
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING NEURAL NETWORKS WITH DISTRIBUTION
SHIFT: EFFICIENTLY CERTIFIABLE GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

We give the first provably efficient algorithms for learning neural networks with
respect to distribution shift. We work in the Testable Learning with Distribution
Shift framework (TDS learning) of Klivans et al. (2024a), where the learner re-
ceives labeled examples from a training distribution and unlabeled examples from
a test distribution and must either output a hypothesis with low test error or reject
if distribution shift is detected. No assumptions are made on the test distribution.
All prior work in TDS learning focuses on classification, while here we must han-
dle the setting of nonconvex regression. Our results apply to real-valued networks
with arbitrary Lipschitz activations and work whenever the training distribution
has strictly sub-exponential tails. For training distributions that are bounded and
hypercontractive, we give a fully polynomial-time algorithm for TDS learning one
hidden-layer networks with sigmoid activations. We achieve this by importing
classical kernel methods into the TDS framework using data-dependent feature
maps and a type of kernel matrix that couples samples from both train and test
distributions.

1 INTRODUCTION

Understanding when a model will generalize from a known training distribution to an unknown test
distribution is a critical challenge in trustworthy machine learning and domain adaptation. Tradi-
tional approaches to this problem prove generalization bounds in terms of various notions of distance
between train and test distributions (Ben-David et al., 2006; 2010; Mansour et al., 2009) but do not
provide efficient algorithms. Recent work due to Klivans et al. (2024a) departs from this paradigm
and defines the model of Testable Learning with Distribution Shift (TDS learning), where a learner
may reject altogether if significant distribution shift is detected. When the learner accepts, however,
it outputs a classifier and a proof that the classifier has nearly optimal test error.

A sequence of works has given the first set of efficient algorithms in the TDS learning model for
well-studied function classes where no assumptions are taken on the test distribution (Klivans et al.,
2024a;b; Chandrasekaran et al., 2024; Goel et al., 2024). These results, however, hold for classifica-
tion and therefore do not apply to (nonconvex) regression problems and in particular to a long line of
work giving provably efficient algorithms for learning simple classes of neural networks under nat-
ural distributional assumptions on the training marginal (Goel & Klivans, 2019; Diakonikolas et al.,
2020a;c; 2022; Chen et al., 2022b; 2023; Wang et al., 2023; Gollakota et al., 2024a; Diakonikolas &
Kane, 2024).

The main contribution of this work is the first set of efficient TDS learning algorithms for broad
classes of (nonconvex) regression problems. Our results apply to neural networks with arbitrary
Lipschitz activations of any constant depth. As one example, we obtain a fully polynomial-time
algorithm for learning one hidden-layer neural networks with sigmoid activations with respect to any
bounded and hypercontractive training distribution. For bounded training distributions, the running
times of our algorithms match the best known running times for ordinary PAC or agnostic learning
(without distribution shift). We emphasize that unlike all prior work in domain adaptation, we make
no assumptions on the test distribution.

Regression Setting. We assume access to labeled examples from the training distribution and
unlabeled examples from the marginal of the test distribution. We consider the squared loss

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

LD(h) =
√
E(x,y)∼D[(y − h(x))2]. The error benchmark is analogous to the benchmark for

TDS learning in classification (Klivans et al., 2024a) and depends on two quantities: the opti-
mum training error achievable by a classifier in the learnt class, opt = minf∈F [LD(f)], and
the best joint error achievable by a single classifier on both the training and test distributions,
λ = minf ′∈F [LD(f

′) + LD′(f ′)]. Achieving an error of opt + λ is the standard goal in domain
adaptation (Ben-David et al., 2006; Blitzer et al., 2007; Mansour et al., 2009). We now formally
define the TDS learning framework for regression:

Definition 1.1 (Testable Regression with Distribution Shift). For ϵ, δ ∈ (0, 1) and a function class
F ⊆ {Rd → R}, the learner receives iid labeled examples from some unknown training distribution
D over Rd ×R and iid unlabeled examples from the marginal D′

x of another unknown test distribu-
tion D′ over Rd × R. The learner either rejects, or it accepts and outputs hypothesis h : Rd → R
such that the following are true.

1. (Soundness) With probability at least 1 − δ, if the algorithm accepts, then the output h
satisfies LD′(h) ≤ minf∈F [LD(f)] + minf ′∈F [LD(f

′) + LD′(f ′)] + ϵ.

2. (Completeness) If Dx = D′
x, then the algorithm accepts with probability at least 1− δ.

1.1 TECHNICAL STATEMENT OF RESULTS

Our results hold for classes of Lipschitz neural networks. In particular, we consider functions f of
the following form. Let σ : R → R be an activation function. Let W =

(
W (1), . . .W (t)

)
with

W (i) ∈ Rsi×si−1 be the tuple of weight matrices. Here, s0 = d is the input dimension and st = 1.
Define recursively the function fi : Rd → Rsi as fi(x) =W (i) ·σ

(
fi−1(x)

)
with f1(x) =W (1) ·x.

The function f : Rd → R computed by the neural network (W, σ) is defined as f(x) := ft(x).
The depth of this network is t.

We now present our main results on TDS learning for neural networks.

Function Class Runtime (Bounded) Runtime (Subgaussian)

One hidden-layer Sigmoid Net poly(d,M, 1/ϵ) dpoly(k log(M/ϵ))

Single ReLU poly(d,M) · 2O(1/ϵ) dpoly(k logM/ϵ)

Sigmoid Nets poly(d,M) · 2O((log(1/ϵ))
t−1) dpoly(k logM(log(1/ϵ)t−1))

1-Lipschitz Nets poly(d,M) · 2Õ(k
√
k2t−1/ϵ) dpoly(k2

t−1 logM/ϵ)

Table 1: In the above table, k denotes the number of neurons in the first hidden layer. M denotes
a bound on the labels of the train and test distributions. One hidden-layer Sigmoid nets refers to
depth 2 neural networks with sigmoid activation. The bounded distributions considered in the above
table have support on the unit ball. We assume that all relevant parameters of the neural network
are bounded by constants. For more detailed statements and proofs, see (1) Corollaries B.4 and B.6
and Theorems B.3 and B.5 for the bounded case, and (2) Theorems C.9 and C.10 for the Subgaussian
case.

From the above table, we highlight that in the cases of bounded distributions with (1) one hidden-
layer Sigmoid Nets, and (2) Single ReLU with ϵ < 1/ log d, we obtain TDS algorithms that run in
polynomial time in all parameters. Moreover, for the last row, regarding Lipschitz Nets, each neuron
is allowed to have a different and unknown Lipschitz activation. Therefore, in particular, our results
capture the class of single-index models (see, e.g., Kakade et al. (2011); Gollakota et al. (2024a)).

In the results of Table 1, we assume bounded labels for both the training and test distributions. This
assumption can be relaxed to a bound on any moment whose degree is strictly higher than 2 (see
Corollary D.2). In fact, such an assumption is necessary, as we show in Proposition D.1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

1.2 OUR TECHNIQUES

TDS Learning via Kernel Methods. The major technical contribution of this work is devoted to
importing classical kernel methods into the TDS learning framework. A first attempt at testing dis-
tribution shift with respect to a fixed feature map would be to form two corresponding covariance
matrices of the expanded features, one from samples drawn from the training distribution and the
other from samples drawn from the test distribution, and test if these two matrices have similar eigen-
decompositions. This approach only yields efficient algorithms for linear kernels, however, as here
we are interested in spectral properties of covariance matrices in the feature space corresponding to
low-degree polynomials, whose dimension is too large.

Instead we form a new data-dependent and concise reference feature map ϕ, that depends on ex-
amples from both Dx and D′

x. We show that this feature map approximately represents the ground
truth, i.e., some function with both low training and test error (this is due to the representer theo-
rem, see Proposition 3.7). To certify that error bounds transfer from Dx to D′

x, we require relative
error closeness between covariance matrix Φ′ = Ex∼D′

x
[ϕ(x)ϕ(x)⊤] of the feature expansion ϕ

over the test marginal with the corresponding matrix Φ = Ex∼Dx [ϕ(x)ϕ(x)
⊤] over the training

marginal. We draw fresh sets of verification examples and show how the kernel trick can be used
to efficiently achieve these approximations even though ϕ is a nonstandard feature map. For more
technical details, see Section 3.1.

By instantiating the above results using a type of polynomial kernel, we can reduce the problem
of TDS learning neural networks to the problem of obtaining an appropriate polynomial approxi-
mator. Our final training algorithm (as opposed to the testing phase) will essentially be kernelized
polynomial regression.

TDS Learning and Uniform Approximation. Prior work in TDS learning has established con-
nections between polynomial approximation theory and efficient algorithms in the TDS setting. In
particular, the existence of low-degree sandwiching approximators for a concept class is known to
imply dimension-efficient TDS learning algorithms for binary classification. The notion of sand-
wiching approximators for a function f refers to a pair of low-degree polynomials pup, pdown with
two main properties: (1) pdown ≤ f ≤ pup everywhere and (2) the expected absolute distance
between pup and pdown over some reference distribution is small. The first property is of partic-
ular importance in the TDS setting, since it holds everywhere and, therefore, it holds for any test
distribution unconditionally.

Here we make the simple observation that the incomparable notion of uniform approximation suf-
fices for TDS learning. A uniform approximator is a polynomial p that approximates a function
f pointwise, meaning that |p − f | is small in every point within a ball around the origin (there
is no known direct relationship between sandwiching and uniform approximators). In our setting,
uniform approximation is more convenient, due to the existence of powerful tools from polynomial
approximation theory regarding Lipschitz and analytic functions.

Contrary to the sandwiching property, the uniform approximation property cannot hold everywhere
if the approximated function class contains high-(or infinite-)degree functions. When the training
distribution has strictly sub-exponential tails, however, the expected error of approximation outside
the radius of approximation is negligible. Importantly, this property can be certified for the test
distribution by using a moment-matching tester. See also Section 4.

1.3 RELATED WORK

Learning with Distribution Shift. The field of domain adaptation has been studying the distribution
shift problem for almost two decades (Ben-David et al., 2006; Blitzer et al., 2007; Ben-David et al.,
2010; Mansour et al., 2009; David et al., 2010; Mousavi Kalan et al., 2020; Redko et al., 2020;
Kalavasis et al., 2024; Hanneke & Kpotufe, 2019; 2024; Awasthi et al., 2024), providing useful
insights regarding the information-theoretic (im)possibilities for learning with distribution shift. The
first efficient end-to-end algorithms for non-trivial concept classes with distribution shift were given
for TDS learning in Klivans et al. (2024a;b); Chandrasekaran et al. (2024) and for PQ learning,
originally defined by Goldwasser et al. (2020), in Goel et al. (2024). These works focus on binary
classification for classes like halfspaces, halfspace intersections, and geometric concepts. In the
regression setting, we need to handle unbounded loss functions, but we are also able to use Lipschitz

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

properties of real-valued networks to obtain results even for deeper architectures. For the special
case of linear regression, efficient algorithms for learning with distribution shift are known to exist
(see, e.g., Lei et al. (2021)), but our results capture much broader classes.

