cauchy-Schwarz inequality, the third inequality is from (52), and the last inequality is derived from (51). Back to the analysis for (53), we have

$$\begin{aligned}
& 1215 \qquad \sum_{t=1}^{T} \left| \mathbb{E}_{\xi \sim (d_{0}, \pi^{t}, \mu^{t})} [\mathcal{E}(R_{2}^{t}; \xi)] \right| \\
& 1217 \\
& 1218 \\
& 1219 \qquad \leq \sqrt{TB_{W}^{2} \epsilon \cdot \min\{2\tilde{d}(\epsilon), T\}} + \left[2\tilde{d}(\epsilon) \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_{0}, \pi^{s}, \mu^{s})} [\Delta(R_{2}^{t}; \xi)] \right]^{1/2} + \min\{T, 2R_{0}\tilde{d}(\epsilon)\} \\
& 1220 \qquad \leq \left[\frac{T\epsilon B_{W}^{2}}{4} + \min\{2\tilde{d}(\epsilon), T\} \right] + \left[\frac{\tilde{d}(\epsilon)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_{0}, \pi^{s}, \mu^{s})} [\Delta(R_{2}^{t}; \xi)] \right] + \min\{2R_{0}\tilde{d}(\epsilon), T\} \\
& 1224 \\
& 1225 \qquad = \frac{\tilde{d}(\epsilon)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_{0}, \pi^{s}, \mu^{s})} \left[\Delta(R_{2}^{t}; \xi) \right] + \frac{\epsilon T B_{W}^{2}}{4} + 2\min\left\{2\max\{R_{0}, 1\}\tilde{d}(\epsilon), T\right\}, \end{aligned}$$

where the second inequality is based on the AM-GM inequality, and $\eta > 0$ can be arbitrarily chosen in the last equality. Thus we finish our proof of Proposition 3.

Back to the proof of Proposition 1, we need to check the conditions of Proposition 3 for linear twoplayer zero-sum games. By Definition 1 and the choice of reward hypothesis class (31), we have that for any $R_2 \in \mathcal{R}$ and $\pi \in \Pi$, it holds that

$$\mathcal{E}(R_2;\xi) = R_2(x,a^1,a^2) - R^*(x,a^1,a^2) = \phi^*(x,a^1,a^2) + (\lambda_{R_2} - \lambda^*)$$

where λ_{R_2} denotes the parameter of $R_2 \in \mathcal{R}$ and α^* is the reward parameter (see Definition 1). Thus, we can define $X(R_2, (\pi, \mu)) = \mathbb{E}_{\xi \sim (d_0, \pi, \mu)}[\phi^*(x, a, b)]$ and $W(R_2) = \lambda_{R_2} - \lambda^*$, specifying the condition (50) of Proposition 3. By Jensen's inequality and the definition of Δ in (47), one can easily see that the condition (51) of Proposition 3 holds. By the assumptions of linear two-player zero-sum games in Definition 1, we have $B_X \leq 1$ and $B_W \leq 2\sqrt{d}$. Thus by applying Lemma B.2 and Proposition 3, we have that

$$\sum_{t=1}^{T} \left[V(\pi^{t}, \mu^{t}) - V_{R_{2}^{t}}(\pi^{t}, \dagger) \right] = -\sum_{t=1}^{T} \mathbb{E}_{\xi \sim (d_{0}, \pi^{t}, \mu^{t})} [\mathcal{E}(R_{2}^{t}; \xi)]$$

$$\leq \frac{\tilde{d}(\epsilon)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_{0}, \pi^{s}, \mu^{s})} [\Delta(R_{2}^{t}; \xi)] + \frac{T\epsilon B_{W}^{2}}{4} + 2\min\left\{2\max\{R_{0}, 1\}\tilde{d}(\epsilon), T\right\}$$

$$\leq \frac{\tilde{d}(\epsilon)}{\eta} + \frac{\eta}{2} \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_{0}, \pi^{s}, \mu^{s})} [\Delta(R_{2}^{t}; \xi)] + T\epsilon d + 2\sqrt{2\max\{R_{0}, 1\}} \sqrt{\tilde{d}(\epsilon)T}$$
(54)

1253 with $\tilde{d}(\epsilon) = d \log(1 + T/(d\epsilon))$ and any $\eta > 0$.

