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ABSTRACT

Reinforcement Learning with Human Feedback (RLHF) has gained significant at-
tention for aligning AI behavior with human preferences. Self-play style RLHF
has shown strong advantages, as highlighted by many studies. However, cur-
rent self-play style RLHF approaches face several limitations, including the lack
of provable sample efficiency, absence of active exploration, and limited diver-
sity in training data. To address these challenges, we propose a novel RLHF
framework that balances exploration and exploitation while providing theoreti-
cal guarantees. We introduce Two-Agent Nash Policy Optimization (TANPO) as
an equivalent and easy-to-implement two-agent algorithm building on this frame-
work. In TANPO, the two players are trained using different loss functions to
ensure more diverse and informative data collection. We also propose Single-
Agent Diversity-driven Optimization (SADPO), a single-agent approximation of
TANPO, supported by both theoretical analysis and empirical evidence. Our the-
oretical analysis shows that our theoretical algorithm framework enjoys sublin-
ear regret under general function approximation and mild structural conditions,
with a detailed analysis provided for the linear case. Empirically, we implement
TANPO and SADPO using Zephyr-7B-SFT as our base model, outperforming
several baselines across multiple evaluation benchmarks, such as AlpacaEval 2.0,
MT-Bench and various standard academic benchmarks. Our experiments also
show that TANPO improves performance on AlpacaEval 2.0 over extended train-
ing epochs, demonstrating its ability to consistently improve and reduce overfit-
ting.

1 INTRODUCTION

Large Language Models (LLMs) have shown significant proficiency in understanding and generat-
ing natural language. Reinforcement Learning with Human Feedback (RLHF) is key to improving
LLMs by directly integrating human feedback into their training (Christiano et al., 2017; Ziegler
et al., 2019). This process typically involves training the model using reinforcement learning tech-
niques to maximize the reward from human-labeled data (Ouyang et al., 2022). Many RLHF algo-
rithms treat this setup as a contextual bandit problem, where the prompt corresponds to the state, the
generated response represents the action, and the feedback received acts as the reward.

Another approach, in addition to modeling RLHF as a contextual bandit problem, is to utilize self-
play methods. Self-play is a technique in which one or more agents learn by competing against
themselves, allowing them to iteratively improve their strategies by evaluating and adapting to their
own responses. This approach has proven to be a powerful method in various fields, including
traditional reinforcement learning such as AlphaGo Zero (Silver et al., 2017) and generative models
such as GANs (Goodfellow et al., 2020). In the context of RLHF, self-play algorithms typically
involve one or multiple agents generating multiple responses for each prompt. These responses
compete against each other through feedback provided either by human evaluators or AI annotators,
which is then used to train the agents. Recently, a line of works (Rosset et al., 2024; Wu et al., 2024;
Ye et al., 2024; Munos et al., 2023) have proposed a variety of self-play style RLHF algorithms. The
goal of these algorithms is to find the Nash equilibrium strategy. These works have demonstrated
the effectiveness of self-play algorithms in improving LLM performance.
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Despite recent advances, there are several limitations in current self-play style RLHF approaches.
First, there lacks theoretical guarantee on how these practical self-play algorithms can approximate
Nash equilibrium, or there is a significant gap between theoretically guaranteed algorithms and
practical implementations. Second, most existing algorithms lack active online exploration, which
limits their ability to efficiently gather informative data during the learning process. Theoretically,
active exploration can provide formal guarantees for learning efficiency (Xiong et al., 2023; Ye et al.,
2024). Practically, it enhances model performance by ensuring that the training data remains diverse
and novel, leading to better generalization and improved model performance (Zhang et al., 2024;
Xie et al., 2024).

Therefore, a key research problem is: Can we design an easy-to-implement and provably efficient
self-play RLHF algorithm that approximates Nash equilibrium with active exploration?

In this paper, we propose a new self-play RLHF algorithm. To effectively balance the trade-off
between exploration and exploitation, the max-player aims to maximize the summation of (i) the
expected Nash equilibrium value function and (ii) the negative estimation loss of that reward func-
tion. Similarly, the min-player seeks to maximize the summation of (i) the expected best response
value function based on the max-player’s strategy and (ii) the negative estimation loss of that reward
function. We provide theoretical guarantee for this framework, showing that it achieves a sublinear
regret under mild structural conditions.

We demonstrate that, under certain conditions, our algorithm framework is equivalent to an easy-
to-implement algorithm. In this practical implementation, the max-player optimizes an MLE loss,
while the min-player optimizes an MLE loss with a simple exploration bonus. The min-player’s
inclination towards exploration leads to more diverse and novel outputs, whereas the max-player’s
responses tend to align more closely with the reference policy. This dynamic contrast enables both
players to engage with a broader range of information, ultimately improving their overall perfor-
mance. Supported by both theoretical analysis and empirical evidence, we propose a single-agent
algorithm that mimics the behavior of the two-agent algorithm.

Contributions. The main contributions of our work are as follows.

1. We introduce a theoretical two-player RLHF framework that effectively balances exploita-
tion and exploration while providing a theoretical guarantee. Building on this framework,
we propose a practical and easy-to-implement two-agent algorithm TANPO, where both
players have simple and practical objectives. Additionally, we propose a single-agent algo-
rithm SADPO that approximates the two-agent algorithm.

2. We prove that our theoretical algorithm achieves sublinear regret under general function ap-
proximation and mild structural conditions. We specify this result to a linear case and then
provide a detailed regret analysis, showing our theoretical algorithm achieves a sublinear
regret.

3. We implement our algorithms, along with several baselines, using Zephyr-7B-SFT (Tun-
stall et al., 2023) as the base model and the UltraFeedback dataset for prompts. Our al-
gorithm outperforms several baseline methods across multiple evaluation benchmarks, in-
cluding AlpacaEval 2.0, MT-Bench, PairRM win rate and various academic benchmarks.
Additionally, we demonstrate that our algorithm continues to improve performance during
a second epoch on the same dataset, highlighting its ability to achieve consistent gains and
mitigate overfitting.

Related Works. We refer readers to Appendix A for a detailed discussion.

2 PRELIMINARIES

RLHF pipeline. RLHF leverages human preferences to guide the training of a language model. A
common approach is the pairwise preference model, where feedback is provided by comparing two
model-generated responses to the same prompt. We define an LLM as a policy π(·|·) in policy class
Π, where it takes a prompt x and generates a response a from distribution π(·|x). Given a prompt
x from the state space X , a language model πθ generates two candidate responses a1, a2 from
the action space A according to its policy πθ(·|x). Human evaluators, or a reward model trained

2
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to approximate human preferences, provide feedback in the form of a binary label y ∈ {0, 1},
indicating a preference for a1 ≻ a2 when y = 1 or a2 ≻ a1 when y = 0. This preference is
modelled probabilistically using BT model (Bradley & Terry, 1952)

Pr(y = 1|x, a1, a2) = exp(r(x, a1))

exp(r(x, a1)) + exp(r(x, a2))
= σ(r(x, a1)− r(x, a2)). (1)

Here, r(x, a) is the human-provided score or a score predicted by a reward model that reflects the
quality or suitability of response a given the prompt x, and σ(z) = 1/(1 + exp(−z)) denotes the
sigmoid function.

In methods without a reward model, it has been shown that the preference loss can be ex-
pressed as a function of the policy. In preference optimization methods like DPO (Rafailov
et al., 2024), the model is assumed to maximize a KL-regularized reward. Given a static dataset
D = {(xi, a

+
i , a

−
i )}Ni=1 of N preference pairs, the parameterized reward model is learned by mini-

mizing the following logistic regression loss

L(r|D) = −E(x,a+,a−)∼D
[
log σ(r(x, a+)− r(x, a−))

]
. (2)

Two-Agent Zero-Sum Games. In a two-agent zero-sum game, two players, termed the max-player
and the min-player, engage in a competitive interaction where the gain of one player is exactly offset
by the loss of the other. The game is characterized by a general value function V (π, µ), where π and
µ denote the mixed strategy probability distributions of the max-player and the min-player, respec-
tively. In the Nash equilibrium, the max-player’s strategy and the min-player’s strategy are mutual
best responses, meaning each is optimal given the strategy of the other (Nash et al., 1950). Formally,
the max-player’s strategy π∗ and the min-player’s strategy µ∗ solve the optimization problem given
by

(π∗, µ∗) = argmax
π∈Π

min
µ∈Π

V (π, µ),

where V (π, µ) is a general function that captures the payoffs based on the strategies π and µ. The
strategies π∗ and µ∗ at this equilibrium are known as the Nash equilibrium strategies for the game.

Performance Metric. The goal of our learning algorithm is to find a policy π for the max-player
that is close enough to the Nash equilibrium. Consistent with the previous works (Ye et al., 2024;
Liu et al., 2024a; Xie et al., 2020), we define the corresponding regret after T episodes as

Regret(T ) =

T∑
t=1

[
V (π∗, µ∗)− V (πt, †)

]
,

where πt is the policy used by the max-player in the t-th episode and V (πt, †) := minµ∈Π V (πt, µ).
The target of sample efficient self-play style algorithm is to achieve a sublinear regret with respect
to T , as this would indicate that the strategy πt effectively approaches the Nash equilibrium.

3 THEORY-MOTIVATED ALGORITHM

3.1 SETUP

We formulate the RLHF problem as a two-agent zero-sum game. Suppose that there exists a de-
terministic but unknown reward function r∗(x, a) that represents the quality of response a under
prompt x. In practical applications, we want to ensure that the optimized policies π and µ are close
to a common reference policy πref . Therefore, we employ the following KL-regularized objective

V (π, µ) = Ex∼d0,a1∼π(·|x),a2∼µ(·|x)
[
r∗(x, a1)− r∗(x, a2)

−α ·DKL (π(·|x)∥πref(·|x)) + α ·DKL (µ(·|x)∥πref(·|x))] .
(3)

3
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Suppose we have access to a hypothesis class R ⊂ (X × A × A → R), which gives us a set of
candidates to approximate the true reward function r∗. We define the value function under reward
function r as Vr(·, ·), and define Vr(π, †) as the value function induced by π and its best response,
i.e., Vr(π, †) = minµ Vr(π, µ).