Another distinction between the existing works in TDS learning and our work, is that our results
require significantly milder assumptions on the training distribution. In particular, while all prior
works on TDS learning require both concentration and anti-concentration for the training marginal
(Klivans et al., 2024a;b; Chandrasekaran et al., 2024), we only assume strictly subexponential con-
centration in every direction. This is possible because the function classes we consider are Lipschitz,
which is not the case for binary classification.

Testable Learning. More broadly, TDS learning is related to the notion of testable learning (Ru-
binfeld & Vasilyan, 2023; Gollakota et al., 2023; 2024c; Diakonikolas et al., 2023; Gollakota et al.,
2024b; Diakonikolas et al., 2024; Slot et al., 2024), originally defined by Rubinfeld & Vasilyan
(2023) for standard agnostic learning, aiming to certify optimal performance for learning algorithms
without relying directly on any distributional assumptions. The main difference between testable
agnostic learning and TDS learning is that in TDS learning, we allow for distribution shift, while
in testable agnostic learning the training and test distributions are the same. Because of this, TDS
learning remains challenging even in the absence of label noise, in which case testable learning
becomes trivial (Klivans et al., 2024a).

Efficient Learning of Neural Networks. Many works have focused on providing upper and lower
bounds on the computational complexity of learning neural networks in the standard (distribution-
shift-free) setting (Goel et al., 2017; Goel & Klivans, 2019; Goel et al., 2020a;b; Diakonikolas et al.,
2020a;b;c; 2022; Chen et al., 2022a;b; 2023; Wang et al., 2023; Gollakota et al., 2024a; Diakonikolas
& Kane, 2024; Li et al., 2020; Gao et al., 2019; Zhang et al., 2019; Vempala & Wilmes, 2019; Allen-
Zhu et al., 2019; Bakshi et al., 2019; Manurangsi & Reichman, 2018; Ge et al., 2019; 2018; Du
et al., 2018; Goel et al., 2018; Tian, 2017; Li & Yuan, 2017; Brutzkus & Globerson, 2017; Zhong
et al., 2017; Zhang et al., 2016b; Janzamin et al., 2015). The majority of the upper bounds either
require noiseless labels and shallow architectures or work only under Gaussian training marginals.
Our results not only hold in the presence of distribution shift, but also capture deeper architectures,
under any strictly subexponential training marginal and allow adversarial label noise.

The upper bounds that are closest to our work are those given by Goel et al. (2017). They consider
ReLU as well as sigmoid networks, allow for adversarial label noise and assume that the training
marginal is bounded but otherwise arbitrary. Our results in Section 3 extend all of the results in
Goel et al. (2017) to the TDS setting, by assuming additionally that the training distribution is
hypercontractive (see Definition 3.9). This additional assumption is important to ensure that our
tests will pass when there is no distribution shift. For a more thorough technical comparison with
Goel et al. (2017), see Section 3.

In Section 4, we provide upper bounds for TDS learning of Lipschitz networks even when the
training marginal is an arbitrary strictly subexponential distribution. In particular, our results imply
new bounds for standard agnostic learning of single ReLU neurons, where we achieve runtime
dpoly(1/ϵ). The only known upper bounds work under the Gaussian marginal (Diakonikolas et al.,
2020a), achieving similar runtime. In fact, in the statistical query framework (Kearns, 1998), it
is known that dpoly(1/ϵ) runtime is necessary for agnostically learning the ReLU, even under the
Gaussian distribution (Diakonikolas et al., 2020b; Goel et al., 2020b).

2 PRELIMINARIES

We use standard vector and matrix notation. We denote with R,N the sets of real and natural
numbers accordingly. We denote with D labeled distributions over Rd×R and with Dx the marginal
of D on the features in Rd. For a set S of points in Rd, we define the empirical probabilities (resp.
expectations) as Prx∼S [E(x)] = 1

|S|
∑

x∈S 1{E(x)} (resp. Ex∼S [f(x)] =
1
|S|
∑

x∈S f(x)). We
denote with S̄ the labeled version of S and we define the clipping function clM : R → [−M,M],
that maps a number t ∈ R either to itself if t ∈ [−M,M], or to M · sign(t) otherwise.

Loss function. Throughout this work, we denote with LD(h) the squared loss of a hypothesis h :
Rd → R with respect to a labeled distribution D, i.e., LD(h) =

√
E(x,y)∼D[(y − h(x))2]. More-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

over, for any function f : Rd → R, we denote with ∥f∥D the quantity ∥f∥D =
√
Ex∼Dx [(f(x))

2].
For a set of labeled examples S̄, we denote with LS̄(h) the empirical loss on S̄, i.e., LS̄(h) =√

1
|S̄|
∑

(x,y)∈S̄(y − h(x))2 and similarly for ∥f∥S .

Distributional Assumptions. In order to obtain efficient algorithms, we will either assume that the
training marginal Dx is bounded and hypercontractive (Section 3) or that it has strictly subexponen-
tial tails in every direction (Section 4). We make no assumptions on the test marginal D′

x.

Regarding the labels, we assume some mild bound on the moments of the training and the test
labels, e.g., (a) that Ey∼Dy

[y4],Ey∼D′
y
[y4] ≤ M or (b) that y ∈ [−M,M] a.s. for both D and

D′. Although, ideally, we want to avoid any assumptions on the test distribution, as we show in
Proposition D.1, a bound on some constant-degree moment of the test labels is necessary.

3 BOUNDED TRAINING MARGINALS

We begin with the scenario where the training distribution is known to be bounded. In this case, it is
known that one-hidden-layer sigmoid networks can be agnostically learned (in the classical sense,
without distribution shift) in fully polynomial time and single ReLU neurons can be learned up to
error O(1

log(d)) in polynomial time (Goel et al., 2017). These results are based on a kernel-based
approach, combined with results from polynomial approximation theory. While polynomial approx-
imations can reduce the nonconvex agnostic learning problem to a convex one through polynomial
feature expansions, the kernel trick enables further pruning of the search space, which is important
for obtaining polynomial-time algorithms. Our work demonstrates another useful implication of the
kernel trick: it leads to efficient algorithms for testing distribution shift.

We will require the following standard notions:

Definition 3.1 (Kernels (Mercer, 1909)). A function K : Rd ×Rd → R is a kernel. If for any set of
m points x1, . . . ,xm in Rd, the matrix (K(xi,xj))(i,j)∈[m] is positive semidefinite, we say that the
kernel K is positive definite. The kernel K is symmetric if for all x,x′ ∈ Rd, K(x,x′) = K(x′,x).

Any PSD kernel is associated with some Hilbert space H and some feature map from Rd to H.

Fact 3.2 (Reproducing Kernel Hilbert Space). For any positive definite and symmetric (PDS) kernel
K, there is a Hilbert space H, equipped with the inner product ⟨·, ·⟩ : H × H → R and a function
ψ : Rd → H such that K(x,x′) = ⟨ψ(x), ψ(x′)⟩ for all x,x′ ∈ Rd. We call H the reproducing
kernel Hilbert space (RKHS) for K and ψ the feature map for K.

There are three main properties of the kernel method. First, although the associated feature map
ψ may correspond to a vector in an infinite-dimensional space, the kernel K(x,x′) may still be
efficiently evaluated, due to its analytic expression in terms of x, x′. Second, the function class
FK = {x 7→ ⟨v, ψ(x)⟩ : v ∈ H, ⟨v,v⟩ ≤ B} has Rademacher complexity independent from the
dimension of H, as long as the maximum value of K(x,x) for x in the domain is bounded (Thm.
6.12 in Mohri et al. (2018)). Third, the time complexity of finding the function in FK that best fits a
dataset is actually polynomial to the size of the dataset, due to the representer theorem (Thm. 6.11
in Mohri et al. (2018)). Taken together, these properties constitute the basis of the kernel method,
implying learners with runtime independent from the effective dimension of the learning problem.

In order to apply the kernel method to learn some function class F , it suffices to show that the class
F can be represented sufficiently well by the class FK. We give the following definition.

Definition 3.3 (Approximate Representation). Let F be a function class over Rd, K : Rd×Rd → R
a PDS kernel, where H is the corresponding RKHS and ψ the feature map for K. We say that F can
be (ϵ, B)-approximately represented within radius R with respect to K if for any f ∈ F , there is
v ∈ H with ⟨v,v⟩ ≤ B such that |f(x)− ⟨v, ψ(x)⟩| ≤ ϵ, for all x ∈ Rd : ∥x∥2 ≤ R.

For the purposes of TDS learning, we will also require the training marginal to have be hypercon-
tractive with respect to the kernel at hand. This is important to ensure that our test will accept
whenever there is no distribution shift. More formally, we require the following.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Definition 3.4 (Hypercontractivity). Let Dx be some distribution over Rd, let H be a Hilbert space
and let ψ : Rd → H. We say that Dx is (ψ,C, ℓ)-hypercontractive if for any t ∈ N and v ∈ H:

Ex∼Dx [⟨v, ψ(x)⟩2t] ≤ (Ct)2ℓt(Ex∼Dx [⟨v, ψ(x)⟩2])t

If K is the PDS kernel corresponding to ψ, we also say that Dx is (K, C, ℓ)-hypercontractive.

3.1 TDS REGRESSION VIA THE KERNEL METHOD

We now give a general theorem on TDS regression for bounded distributions, under the following
assumptions. Note that, although we assume that the training and test labels are bounded, this
assumption can be relaxed in a black-box manner and bounding some constant-degree moment of
the distribution of the labels suffices, as we show in Corollary D.2.
Assumption 3.5. For a function class F ⊆ {Rd → R}, and training and test distributions D, D′

over Rd × R, we assume the following.

1. F is (ϵ, B)-approximately represented within radius R w.r.t. a PDS kernel K : Rd×Rd →
R, for some ϵ ∈ (0, 1) and B,R ≥ 1 and let A = supx:∥x∥2≤R K(x,x).

2. The training marginal Dx (1) is bounded within {x : ∥x∥2 ≤ R} and (2) is (K, C, ℓ)-
hypercontractive for some C, ℓ ≥ 1.

3. The training and test labels are both bounded in [−M,M] for some M ≥ 1.

Consider the function class F , the kernel K and the parameters ϵ, A,B,C,M, ℓ as defined in the
assumption above and let δ ∈ (0, 1). Then, we obtain the following theorem.
Theorem 3.6 (TDS Learning via the Kernel Method). Under Assumption 3.5, Algorithm 1 learns
the class F in the TDS regression setting up to excess error 5ϵ and probability of failure δ. The time
complexity is O(T) · poly(d, 1ϵ , (log(1/δ))

ℓ, A,B,Cℓ, 2ℓ,M), where T is the evaluation time of K.

The main ideas of the proof are the following.