Finally, we connect the discrepancy function Δ defined in (47) to the discrepancy function ℓ defined in (29). We denote the inverse function of the sigmoid function σ as

$$\varsigma(z) = \log \frac{z}{1-z}, z \in (0,1).$$
(55)

Also, for probability distributions P and Q on the same probability space (Ω, \mathcal{F}) , the total variation distance between P and Q is defined as

$$D_{\rm TV}(P||Q) = \sup_{A \in \mathcal{F}} \{P(A) - Q(A)\}.$$
(56)

(58)

1263 Notice that

$$\begin{aligned}
\begin{aligned}
\mathbf{\Delta}(R;\xi) &= \left| R(x,a^{1},a^{2}) - R^{*}(x,a^{1},a^{2}) \right|^{2} \\
&= \left| \varsigma \left(\mathbb{P}_{R}(y=1|x,a^{1},a^{2}) \right) - \varsigma \left(\mathcal{P}^{*}(y=1|x,a^{1},a^{2}) \right) \right|^{2} \\
&= \left| \varsigma \left(\mathbb{P}_{R}(y=1|x,a^{1},a^{2}) \right) - \varsigma \left(\mathcal{P}^{*}(y=1|x,a^{1},a^{2}) \right) \right|^{2} \\
&\leq \kappa^{2} \cdot \left| \mathbb{P}_{R}(y=1|x,a^{1},a^{2}) - \mathcal{P}^{*}(y=1|x,a^{1},a^{2}) \right|^{2} \\
&\leq \kappa^{2} \cdot D_{\mathrm{TV}} \left(\mathbb{P}_{R}(\cdot|x,a^{1},a^{2}) \| \mathcal{P}^{*}(\cdot|x,a^{1},a^{2}) \right)^{2} \\
&\leq 2\kappa^{2} \cdot D_{\mathrm{H}} \left(\mathbb{P}_{R}(\cdot|x,a^{1},a^{2}) \| \mathcal{P}^{*}(\cdot|x,a^{1},a^{2}) \right) \\
&= 2\kappa^{2} \cdot \ell(R;\xi),
\end{aligned}$$
(57)

where the second equality comes from (1), the first inequality is by Lemma B.6 with the constant $\kappa = (e^{R_0/2} + e^{-R_0/2})^2$, the second inequality is from the definition of the total variation distance in (56), and the third inequality follows from the fact that $D_{\text{TV}}(P||Q)^2 \le 2D_{\text{H}}(P||Q)$. This shows that the discrepancy function defined in (29) upper-bounds the discrepancy function defined in (47) up to a factor $2\kappa^2$. Thus by plugging (57) into (54), we have

$$\sum_{t=1}^{T} \left[V(\pi^t, \mu^t) - V_{R_2^t}(\pi^t, \dagger) \right]$$

$$\leq \frac{\tilde{d}(\epsilon)}{\eta} + \eta \kappa^2 \cdot \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_0, \pi^s, \mu^s)} [\ell(R_2^t; \xi)] + \epsilon T d + 2\sqrt{2 \max\{R_0, 1\}} \sqrt{\tilde{d}(\epsilon)T}$$

$$= \frac{\bar{d}(\epsilon)}{2\eta'} + \frac{\eta'}{2} \cdot \sum_{t=1}^{T} \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_0, \pi^s, \mu^s)} [\ell(R_2^t; \xi)] + \epsilon T d + \frac{\sqrt{2 \max\{R_0, 1\}}}{\kappa} \sqrt{\bar{d}(\epsilon)T},$$

with $\bar{d}(\epsilon) = 4\kappa^2 \tilde{d}(\epsilon) = 4\kappa^2 d \log(1 + T/(d\epsilon))$ and any $\eta > 0$ and $\eta' = (2\kappa^2)\eta$. This proves the second inequality of Assumption 2. For the first inequality in Assumption 2, we take $R_2^t = R_1^t, \pi = \pi_{R_1^t}$, and we can then similarly prove that

$$\sum_{t=1}^{1292} \left[V_{R_1^t} - V(\pi^t, \mu^t) \right] \le \frac{\bar{d}(\epsilon)}{2\eta'} + \frac{\eta'}{2} \cdot \sum_{t=1}^T \sum_{s=1}^{t-1} \mathbb{E}_{\xi \sim (d_0, \pi^s, \mu^s)} [\ell(R_1^t; \xi)] + \epsilon T d + \frac{\sqrt{2 \max\{R_0, 1\}}}{\kappa} \sqrt{\bar{d}(\epsilon)T}$$

$$(59)$$

This proves that $d_{\text{TGEC}}(\epsilon) \leq \overline{d}(\epsilon)$. Thus we finish the proof of Proposition 1.