3.2 THEORETICAL ALGORITHM FRAMEWORK

Motivated by studies about exploration-exploitation trade-off from a practical perspective in tradi-
tional RL (Bellemare et al., 2016; Pathak et al., 2017), we propose our algorithm framework for
online RLHF. The core idea is to optimize a single and unconstrained objective that simultaneously
handles estimation and planning, thereby balancing exploration and exploitation. Specifically, the
framework employs different strategies for each player: the max-player focuses on approximating
the Nash equilibrium strategy, while the min-player aims to approximate the best response to the
max-player’s strategy. Both players plan with active exploration. In the k-th episode, the algorithm
involves the following stages:

At the first stage, the max-player chooses the reward function r̂1t by maximizing the objective

r̂1t = argmax
r∈R
{Vr − η · Lt−1(r)} . (4)

To balance exploitation of historical data with exploration for the future, objective (4) consists of
two components: (i) the negative loss function −Lt−1(r), the negative logistic regression loss in
(2) computed on the data from the first t − 1 episodes for the reward function r, to encourage
exploitation, and (ii) the Nash equilibrium value Vr associated with the reward function r, which
promotes active exploration for the player. The algorithm balances the exploitation and exploration
through a hyperparameter η.

With the max-player reward function r̂1t , the max-player policy is set to be the Nash equilibrium
max-player policy with respect to r̂1t , i.e.,

πt = argmax
π∈Π

min
µ∈Π

Vr̂1t
(π, µ) = argmax

π∈Π
min
µ∈Π

max
r∈R
{Vr − η · Lt−1(r)} . (5)

At the second stage, after obtaining the max-player policy πt, the min-player chooses another
reward function r̂2t aiming to find the best response of the max-player policy. Specifically, it chooses
by minimizing the target

r̂2t = argmin
r∈R

{
Vr(π

t, †) + η · Lt−1(r)
}
. (6)

Objective (6) also has two components: (i) the loss function Lt−1(r) computed on historical data
for the reward function r to encourage exploitation, and (ii) the best response value Vr(π

t, †) to
encourage active exploration.

With the min-player reward function r̂2t , the min-player policy is set to be the best response of
min-player policy under reward function r̂1t , i.e.,

µt = argmin
µ∈Π

Vr̂2t
(πt, µ) = argmin

µ∈Π
min
r∈R

{
Vr(π

t, †) + η · Lt−1(r)
}
. (7)

At the final stage, the max-player and min-player sample a batch of new responses {(a1i , a2i )}Ni=1

conditioned on prompts {xi}Ni=1 from the joint policy (πt, µt) respectively. By querying human
feedback or AI annotations {yi}Ni=1, we construct a new dataset Dt = {xi, a

1
i , a

2
i , yi}Ni=1 to update

the loss function Lt(r).

4 EQUIVALENT AND IMPLEMENTATION-FRIENDLY ALGORITHMS

4.1 TWO-AGENT NASH POLICY OPTIMIZAION

In this section, we introduce easy-to-implement objectives and algorithms that are equivalent to the
algorithm framework in Section 3.2.

Objective for the Max-Player. We first examine the max-player objective in (5). If the reward
function class R satisfies Assumption 4, the minimax theorem applies to optimization problem (5).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We refer readers to Appendix C for a detailed discussion. Hence, we interchange the max and min
operations in (5), yielding an equivalent objective given by

max
r∈R

max
π∈Π

min
µ∈Π
{Vr−η · Lt−1(r)} = max

r∈R

{
max
π∈Π
{F (π; r)}+min

µ∈Π
{−F (µ; r)}−η · Lt−1(r)

}
,

(8)

where

F (π; r) := Ex∼d0,a∼π(·|x) [r(x, a)− α ·DKL (π(·|x)∥πref(·|x))]

for any policy π ∈ Π and r ∈ R.

We first solve the inner optimization problem in (8), which enjoys the following closed-form solution
as discussed in Rafailov et al. (2024):

πr(a|x) = argmax
π∈Π

F (π; r) =
1

Zr(x)
· πref(a|x) exp(r(x, a)/α), (9)

where we denote the partition function of πr as Zr(x) = Ea∼πref (·|x)[exp(r(x, a)/α)]. Adopting
the reparametrization technique as in Rafailov et al. (2024), we express the reward function r by the
optimal solution πr, i.e.,

r(x, a) = α log

(
πr(a|x)
πref(a|x)

)
+ α logZr(x). (10)

We observe that, for a fixed reward function r, the two inner optimization problems in (8) have
the same structure but opposite signs, and thus they cancel each other out, leaving only negative
loss function term. Consequently, the max-player only needs to minimize the loss function on the
historical data. Therefore, if we adopt the negative log-likelihood loss, the max-player’s objective
coincides with the objective of DPO algorithm, i.e.,

min
π∈Π

{
Lmax(π) := η · Lt−1

(
α log

(
π(a|x)
πref(a|x)

))}
. (11)

Objective for the Min-Player. The min-player optimization is a bilevel optimization problem and
can be formulated as (we omit the terms independent of µ and r)

min
µ∈Π

min
r∈R

{
Vr(π

t, µ) + η · Lt−1(r)
}
= min

r∈R
min
µ∈Π

{
Vr(π

t, µ) + η · Lt−1(r)
}

= min
r∈R

{
Ex∼d0,a∼πt(·|x) [r(x, a)] + η · Lt−1(r) + min

µ∈Π
{−F (µ; r)}

}
.

(12)

We note that the inner optimization has the same structure as (9) and therefore enjoys the same
closed-form solution. By substituting (9) into (12), using the reparameter technique in (10) and
omitting irrelevant terms, we transform (12) into a single-level optimization to obtain the following
min-player objective

min
µ∈Π

{
Lmin(µ) := α · Ex∼d0,a∼πt(·|x) [logµ(a|x)] + η · Lt−1

(
α log

(
µ(a|x)
πref(a|x)

))}
. (13)

Hence, we summarize the Two-Agent Nash Policy Optimization (TANPO) algorithm in Algorithm
1.

5
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Algorithm 1 Two-Agent Nash Policy Optimization (TANPO)
Input: Reference policy πref(·), baseline policies π1(·), µ1(·) and parameters α, η.

1: for t = 1, 2, . . . , T do
2: Sample a1i ∼ πt(·),a2i ∼ µt(·) from updated policies for each prompt xi.
3: Rank responses a1i , a

2
i to form training dataset Dt = {xi, a

+
i , a

−
i }Ni=1

4: Update max-player policy according to (14),

πt+1 ← argmin
π∈Π

{
η · L

(
α log

(
π(·|·)
πref(·|·)

)∣∣∣∣Dt

)}
. (14)

5: Update min-player policy according to (15),

µt+1 ← argmin
µ∈Π

{
η · L

(
α log

(
µ(·|·)
πref(·|·)

)∣∣∣∣Dt

)
+ α · Ex∼d0,a∼πt+1(·|x) [logµ(a|x)]

}
,

(15)
where L(·|·) denotes the logistic regression loss in (2).

6: end for

4.2 DATA DIVERSITY AND SINGLE-AGENT APPROXIMATION

It is observed that although the min-player in TANPO benefits from an exploration bonus term, the
max-player’s objective in TANPO remains identical to DPO objective. This raises a question: How
does TANPO offer improvements over DPO?

The key lies in the fact that TANPO generates more diverse training data. While the max-player does
not have an explicit exploration bonus, it can still benefit from the increased diversity in the training
data. In the original two-agent setup, both the max-player and min-player are trained on the same
dataset but pursue different optimization objectives. The max-player focuses solely on minimizing
the MLE loss function, aiming to maximize reward while closely approximate the reference policy
πref . In contrast, the min-player incorporates an additional exploration bonus term E [logµ(a|x)]
into its objective, encouraging it to sample from less likely regions of the action distribution. As a
result, the response pairs (a1, a2) exhibit greater diversity and contrast.

Empirically, we demonstrate that TANPO leads to more diverse training data. To illustrate this, we
sample 500 response pairs from the training datasets of online DPO and TANPO, respectively. For
each response pair (a1, a2), we calculate the difference in their length-normalized log probabilities
under the reference policy, | log πref(a

1)−log πref(a
2)|, as a measure of diversity between responses.

As shown in Figure 1, TANPO achieves a larger log πref margin between response pairs, indicating
increased diversity in the training data. These findings further confirm that TANPO enhances data
diversity, thereby improving the overall performance.

Figure 1: Length-normalized
ref. policy log probability
difference between response
pairs.

To simplify this setup, we propose the Single-Agent Diversity-
driven Policy Optimization (SADPO) algorithm as a single-agent
approximation of TANPO. The SADPO optimization objective is
similar to min-player objective (13). The core idea is to use a sin-
gle policy to simulate the max-player policy and min-player policy
through rejection sampling. At each training iteration, the agent
samples K responses from the current policy for each prompt. We
then compute the probabilities πref(a) for each of the K samples.
From the K responses, the response with the highest πref value is
selected to approximate the behavior of the max-player, as this re-
sponse is the most aligned with the reference policy. The response
with the lowest πref value is chosen to represent the min-player’s
behavior, as it reflects more exploratory responses with lower like-
lihood under πref . To mitigate the effect of response length, we cal-
culate log πref by averaging the log probability over the response
length. We summarize SADPO in Algorithm 2.

An important feature of SADPO is that it deliberately enlarges the
difference in πref between the selected responses. By systematically selecting the most and least

6
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likely responses according to πref , SADPO increases the diversity of the training data. This helps
the model explore a broader range of behaviors, ultimately improving its generalization and overall
performance.

Algorithm 2 Single-Agent Diversity-driven Policy Optimization (SADPO)
Input: Reference policy πref(·), baseline policy π1(·) and parameters α, η,K.