Obtaining a concise reference feature map. The algorithm first draws reference sets Sref , S
′
ref

from both the training and the test distributions. The representer theorem, combined with the ap-
proximate representation assumption (Definition 3.3) ensure that the reference examples define a
new feature map ϕ : Rd → R2m with ϕ(x) = (K(x, z))z∈Sref∪S′

ref
such that the ground truth

f∗ = argminf∈F [LD(f) + LD′(f)] can be approximately represented as a linear combination of
the features in ϕ with respect to both Sref and S′

ref , i.e., ∥f∗ − (a∗)⊤ϕ∥Sref
and ∥f∗ − (a∗)⊤ϕ∥S′

ref

are both small for some a∗ ∈ R2m. In particular, we have the following.
Proposition 3.7 (Representer Theorem, modification of Theorem 6.11 in Mohri et al. (2018)). Sup-
pose that a function f : Rd → R can be (ϵ, B)-approximately represented within radius R w.r.t.
some PDS kernel K (as per Definition 3.3). Then, for any set of examples S in {x ∈ Rd : ∥x∥2 ≤
R}, there is a = (ax)x∈S ∈ R|S| such that for p̃(x) =

∑
z∈S azK(z,x) we have:

∥f − p̃∥S ≤ ϵ and
∑

x,z∈S

axazK(z,x) ≤ B

Proof. We first observe that there is some v ∈ H such that ⟨v,v⟩ ≤ B and for p(x) = ⟨v, ψ(x)⟩ we
have ∥f − p∥S ≤ ϵ, because by Definition 3.3, there is a pointwise approximator for f with respect
to K. By Theorem 6.11 in Mohri et al. (2018), this implies the existence of p̃ as desired.

Note that since the evaluation of ϕ(x) only involves Kernel evaluations, we never need to compute
the initial feature expansion ψ(x) which could be overly expensive.

Forming a candidate output hypothesis. We know that the reference feature map approximately
represents the ground truth. However, having no access to test labels, we cannot directly hope to find
the corresponding coefficient a∗ ∈ R2m. Instead, we use only the training reference examples to
find a candidate hypothesis p̂ with close-to-optimal performance on the training distribution which
can be also expressed in terms of the reference feature map ϕ, as p̂ = â⊤ϕ. It then suffices to test
the quality of ϕ on the test distribution.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1: TDS Regression via the Kernel Method
Input: Parameters M,R,B,A,C, ℓ ≥ 1, ϵ, δ ∈ (0, 1) and sample access to D, D′

x

Set m = c (ABM)4

ϵ4 log(1δ), N = cm2ABC
ϵ4 (4C log(4δ))

4ℓ+1, c large enough constant

Draw m i.i.d. labeled examples S̄ref from D and m i.i.d. unlabeled examples S′
ref from D′

x;
if for some x ∈ S′

ref we have ∥x∥2 > R then
Reject and terminate;

Let â = (âz)z∈Sref
be the optimal solution to the following convex program

min
a∈Rm

∑
(x,y)∈S̄ref

(
y −

∑
z∈Sref

azK(z,x)
)2

s.t.
∑

z,w∈Sref

azawK(z,w) ≤ B, where a = (az)z∈Sref

Draw N i.i.d. unlabeled examples Sver from Dx and N unlabeled examples S′
ver from D′

x;
if for some x ∈ S′

ver we have ∥x∥2 > R then
Reject and terminate;

Compute the matrix Φ̂ = (Φ̂z,w)z,w∈Sref∪S′
ref

with Φ̂z,w = 1
N

∑
x∈Sver

K(x, z)K(x,w);
Compute the matrix Φ̂′ = (Φ̂′

z,w)z,w∈Sref∪S′
ref

with Φ̂′
z,w = 1

N

∑
x∈S′

ver
K(x, z)K(x,w);

Let ρ be the value of the following eigenvalue problem

max
a∈R2m

a⊤Φ̂′a s.t. a⊤Φ̂a ≤ 1

if ρ > 1 + ϵ2

50AB then
Reject and terminate;

Otherwise, accept and output h : x 7→ h(x) = clM (p̂(x)), where p̂(x) =
∑

z∈Sref
âzK(z,x);

Testing the quality of reference feature map on the test distribution. We know that the function
p̃∗ = (a∗)⊤ϕ performs well on the test distribution (since it is close to f∗ on a reference test set).
We also know that the candidate output â⊤ϕ performs well on the training distribution. Therefore,
in order to ensure that p̂ performs well on the test distribution, it suffices to show that the distance
between p̂ and p̃∗ under the test distribution, i.e., ∥â⊤ϕ − (a∗)⊤ϕ∥D′

x
, is small. In fact, it suffices

to bound this distance by the corresponding one under the training distribution, because p̂ fits the
training data well and ∥â⊤ϕ − (a∗)⊤ϕ∥Dx is indeed small. Since we do not know a∗, we need to
run a test on ϕ that certifies the desired bound for any possible a∗.

Using the spectral tester. We observe that ∥â⊤ϕ − (a∗)⊤ϕ∥2Dx
= (â − a∗)⊤Φ(â − a∗), where

Φ = Ex∼Dx [ϕ(x)ϕ(x)
⊤] and similarly ∥â⊤ϕ − (a∗)⊤ϕ∥2D′

x
= (â − a∗)⊤Φ′(â − a∗). Since we

want to obtain a bound for all a∗, we essentially want to ensure that for any a ∈ R2m we have
a⊤Φ′a ≤ (1 + ρ)a⊤Φa for some small ρ. Having a multiplicative bound is important because we
do not have any bound on the norm of ∥â− a∗∥2.

To implement the test, and since we cannot test Φ and Φ′ directly, we draw fresh verification ex-
amples Sver, S

′
ver from Dx and D′

x and run a spectral test on the corresponding empirical versions
Φ̂, Φ̂′ of the matrices Φ,Φ′. To ensure that the test will accept when there is no distribution shift, we
use the following lemma (originally from Goel et al. (2024)) on multiplicative spectral concentration
for Φ̂, where the hypercontractivity assumption (Definition 3.4) is important.

Lemma 3.8 (Multiplicative Spectral Concentration, Lemma B.1 in Goel et al. (2024), modified). Let
Dx be a distribution over Rd and ϕ : Rd → Rm such that Dx is (ϕ,C, ℓ)-hypercontractive for some
C, ℓ ≥ 1. Suppose that S consists of N i.i.d. examples from Dx and let Φ = Ex∼Dx [ϕ(x)ϕ(x)

⊤],
and Φ̂ = 1

N

∑
x∈S ϕ(x)ϕ(x)

⊤. For any ϵ, δ ∈ (0, 1), if N ≥ 64Cm2

ϵ2 (4C log2(
4
δ))

4ℓ+1, then with
probability at least 1− δ, we have that

For any a ∈ Rm : a⊤Φ̂a ∈ [(1− ϵ)a⊤Φa, (1 + ϵ)a⊤Φa]

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Note that the multiplicative spectral concentration lemma requires access to independent samples.
However, the reference feature map ϕ depends on the reference examples Sref , S

′
ref . This is the

reason why we do not reuse Sref , S
′
ref , but rather draw fresh verification examples.

For the full formal proof of Theorem 3.6 as well as a proof of Lemma 3.8, see Appendix B. The full
proof involves appropriate uniform convergence bounds for kernel hypotheses, which are important
in order to shift from the reference to the verification examples and back.

3.2 APPLICATIONS

Having obtained a general theorem for TDS learning under Assumption 3.5, we will now instantiate
it to obtain TDS learning algorithms for learning neural networks with Lipschitz activations. In
particular, we recover all of the bounds of Goel et al. (2017), using the additional assumption that
the training distribution is hypercontractive in the following standard sense.
Definition 3.9 (Hypercontractivity). We say that D is C-hypercontractive if for all polynomials of
degree ℓ and t ∈ N, we have that

Ex∼D
[
p(x)2t

]
≤ (Ct)2ℓt

(
Ex∼D

[
p(x)2

])t
.

Note that many common distributions like log-concave or the uniform over the hypercube are known
to be hypercontractive for some constant C (see Carbery & Wright (2001) and O’Donnell (2014)).
We provide the following lemma, whose proof can be found in the appendix (see Theorems A.19
and A.21 and Lemma A.16).
Lemma 3.10. The following bounds on the parameters in Assumption 3.5 hold for specific instanti-
ations of the function classes.

Function Class Degree (ℓ) Representation
Bound (B)

Kernel
Bound (A)

Sigmoid Nets O
(
RW t−2(t log(Wϵ))t−1 logR

)
2ℓ ·W Õ(Wt log(1

ϵ))
t−2

(2R)2
tℓ

L-Lipschitz Nets O
(
(WL)t−1Rk

√
k/ϵ
)

(k + ℓ)O(ℓ) RO(ℓ)

Table 2: We instantiate the parameters relevant to Assumption 3.5 for Sigmoid and Lipschitz Nets.
We have: (1) t denotes a bound on the depth of the network, (2)W is a bound on the sum of network
weights in all layers other than the first, (3) (ϵ, B) and radius R are the approximate representation
parameters, (4) k is the number of hidden units in the first layer. The kernel function can be evaluated
in time poly(d, ℓ). For each of the classes, we assume that the maximum two norm of any row of
the matrix corresponding to the weights of the first layer is bounded by 1. The kernel we use
is the composed multinomial kernel MK

(t)
ℓ with appropriately chosen degree vector ℓ. Here, ℓ

equals the product of the entries of ℓ. Any C-hypercontractive distribution is also (MK
(t)
ℓ , C, ℓ)

hypercontractive for ℓ as specified in the table. For the case of k = 1, the bound B in the second
row can be improved to 2O(ℓ).

Combining Lemma 3.10 with Theorem 3.6, we obtain the results of the middle column of Table 1.

4 UNBOUNDED DISTRIBUTIONS

We showed that the kernel method provides runtime improvements for TDS learning, because it can
be used to obtain a concise reference feature map, whose spectral properties on the test distribution
are all we need to check to certify low test error. A similar approach would not provide any run-
time improvements for the case of unbounded distributions, because the dimension of the reference
feature space would not be significantly smaller than the dimension of the multinomial feature ex-
pansion. Therefore, we can follow the standard moment-matching testing approach commonly used
in TDS learning (Klivans et al., 2024a) and testable agnostic learning (Rubinfeld & Vasilyan, 2023;
Gollakota et al., 2023). We require the following assumptions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Assumption 4.1. For a function class F ⊆ {Rd → R}, and training and test distributions D, D′

over Rd × R, we assume the following.

1. For any f ∈ F , there is W ∈ Rk×d with ∥W∥2 = 1 and WW⊤ = Ik and a function
g : Rk → R such that f(x) = g(Wx) for all x ∈ Rd. Moreover, f(0) = O(1).

2. For any f ∈ F , with f(x) = g(Wx), there is polynomial q over Rk of degree at most
ℓ s.t. for any x ∈ Rd with ∥x∥2 ≤ R we have |q(Wx) − g(Wx)| ≤ ϵ, where R ≥ 1,
ϵ ∈ (0, 1). We also require that ℓ ≤ ÕF,ϵ(R), where ÕF,ϵ is hiding factors that are at most
logarithmic in R, but can also depend on ϵ,F .

3. The training marginal Dx is (1 + γ)-strictly subexponential for γ ∈ (0, 1).

4. The training and test labels are both bounded in [−M,M] for some M ≥ 1.

Consider the function class F , and the parameters ϵ, γ,M, k, ℓ as defined in the assumption above
and let δ ∈ (0, 1). Then, we obtain the following theorem.