1296 B.4 PROOF OF COROLLARY 1

1298 Proof of Corollary 1. By combining (35), (39), (58), (44), (59), and Proposition 1, taking $\zeta/2 = 2\eta'$ 1299 in (58) and (59), $\epsilon = 1/\sqrt{T}$ and

$$\eta = \frac{1}{4} \sqrt{\frac{d_{\text{TGEC}}(1/\sqrt{T})}{T \cdot \log(|\mathcal{R}|/\delta)}}$$

1304 we obtain that

1301 1302 1303

1305 1306 1307

1310

1311 1312

1313

1314

1315 1316

1317 1318

1331 1332 1333

1338

1344 1345

1349

$$\operatorname{Regret}(T) \leq 2\sqrt{T} \left[4\kappa^2 d \cdot \log\left(1 + T^{2/3}/d\right) \log\left(|\mathcal{R}|/\delta\right) + 2\sqrt{2\max\{R_0, 1\}d \cdot \log\left(1 + T^{2/3}/d\right)} + d \right].$$

Thus we finish the proof of Corollary 1.

Thus we finish the proof of Corollary 1.

B.5 TECHNICAL LEMMAS

Lemma B.3 (Martingale exponential inequality). For a sequence of real-valued random variables $\{X_t\}_{t=1}^T$ adapted to a filtration $\{\mathcal{F}_t\}_{t=1}^T$, the following holds with probability at least $1 - \delta$, for any $t \in [T]$,

$$-\sum_{s=1}^{t} X_s \le \sum_{s=1}^{t} \log \mathbb{E}[\exp(-X_s)|\mathcal{F}_{s-1}] + \log(1)$$

 $\langle \delta \rangle$.

1319 *Proof of Lemma B.3.* See e.g., Theorem 13.2 (Zhang, 2023) for a detailed proof.

1320 Lemma B.4. Let $\mathcal{X} \subset \mathbb{R}^d$ and $\sup_{x \in \mathcal{X}} \|x\|_2 \leq B_X$. Then it holds that

$$\max_{x_0, \cdots, x_{n-1} \in \mathcal{X}} \log \det \left(I_d + \frac{1}{\lambda} \sum_{t=0}^{n-1} x_t x_t^\top \right) \le d \log \left(1 + \frac{n B_X^2}{d\lambda} \right).$$

1326 *Proof of Lemma B.4.* See Lemma F.3. (Du et al., 2021) for a detailed proof.

Lemma B.5 (Elliptical potential). Let $\{x_s\}_{s=1}^T$ be a sequence of vectors with $x_s \in \mathcal{V}$ for some Hilbert space \mathcal{V} . Let Λ_0 be a positive definite matrix and define $\Lambda_t = \Lambda_0 + \sum_{s=1}^t x_s x_s^\top$. Then it holds that

$$\sum_{s=1}^{T} \min\left\{1, \|x_s\|_{\Lambda_s^{-1}}\right\} \le 2\log\left(\frac{\det(\Lambda_T)}{\det(\Lambda_1)}\right).$$

1334 Proof of Lemma B.5. See Lemma 11 (Abbasi-Yadkori et al., 2011) for a detailed proof.

Lemma B.6 (The inverse function of sigmoid function). For any real numbers $z_1, z_2 \in [\sigma(0), \sigma(R_0)]$, it holds that $|c(z_1) - c(z_2)| \le r \cdot |z_1 - z_2|$

$$|\varsigma(z_1) - \varsigma(z_2)| \le \kappa \cdot |z_1 - z_2|,$$

where $\varsigma(z)$ is the inverse function of sigmoid function defined in (55), and the constant $\kappa = (e^{R_0/2} + e^{-R_0/2})^2$.

Proof of Lemma B.6. Since the function $\varsigma(\cdot)$ is differentiable on (0, 1), we know that for any $z_1, z_2 \in [\sigma(0), \sigma(R_0)]$, there exists some $\rho(z_1, z_2) \in [\sigma(0), \sigma(R_0)]$, such that

$$\varsigma(z_1) - \varsigma(z_2) = \varsigma'(\rho(z_1, z_2)) \cdot (z_1 - z_2)$$

1346 Notice that $\varsigma'(z) = \frac{1}{z(1-z)}$. We can obtain that

1347
1348
$$\varsigma'(\rho(z_1, z_2)) \le \varsigma'(\sigma(R_0)) = (e^{R_0/2} + e^{-R_0/2})^2 = \kappa.$$

Thus we finish the proof of Lemma B.6.