1: for t = 1, 2, . . . , T do
2: Sample K responses {aki }Kk=1 ∼ πt(·) for each prompt xi.
3: For each aki , compute its probability under the reference policy πref(a

k
i |xi).

4: Select two responses by
• amax

i = argmaxk πref(a
k
i |xi), ▷ approximating max-player behavior

• amin
i = argmink πref(a

k
i |xi). ▷ approximating min-player behavior

5: Rank responses amax
i , amin

i to form training dataset Dt = {xi, a
+
i , a

−
i }Ni=1.

6: Update the policy according to (16),

πt+1 ← argmin
π∈Π

{
η · L

(
α log

(
π(·|·)
πref(·|·)

)∣∣∣∣Dt

)
+ α · Ex∼d0,a∼πref (·|x) [log π(a|x)]

}
,

(16)
where L(·|·) denotes the logistic regression loss as defined in (2).

7: end for

5 THEORETICAL ANALYSIS

In this section, we present the regret analysis for the theoretical two-player Nash RLHF algorithm
introduced in Section 3.2. We first provide theoretical guarantees under the low TGEC conditions
(Assumption 2). Next, we illustrate our results using a linear two-player zero-sum RLHF game as
a concrete example. It is important to note that the theoretical analysis in this section also applies
to TANPO (Algorithm 1), provided the reward function class R meets Assumption 4 outlined in
Appendix C.

5.1 REGRET ANALYSIS FOR TWO-PLAYER NASH RLHF

To derive the theorem, we first present two assumptions. The first assumption concerns the hypoth-
esis classR being finite, bounded and well-specified, meaning it contains the true hypothesis.
Assumption 1 (Realizability). We assume that the true reward model r∗ ∈ R, and R is finite, i.e.
|R| < +∞. Moreover, for regularization, we assume that the reward function is bounded: for any
r ∈ R and any (x, a1, a2) ∈ X ×A×A, we have |r(x, a1)− r(x, a2)| ≤ R0 for some R0 > 0.

Moreover, we make a structural assumption on the underlying two-player game that requires the
game to have a low Two-player Generalized Eluder Coefficient (TGEC) dTGEC(·). TGEC is the
generalization of Generalized Eluder Coefficient (GEC) inspired by Zhong et al. (2022). In a two-
agent Markovian game with low TGEC, the two agents can minimize the in-sample prediction error
on historical data, thereby decreasing the out-of-sample prediction error. See the full statement in
Assumption 2 in Appendix B.

With Assumptions 1 and 2, we now present our main theorem.
Theorem 1 (Online Regret of Two-agent Nash RLHF). Under Assumptions 1 and 2, by setting

η =
1

4

√
dTGEC(1/

√
T )

T log(|R|/δ)
,

the regret of our theoretical algorithm framework in Section 3.2 after T episodes is bounded by

Regret(T ) ≤ 2

(√
dTGEC(1/

√
T ) log(|R|/δ) +

√
dTGEC(1/

√
T ) + 1

)√
T

with probability at least 1− 2δ.

7
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Theorem 1 provides a theoretical guarantee for the efficiency of the algorithm’s learning process in
RLHF problems that satisfy the low TGEC condition. When the iteration number T tends to infinity,
the average regret Regret(T )/T tends to zero. This indicates that the resulting policy of TANPO is
approximately a Nash equilibrium policy, demonstrating the sample efficiency of TANPO.

As a concrete example of Theorem 1, we further analyze the case of a linear two-player Nash
RLHF game. In this setting, we explicitly compute the TGEC bound and establish a sublinear regret
guarantee for the max-player in Corollary 1. This demonstrates that our theoretical framework
not only holds in general settings but also provides clear and provable efficiency in specific and
structured cases like linear games. We refer readers to Appendix B for detailed discussion.

6 EXPERIMENTS

In this section, we conduct detailed experiments to show the performances of our practical algo-
rithms along with other baselines. Our experiments demonstrate three key findings: (i) Our algo-
rithms consistently outperform baseline methods across various benchmarks. (ii) Our algorithms
effectively mitigate overfitting. (iii) Our algorithms enhance model performance by improving the
quality and diversity of the training data.

6.1 EXPERIMENT SETUP

We use UltraFeedback (Cui et al., 2023) as our training dataset, which consists of 61k high-quality
prompts and response pairs annotated by GPT-4. We split the UltraFeedback dataset into three
portions, and use only one portion on each iteration. We first conduct an offline DPO training on the
first portion of training dataset, and then conduct two iterations of online alignment on the other two
portions. For the base model of our training, we consider Zephyr series of LLMs (Tunstall et al.,
2023). We choose Zephyr-7B-SFT as our base model, since the official Zephyr-7B-β has already
been fine-tuned on the same UltraFeedback dataset. The small-sized PairRM (Jiang et al., 2023) is
used as the preference model to provide AI feedback during online alignment.

In TANPO, we sample one response for each prompt from each of the two models. In SADPO, we
sample K = 4 responses for each prompt from the current policy, and select the responses with
the highest and lowest length-regularized reference policy log probability to form response pairs.
We choose the base model Zephyr-7B-SFT, online DPO, Hybrid GSHF (Xiong et al., 2023) and
SELM (Zhang et al., 2024) as baselines for fine-tuning LLM. For evaluation, we adopt AlpacaE-
val 2.0 (Dubois et al., 2024), MT-Bench (Zheng et al., 2023) and several academic benchmarks,
including GSM8k (Cobbe et al., 2021), MMLU (Hendrycks et al., 2020), OpenBookQA (Mihaylov
et al., 2018), HellaSwag (Zellers et al., 2019) and WinoGrande (Sakaguchi et al., 2021). All the
implementation details are provided in Appendix E.

6.2 EXPERIMENT RESULTS

Figure 2: Accuracy results on
GSM8k,MMLU,OpenBookQA,
HellaSwag and WinoGrande.

Our algorithms consistently improve the performance on dif-
ferent benchmarks. Our algorithms consistently improve the
performance on different benchmarks. We present our main re-
sult in Table 1. Here, we report the results of TANPO based on
the performance of the min-player. The full results, including the
performance of both players in TANPO, are provided in Table 2
in Appendix D. On AlpacaEval 2.0 results, TANPO achieves high
performance, with a length-controlled win rate of 27.66% and a
win rate of 27.08%, outperforming all baseline methods. Sim-
ilarly, SADPO demonstrates strong results across all baselines,
achieving a length-controlled win rate of 28.43% and a win rate
of 26.21%. Besides, we compare TANPO and SADPO with other
online RLHF baselines on MT-Bench scores. Notably, TANPO
and SADPO achieve the first and second places respectively in
terms of average MT-Bench scores. Results on several academic
benchmarks presented in Figure 2 show that our methods outper-
form the baselines on average and across the majority of academic
benchmarks. The full results are reported in Table 3 in Appendix
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D. Furthermore, we examine the pairwise win rate among baseline models, single-agent models and
two-agent models, using PairRM as the judge on 805 prompts from the AlpacaEval 2.0 dataset. The
results are depicted in Figure 3.

Technique AlpacaEval 2.0 MT-Bench
LC Win Rate Win Rate Average 1st Turn 2nd Turn

Zephyr-7B-SFT (ref.) 6.59 3.66 6.14 6.34 5.95
Online DPO 24.36 22.14 7.24 7.37 7.11

Hybrid GSHF 25.29 22.61 7.28 7.26 7.30
SELM 26.99 25.99 7.26 7.56 6.96

SADPO 28.43 26.21 7.33 7.71 6.94
TANPO 27.66 27.08 7.47 7.55 7.39

Table 1: Results on AlpacaEval 2.0 and MT-Bench. LC Win Rate represents Length-Controlled Win
Rate.

Our algorithms effectively mitigate overfitting. To further evaluate the performance of our pro-
posed algorithm and investigate its robustness against overfitting, we conduct a second round of
experiments on the same UltraFeedback dataset. Specifically, after completing the first three it-
erations, we continue training the model with additional three iterations on the same dataset, while
monitoring AlpacaEval 2.0 metrics. Our results are shown in Figure 4, demonstrating that the model
continues to improve during the second round of training, showing no signs of overfitting. The full
results are presented in Table 4 in Appendix D. This suggests that our two-agent algorithm is capa-
ble of effectively utilizing the training data, even after an extended training period. We note that our
algorithm optimizes two agents using distinct strategies while having them compete against each
other throughout the training process. This competition leads to a natural increase in the diversity of
the training data, as each agent generates responses based on different optimization paths, resulting
in more varied and comprehensive scenarios. Additionally, the algorithm’s active exploration mech-
anism prevents the agents from getting stuck in local minima. These findings highlight the ability of
our approach in consistently improving performance and preventing overfitting.

Figure 3: Pairwise win rates among base-
line models, single-agent models and two-
agent models, using PairRM as a judge.

Figure 4: Performance of TANPO across 6 iter-
ations (2 epochs) on win rate (W.R.) and length-
controlled win rate (L.C. W.R.) judged by GPT-4-
Turbo.

Our algorithms enhance model performance by improving the quality and diversity of the
training data. Our results show that TANPO (max-player) surpasses the online DPO by 0.69% and
1.34% in AlpacaEval 2.0 length-controlled win rate and win rate. Besides, TANPO (max-player)
achieves a win rate of 51.3% against online DPO in pairwise comparison by PairRM. It is important
to note that the max-player shares the same setup as the online DPO, with the only difference being
the training data. We have shown in Figure 1 that TANPO achieves greater diversity in training
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data than online DPO. These results suggest that our algorithm enhances model performance by
increasing the diversity of responses during training. By incorporating data generated from two
different policies, the model is exposed to a broader range of behaviors and strategies, which helps
it generalize better across different prompts.