Theorem 4.2 (TDS Learning via Uniform Approximation). Under Assumption 4.1, Algorithm 2
learns the class F in the TDS regression setting up to excess error 5ϵ and probability of failure δ.
The time complexity is poly(ds, 1/ϵ, log(1/δ)ℓ) where s = (ℓ log(M/ϵ))O(1/γ).

Note that Assumption 4.1 involves a low-degree uniform approximation assumption, which only
holds within some bounded-radius ball. Since we work under unbounded distributions, we also
need to handle the errors outside the ball. To this end, we use the following lemma, which follows
from results in Ben-David et al. (2018).

Lemma 4.3. Suppose f = fW and q satisfy parts 1 and 2 of Assumption 4.1. Then

|p(x)| ≤ (kℓ)O(ℓ) ∥Wx∥ℓ2 , for all ∥Wx∥2 ≥ R.

The lemma above gives a bound on the values of a low-degree uniform approximator outside the
interval of approximation. Therefore, we can hope to control the error of approximation outside
the interval by taking advantage of the tails of our target distribution as well as picking R suffi-
ciently large. In order for the strictly subexponential tails to suffice, the quantitative dependence of
ℓ on R is important. This is why we assume (see Assumption 4.1) that ℓ = Õ(R). In particular,
in order to bound the quantity Ex∼Dx [p

2(x)1{∥Wx∥2 ≥ R}], we use Lemma 4.3 the Cauchy-
Schwarz inequality and the bounds Ex∼Dx [∥Wx∥4ℓ2] ≤ (kℓ)O(ℓ) and Prx∼Dx [∥Wx∥2 ≥ R] ≤
exp(−Ω(R/k)1+γ). Substituting for ℓ = Õ(R), we observe that the overall bound on the quan-
tity Ex∼Dx [p

2(x)1{∥Wx∥2 ≥ R}] decays with R, whenever γ is strictly positive. Therefore, the
overall bound can be made arbitrarily small with an appropriate choice of R (and therefore ℓ). For
more details on the proof, see Appendix C. Apart from the careful manipulations described above,
the proof follows the lines of the corresponding results for TDS learning through sandwiching poly-
nomials (Klivans et al., 2024a).

In order to obtain end-to-end results for classes of neural networks (see the rightmost column of
Table 1), we need to prove the existence of uniform polynomial approximators whose degree scales
almost linearly with respect to the radius of approximation for the reasons described above. For
arbitrary Lipschitz nets (see Theorem A.19), we use a general tool from polynomial approximation
theory, the multivariate Jackson’s theorem (Theorem A.9). This gives us a polynomial with degree
scaling linearly in R and polynomially on 1

ϵ and the number of hidden units (k) in the first layer.

For sigmoid nets, a more careful derivation yields improved bounds (see Theorem A.21) which have
a poly-logarithmic dependence on 1

ϵ . Our construction involves composing approximators for the
activations at each layer. Naively, the degree of this composition would be super linear in R. To get
around this, we use the key property that the size of the output of a sigmoid network at any layer is
memoryless (i.e., has no R dependence). This follows from the fact that the sigmoid is bounded in
[0, 1]. Using this, we obtain an approximator with almost-linear dependence on R. For more details
see Appendix A.5.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparame-
terized neural networks, going beyond two layers. Advances in neural information processing
systems, 32, 2019.

Pranjal Awasthi, Corinna Cortes, and Mehryar Mohri. Best-effort adaptation. Annals of Mathematics
and Artificial Intelligence, 92(2):393–438, 2024.

Ainesh Bakshi, Rajesh Jayaram, and David P Woodruff. Learning two layer rectified neural networks
in polynomial time. In Conference on Learning Theory, pp. 195–268. PMLR, 2019.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. Advances in neural information processing systems, 19, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wort-
man Vaughan. A theory of learning from different domains. Machine learning, 79:151–175,
2010.

Shalev Ben-David, Adam Bouland, Ankit Garg, and Robin Kothari. Classical lower bounds from
quantum upper bounds. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pp. 339–349. IEEE, 2018.

John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman. Learning
bounds for domain adaptation. Advances in neural information processing systems, 20, 2007.

Alon Brutzkus and Amir Globerson. Globally optimal gradient descent for a convnet with gaussian
inputs. In International conference on machine learning, pp. 605–614. PMLR, 2017.

Anthony Carbery and James Wright. Distributional and lq norm inequalities for polynomials over
convex bodies in rn. Mathematical research letters, 8(3):233–248, 2001.

Gautam Chandrasekaran, Adam R Klivans, Vasilis Kontonis, Konstantinos Stavropoulos, and Ar-
sen Vasilyan. Efficient discrepancy testing for learning with distribution shift. arXiv preprint
arXiv:2406.09373, 2024.

Sitan Chen, Aravind Gollakota, Adam Klivans, and Raghu Meka. Hardness of noise-free learning
for two-hidden-layer neural networks. Advances in Neural Information Processing Systems, 35:
10709–10724, 2022a.

Sitan Chen, Adam R Klivans, and Raghu Meka. Learning deep relu networks is fixed-parameter
tractable. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS),
pp. 696–707. IEEE, 2022b.

Sitan Chen, Zehao Dou, Surbhi Goel, Adam Klivans, and Raghu Meka. Learning narrow one-
hidden-layer relu networks. In The Thirty Sixth Annual Conference on Learning Theory, pp.
5580–5614. PMLR, 2023.

Shai Ben David, Tyler Lu, Teresa Luu, and Dávid Pál. Impossibility theorems for domain adaptation.
In Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
pp. 129–136. JMLR Workshop and Conference Proceedings, 2010.

Ilias Diakonikolas and Daniel M Kane. Efficiently learning one-hidden-layer relu networks via
schurpolynomials. In The Thirty Seventh Annual Conference on Learning Theory, pp. 1364–
1378. PMLR, 2024.

Ilias Diakonikolas, Surbhi Goel, Sushrut Karmalkar, Adam R Klivans, and Mahdi Soltanolkotabi.
Approximation schemes for relu regression. In Conference on learning theory, pp. 1452–1485.
PMLR, 2020a.

Ilias Diakonikolas, Daniel Kane, and Nikos Zarifis. Near-optimal sq lower bounds for agnostically
learning halfspaces and relus under gaussian marginals. Advances in Neural Information Process-
ing Systems, 33:13586–13596, 2020b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ilias Diakonikolas, Daniel M Kane, Vasilis Kontonis, and Nikos Zarifis. Algorithms and sq lower
bounds for pac learning one-hidden-layer relu networks. In Conference on Learning Theory, pp.
1514–1539. PMLR, 2020c.

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, and Nikos Zarifis. Learning a single neuron
with adversarial label noise via gradient descent. In Conference on Learning Theory, pp. 4313–
4361. PMLR, 2022.

Ilias Diakonikolas, Daniel Kane, Vasilis Kontonis, Sihan Liu, and Nikos Zarifis. Efficient testable
learning of halfspaces with adversarial label noise. Advances in Neural Information Processing
Systems, 36, 2023.

Ilias Diakonikolas, Daniel Kane, Sihan Liu, and Nikos Zarifis. Testable learning of general halfs-
paces with adversarial label noise. In The Thirty Seventh Annual Conference on Learning Theory,
pp. 1308–1335. PMLR, 2024.

Simon S Du, Jason D Lee, and Yuandong Tian. When is a convolutional filter easy to learn? In 6th
International Conference on Learning Representations, ICLR 2018, 2018.

Dietmar Ferger. Optimal constants in the marcinkiewicz–zygmund inequalities. Statistics &
Probability Letters, 84:96–101, 2014. ISSN 0167-7152. doi: https://doi.org/10.1016/j.spl.
2013.09.029. URL https://www.sciencedirect.com/science/article/pii/
S0167715213003271.

Weihao Gao, Ashok V Makkuva, Sewoong Oh, and Pramod Viswanath. Learning one-hidden-
layer neural networks under general input distributions. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 1950–1959. PMLR, 2019.

Rong Ge, Jason D Lee, and Tengyu Ma. Learning one-hidden-layer neural networks with landscape
design. In 6th International Conference on Learning Representations, ICLR 2018, 2018.

Rong Ge, Rohith Kuditipudi, Zhize Li, and Xiang Wang. Learning two-layer neural networks with
symmetric inputs. In International Conference on Learning Representations, 2019.

Surbhi Goel and Adam R Klivans. Learning neural networks with two nonlinear layers in polynomial
time. In Conference on Learning Theory, pp. 1470–1499. PMLR, 2019.

Surbhi Goel, Varun Kanade, Adam Klivans, and Justin Thaler. Reliably learning the relu in poly-
nomial time. In Satyen Kale and Ohad Shamir (eds.), Proceedings of the 2017 Conference on
Learning Theory, volume 65 of Proceedings of Machine Learning Research, pp. 1004–1042.
PMLR, 07–10 Jul 2017.

Surbhi Goel, Adam Klivans, and Raghu Meka. Learning one convolutional layer with overlapping
patches. In International conference on machine learning, pp. 1783–1791. PMLR, 2018.

Surbhi Goel, Aravind Gollakota, Zhihan Jin, Sushrut Karmalkar, and Adam Klivans. Superpolyno-
mial lower bounds for learning one-layer neural networks using gradient descent. In International
Conference on Machine Learning, pp. 3587–3596. PMLR, 2020a.

Surbhi Goel, Aravind Gollakota, and Adam Klivans. Statistical-query lower bounds via functional
gradients. Advances in Neural Information Processing Systems, 33:2147–2158, 2020b.

Surbhi Goel, Abhishek Shetty, Konstantinos Stavropoulos, and Arsen Vasilyan. Tolerant algorithms
for learning with arbitrary covariate shift. arXiv preprint arXiv:2406.02742, 2024.

Shafi Goldwasser, Adam Tauman Kalai, Yael Kalai, and Omar Montasser. Beyond perturbations:
Learning guarantees with arbitrary adversarial test examples. Advances in Neural Information
Processing Systems, 33:15859–15870, 2020.

Aravind Gollakota, Adam R Klivans, and Pravesh K Kothari. A moment-matching approach to
testable learning and a new characterization of rademacher complexity. Proceedings of the fifty-
fifth annual ACM Symposium on Theory of Computing, 2023.

11

https://www.sciencedirect.com/science/article/pii/S0167715213003271
https://www.sciencedirect.com/science/article/pii/S0167715213003271

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Aravind Gollakota, Parikshit Gopalan, Adam Klivans, and Konstantinos Stavropoulos. Agnostically
learning single-index models using omnipredictors. Advances in Neural Information Processing
Systems, 36, 2024a.

Aravind Gollakota, Adam Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Tester-learners
for halfspaces: Universal algorithms. Advances in Neural Information Processing Systems, 36,
2024b.

Aravind Gollakota, Adam R Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. An efficient
tester-learner for halfspaces. The Twelfth International Conference on Learning Representations,
2024c.

Steve Hanneke and Samory Kpotufe. On the value of target data in transfer learning. Advances in
Neural Information Processing Systems, 32, 2019.

Steve Hanneke and Samory Kpotufe. A more unified theory of transfer learning. arXiv preprint
arXiv:2408.16189, 2024.

Majid Janzamin, Hanie Sedghi, and Anima Anandkumar. Beating the perils of non-convexity: Guar-
anteed training of neural networks using tensor methods. arXiv preprint arXiv:1506.08473, 2015.