¹³⁵⁰ C EQUIVALENCE BETWEEN MAXIMIN AND MINIMAX OBJECTIVES

In this section, we show the equivalence between the theoretical max-player target and practical max-player target under certain regularity conditions. We adopt the following assumption and theorem from Liu et al. (2024b), as they directly apply to our scenario.

First, we denote the optimization target for max-player as

$$\phi(\pi, r) \coloneqq \mathbb{E}_{x \sim d_0, a_1 \sim \pi(\cdot|x), a_2 \sim \pi(\cdot|x)} \left[r(x, a_1) - r(x, a_2) - \alpha D_{\mathrm{KL}} \left(\pi(\cdot|x) \| \pi_{\mathrm{ref}}(\cdot|x) \right) \right] + \mathcal{L}(r),$$
(60)

for any $(\pi, r) \in \Pi \times \mathcal{R}$. The equivalence of maximin object and minimax object relies on the following assumption on reward function class \mathcal{R} .

Assumption 4 (Regularity of reward model class (Liu et al., 2024b)). We assume the reward function class \mathcal{R} is a compact topological space, and the function in (60) is convex-like on \mathcal{R} , i.e., for any $r_1, r_2 \in \mathcal{R}$ and $\theta \in [0, 1]$, there exists $r_3 \in \mathcal{R}$ such that

$$\phi(\pi, r_3) \le \theta \cdot \phi(\pi, r_1) + (1 - \theta) \cdot \phi(\pi, r_2), \quad \forall \pi \in \Pi.$$
(61)

1364 1365

1357

Based on Assumption 4, we give the equivalence between our maximin and minimax objectives inTheorem 2:

Theorem 2 (Equivalence between maximin and minimax objectives (Liu et al., 2024b)). For the policy class Π and the reward function class \mathcal{R} satisfying Assumption 4, consider the following policy defined as

$$\pi_{\hat{r}} \in \arg\max_{\pi \in \Pi} \phi(\pi, \hat{r}), \quad where \quad \hat{r} \in \arg\min_{r \in \mathcal{R}} \max_{\pi \in \Pi} \phi(\pi, r).$$
(62)

1374 Then the policy $\pi_{\hat{r}}$ also satisfies the maximin object, i.e.,

$$\pi_{\hat{r}} \in \arg\max_{\pi \in \Pi} \min_{r \in \mathcal{R}} \phi(\pi, r) \tag{63}$$

1376 1377

1382 1383

1384

1385

1372

1373

1375

¹³⁷⁸ *Proof of Theorem 2*. See Theorem 5.6 in Liu et al. (2024b).

Theorem 2 shows that if the reward function satisfies certain conditions, the policy solving minimax problem also solves the maximin problem. This gives stronger guarantee for our practical algorithm.

D ADDITIONAL RESULTS ON EXPERIMENTS

Table 2 presents the results of AlpacaEval 2.0 and MT-Bench on online DPO, hybrid GSHF, SELM, SADPO, TANPO (max-player) and TANPO (min-player).

Taabniqua	AlpacaEv	val 2.0	MT-Bench		
rechnique	LC Win Rate	Win Rate	Average	1st Turn	2nd Turn
Zephyr-7B-SFT (ref.)	6.59	3.66	6.14	6.34	5.95
Online DPO	24.36	22.14	7.24	7.37	7.11
Hybrid GSHF	25.29	22.61	7.28	7.26	7.30
SELM	26.99	25.99	7.26	7.56	6.96
SADPO	28.43	26.21	7.33	7.71	6.94
TANPO (max-player)	25.05	23.48	7.24	7.34	7.13
TANPO (min-player)	27.66	27.08	7.47	7.55	7.39

1398Table 2: Full results on AlpacaEval 2.0 and MT-Bench. LC Win Rate represents Length-Controlled1399Win Rate.

1400

Table 3 contains the accuracy of TANPO, SADPO and other baselines on several academic datasets.
This corresponds to Figure 2 in the main text. Table 4 provides detailed win rates and length-controlled win rates of TANPO max-player and min-player across multiple iterations. These results is visualized in Figure 4 in the main text.