7 CONCLUSION

In this work, we introduce Two-Agent Nash Policy Optimization (TANPO), a two-agent algorithm
that balances exploration and exploitation. Additionally, we present Single-Agent Diversity-driven
Optimization (SADPO) as a simplified approximation of TANPO, supported by theoretical and em-
pirical results. Our theoretical analysis shows sublinear regret under general conditions, while em-
pirical evaluations demonstrate that TANPO and SADPO outperform baseline methods across multi-
ple benchmarks, highlighting their effectiveness in improving performance and reducing overfitting.
We hope our work can provide insights for future research into designing provable efficient and
practical self-play RLHF methods.
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A RELATED WORKS

A.1 THEORETICAL STUDIES ABOUT RLHF

Theoretical research on RLHF largely originates from foundational work in dueling bandits and
dueling reinforcement learning (Xu et al., 2020; Novoseller et al., 2020; Pacchiano et al., 2021; Wu
& Sun, 2023; Zhan et al., 2023). Recently, there has been growing interest in exploring RLHF theory
across diverse settings. Many previous works only consider tabular settings and linear settings (Du
et al., 2024; Das et al., 2024; Xiong et al., 2023), which do not fully capture the complexities of real-
world scenarios. Beyond the tabular and linear settings, some recent research has explored RLHF
theory under general function approximation (Chen et al., 2022; Wang et al., 2023; Zhu et al., 2023;
Liu et al., 2024b).

Among these researches, most approaches use a contextual bandit framework. Close to our ap-
proach, some studies give algorithms and theoretical guarantees under two-agent zero-sum game
setting (Wang et al., 2023; Ye et al., 2024). Ye et al. (2024) considered a reverse-KL regularized
minimax game between two LLMs and gave a sample-efficient algorithm, and Wang et al. (2023)
gave guarantees for RLHF algorithm under general arbitrary preferences settings. However, their
algorithms contain theoretical confidence bounds that are hard to compute, thus are unable to be
implemented in experiments. Liu et al. (2024a) proposed a two-agent algorithm framework which
approximates Nash equilibrium with active exploration and proved the algorithm has a sublinear
guarantee. Different from ours, their work only focused on MDP and Markov game settings.

A.2 EMPIRICAL ALGORITHMS FOR RLHF

RLHF has gained significant traction in the deployment of large-scale models, such as ChatGPT
(Achiam et al., 2023), Gemini (Team et al., 2023) and Llama (Touvron et al., 2023), where it has been
employed to align model behavior with human preferences effectively. A widely used algorithm in
this context is Proximal Policy Optimization (PPO) (Schulman et al., 2017), which iteratively up-
dates the model feedback from a learned reward model. However, while PPO has demonstrated
success in many practical applications, it also has notable limitations, such as high sample com-
plexity and sensitivity to hyperparameters (Engstrom et al., 2020), which can affect its stability and
performance. To address these shortcomings, recent work has proposed alternative approaches like
Direct Preference Optimization (DPO) (Rafailov et al., 2024), which directly optimizes the model
based on human preferences. In addition to the initial formulation of the DPO algorithm, researchers
have developed a wide range of variants (Liu et al., 2023; Azar et al., 2024; Ethayarajh et al., 2024;
Hong et al., 2024; Liu et al., 2024b), each tailored to specific optimization problems or designed to
enhance certain aspects of the algorithm’s performance.

Unlike offline RLHF, which is constrained by a static dataset, online RLHF (Ouyang et al., 2022;
Guo et al., 2024; Bai et al., 2022; Xu et al., 2023; Gulcehre et al., 2023; Xiong et al., 2023; Calan-
driello et al., 2024; Pang et al., 2024; Sun et al., 2024; Chen et al., 2024; Ji et al., 2024) continually
generates better and more diverse learning data as the model learns and adapts over time, allowing
the model to refine its understanding through real-time human feedback. In online RLHF, explo-
ration plays a critical role by allowing the model to avoid being trapped in local minima, contin-
uously encouraging it to seek new actions and learn from a more diverse set of responses. Zhang
et al. (2024); Xie et al. (2024); Cen et al. (2024) propose algorithms that add DPO with explo-
ration bonuses similar to ours. Liu et al. (2024b) also utilize a similar confidence bound but aim to
avoid overoptimization in offline RLHF. Unlike our work, these works only focus on single-agent
contextual bandit settings.
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B THEORETICAL ANALYSIS

To conduct the theoretical analysis for our theoretical algorithm framework proposed in Section 3.2,
we introduce a more general reward model under which the reward model (1) is a special case.

Preference Model. Given any reward function R : X×A×A → R which represents the ”human’s
rating” of LLM responses given some prompts, we denote that given a prompt x ∈ X and two
response a1, a2 ∈ A, the probability of a1 being preferred to a2 (denoted by y = 1, and otherwise
by y = 0) is given by

PR(y = 1|x, a1, a2) = σ(R(x, a1, a2)), (17)

where σ(z) = 1/(1 + exp(−z)) is the sigmoid function. Clearly, PR(y = 0|x, a1, a2) =
σ(−R(x, a1, a2)). We denote the underlying reward model as R∗, and the corresponding prefer-
ence oracle as P∗ := PR∗ . Notably, a special case for the reward function R is by assuming that
there exists a function r : X ×A → R such that

R(x, a1, a2) = r(x, a1)− r(x, a2) for any x ∈ X and a1, a2 ∈ A (18)

holds, which coincides with the reward model (1) in the main text.

Nash Equilibrium and Best Response. As discussed in the main text, RLHF is formulated as a
two-player Game between the max-player LLM π and the min-player LLM µ. In application, we
want the resulting LLMs (π, µ) to be close to (πref , πref), and the ultimate value function is given
by

VR∗,α,β(π, µ) = Ex∼d0,a
1∼π(·|x),a2∼µ(·|x)

[
R∗(x, a1, a2)

−α ·DKL (π(·|x)∥πref(·|x)) + α ·DKL (µ(·|x)∥πref(·|x))] .
(19)

For simplicity, we denote VR∗,α,β(·, ·) as V (·, ·) when there is no ambiguity. The value function (19)
under the reward model R coincides with the value function (3) under the reward model r by (18).
We denote the unique Nash equilibrium (NE) as the solution of the following minimax problem as

(π∗, µ∗) = argmax
π∈Π

argmin
µ∈Π

V (π, µ).

For function V and policy π, the best response to π is argminµ∈Π V (π, µ), and the value is denoted
by V (π, †) = minµ∈Π V (π, µ). Similarly, for µ, we have V (†, µ) = maxπ∈Π V (π, µ).

Function Approximation. For convenience, we introduce the following notations. We have ac-
cess to a function class R ⊂ (X ×A×A → R) to approximate R∗. Specifically, given parameter
α, for any R ∈ R:

1. we denote the corresponding reward function as R(x, a1, a2), and corresponding value
function as

VR(π, µ) = Ex∼d0,a
1∼π(·|x),a2∼µ(·|x)

[
R(x, a1, a2)

−α ·DKL (π(·|x)∥πref(·|x)) + α ·DKL (µ(·|x)∥πref(·|x))] ;

2. we denote the corresponding NE value function as

VR = max
π∈Π

min
µ∈Π

VR(π, µ), (20)

and we denote the corresponding NE max-player policy as

πR = argmax
π∈Π

min
µ∈Π

VR(π, µ); (21)

3. given a policy as the max-player π ∈ Π, we define VR(π, †) as the value function induced
by R, π and its best response, i.e.

VR(π, †) = min
µ∈Π

VR(π, µ), (22)

and we denote the corresponding best response min-player policy as

µR,π = argmin
µ∈Π

VR(π, µ); (23)
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Algorithm 3 Theoretical Algorithm
Input: Parameters α, β, η > 0, prompt distribution d0, time horizon T , reference policy πref .

1: Set π0 = µ0 = πref .
2: for step t = 0, 1, 2, · · · , T do
3: Define the loss function Lt−1(R) in (28).
4: Solve Rt

1 via

Rt
1 =argmax

R∈R

{
VR − η · Lt−1(R)

}
. (24)

5: Set the max-player policy as
πt = πRt

1
. (25)

6: Solve Rt
2 via

Rt
2 =arg min

R∈R

{
VR(π

t, †) + η · Lt−1(R)

}
. (26)

7: Set the min-player policy as
µt = µRt

2,π
t . (27)

8: Collect Dt = {xt, a
1
t , a

2
t , yt} by xt ∼ d0, a

1
t ∼ πt(·|xt), a

2
t ∼ µt(·|xt), yt ∼

P∗(·|xt, a
1
t , a

2
t ).

9: end for

4. we denote the NE value function under the true reward R∗ as VR∗ .

With the reward model (18), the theoretical algorithm framework in Section 3.2 can be rewritten into
Algorithm 3, where we specify the loss function in the t-th episode as the negative log-likelihood
function of the preference model (17), defined as

Lt−1(R) =−
t−1∑
s=1

logPR

(
y = ys|xs, a

1
s, a

2
s

)
=−

t−1∑
s=1

[
ys · log

(
σ
(
R(xs, a

1
s, a

2
s)
))

+ (1− ys) · log
(
σ
(
−R(xs, a

1
s, a

2
s)
))]

,

(28)

which coincides with the logistic regression loss (2) by (18). Therefore, to prove Theorem 1, it
suffices to analyze the regret bound of Algorithm 3.

To define TGEC, we first introduce the discrepancy function l(R; ξ) : R × (X × A × A) 7→ R to
characterize the bellman residuals of both players. We choose Hellinger distance as the discrepancy
function. For any data ξ = (x, a1, a2), we define

l(R; ξ) = DH (P∗(·|ξ)∥PR(·|ξ)) , (29)
where DH(·∥·) denotes the Hellinger distance: for two discrete probability distributions P =
(p1, . . . , pk) and Q = (q1, . . . , qk), the Hellinger distance is defined as

DH(P∥Q) =
1

2

k∑
i=1

(
√
pi −

√
qi)

2. (30)

Assumption 2 (Low Two-Player Generalized Eluder Coefficient). Given any ϵ > 0, there exists a
finite d(ϵ) ∈ R+, such that for any sequence {(Rt

1, R
t
2)}Tt=1 and corresponding policies {πt, µt}Tt=1

by (25) and (27) respectively, it holds that
T∑

t=1

[
VRt

1
− V (πt, µt)

]
≤ inf

ζ>0

{
ζ

2

T∑
t=1

t−1∑
s=1

Eξs∼(d0,πs,µs)

[
l(Rt

1; ξs)
]
+

d(ϵ)

2ζ
+
√

d(ϵ)T + ϵT

}
.