Sham M Kakade, Varun Kanade, Ohad Shamir, and Adam Kalai. Efficient learning of generalized
linear and single index models with isotonic regression. In J. Shawe-Taylor, R. Zemel, P. Bartlett,
F. Pereira, and K.Q. Weinberger (eds.), Advances in Neural Information Processing Systems,
volume 24. Curran Associates, Inc., 2011.

Alkis Kalavasis, Ilias Zadik, and Manolis Zampetakis. Transfer learning beyond bounded density
ratios. arXiv preprint arXiv:2403.11963, 2024.

Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the ACM
(JACM), 45(6):983–1006, 1998.

Adam R Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Testable learning with distribu-
tion shift. The Thirty Seventh Annual Conference on Learning Theory, 2024a.

Adam R Klivans, Konstantinos Stavropoulos, and Arsen Vasilyan. Learning intersections of half-
spaces with distribution shift: Improved algorithms and sq lower bounds. The Thirty Seventh
Annual Conference on Learning Theory, 2024b.

Qi Lei, Wei Hu, and Jason Lee. Near-optimal linear regression under distribution shift. In Interna-
tional Conference on Machine Learning, pp. 6164–6174. PMLR, 2021.

Yuanzhi Li and Yang Yuan. Convergence analysis of two-layer neural networks with relu activation.
Advances in neural information processing systems, 30, 2017.

Yuanzhi Li, Tengyu Ma, and Hongyang R Zhang. Learning over-parametrized two-layer neural
networks beyond ntk. In Conference on learning theory, pp. 2613–2682. PMLR, 2020.

Roi Livni, Shai Shalev-Shwartz, and Ohad Shamir. On the computational efficiency of training
neural networks. In Proceedings of the 27th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’14, pp. 855–863, Cambridge, MA, USA, 2014. MIT Press.

Yishay Mansour, Mehryar Mohri, and Afshin Rostamizadeh. Domain adaptation: Learning
bounds and algorithms. In Proceedings of The 22nd Annual Conference on Learning The-
ory (COLT 2009), Montréal, Canada, 2009. URL http://www.cs.nyu.edu/˜mohri/
postscript/nadap.pdf.

Pasin Manurangsi and Daniel Reichman. The computational complexity of training relu (s). arXiv
preprint arXiv:1810.04207, 2018.

James Mercer. Functions of positive and negative type, and their connection with the theory of
integral equations. Philosophical Transactions of the Royal Society A, 209:415–446, 1909. URL
https://api.semanticscholar.org/CorpusID:121070291.

12

http://www.cs.nyu.edu/~mohri/postscript/nadap.pdf
http://www.cs.nyu.edu/~mohri/postscript/nadap.pdf
https://api.semanticscholar.org/CorpusID:121070291

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of machine learning.
MIT press, second edition, 2018.

Mohammadreza Mousavi Kalan, Zalan Fabian, Salman Avestimehr, and Mahdi Soltanolkotabi. Min-
imax lower bounds for transfer learning with linear and one-hidden layer neural networks. Ad-
vances in Neural Information Processing Systems, 33:1959–1969, 2020.

D. J. Newman and H. S. Shapiro. Jackson’s Theorem in Higher Dimensions, pp. 208–219. Springer
Basel, Basel, 1964.

Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.

Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc Sebban, and Younès Bennani. A sur-
vey on domain adaptation theory: learning bounds and theoretical guarantees. arXiv preprint
arXiv:2004.11829, 2020.

Ronitt Rubinfeld and Arsen Vasilyan. Testing distributional assumptions of learning algorithms.
Proceedings of the fifty-fifth annual ACM Symposium on Theory of Computing, 2023.

Lucas Slot, Stefan Tiegel, and Manuel Wiedmer. Testably learning polynomial threshold functions.
arXiv preprint arXiv:2406.06106, 2024.

Yuandong Tian. An analytical formula of population gradient for two-layered relu network and its
applications in convergence and critical point analysis. In International conference on machine
learning, pp. 3404–3413. PMLR, 2017.

Santosh Vempala and John Wilmes. Gradient descent for one-hidden-layer neural networks: Poly-
nomial convergence and sq lower bounds. In Conference on Learning Theory, pp. 3115–3117.
PMLR, 2019.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Puqian Wang, Nikos Zarifis, Ilias Diakonikolas, and Jelena Diakonikolas. Robustly learning a sin-
gle neuron via sharpness. In International Conference on Machine Learning, pp. 36541–36577.
PMLR, 2023.

Xiao Zhang, Yaodong Yu, Lingxiao Wang, and Quanquan Gu. Learning one-hidden-layer relu
networks via gradient descent. In The 22nd international conference on artificial intelligence and
statistics, pp. 1524–1534. PMLR, 2019.

Yuchen Zhang, Jason D. Lee, and Michael I. Jordan. L1-regularized neural networks are improperly
learnable in polynomial time. In Maria Florina Balcan and Kilian Q. Weinberger (eds.), Pro-
ceedings of The 33rd International Conference on Machine Learning, volume 48 of Proceedings
of Machine Learning Research, pp. 993–1001, New York, New York, USA, 20–22 Jun 2016a.
PMLR.

Yuchen Zhang, Jason D Lee, and Michael I Jordan. l1-regularized neural networks are improperly
learnable in polynomial time. In International Conference on Machine Learning, pp. 993–1001.
PMLR, 2016b.

Kai Zhong, Zhao Song, Prateek Jain, Peter L Bartlett, and Inderjit S Dhillon. Recovery guaran-
tees for one-hidden-layer neural networks. In International conference on machine learning, pp.
4140–4149. PMLR, 2017.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A POLYNOMIAL APPROXIMATIONS OF NEURAL NETWORKS

A.1 RESULTS FROM APPROXIMATION THEORY

We first introduce some definitions that we will use throughout the appendix.

Definition A.1 ((ϵ, R)-Uniform Approximation). For ϵ > 0, R ≥ 1, and g : Rk → R, we say that
q : Rk → R is an (ϵ, R)-uniform approximation polynomial for g if

|q(x)− g(x)| ≤ ϵ ∀ ∥x∥2 ≤ R.

Definition A.2. Let F ⊆ {Rd → R} be a function class over Rd. For ℓ, B > 0, we say the (ϵ, R)-
uniform approximation degree of F is at most ℓ with coefficient bound B if for any f ∈ F , there
is an (ϵ, R)-uniform approximation polynomial p(x) for f such that deg(p) ≤ ℓ and each of the
coefficients of p are bounded in absolute value by B.

The following are useful facts about the coefficients of approximating polynomials.

Fact A.3 (Lemma 23 from Goel et al. (2017)). Let p be a polynomial of degree ℓ such that |p(x)| ≤ b
for |x| ≤ 1. Then, the sum of squares of all its coefficients is at most b2 · 2O(ℓ).

Lemma A.4. Let p be a polynomial of degree ℓ such that |p(x)| ≤ b for |x| ≤ R. Then, the sum of
squares of all its coefficients is at most b2 · 2O(ℓ) when R ≥ 1.

Proof. Consider q(x) = p(Rx). Clearly, |q(x)| ≤ b for all |x| ≤ 1. Thus, the sum of squares of its
coefficients is at most b2 · 2O(ℓ) from Fact A.3. Now, p(x) = q(x/R) has coefficients bounded by
b2 · 2O(ℓ) when R ≥ 1.

Fact A.5 (Ben-David et al. (2018)). Let q be a polynomial with real coefficients on k variables with
degree ℓ such that for all x ∈ [0, 1]k, |q(x)| ≤ 1. Then the magnitude of any coefficient of q is at
most (2kℓ(k + ℓ))ℓ and the sum of the magnitudes of all coefficients of q is at most (2(k + ℓ))3ℓ.

Lemma A.6. Let q be a polynomial with real coefficients on k variables with degree ℓ such that for
all x ∈ Rk with ∥x∥2 ≤ R, |q(x)| ≤ b. Then the sum of the magnitudes of all coefficients of q is at
most b(2(k + ℓ))3ℓkℓ/2 for R ≥ 1.

Proof. Consider the polynomial h(x) = 1/b · q(Rx/
√
k). Then |h(x)| = 1/b · |q(Rx/

√
k)| ≤ 1

for ∥xR/
√
k∥2 ≤ R, or equivalently for all ∥x∥2 ≤

√
k. In particular, since the unit cube [0, 1]k

is contained in the
√
k radius ball, then |h(x)| ≤ 1 for x ∈ [0, 1]k. By Fact A.5, the sum of the

magnitudes of the coefficients of h is at most (2(k + ℓ))3ℓ. Since q(x) = b · h(x
√
k/R), then the

sum of the magnitudes of the coefficients of q is at most b(2(k + ℓ))3ℓkℓ/2.

Lemma A.7. Let p(x) be a degree ℓ polynomial in x ∈ Rd such that each coefficient is bounded in
absolute value by b. Then the sum of the magnitudes of the coefficients of p(x)t is at most btdtℓ.

In the following lemma, we bound the magnitude of approximating polynomials for subspace juntas
outside the radius of approximation.

Lemma A.8. Let ϵ > 0, R ≥ 1, and f : Rd → R be a k-subspace junta, and consider the
corresponding function g(Wx). Let q : Rk → R be an (ϵ, R)-uniform approximation polynomial
for g, and define p : Rd → R as p(x) := q(Wx). Let r := sup∥Wx∥2≤R |g(Wx)|. Then

|p(x)| ≤ (r + ϵ)(2(k + ℓ))3ℓkℓ/2
∥∥∥∥Wx

R

∥∥∥∥ℓ
2

∀ ∥Wx∥2 ≥ R.

Proof. Since q(x) is an (ϵ, R)-uniform approximation for g, then |q(x)− g(x)| ≤ ϵ for ∥x∥2 ≤ R.
Let h(x) = q(Rx). Then |h(x/R) − g(x)| ≤ ϵ for ∥x∥2 ≤ R, and so |h(x/R)| ≤ r + ϵ for
∥x∥2 ≤ R, or equivalently |h(x)| ≤ r + ϵ for ∥x∥2 ≤ 1. Write h(x) =

∑
∥α∥1≤ℓ hαx

α1
1 . . . xαk

k .

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

By Lemma A.6,
∑

∥α∥1≤ℓ |hα| ≤ (r + ϵ)(2(k + ℓ))3ℓ · kℓ/2. Then for ∥x∥2 ≥ 1,

|h(x)| ≤
∑

∥α∥1≤ℓ

|hα||xα1
1 . . . xαk

k |

≤
∑

∥α∥1≤ℓ

|hα| ∥x∥
∥α∥1
2

≤ ∥x∥ℓ2 ·
∑

∥α∥1≤ℓ

|hα|,

where the second inequality holds because |xi| ≤ ∥x∥2 for all i, and the last inequality holds because
∥x∥ℓ2 ≥ ∥x∥∥α∥1

2 for ∥α∥1 ≤ ℓ when ∥x∥2 ≥ 1. Then since p(x) = q(Wx) = h(Wx/R), we have

|p(x)| ≤
∥∥Wx

R

∥∥ℓ
2
(r + ϵ)(2(k + ℓ))3ℓkℓ/2 for ∥Wx∥2 ≥ R.