1404		GSM8k	MATT		HellaSwag	Winogrande	A
1405	Tecnnique	(5-shot)	MMLU	OBQA	(15-shot)	(5-shot)	Average
1406	Online DPO	32.07	56.61	43.2	83.67	76.16	58.34
1407	SELM	30.10	56.77	43.4	83.56	76.30	58.03
1408	SADPO	33.36	56.96	43.2	83.40	76.56	58.70
1409	TANPO (max-palyer)	32.75	57.06	43.4	83.69	76.40	58.60
1410	TANPO (min-player)	32.84	56.89	43.4	83.69	76.64	58.71

Table 3: Results on several academic datasets.

1/1/							
4445	Matrics	Iter1	Iter2	Iter3	Iter4	Iter5	Iter6
1415	Meurics	(Epoch1)	(Epoch1)	(Epoch1)	(Epoch2)	(Epoch2)	(Epoch2)
1416	TANPO (max-player)	19.45	20.97	22.48	22.49	24 72	25.06
1417	win rate	10.45	20.87	23.40	23.40	24.72	23.90
1418	TANPO (max-player)	10.51	24.26	25.05	24.56	25 47	27 58
1419	LC win rate	19.31	24.50	23.03	24.30	23.47	21.30
1420	TANPO (min-player)	19.45	21.96	27.08	26.00	20.55	20.86
1421	win rate	10.45	21.00	27.08	20.09	29.33	29.80
1422	TANPO (min-player)	10.51	25.40	27.66	26.26	20.42	20.56
1423	LC win rate	19.31	25.40	27.00	20.50	50.45	50.50

Table 4: TANPO (max-player) and TANPO (min-player) win rates and length-controlled (LC) win rates across 6 iterations.

E **EXPERIMENT DETAILS**

E.1 TRAINING DETAILS

We implement TANPO and SADPO along with other baselines on 4 NVIDIA A6000 GPUs. Our code is based on Alignment Handbook (Tunstall et al.). We list the training configurations in Table 5.

1435	learning rate	5×10^{-7}
1436	learning scheduler type	cosine
1437	batch size	128
1438	warmup ratio	0.1
1439	gradient accumulation	16
1440	batch size per device	2
1//1	α	0.01
1440	η	10
1442	optimizer	adamw torch
1443	seed	42
1444	precision	bfloat16
1445		

Table 5: Training configurations of TANPO and SADPO.

In TANPO, the response pairs are sampled from the two models using different temperature hy-perparameters. We use temperature 0.7 for max-player and 0.5 for min-player. In the extended experiment for TANPO, we reduce the learning rate to 1×10^{-7} in iteration 4 and 5, and 5×10^{-8} in iteration 6.

E.2 EVALUATION DETAILS

We follow the standard procedure to evaluate our model on AlpacaEval 2.01 and MT-Bench². For AlpacaEval 2.0, we use the alpaca_eval_gpt4_turbo_fn as the annotators configuration, as

¹https://github.com/tatsu-lab/alpaca_eval/tree/main

²https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge

recommended by AlpacaEval 2.0. We use GPT-4-Turbo as the AlpacaEval 2.0 annotator. For MT Bench, we used the default configuration, where GPT-4 is the default scoring model.

We use the default configuration in the Language Model Evaluation Harness³ for tests on academic datasets, except in few-shot settings. For the PairRM tests, we directly input the generations from the AlpacaEval 2.0 tests into the PairRM model to evaluate the win rate.

1465 E.3 IMPLEMENTATION OF BASELINES

1466 In this subsection, we discuss the details of how we implemented the baselines.

- **Online DPO.** We implement the online DPO by ourselves. Aside from the loss function, all other training setups are exactly the same as in our algorithms. It's important to note that the practical algorithm introduced by Rosset et al. (2024) is essentially equivalent to iterative DPO.
- **Hybrid GSHF.** We implement Hybrid GSHF (Xiong et al., 2023) ourselves, where two responses for each prompt are generated by the reference policy and the current policy. All other training hyperparameters are kept identical to those in our algorithms. Since Hybrid GSHF requires the reference policy to have good coverage, we use the model after one iteration of offline DPO as the reference model.
- SELM. We also implement SELM (Zhang et al., 2024). In Zhang et al. (2024), the training data come from the UltraFeedback dataset and generated responses. For fair comparison, we generate two responses from the policy, rank them using the same preference model, and update the policy with the SELM loss function. The training hyperparameters and response generation settings are exactly the same as those in our two-agent algorithm.

³https://github.com/EleutherAI/lm-evaluation-harness