It also holds that
T∑

t=1

[
V (πt, µt)− VRt

2
(πt, †)

]
≤ inf

ζ>0

{
ζ

2

T∑
t=1

t−1∑
s=1

Eξs∼(d0,πs,µs)

[
l(Rt

2; ξs)
]
+

d(ϵ)

2ζ
+
√
d(ϵ)T + ϵT

}
.
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We denote the smallest d(ϵ) ∈ R+ satisfying this condition as dTGEC(ϵ).

Moreover, by taking the decomposable reward function in (3), through some basic algebra we can
derive the equivalent TGEC assumption under Nash RLHF setting.
Assumption 3 (Low Two-player Generalized Eluder Coefficient under Nash RLHF). Given any
ϵ > 0, there exists a finite d(ϵ) ∈ R+, such that for any sequence {(Rt

1, R
t
2)}Tt=1 with form of

Rt
1(x, a, b) = rt1(x, a)− rt1(x, b), R

t
2(x, a, b) = rt2(x, a)− rt2(x, b)

and corresponding policies {πt, µt}Tt=1 by (25) and (27) respectively, it holds that

−
T∑

t=1

E(x,a1,a2)∼(d0,πt,µt)

[
r∗(x, a1)− r∗(x, a2) + α

[
log

(
µt(a2|x)
πref(a2|x)

)
− log

(
πt(a1|x)
πref(a1|x)

)]]

≤ inf
ζ>0

{
ζ

2

T∑
t=1

t−1∑
s=1

E(x,a1,a2)∼(d0,πt,µt)

[
l(Rt

1; ξs)
]
+

d(ϵ)

2ζ
+
√
d(ϵ)T + ϵT

}
.

It also holds that
T∑

t=1

E(x,a1,a2)∼(d0,πt,µt)

[
r∗(x, a1)− r∗(x, a2) + α

[
log

(
µt(a2|x)
πref(a2|x)

)
− log

(
µt(a1|x)
πref(a1|x)

)]]

≤ inf
ζ>0

{
ζ

2

T∑
t=1

t−1∑
s=1

E(x,a1,a2)∼(d0,πt,µt)

[
l(Rt

1; ξs)
]
+

d(ϵ)

2ζ
+
√
d(ϵ)T + ϵT

}
.

B.1 LINEAR TWO-PLAYER ZERO-SUM NASH RLHF GAME

In this section, we introduce the linear two-player Nash RLHF game as a concrete example (Xie
et al., 2020), for which we can explicitly specify its TGEC, thus specify Theorem 1 for linear two-
player Nash RLHF game case.
Definition 1 (Linear two-player zero-sum Nash RLHF game). A d-dimensional linear two-player
zero-sum Nash RLHF game satisfies that R(x, a1, a2) = ϕ(x, a1, a2)⊤λ for some known feature
mapping ϕ(x, a1, a2) ∈ Rd and some unknown vector λ ∈ Rd satisfying ∥ϕ(x, a1, a2)∥2 ≤ 1 and
∥λ∥2 ≤

√
d for any (x, a1, a2) ∈ X ×A×A.

For a linear two-player zero-sum Nash RLHF game, we choose the reward hypothesis class as

R =
{
ϕ(·, ·, ·)⊤λ : ∥λ∥2 ≤

√
d
}
. (31)

The following proposition gives the TGEC of a linear two-player zero-sum Nash RLHF game with
hypothesis classR.
Proposition 1 (TGEC of linear two-player zero-sum Nash RLHF game). For a linear two-player
zero-sum Nash RLHF game with hypothesis classR, it holds that

dTGEC(1/
√
T ) ≤ 4κ2d · log

(
1 +

T 2/3

d

)
≲ d log T,

where the constant κ = (eR0/2 + e−R0/2)2.

Thus, we can specify Theorem 1 for linear two-player zero-sum games as follows.
Corollary 1 (Online regret: linear two-player zero-sum Nash RLHF game). By setting η =

Θ̃(1/
√
T ), the regret of our theoretical algorithm for a d-dimensional linear two-player zero-sum

Nash RLHF game after T episodes is upper bounded by

Regret(T ) ≤ 2
√
T

(
4κ2d · log

(
1 + T 2/3/d

)
log(|R|/δ) + 2

√
2max{R0, 1}d · log

(
1 + T 2/3/d

)
+ d

)
with probability at least 1− δ and the constant κ = (eR0/2 + e−R0/2)2.
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B.2 PROOF OF THEOREM 1

Proof of Theorem 1. This is a similar proof to that of Theorem 4.4 in Liu et al. (2024a). It suffices
to analyze the regret bound of Theorem 3 under the general reward model (18). We first show a
proposition for loss difference.
Proposition 2. Under Assumption 1, with probability at least 1− δ, for any R ∈ R, it holds that

T∑
t=1

[Lt−1(R
∗)− Lt−1(R)] ≤ −2

T∑
t=1

t−1∑
s=1

Eξs∼(d0,πs,µs) [ℓ(R; ξs)] + 2T log(|R|/δ),

where Lt−1 and ℓ are defined in (28) and (29) respectively.

Proof of proposition 2. This is a similar proof to that of Proposition C.13 in Liu et al. (2024a). Given
R ∈ R, we denote the random variables Xs

R as

Xs
R = log

P∗(y = ys|xs, a
1
s, a

2
s)

PR(y = ys|xs, a1s, a
2
s)
. (32)

By the definition of Lt−1 in (28), we have
T∑

t=1

[Lt−1(R
∗)− Lt−1(R)] = −

T∑
t=1

t−1∑
s=1

Xs
R.

We next define a filtration {Ft}Tt=1 for each t ∈ [T ] with

Ft = σ

(
t⋃

s=1

Ds

)
.

Then by (32) we have that Xt
R ∈ Ft for each t ∈ [T ]. Therefore, by Lemma B.3, with probability

at least 1− δ, for any R ∈ R and t ∈ [T ], we have that

−1

2

t−1∑
s=1

Xs
R ≤

t−1∑
s=1

logE
[
exp

(
−1

2
Xs

R

) ∣∣∣∣Fs−1

]
+ log(|R|/δ). (33)

Moreover, the conditional expectation in (33) has the expression

E
[
exp

(
−1

2
Xs

R

) ∣∣∣∣Fs−1

]
= E

[√
PR(y = ys|xs, a1s, a

2
s)

P∗(y = ys|xs, a1s, a
2
s)

∣∣∣∣Fs−1

]

= Exs∼d0,a
1
s∼πs(·|xs),a

2
s∼µs(·|xs)

ys∼P∗(·|xs,a
1
s,a

2
s)

[√
PR(y = ys|xs, a1s, a

2
s)

P∗(y = ys|xs, a1s, a
2
s)

]

= Exs∼d0,a1
s∼πs(·|xs),a2

s∼µs(·|xs)

[ ∑
ys=0,1

√
PR(y = ys|xs, a1s, a

2
s)P∗(y = ys|xs, a1s, a

2
s)

]

= 1− 1

2
Exs∼d0,a1

s∼πs(·|xs),a2
s∼µs(·|xs)

[ ∑
ys=0,1

(√
PR(y = ys|xs, a1s, a

2
s)−

√
P∗(y = ys|xs, a1s, a

2
s)
)2]

= 1− Exs∼d0,a1
s∼πs(·|xs),a2

s∼µs(·|xs)

[
DH
(
P∗(·|xs, a

1
s, a

2
s)
∥∥PR(·|xs, a

1
s, a

2
s)
)]

,
(34)

where DH(·∥·) is Hellinger distance defined in (30). Thus by combining (33) and (34), we can derive
that with probability at least 1− δ, for any R ∈ R, any t ∈ [T ],

−1

2

t−1∑
s=1

Xs
R ≤

t−1∑
s=1

[
E
[
exp

(
−1

2
Xs

R

) ∣∣∣∣Fs−1

]
− 1

]
+ log(|R|/δ)

= −
t−1∑
s=1

Exs∼d0,a1
s∼πs(·|xs),a2

s∼µs(·|xs)DH
(
P∗(·|xs, a

1
s, a

2
s)
∥∥PR(·|xs, a

1
s, a

2
s)
)
+ log(|R|/δ),
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where the first inequality comes from the fact that log x ≤ x − 1. Finally, by plugging in the
definition of Xs

R, we have that with probability at least 1− δ, for any R ∈ R, it holds that

T∑
t=1

[Lt−1(R
∗)− Lt−1(R)] = −

T∑
t=1

t−1∑
s=1

Xs
R

≤ −2
T∑

t=1

t−1∑
s=1

Exs∼d0,a1
s∼πs(·|xs),a2

s∼µs(·|xs)DH
(
P∗(·|xs, a

1
s, a

2
s)
∥∥PR(·|xs, a

1
s, a

2
s)
)
+ 2T log(|R|/δ)

= −2
T∑

t=1

t−1∑
s=1

Eξs∼(d0,πs,µs) [ℓ(R; ξs)] + 2T log(|R|/δ).