Proof. Note that p(x) has at most dℓ terms. Expanding p(x)t gives at most dtℓ terms, where any
monomial is formed from a product of t terms in p(x). Then the coefficients of p(x)t are bounded
in absolute value by Bt. Summing over all monomials gives the bound.

The following is an important theorem that we use later to obtain uniform approximators for Lips-
chitz Neural networks.

Theorem A.9 (Newman & Shapiro (1964)). Let f : Rk → R be a function. Let ωf be the function
defined as ωf (t) := sup∥x∥2,∥y∥2≤1

∥x−y∥2≤t

|f(x)− f(y)| for any t ≥ 0. Then, we have that there exists a

polynomial of degree ℓ such that sup∥x∥2≤1 |f(x) − p(x)| ≤ C · ωf (k/ℓ) where C is a universal
constant.

This implies the following corollary.

Corollary A.10. Let f : Rk → R be an L-Lipschitz function for L ≥ 0 and let R ≥ 0. Then,
for any ϵ ≥ 0, there exists a polynomial p of degree O(LRk/ϵ) such that p is an (ϵ, R)-uniform
approximation polynomial for f .

Proof. Consider the function g(x) := f(Rx). Then, we have that g is RL-Lipschitz. From
statement of Theorem A.9, we have that ωg(t) ≤ RLt. Thus, from Theorem A.9, there exists a
polynomial q of degree O(LRk/ϵ) such that sup∥y∥2≤1 |g(y) − q(y)| ≤ ϵ. Thus, we have that
sup∥x∥2≤R |f(x) − q(x/R)| = sup∥x∥2≤R |g(x/R) − q(x/R)| = sup∥y∥2≤1 |g(y) − q(y)| ≤ ϵ.
p(x) := q(x/R) is the required polynomial of degree O(LRk/ϵ).

A.2 USEFUL NOTATION AND FACTS

Given a univariate function g on R and a vector x = (x1, . . . , xd) ∈ Rd, the vector g(x) ∈ Rd

is defined as the vector with ith co-ordinate equal to g(xi). For a matrix A ∈ Rm×n, we use the
following notation:

• ∥A∥2 := sup∥x∥2=1 ∥Ax∥2,

• ∥A∥∞2 :=
√
maxi∈[m]

∑n
j=1(Aij)2,

• ∥A∥1 :=
∑

(i,j)∈[n]×[m] |Aij |.

Fact A.11. Given a matrix W ∈ Rm×n, we have that

1. ∥A∥2 ≤ ∥A∥1,

2. ∥A∥2 ≤
√
m · ∥A∥∞2 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Proof. We first prove (1). We have that for an x ∈ Rn with ∥x∥2 = 1,

∥Ax∥2 ≤

√√√√ m∑
i=1

(Ai · x)2 ≤

√√√√ m∑
i=1

n∑
j=1

(Aij)2 ≤ ∥A∥1

where the second inequality follows from Cauchy Schwartz and the last inequality follows from the
fact that for any vector v, ∥v∥2 ≤ ∥v∥1. We now prove (2). We have that

∥Ax∥2 ≤

√√√√ m∑
i=1

(Ai · x)2 ≤

√√√√mmax
i∈[m]

n∑
j=1

(Aij)2 ≤
√
m∥A∥∞2

where the second inequality follows from Cauchy Schwartz and the last inequality is the definition.

Recall the definition of a neural network.

Definition A.12 (Neural Network). Let σ : R → R be an activation function with σ(0) ≤ 1. Let
W =

(
W (1), . . .W (t)

)
with W (i) ∈ Rsi×si−1 be the tuple of weight matrices. Here, s0 = d

is the input dimension and st = 1. Define recursively the function fi : Rd → Rsi as fi(x) =
W (i) · σ

(
fi−1(x)

)
with f1(x) = W (1) · x. The function f : Rd → R computed by the neural

network (W, σ) is defined as f(x) := ft(x). We denote ∥W∥1 =
∑t

i=2 ∥W (i)∥1. The depth of
this network is t.

A.3 KERNEL REPRESENTATIONS

We now state and prove facts about Kernel Representations that we require. First, we recall the
multinomial kernel from Goel et al. (2017).

Definition A.13. Consider the mapping ψℓ : Rn → RNℓ , where Nd =
∑ℓ

i=1 d
ℓ indexed by tuples

(i1, i2, . . . , ij) ∈ [d]j for j ∈ [ℓ] such that value of ψℓ(x) at index (i1, i2, . . . , ij) is equal to∏j
t=1 xit . The kernel MKℓ is defined as

MKℓ(x,y) = ⟨ψℓ(x), ψℓ(y)⟩ =
d∑

i=1

(x · y)i.

We denote the corrresponding RKHS as HMKℓ
.

We now prove that polynomial approximators of subspace juntas can be represented as elements of
HMKℓ

.

Lemma A.14. Let k ∈ N and ϵ, R ≥ 0. Let f : Rd → R be a k-subspace junta such that
f(x) = g(Wx) where g is a function on Rk and W is a projection matrix from Rk×d. Suppose,
there exists a polynomial q of degree ℓ such that sup∥y∥2≤R |g(y) − q(y)| ≤ ϵ and the sum of
squares of coefficients of q is bounded above by B2. Then, f is (ϵ, B2 · (k + 1)ℓ)-approximately
represented within radius R with respect to HMKℓ

.

Proof. We argue that there exists a vector v ∈ HMKℓ
such that ⟨v,v⟩ ≤ B2 and |f(x) −

⟨v, σℓ(x)⟩| ≤ ϵ for all ∥x∥2 ≤ R. Consider the polynomial p of degree ℓ such that p(x) =
q(Wx). We argue that p(x) = ⟨v, σℓ(x)⟩ for some v and that ⟨v,v⟩ ≤ B2. Let q(y) =∑

S∈Nk,|S|≤ℓ qS
∏k

j=1 y
|Sj |. From our assumption on q, we have that

∑
S∈Nk,|S|≤ℓ |qS | ≤ B.

For i ∈ ℓ, we use define Bi as Bi =
∑

S∈Nk,|S|=ℓ |qS |. Given multi-index S, for any i ∈ [d], we

define S(i) as the number t such that
∑j−1

i=1 |Si| ≤ j <
∑j

i=1 |Si|. We now compute the entry of v
indexed by (i1, i2, . . . , it). By expanding the expression for p(x), we obtain that

vi1,...,it =
∑
|S|=t

qS

t∏
j=1

WS(j),ij .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We are now ready to bound ⟨v,v⟩. We have that

⟨v,v⟩ =
ℓ∑

t=0

∑
(i1,...,it)∈[d]k

(vi1,...,it)
2 =

ℓ∑
t=0

∑
(i1,...,it)∈[d]k

∑
|S|=t

qS

t∏
j=1

WS(j),ij

2

≤
ℓ∑

t=0

∑
(i1,...,it)∈[d]k

∑
|S|=t

q2S

∑
|S|=t

t∏
j=1

W 2
S(j),ij

≤

ℓ∑
t=0

∑
|S|=t

q2S

∑
|S|=t

t∏
j=1

(
d∑

i=1

W 2
S(j),i

) ≤
ℓ∑

t=0

∑
|S|=t

q2S

 · (k + 1)t

≤

∑
|S|≤ℓ

q2S

 · (k + 1)ℓ ≤ B2 · (k + 1)ℓ.

Here, the first inequality follows from Cauchy-Schwartz, the second follows by rearranging terms.
The third inequality follows from the fact that the number of multi-indices of size t from a set of k
elements is at most (k + 1)t. The final inequality follows from the fact that the sum of the squares
of the coefficients of q is at most B2.

We introduce an extension of the multinomial kernel that will be useful for our application to
sigmoid-nets.
Definition A.15 (Composed multinomial kernel). Let ℓ = (ℓ1, . . . , ℓt) be a tuple in Nt. We denote
a sequence of mappings ψ(0)

ℓ , ψ
(1)
ℓ , . . . , ψ

(t)
ℓ on Rd inductively as follows:

1. ψ(0)
ℓ (x) = x

2. ψ(i)
ℓ (x) = ψℓi

(
ψ
(i−1)
ℓ (x)

)
.

Let N (i)
ℓ denote the number of coordinates in ψ

(i)
ℓ . This induces a sequence of kernels

MK
(0)
ℓ ,MK

(1)
ℓ , . . . ,MK

(t)
ℓ defined as

MK
(i)
ℓ (x,y) = ⟨ψ(i)

ℓ (x), ψ
(i)
ℓ (y)⟩ =

ℓi∑
j=0

(
⟨ψ(i−1)

ℓ (x), ψ
(i−1)
ℓ (y)⟩j

)
and a corresponding sequence of RKHS denoted by H

MK
(0)
ℓ

,H
MK

(1)
ℓ

, . . .H
MK

(t)
ℓ

.

Observe that the the multinomial Kernel MKℓ = MK
(1)
(ℓ) is an instantiation of the composed multi-

nomial kernel.

We now state some properties of the composed multinomial kernel.
Lemma A.16. Let ℓ = (ℓ1, . . . , ℓt) be a tuple in Nt and R ≥ 0. Then, the following hold:

1. sup∥x∥2≤R MK
(t)
ℓ (x,x) ≤ max{1, (2R)2t

∏t
i=1 ℓi},

2. For any x,y ∈ Rd, MK
(t)
ℓ (x,y) can be computed in time poly

(
d, (
∑t

i=1 ℓi)
)

,

3. For any v ∈ H
MK

(t)
ℓ

and x ∈ Rd, we have ⟨v, ψ(t)
ℓ (x)⟩ is a polynomial in x of degree∏t

i=1 ℓi.

Proof. We assume without loss of generality thatR ≥ 1 as the kernel function is increasing in norm.
To prove (1), observe that for any x, we have that

MK
(i)
ℓ (x,x) =

ℓi∑
j=0

(
MK

(i−1)
ℓ (x,x)

)j
≤
(
2MK

(i−1)
ℓ (x,x)

)ℓi+1

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

We also have that sup∥x∥2≤R MK
(0)
ℓ (x,x) = x · x = R. Thus, unrolling the recurrence gives us

MK
(t)
ℓ (x,x) ≤ max{1, (2R)

∏t
i=1(ℓi+1)} ≤ max{1, (2R)2t

∏t
i=1 ℓi}.

The run time follows from the fact that MK
(i)
ℓ (x,x) =

∑ℓi
j=0

(
MK

(i−1)
ℓ (x,x)j

)
and thus can be

computed from MK
(i−1)
ℓ with ℓi additions and exponentiation operations. Recursing gives the final

runtime.

The fact that ⟨v, ψ(i)
ℓ (x)⟩ follows immediately from the fact the fact the entries of ψ(i)

ℓ (x) arise
from the multinomial kernel and hence are polynomials in x. The degree is at most

∏t
i=1 ℓi.

We now argue that a distribution that is hypercontractive with respect to polynomials is hypercon-
tractive with respect to the multinomial kernel.
Lemma A.17. Let D be a distribution on Rd that is C-hypercontractive for some constant C.

Proof. The proof immediately follows from Definition 3.4 and Lemma A.16(3).

A.4 NETS WITH LIPSCHITZ ACTIVATIONS

We are now ready to prove our theorem about uniform approximators for neural networks with
Lipschitz activations. First, we prove that such networks describe a Lipschitz function.
Lemma A.18. Let f : Rd → R be the function computed by an t-layer neural network with L-
Lipschitz activation function σ and weight matrices W. Say, ∥W∥1 ≤ W for W ≥ 0 and the first
hidden layer has k neurons. Then we have that f is

√
k∥W (1)∥∞2 (WL)t−1-Lipschitz.

Proof. First, observe from Fact A.11 that for all 1 < i ≤ T , ∥W (i)∥2 ≤ W (since ∥W∥1 ≤ W)
and ∥W (1)∥2 ≤

√
k∥W (1)∥∞2 . Recall from Definition A.12, we have the functions f1, . . . , ft where

fi(x) =W (i) ·σ
(
fi−1(x)

)
and f1(x) =W (1) ·x. We prove by induction on i that ∥fi(x)−fi(x+

u)∥2 ≤
√
k∥W (1)∥∞2 (WL)i−1∥u∥2. For the base case, observe that

∥f1(x+ u)− f1(x)∥2 ≤

√√√√ d1∑
i=1

((
⟨W (1)

i ,x⟩ − ⟨W (1)
i ,x+ u⟩

)2) ≤

√√√√ d1∑
i=1

(
⟨W (1)

i ,u⟩
)2

≤ ∥W (1)
i u∥2 ≤

√
k∥W (1)∥∞2 ∥u∥2

where the second inequality follows from the Lipschitzness of σ and the final inequality follows
from the definition of operator norm. We now proceed to the inductive step. Assume by induction
that ∥fi(x)− fi(x+ u)∥2 is at most

√
k∥W (1)∥∞2 (WL)i−1∥u∥2. Thus, we have

∥fi+1(x+ u)− fi+1(x)∥2 =

√√√√ d1∑
j=1

(
⟨W (i+1)

j , σ (fi(x))⟩ − ⟨W (i+1)
j , σ (fi(x+ u))⟩

)2

≤ ∥W (i+1)∥2∥σ(fi(x))− σ(fi(x+ u))∥2
≤ (WL)

√
k∥W (1)∥∞2 (WL)i−1∥u∥2 ≤

√
k∥W (1)∥∞2 (LW)i∥u∥2

where the third inequality follows from the Lipschitzness of σ and the inductive hypothesis. Thus,
we get that |f(x+ u)− f(x)| ≤ ∥ft(x+ u)− ft(x)∥2 ≤

√
k∥W (1)∥∞2 (WL)t−1 · ∥u∥2.

We now state are theorem regarding the uniform approximation of Lipschitz nets. We also prove
that the approximators can be represented by low norm vectors in RMKℓ

for appropriately chosen
degree ℓ.
Theorem A.19. Let ϵ, R ≥ 0. Let f on Rd be a neural network with an L-Lipschitz activation
function σ, depth t and weight matrices W = (W (1), . . . ,W (t)) where W (i) ∈ Rsi×si−1 . Let
k be the number of neurons in the first hidden layer. Then, there exists of a polynomial p of de-
gree ℓ = O

(
∥W (1)∥∞2 (WL)t−1Rk

√
k/ϵ
)

that is an (ϵ, R)-uniform approximation polynomial for

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

f . Furthermore, f is (ϵ, (k + ℓ)O(ℓ))-approximately represented within radius R with respect to
HMKℓ

= H
MK

(1)

(ℓ)

. In fact, when k = 1, it holds that f is (ϵ, 2O(ℓ))-approximately represented within

R with respect to H
MK

(1)
ℓ

.

Proof. We can express f as f(x) = g(Px) where P is a projection matrix and g is a neu-
ral network with input size k. We observe that the Lipschitz constant of g is the same as the
Lipschitz constant of f since P is a projection matrix. From Lemma A.18, we have that g is
∥
√
kW (1)∥∞2 (WL)t−1-Lipshitz. From Corollary A.10, we have that there exists a polynomial q

of degree ℓ = O
(
∥W (1)∥∞2 (WL)t−1Rk

√
k/ϵ
)

that is an (ϵ, R)-uniform approximation for g.
From Lemma A.6, we have that the sum of squares of magnitudes of coefficients of q is bounded
by
(
∥
√
kW (1)∥∞2 (WL)t−1R

)
(k + ℓ)O(ℓ) ≤ (k + ℓ)O(ℓ). Now, applying Lemma A.14 yields the

result. When k = 1, we apply Lemma A.4 to obtain that the sum of squares of magnitudes of
coefficients of q is bounded by ∥W (1)∥∞2 (WL)t−1 · 2O(ℓ) ≤ 2O(ℓ).

A.5 SIGMOIDS AND SIGMOID-NETS

We now give a custom proof for the case of neural networks with sigmoid activation. We do this
as we can hope to get O(log(1/ϵ) degree for our polynomial approximation. We largely follow
the proof technique of Goel et al. (2017) and Zhang et al. (2016a). The modifications we make
are to handle the case where the radius of approximation is a variable R instead of a constant. We
require(for our applications to strictly-subexponential distributions) that the degree of approximation
must scale linear in R, a property that does not follow directly from the analysis given in Goel et al.
(2017). We modify their analysis to achieve this linear dependence.

We first state a result regarding polynomial approximations for a single sigmoid activation.
Theorem A.20 (Livni et al. (2014)). Let σ : R → R denote the function σ(x) = 1

1+e−x . Let R, ϵ ≥
0. Then, there exists a polynomial p of degree ℓ = O(R log(R/ϵ)) such that sup|x|≤R |σ(x) −
p(x)| ≤ ϵ. Also, the sum of the squares of the coefficients of p is bounded above by 2O(ℓ).

We now present a construction of a uniform approximation for neural networks with sigmoid activa-
tions. The construction is similar to the one in Goel et al. (2017) but the analysis deviates as linear
dependence on radius of approximation is important to us.
Theorem A.21. Let ϵ, R ≥ 0. Let f on Rd be a neural network with sigmoid activations, depth t
and weight matrices W = (W (1), . . . ,W (t)) where W (i) ∈ Rsi×si−1 . Also, let ∥W∥1 ≤W . Then,
there exists of a polynomial p of degree ℓ = O

(
(R logR) · (∥W (1)∥∞2 W t−2) · (t log(W/ϵ))t−1

)
that is an (ϵ, R)-uniform approximation polynomial for f . Furthermore, f is (ϵ, B)-approximately
represented within radius R with respect to H

MK
(t)
ℓ

where ℓ = (ℓ1, . . . , ℓt−1) is a tuple of degrees

whose product is bounded by ℓ. Here, B ≤ (2∥W (1)∥∞2)ℓ ·WO(W t−2(t log(W/ϵ)t−2).

Proof. First, let q1 be the polynomial guaranteed by Theorem A.20 that (ϵ/(2W)t)-approximates
the sigmoid in an interval of radius R∥W (1)∥∞2 . Denote the degree of q1 as ℓ1 =
O
(
Rt∥W (1)∥∞2 log(RW/ϵ)

)
. For all 1 < i < t, let qi be the polynomial that (ϵ/(2W)t)-

approximates the sigmoid upto radius 2W . These have degree equal to O (Wt log(W/ϵ)). Let
ℓ = (ℓ1, . . . ℓt−1). For all i ∈ [t − 1], let qi(x) =

∑ℓi
j=0 β

(i)
j xj . We know that

∑ℓi
i=0(β

(i)
j)2 ≤

2O(ℓi).

We now construct the polynomial p that approximates f . For i ∈ [t], define pi(x) = W (i) ·
qi−1 (pi−1(x)) with p1(x) = W (1) · x. Define p(x) = pt(x). Recall that pi(x) is a vector of si
polynomials. We prove the following by induction: for every i ∈ [t],

1. ∥pi(x)− fi(x)∥∞ ≤ ϵ/(2W)t−i,

2. For each j ∈ [si], we have that (pi)j(x) = ⟨v, ψ(i)
ℓ (x)⟩ with ⟨v,v⟩ ≤

(2∥W (1)∥∞2)O(
∏i−1

n=1 ℓn) ·WO(
∏i−1

n=2 ℓn).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where the function fi is as defined in Definition A.12.

The above holds trivially for i = 1 and f1(x) = p1(x) =W (1) · (x) is an exact approximator. Also,
(p1)i(x) = ⟨W (1)

i ,x⟩ = ⟨W (1)
i , ψ

(1)
ℓ (x)⟩ from the definition of ψ(1)

ℓ . Clearly, ⟨W (1)
i ,W

(1)
i ⟩ ≤(

∥W (1)∥∞2
)2
. We now prove that the above holds for i+ 1 ∈ [t] assuming it holds for i.

We first prove (1). For j ∈ [si+1], we have that

|(pi+1)j(x)− (fi+1)j(x)| = |W (i+1)
j

(
qi(pi(x))− σ(fi(x))

)
|

≤ |W (i+1)
j

(
qi(pi(x))− σ(pi(x)

)
|+ |W (i+1)

j

(
σ(pi(x))− σ(fi(x)

)
|

≤W · (ϵ/(2W)t) +W · ϵ/(2W)t−i ≤ ϵ/(2W)t−(i+1).

For the second inequality, we analyse the cases i = 1 and i > 1 separately. When i = 1, we have
that (p1)j(x) = (f1)j(x) ≤ R∥W1∥∞2 and σ(x)− q1(x) ≤ (ϵ/(2W)t) when |x| ≤ R∥W1∥∞2 . For
i > 1, from the inductive hypothesis, we have that |W (i+1)pi(x)| ≤ |W (i+1)fi(x)|+ ∥W (i+1)∥1 ·
(ϵ/(2W)t−i) ≤ 2W . The second term in the second inequality is bounded since σ is 1-Lipschitz.

We are now ready to prove that (pi+1)j is representable by small norm vectors in H
MK

(i+1)
ℓ

for all
j ∈ [sj+1]. We have that

(pi+1)j(x) =

si∑
k=1

W
(i+1)
jk · qi ((pi)k(x)) .

From the inductive hypothesis, we have that (pi)k = ⟨v(k), ψ
(i)
ℓ ⟩. Thus, we have that

(pi+1)j(x) =

si∑
k=1

W
(i+1)
jk · qi

(
⟨v(k), ψ

(i)
ℓ ⟩
)
.

We expand each term in the above sum. We obtain,

qi

(
⟨v(k), ψ

(i)
ℓ ⟩
)
=

ℓi∑
n=0

β(i)
n

(
⟨v(k), ψ

(i)
ℓ ⟩
)n

=

ℓi∑
n=0

β(i)
n

∑
(m1,...,mn)∈[N

(i)
ℓ]n

v(k)m1
. . . v(k)mn

(
ψ
(i)
ℓ (x)

)
m1

. . .
(
ψ
(i)
ℓ (x)

)
mn

= ⟨u(k), ψℓi((ψ
(i)
ℓ (x))⟩ = ⟨u(k), ψ

(i+1)
ℓ (x)⟩.