This finishes the proof of Proposition 2. □

Back to the proof of Theorem 1. We have the following decomposition of the regret,

Regret(T )

=
T∑

t=1

[
V (π∗, µ∗)− V (πt, †)

]
=

T∑
t=1

[
V (π∗, µ∗)− V (πt, µt)

]
+

T∑
t=1

[
V (πt, µt)− V (πt, †)

]
=

T∑
t=1

[
V (π∗, µ∗)− VRt

1

]
︸ ︷︷ ︸

(♡)

+

T∑
t=1

[
VRt

1
− V (πt, µt)

]
︸ ︷︷ ︸

(♠)

+

T∑
t=1

[
VRt

2
(πt, †)− V (πt, †)

]
)︸ ︷︷ ︸

(♢)

+

T∑
t=1

[
V (πt, µt)− VRt

2
(πt, †)

]
︸ ︷︷ ︸

(♣)

. (35)

We now prove the bound for (♡,♠,♢,♣) in (35).

To bound (♡). Note that VR∗ = V (π∗, µ∗). Thus we can rewrite (♡) as

(♡) =
T∑

t=1

[
VR∗ − VRt

1

]
. (36)

By the choice of Rt
1 in (24) and Assumption 1, we have that for each t ∈ [T ],

VR∗ − η · Lt−1(R
∗) ≤ VRt

1
− η · Lt−1(R

t
1). (37)

By combining (36) and (37), we obtain that

(♡) ≤ η ·
T∑

t=1

[
Lt−1(R

∗)− Lt−1(R
t
1)
]
. (38)

By Proposition 2, we can derive from (38) that with probability at least 1− δ,

(♡) ≤− 2η ·
T∑

t=1

t−1∑
s=1

Eξs∼(d0,πs,µs)

[
ℓ(Rt

1; ξs)
]
+ 2ηT log(|R|/δ). (39)

To bound (♠). We apply Assumption 2 and obtain that, for any ϵ > 0,

(♠) ≤ inf
ζ>0

{
ζ

2

T∑
t=1

t−1∑
s=1

Eξs∼(d0,πs,µs)

[
ℓ(Rt

1; ξs)
]
+

d(ϵ)

2ζ
+
√
d(ϵ)T + ϵT

}
.
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By taking ζ/2 = 2η, we can further derive that

(♠) ≤ 2η ·
T∑

t=1

t−1∑
s=1

Eξs∼(d0,πs,µs)

[
ℓ(Rt

1; ξs)
]
+

d(ϵ)

8η
+
√
d(ϵ)T + ϵT. (40)

To bound (♢). Note that VR∗(πt, †) = V (πt, †). Thus we can rewrite (♢) as

(♢) =
T∑

t=1

[
VRt

2
(πt, †)− VR∗(πt, †)

]
. (41)

By the choice of Rt
2 in (26) and Assumption 1, we have that for each t ∈ [T ],

VRt
2
(πt, †) + η · Lt−1(R

t
2) ≤ VR∗(πt, †) + η · Lt−1(R

∗). (42)

By combining (41) and (42), we derive that

(♢) ≤ η ·
T∑

t=1

[
Lt−1(R

∗)− Lt−1(R
t
2)
]
. (43)

Now by Proposition 2, it further follows from (43) that with probability at least 1− δ,

(♢) ≤ −2η ·
T∑

t=1

t−1∑
s=1

Eξs∼(d0,πs,µs)

[
ℓ(Rt

2; ξs)
]
+ 2ηT log(|R|/δ). (44)

To bound (♣). By Assumption 2, we have that for any ϵ > 0,

(♣) ≤ inf
ζ>0

{
ζ

2

T∑
t=1

t−1∑
s=1

Eξs∼(d0,πs,µs)

[
ℓ(Rt

2; ξs)
]
+

d(ϵ)

2ζ
+
√
d(ϵ)T + ϵT

}
.

By taking ζ/2 = 2η, we can further derive that

(♣) ≤ 2η ·
T∑

t=1

t−1∑
s=1

Eξs∼(d0,πs,µs)

[
ℓ(Rt

2; ξs)
]
+

d(ϵ)

8η
+
√
d(ϵ)T + ϵT. (45)

Combining (♡), (♠), (♢), and(♣). Finally, combining (39), (40), (44) and (45), taking ϵ = 1/
√
T

and

η =
1

4

√
dTGEC(1/

√
T )

T · log(|R|/δ)
,

we can finally derive that with probability at least 1− 2δ,

Regret(T ) ≤ 2

(√
dTGEC(1/

√
T ) log(|R|/δ) +

√
dTGEC(1/

√
T ) + 1

)√
T .

Thus, we finish the proof of Theorem 1. □

B.3 PROOF OF PROPOSITION 1

Proof of Proposition 1. This is a similar proof to that of Proposition C.11 in Liu et al. (2024a). To
prove Proposition 1, we need two performance difference lemmas in the two-player zero-sum game.
Given R ∈ R, we define the error of R with respect to the true reward R∗ as

E(R; ξ) = R(x, a1, a2)−R∗(x, a1, a2), (46)

and ξ = (x, a1, a2). Also, we define another discrepancy function ∆(·; ·) for theoretical analysis as

∆(R; ξ) =
∣∣R(x, a1, a2)−R∗(x, a1, a2)

∣∣2 . (47)
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Lemma B.1 (Value decomposition for the max-player). Let π = πR1
and µ be an arbitrary policy

taken by the min-player. It holds that

VR1
− V (π, µ) ≤ Eξ∼(d0,π,µ) [E(R1; ξ)] , (48)

where E(·; ·) is defined in (46) and ξ = (x, a1, a2).

Proof of Lemma B.1. By the definition of VR in (20) and V (π, µ) in (3), we have that

VR1 − V (π, µ)

= max
π∈Π

min
µ∈Π

Ed0(x),π(a
1|x),µ(a2|x)

[
R1(x, a

1, a2)− αDKL (π(·|x)∥πref(·|x)) + βDKL (µ(·|x)∥πref(·|x))
]

− Ed0(x),π(a
1|x),µ(a2|x)

[
R∗(x, a1, a2)− αDKL (π(·|x)∥πref(·|x)) + βDKL (µ(·|x)∥πref(·|x))

]
= min

µ∈Π
Ed0(x),πR1

(a1|x),µ(a2|x)
[
R1(x, a

1, a2)− αDKL (πR1
(·|x)∥πref(·|x)) + βDKL (µ(·|x)∥πref(·|x))

]
− Ed0(x),πR1

(a1|x),µ(a2|x)
[
R∗(x, a1, a2)− αDKL (πR1

(·|x)∥πref(·|x)) + βDKL (µ(·|x)∥πref(·|x))
]

= min
µ∈Π

Ed0(x),πR1
(a1|x),µ(a2|x)

[
R1(x, a

1, a2) + βDKL (µ(·|x)∥πref(·|x))
]

− Ed0(x),πR1
(a1|x),µ(a2|x)

[
R∗(x, a1, a2) + βDKL (µ(·|x)∥πref(·|x))

]
≤ Ed0(x),πR1

(a1|x),µ(a2|x)
[
R1(x, a

1, a2) + βDKL (µ(·|x)∥πref(·|x))
]

− Ed0(x),πR1
(a1|x),µ(a2|x)

[
R∗(x, a1, a2) + βDKL (µ(·|x)∥πref(·|x))

]
= Eξ∼(d0,π,µ) [E(R1; ξ)] ,

where the second equality is by the definition of πR1
in (21). □

Lemma B.2 (Value decomposition for the min-player). Suppose that π = πR1
is taken by the max-

player and R2 is the hypothesis selected by the min-player. Let µ = µR2,π be the policy taken by
the min-player. It holds that

V (π, µ)− VR2(π, †) = −Eξ∼(d0,π,µ) [E(R2; ξ)] , (49)

where E(·; ·) is defined in (46) and ξ = (x, a1, a2).

Proof of Lemma B.2. By the definition of VR(π, †) in (22) and V (π, µ) in (3), we have that

V (π, µ)− VR2(π, †)
= Ed0(x),π(a

1|x),µ(a2|x)
[
R∗(x, a1, a2)− αDKL(π(·|x)∥πref(·|x)) + βDKL(µ(·|x)∥πref(·|x))

]
−min

µ∈Π
Ed0(x),π(a

1|x),µ(a2|x)
[
R2(x, a

1, a2)− αDKL(πR1
(·|x)∥πref(·|x)) + βDKL(µ(·|x)∥πref(·|x))

]
= Ed0(x),πR1

(a1|x),µR2,πR1
(a2|x)

[
R∗(x, a1, a2) + βDKL(µR2,πR1

(·|x)∥πref(·|x))
]

−min
µ∈Π

Ed0(x),πR1
(a1|x),µ(a2|x)

[
R2(x, a

1, a2) + βDKL(µ(·|x)∥πref(·|x))
]

= Ed0(x),πR1
(a1|x),µR2,πR1

(a2|x)
[
R∗(x, a1, a2) + βDKL(µR2,πR1

(·|x)∥πref(·|x))
]

− Ed0(x),πR1
(a1|x),µR2,πR1

(a2|x)
[
R2(x, a

1, a2) + βDKL(µR2,πR1
(·|x)∥πref(·|x))

]
= − Eξ∼(d0,π,µ) [E(R2; ξ)] ,

where the third equality is by the definition of µR,π in (23). □

Note that the right side of (49) is a general version of the right side of (48) when choosing µ =
µR2,πR1

. Now we are ready to prove Proposition 1. Lemmas B.1 and B.2 suggest that we only need
to upper-bound the term

∑T
t=1

∣∣Eξ∼(d0,πt,µt)[E(Rt
2; ξ)]

∣∣. To this end, we provide a more general
result given by the following Proposition 3.

Proposition 3. For a d-dimensional two-player zero-sum game, we assume that its expected error
in (46) can be decomposed as follows

Eξ∼(d0,πt,µt) [E(R2; ξ)] = ⟨W (R2), X(R2, (π
t, µt))⟩, (50)
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for some W (R2), X(R2, (π
t, µt)) ∈ Rd, and the discrepancy function ∆(R2; ξ) defined in (47) can

be lower bounded as follows

|⟨W (R2), X(R′
2, (π, µ))⟩|2 ≤ Eξ∼(d0,π,µ) [∆(R2; ξ)] . (51)

Also, we assume that ∥W (·)∥2 ≤ BW , ∥X(·, ·)∥2 ≤ BX for some BW , BX > 0. Then it holds that

T∑
t=1

∣∣Eξ∼(d0,πt,µt)[E(Rt
2; ξ)]

∣∣ ≤ d̃(ϵ)

η
+

η

2

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)

[
∆(Rt

2; ξ)
]

+
ϵTB2

W

4
+ 2min

{
2max{R0, 1}d̃(ϵ), T

}
for all ϵ ∈ [0, 1], η > 0, and d̃(ϵ) := d log(1 + TB2

X/(dϵ)).

Proof of Proposition 3. This is a similar proof to that of Proposition F.3 in Liu et al. (2024a). We
denote that

Σt = Id +
1

ϵ

t∑
s=1

X(Rs
2, (π

s, µs))X(Rs
2, (π

s, µs))⊤.

By Lemmas B.4 and B.5, we have the estimate

t∑
s=1

min
{
∥X(Rs

2, (π
s, µs))∥Σ−1

s
, 1
}
≤ 2d̃(ϵ) (52)

for all ϵ ∈ [0, 1], where d̃(ϵ) is defined in Proposition 3. Since the reward is bounded by [0, R0] by
Assumption 1, we have that,

T∑
t=1

∣∣Eξ∼(d0,πt,µt)[E(Rt
2; ξ)]

∣∣
=

T∑
t=1

min
{
R0, ⟨W (Rt

2), X(Rt
2, (π

t, µt))⟩
}
1
{
∥X(Rt

2, (π
t, µt))∥Σ−1

t
≤ 1
}

+

T∑
t=1

min
{
R0, ⟨W (Rt

2), X(Rt
2, (π

t, µt))⟩
}
1
{
∥X(Rt

2, (π
t, µt))∥Σ−1

t
> 1
}

≤
T∑

t=1

⟨W (Rt
2), X(Rt

2, (π
t, µt))⟩1

{
∥X(Rt

2, (π
t, µt))∥Σ−1

t
≤ 1
}
+min{T, 2R0d̃(ϵ)}

≤
T∑

t=1

∥W (Rt
2)∥Σt

min
{
∥X(Rt

2, (π
t, µt))∥Σ−1

t
, 1
}

︸ ︷︷ ︸
(A)t

+min{T, 2R0d̃(ϵ)}, (53)

where the first equality is due to the assumption in Proposition 3, the second inequality follows from
(52), and the last inequality is from Cauchy-Schwarz inequality. Now we expand term (A)t in (53):

∥W (Rt
2)∥Σt ≤

√
ϵBW +

[
t−1∑
s=1

∣∣⟨W (Rt
2), X(Rt

2, (π
t, µt))⟩

∣∣2]1/2 ,
22
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where we use ∥W (Rt
2)∥2 ≤ BW . Then we obtain that

T∑
t=1

(A)t

≤
T∑

t=1

√ϵBW +

[
t−1∑
s=1

∣∣⟨W (Rt
2), X(Rs

2, (π
s, µs))⟩

∣∣2]1/2 ·min
{
∥X(Rt

2, (π
t, µt))∥Σ−1

t
, 1
}

≤

[
T∑

t=1

ϵB2
W

]1/2
·

[
T∑

t=1

min
{
∥X(Rt

2, (π
t, µt))∥Σ−1

t
, 1
}]1/2

+

[
T∑

t=1

t−1∑
s=1

∣∣⟨W (Rt
2), X(Rt

2, (π
t, µt))⟩

∣∣2]1/2 · [ T∑
t=1

min
{
∥X(Rt

2, (π
t, µt))∥Σ−1

t
, 1
}]1/2

≤
√

TB2
W ϵ ·min{2d̃(ϵ), T}+

[
2d̃(ϵ)

T∑
t=1

t−1∑
s=1

∣∣⟨W (Rt
2), X(Rs

2, (π
s, µs))⟩

∣∣2]1/2

≤
√
TB2

W ϵ ·min{2d̃(ϵ), T}+

[
2d̃(ϵ)

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)[∆(Rt
2; ξ)]

]1/2

where the second inequality comes from Cauchy-Schwarz inequality, the third inequality is from
(52), and the last inequality is derived from (51). Back to the analysis for (53), we have

T∑
t=1

∣∣Eξ∼(d0,πt,µt)[E(Rt
2; ξ)]

∣∣
≤
√
TB2

W ϵ ·min{2d̃(ϵ), T}+

[
2d̃(ϵ)

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)[∆(Rt
2; ξ)]

]1/2
+min{T, 2R0d̃(ϵ)}

≤
[
TϵB2

W

4
+ min{2d̃(ϵ), T}

]
+

[
d̃(ϵ)

η
+

η

2

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)[∆(Rt
2; ξ)]

]
+min{2R0d̃(ϵ), T}

=
d̃(ϵ)

η
+

η

2

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)

[
∆(Rt

2; ξ)
]
+

ϵTB2
W

4
+ 2min

{
2max{R0, 1}d̃(ϵ), T

}
,

where the second inequality is based on the AM-GM inequality, and η > 0 can be arbitrarily chosen
in the last equality. Thus we finish our proof of Proposition 3. □

Back to the proof of Proposition 1, we need to check the conditions of Proposition 3 for linear two-
player zero-sum games. By Definition 1 and the choice of reward hypothesis class (31), we have
that for any R2 ∈ R and π ∈ Π, it holds that

E(R2; ξ) = R2(x, a
1, a2)−R∗(x, a1, a2) = ϕ∗(x, a1, a2)⊤ (λR2

− λ∗)

where λR2 denotes the parameter of R2 ∈ R and α∗ is the reward parameter (see Definition 1).
Thus, we can define X(R2, (π, µ)) = Eξ∼(d0,π,µ)[ϕ

∗(x, a, b)] and W (R2) = λR2 − λ∗, specifying
the condition (50) of Proposition 3. By Jensen’s inequality and the definition of ∆ in (47), one can
easily see that the condition (51) of Proposition 3 holds. By the assumptions of linear two-player
zero-sum games in Definition 1, we have BX ≤ 1 and BW ≤ 2

√
d. Thus by applying Lemma B.2
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and Proposition 3, we have that

T∑
t=1

[
V (πt, µt)− VRt

2
(πt, †)

]
= −

T∑
t=1

Eξ∼(d0,πt,µt)[E(Rt
2; ξ)]

≤ d̃(ϵ)

η
+

η

2

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)[∆(Rt
2; ξ)] +

TϵB2
W

4
+ 2min

{
2max{R0, 1}d̃(ϵ), T

}
≤ d̃(ϵ)

η
+

η

2

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)[∆(Rt
2; ξ)] + Tϵd+ 2

√
2max{R0, 1}

√
d̃(ϵ)T (54)

with d̃(ϵ) = d log(1 + T/(dϵ)) and any η > 0.

Finally, we connect the discrepancy function ∆ defined in (47) to the discrepancy function ℓ defined
in (29). We denote the inverse function of the sigmoid function σ as

ς(z) = log
z

1− z
, z ∈ (0, 1). (55)

Also, for probability distributions P and Q on the same probability space (Ω,F), the total variation
distance between P and Q is defined as

DTV(P∥Q) = sup
A∈F
{P (A)−Q(A)} . (56)

Notice that

∆(R; ξ) =
∣∣R(x, a1, a2)−R∗(x, a1, a2)

∣∣2
=
∣∣ς (PR(y = 1|x, a1, a2)

)
− ς

(
P∗(y = 1|x, a1, a2)

)∣∣2
≤ κ2 ·

∣∣PR(y = 1|x, a1, a2)− P∗(y = 1|x, a1, a2)
∣∣2

≤ κ2 ·DTV
(
PR(·|x, a1, a2)∥P∗(·|x, a1, a2)

)2
≤ 2κ2 ·DH

(
PR(·|x, a1, a2)∥P∗(·|x, a1, a2)

)
= 2κ2 · ℓ(R; ξ), (57)

where the second equality comes from (1), the first inequality is by Lemma B.6 with the constant
κ = (eR0/2 + e−R0/2)2, the second inequality is from the definition of the total variation distance
in (56), and the third inequality follows from the fact that DTV(P∥Q)2 ≤ 2DH(P∥Q). This shows
that the discrepancy function defined in (29) upper-bounds the discrepancy function defined in (47)
up to a factor 2κ2. Thus by plugging (57) into (54), we have

T∑
t=1

[
V (πt, µt)− VRt

2
(πt, †)

]
≤ d̃(ϵ)

η
+ ηκ2 ·

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)[ℓ(R
t
2; ξ)] + ϵTd+ 2

√
2max{R0, 1}

√
d̃(ϵ)T

=
d̄(ϵ)

2η′
+

η′

2
·

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)[ℓ(R
t
2; ξ)] + ϵTd+

√
2max{R0, 1}

κ

√
d̄(ϵ)T , (58)

with d̄(ϵ) = 4κ2d̃(ϵ) = 4κ2d log(1 + T/(dϵ)) and any η > 0 and η′ = (2κ2)η. This proves the
second inequality of Assumption 2. For the first inequality in Assumption 2, we take Rt

2 = Rt
1, π =

πRt
1
, and we can then similarly prove that

T∑
t=1

[
VRt

1
− V (πt, µt)

]
≤ d̄(ϵ)

2η′
+
η′

2
·

T∑
t=1

t−1∑
s=1

Eξ∼(d0,πs,µs)[ℓ(R
t
1; ξ)]+ϵTd+

√
2max{R0, 1}

κ

√
d̄(ϵ)T .

(59)
This proves that dTGEC(ϵ) ≤ d̄(ϵ). Thus we finish the proof of Proposition 1. □
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B.4 PROOF OF COROLLARY 1

Proof of Corollary 1. By combining (35), (39), (58), (44), (59), and Proposition 1, taking ζ/2 = 2η′

in (58) and (59), ϵ = 1/
√
T and

η =
1

4

√
dTGEC(1/

√
T )

T · log(|R|/δ)
,

we obtain that

Regret(T ) ≤ 2
√
T

[
4κ2d · log

(
1 + T 2/3/d

)
log (|R|/δ) + 2

√
2max{R0, 1}d · log

(
1 + T 2/3/d

)
+ d

]
.

Thus we finish the proof of Corollary 1. □

B.5 TECHNICAL LEMMAS

Lemma B.3 (Martingale exponential inequality). For a sequence of real-valued random variables
{Xt}Tt=1 adapted to a filtration {Ft}Tt=1, the following holds with probability at least 1− δ, for any
t ∈ [T ],

−
t∑

s=1

Xs ≤
t∑

s=1

logE[exp(−Xs)|Fs−1] + log(1/δ).

Proof of Lemma B.3. See e.g., Theorem 13.2 (Zhang, 2023) for a detailed proof. □

Lemma B.4. Let X ⊂ Rd and supx∈X ∥x∥2 ≤ BX . Then it holds that

max
x0,··· ,xn−1∈X

log det

(
Id +

1

λ

n−1∑
t=0

xtx
⊤
t

)
≤ d log

(
1 +

nB2
X

dλ

)
.

Proof of Lemma B.4. See Lemma F.3. (Du et al., 2021) for a detailed proof. □

Lemma B.5 (Elliptical potential). Let {xs}Ts=1 be a sequence of vectors with xs ∈ V for some
Hilbert space V . Let Λ0 be a positive definite matrix and define Λt = Λ0 +

∑t
s=1 xsx

⊤
s . Then it

holds that
T∑

s=1

min
{
1, ∥xs∥Λ−1

s

}
≤ 2 log

(
det(ΛT )

det(Λ1)

)
.

Proof of Lemma B.5. See Lemma 11 (Abbasi-Yadkori et al., 2011) for a detailed proof. □

Lemma B.6 (The inverse function of sigmoid function). For any real numbers z1, z2 ∈
[σ(0), σ(R0)], it holds that

|ς(z1)− ς(z2)| ≤ κ · |z1 − z2|,

where ς(z) is the inverse function of sigmoid function defined in (55), and the constant κ = (eR0/2+
e−R0/2)2.

Proof of Lemma B.6. Since the function ς(·) is differentiable on (0, 1), we know that for any z1, z2 ∈
[σ(0), σ(R0)], there exists some ρ(z1, z2) ∈ [σ(0), σ(R0)], such that

ς(z1)− ς(z2) = ς ′(ρ(z1, z2)) · (z1 − z2).

Notice that ς ′(z) = 1
z(1−z) . We can obtain that

ς ′(ρ(z1, z2)) ≤ ς ′(σ(R0)) = (eR0/2 + e−R0/2)2 = κ.

Thus we finish the proof of Lemma B.6. □
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C EQUIVALENCE BETWEEN MAXIMIN AND MINIMAX OBJECTIVES

In this section, we show the equivalence between the theoretical max-player target and practical
max-player target under certain regularity conditions. We adopt the following assumption and theo-
rem from Liu et al. (2024b), as they directly apply to our scenario.

First, we denote the optimization target for max-player as

ϕ(π, r) := Ex∼d0,a1∼π(·|x),a2∼π(·|x) [r(x, a1)− r(x, a2)− αDKL (π(·|x)∥πref(·|x))] + L(r),
(60)

for any (π, r) ∈ Π × R. The equivalence of maximin object and minimax object relies on the
following assumption on reward function classR.
Assumption 4 (Regularity of reward model class (Liu et al., 2024b)). We assume the reward function
class R is a compact topological space, and the function in (60) is convex-like on R, i.e., for any
r1, r2 ∈ R and θ ∈ [0, 1], there exists r3 ∈ R such that

ϕ(π, r3) ≤ θ · ϕ(π, r1) + (1− θ) · ϕ(π, r2), ∀π ∈ Π. (61)

Based on Assumption 4, we give the equivalence between our maximin and minimax objectives in
Theorem 2:
Theorem 2 (Equivalence between maximin and minimax objectives (Liu et al., 2024b)). For the
policy class Π and the reward function class R satisfying Assumption 4, consider the following
policy defined as

πr̂ ∈ argmax
π∈Π

ϕ(π, r̂), where r̂ ∈ argmin
r∈R

max
π∈Π

ϕ(π, r). (62)

Then the policy πr̂ also satisfies the maximin object, i.e.,

πr̂ ∈ argmax
π∈Π

min
r∈R

ϕ(π, r) (63)

Proof of Theorem 2. See Theorem 5.6 in Liu et al. (2024b). □

Theorem 2 shows that if the reward function satisfies certain conditions, the policy solving minimax
problem also solves the maximin problem. This gives stronger guarantee for our practical algorithm.

D ADDITIONAL RESULTS ON EXPERIMENTS

Table 2 presents the results of AlpacaEval 2.0 and MT-Bench on online DPO, hybrid GSHF, SELM,
SADPO, TANPO (max-player) and TANPO (min-player).

Technique AlpacaEval 2.0 MT-Bench
LC Win Rate Win Rate Average 1st Turn 2nd Turn

Zephyr-7B-SFT (ref.) 6.59 3.66 6.14 6.34 5.95
Online DPO 24.36 22.14 7.24 7.37 7.11

Hybrid GSHF 25.29 22.61 7.28 7.26 7.30
SELM 26.99 25.99 7.26 7.56 6.96

SADPO 28.43 26.21 7.33 7.71 6.94
TANPO (max-player) 25.05 23.48 7.24 7.34 7.13
TANPO (min-player) 27.66 27.08 7.47 7.55 7.39

Table 2: Full results on AlpacaEval 2.0 and MT-Bench. LC Win Rate represents Length-Controlled
Win Rate.

Table 3 contains the accuracy of TANPO, SADPO and other baselines on several academic datasets.
This corresponds to Figure 2 in the main text. Table 4 provides detailed win rates and length-
controlled win rates of TANPO max-player and min-player across multiple iterations. These results
is visualized in Figure 4 in the main text.
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Technique GSM8k
(5-shot) MMLU OBQA HellaSwag

(15-shot)
Winogrande

(5-shot) Average

Online DPO 32.07 56.61 43.2 83.67 76.16 58.34
SELM 30.10 56.77 43.4 83.56 76.30 58.03

SADPO 33.36 56.96 43.2 83.40 76.56 58.70
TANPO (max-palyer) 32.75 57.06 43.4 83.69 76.40 58.60
TANPO (min-player) 32.84 56.89 43.4 83.69 76.64 58.71

Table 3: Results on several academic datasets.

Metrics Iter1
(Epoch1)

Iter2
(Epoch1)

Iter3
(Epoch1)

Iter4
(Epoch2)

Iter5
(Epoch2)

Iter6
(Epoch2)

TANPO (max-player)
win rate 18.45 20.87 23.48 23.48 24.72 25.96

TANPO (max-player)
LC win rate 19.51 24.36 25.05 24.56 25.47 27.58

TANPO (min-player)
win rate 18.45 21.86 27.08 26.09 29.55 29.86

TANPO (min-player)
LC win rate 19.51 25.40 27.66 26.36 30.43 30.56

Table 4: TANPO (max-player) and TANPO (min-player) win rates and length-controlled (LC) win
rates across 6 iterations.

E EXPERIMENT DETAILS

E.1 TRAINING DETAILS

We implement TANPO and SADPO along with other baselines on 4 NVIDIA A6000 GPUs. Our
code is based on Alignment Handbook (Tunstall et al.). We list the training configurations in Table
5.

learning rate 5× 10−7

learning scheduler type cosine
batch size 128

warmup ratio 0.1
gradient accumulation 16
batch size per device 2

α 0.01
η 10

optimizer adamw torch
seed 42

precision bfloat16

Table 5: Training configurations of TANPO and SADPO.

In TANPO, the response pairs are sampled from the two models using different temperature hy-
perparameters. We use temperature 0.7 for max-player and 0.5 for min-player. In the extended
experiment for TANPO, we reduce the learning rate to 1× 10−7 in iteration 4 and 5, and 5× 10−8

in iteration 6.

E.2 EVALUATION DETAILS

We follow the standard procedure to evaluate our model on AlpacaEval 2.01 and MT-Bench2. For
AlpacaEval 2.0, we use the alpaca eval gpt4 turbo fn as the annotators configuration, as

1https://github.com/tatsu-lab/alpaca_eval/tree/main
2https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge
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recommended by AlpacaEval 2.0. We use GPT-4-Turbo as the AlpacaEval 2.0 annotator. For MT-
Bench, we used the default configuration, where GPT-4 is the default scoring model.

We use the default configuration in the Language Model Evaluation Harness3 for tests on academic
datasets, except in few-shot settings. For the PairRM tests, we directly input the generations from
the AlpacaEval 2.0 tests into the PairRM model to evaluate the win rate.

E.3 IMPLEMENTATION OF BASELINES

In this subsection, we discuss the details of how we implemented the baselines.

• Online DPO. We implement the online DPO by ourselves. Aside from the loss function,
all other training setups are exactly the same as in our algorithms. It’s important to note
that the practical algorithm introduced by Rosset et al. (2024) is essentially equivalent to
iterative DPO.

• Hybrid GSHF. We implement Hybrid GSHF (Xiong et al., 2023) ourselves, where two
responses for each prompt are generated by the reference policy and the current policy. All
other training hyperparameters are kept identical to those in our algorithms. Since Hybrid
GSHF requires the reference policy to have good coverage, we use the model after one
iteration of offline DPO as the reference model.

• SELM. We also implement SELM (Zhang et al., 2024). In Zhang et al. (2024), the training
data come from the UltraFeedback dataset and generated responses. For fair comparison,
we generate two responses from the policy, rank them using the same preference model,
and update the policy with the SELM loss function. The training hyperparameters and
response generation settings are exactly the same as those in our two-agent algorithm.

3https://github.com/EleutherAI/lm-evaluation-harness
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