The second inequality follows from expanding the equation. u(k) indexed by (m1, . . . ,mn) ∈
[N

(i)
ℓ]n for n ≤ ℓi has entries given by u(k)(m1,...,mn)

= β
(i)
n v

(k)
m1 . . . v

(k)
mn . Putting things together, we

obtain that

(pi+1)j(x) =

si∑
k=1

W
(i+1)
jk · ⟨u(k), ψ

(i+1)
ℓ (x)⟩

= ⟨
si∑

k=1

W
(i+1)
jk u(k), ψ

(i+1)
ℓ (x)⟩.

Thus, we have proved that (pi+1)j is representable in H
MK

(i+1)
ℓ

. We now prove that the norm of the
representation is small. We have that

∥
si∑

k=1

W
(i+1)
jk u(k)∥2 ≤ ∥W (i+1)∥1 max

k∈[si]
∥u(k)∥2 ≤W · max

k∈[si]
∥u(k)∥2.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

We bound maxk∈[si] ∥u(k)∥2. For any k, from the definition of u(k) and the inductive hypothesis,
we have that

∥u(k)∥22 =

ℓi∑
n=0

(
β(i)
n

)2
·

∑
(m1,...,mn)∈[N

(i)
ℓ]n

n∏
j=1

(
u(k)
mj

)2

=

ℓi∑
n=0

(
β(i)
n

)2
∥v(k)∥2n2 ≤ 2O(ℓi) · ∥v(k)∥2ℓi2

We analyse the case i = 1 and i > 1 separately. When i = 1, we have that 2O(ℓ1)∥v(k)∥2ℓ12 ≤
(2∥W (1)∥∞2)O(ℓ1) from the bound on the base case. When i > 1, we have

∥
si∑

k=1

W
(i+1)
jk u(k)∥22 ≤W 22O(ℓi)∥v(k)∥2ℓi2

≤W 22O(ℓi)
(
(2∥W (1)∥∞2)O(

∏i−1
n=1 ℓn) ·WO(

∏i−1
n=2 ℓn)

)2ℓi
≤ (2∥W (1)∥∞2)O(

∏i
n=1 ℓn) ·WO(

∏i
n=2 ℓn)

which completes the induction. We are ready to calculate the bound on the degree.

We have ℓ1 = O(Rt∥W (1)∥∞2 log(RW/ϵ)). Also, for i > 1, we have ℓi = O(Wt log(W/ϵ)). Thus,
the total degree is ℓ ≤

∏t−1
i=1 ℓi = O

(
(R logR) · (∥W (1)∥∞2 W t−2) · (t log(W/ϵ))t−1

)
. The square

of the norm of the kernel representation is bounded by B where

B ≤ (2∥W (1)∥∞2)ℓ ·WO(W t−2(t log(W/ϵ)t−2).

This concludes the proof.

B TDS LEARNING AND KERNEL METHODS

B.1 GENERAL THEOREM

We provide here the full proof of Theorem 3.6. First, we restate and prove the multiplicative spectral
concentration lemma (Lemma 3.8).

Lemma B.1 (Multiplicative Spectral Concentration, Lemma B.1 in Goel et al. (2024), mod-
ified). Let Dx be a distribution over Rd and ϕ : Rd → Rm such that Dx is (ϕ,C, ℓ)-
hypercontractive for some C, ℓ ≥ 1. Suppose that S consists of N i.i.d. examples from Dx

and let Φ = Ex∼Dx [ϕ(x)ϕ(x)
⊤], and Φ̂ = 1

N

∑
x∈S ϕ(x)ϕ(x)

⊤. For any ϵ, δ ∈ (0, 1), if
N ≥ 64Cm2

ϵ2 (4C log2(
4
δ))

4ℓ+1, then with probability at least 1− δ, we have that

For any a ∈ Rm : a⊤Φ̂a ∈ [(1− ϵ)a⊤Φa, (1 + ϵ)a⊤Φa]

Proof of Lemma 3.8. Let Φ = UDU⊤ be the compact SVD of Φ (i.e., D is square with dimension
equal to the rank of Φ and U is not necessarily square). Note that such a decomposition exists (where
the row and column spaces are both spanned by the same basis U), because Φ = Φ⊤, by definition.
Moreover, note that UUT is an orthogonal projection matrix that projects points in Rm on the span
of the rows of Φ. We also have that, U⊤U = I .

Consider Φ† = UD−1U⊤ and Φ
†
2 = UD− 1

2U⊤. Our proof consists of two parts. We first show
that it is sufficient to prove that ∥Φ

†
2ΦΦ

†
2 −Φ

†
2 Φ̂Φ

†
2 ∥2 ≤ ϵ with probability at least 1− δ and then

we give a bound on the probability of this event.

Claim. Suppose that for A = Φ
†
2ΦΦ

†
2 − Φ

†
2 Φ̂Φ

†
2 we have ∥A∥2 ≤ ϵ. Then, for any a ∈ Rm:

a⊤Φ̂a ∈ [(1− ϵ)a⊤Φa, (1 + ϵ)a⊤Φa]

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Proof. Let a ∈ Rm, a+ = UU⊤a, and a0 = (I − UU⊤)a (i.e., a = a0 + a+, where a0 is the
component of a lying in the nullspace of Φ). We have that a⊤Φa = a⊤

+Φa+.

Moreover, for a0, we have that 0 = a⊤
0 Φa0 = Ex∼Dx [(ϕ(x)

⊤a0)
2] and, hence, ϕ(x)⊤a0 =

0 almost surely over Dx. Therefore, we also have a⊤
0 Φ̂a0 = 1

N

∑
x∈S(ϕ(x)

⊤a0)
2 = 0, with

probability 1. Therefore, a⊤Φ̂a = a⊤
+Φ̂a+.

Observe, now, that Φ
1
2Φ

†
2 = UD

1
2U⊤UD− 1

2U⊤ = UU⊤ and, hence, Φ
1
2Φ

†
2a+ = (UU⊤)2a =

UU⊤a = a+, because UU⊤ is a projection matrix. Overall, we obtain the following

a⊤Φ̂a = a⊤Φa+ a⊤
+(Φ̂− Φ)a+

= a⊤Φa+ a⊤
+Φ

1
2 (Φ

†
2 Φ̂Φ

†
2 − Φ

†
2ΦΦ

†
2)Φ

1
2a+

= a⊤Φa+ a⊤
+Φ

1
2AΦ

1
2a+

Since ∥A∥2 ≤ ϵ and Φ
1
2Φ

1
2 = Φ, we have that |a⊤

+Φ
1
2AΦ

1
2a+| ≤ ϵ|a⊤

+Φa+| = ϵ|a⊤Φa|, which
concludes the proof of the claim.

It remains to show that for the matrix A defined in the previous claim, we have ∥A∥2 ≤ ϵ with
probability at least 1− δ. The randomness of A depends on the random choice of S from D⊗m

x . In
the rest of the proof, therefore, consider all probabilities and expectations to be over S ∼ D⊗m

x . We
have the following for t = log2(4/δ).

Pr[∥A∥2 > ϵ] ≤ Pr[∥A∥F > ϵ] ≤ E[∥A∥2tF]

ϵ2t

We will now bound the expectation of E[∥A∥2tF]. To this end, we define ai = Φ
†
2 ei ∈ Rm for

i ∈ [m]. We have the following, by using Jensen’s inequality appropriately.

E[∥A∥2tF] = E
[(∑

i,j∈[m]

(a⊤
i Φaj − a⊤

i Φ̂aj)
2
)t]

≤ m2(t−1)
∑

i,j∈[m]

E[(a⊤
i Φaj − a⊤

i Φ̂aj)
2t]

≤ m2t max
i,j∈[m]

E[(a⊤
i Φaj − a⊤

i Φ̂aj)
2t]

In order to bound the term above, we may use Marcinkiewicz-Zygmund inequality (see Ferger
(2014)) to exploit the independence of the samples in S and obtain the following.

E[(a⊤
i Φaj − a⊤

i Φ̂aj)
2t] ≤ 2(4t)t

N t
Ex∼Dx [(a

⊤
i Φaj − a⊤

i ϕ(x)ϕ(x)
⊤aj)

2t]

≤ 2(4t)t

N t

(
22t(a⊤

i Φaj)
2t + 22tEx∼Dx [(a

⊤
i ϕ(x)ϕ(x)

⊤aj)
2t]
)

We now observe that Ex∼Dx [a
⊤
i ϕ(x)ϕ(x)

⊤aj] = a⊤
i Φaj = e⊤i Φ

†
2ΦΦ

†
2 ej = e⊤i UU

Tej , which
is at most equal to 1. Therefore, we have Ex∼Dx [(a

⊤
i ϕ(x))

2] ≤ 1 and, by the hypercontractiv-
ity property (which we assume to be with respect to the standard inner product in Rm), we have
Ex∼Dx [(a

⊤
i ϕ(x))

4t] ≤ (4Ct)4ℓt. We can bound Ex∼Dx [(a
⊤
i ϕ(x)ϕ(x)

⊤aj)
2t] by applying the

Cauchy-Schwarz inequality and using the bound for Ex∼Dx [(a
⊤
i ϕ(x))

4t]. In total, we have the
following bound.

Pr[∥A∥2 > ϵ] ≤ 4
(16m2t(4Ct)4ℓ

Nϵ2

)t
We choose N such that 16m2t(4Ct)4ℓ

Nϵ2 ≤ 1
2 and t = log2(4/δ) so that the bound is at most δ.

We are now ready to prove the main theorem, which we restate here for convenience.
Theorem B.2 (TDS Learning via the Kernel Method). Suppose that F ⊆ {Rd → R}, the training
and test distributions D, D′ over Rd ×R, are such that the following are true for A,B,C,M, ℓ ≥ 1
and ϵ ∈ (0, 1).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1. F is (ϵ, B)-approximately represented within radius R w.r.t. a PDS kernel K : Rd×Rd →
R, for some ϵ ∈ (0, 1) and B,R ≥ 1 and let A = supx:∥x∥2≤R K(x,x).

2. The training marginal Dx (1) is bounded within {x : ∥x∥2 ≤ R} and (2) is (K, C, ℓ)-
hypercontractive for some C, ℓ ≥ 1.

3. The training and test labels are both bounded in [−M,M] for some M ≥ 1.

Then, Algorithm 1 learns the class F in the TDS regression setting up to excess error 5ϵ and proba-
bility of failure δ. The time complexity is O(T) · poly(d, 1ϵ , (log(1/δ))

ℓ, A,B,Cℓ, 2ℓ,M), where T
is the evaluation time of K.

Proof of Theorem 3.6. Consider the reference feature map ϕ : Rd → R2m with ϕ(x) =
(K(x, z))z∈Sref∪S′

ref
. Let f∗ = argminf∈F [LD(f) + LD′(f)] and fopt = argminf∈F [LD(f)].

By Assumption 3.5, we know that there are functions p∗, popt : Rd → R with p∗(x) = ⟨v∗, ψ(x)⟩
and popt = ⟨vopt, ψ(x)⟩, that uniformly approximate f∗ and fopt within the ball of radius R,
i.e., supx:∥x∥2≤R |f∗(x) − p∗(x)| ≤ ϵ and supx:∥x∥2≤R |fopt(x) − popt(x)| ≤ ϵ. Moreover,
⟨v∗,v∗⟩, ⟨vopt,vopt⟩ ≤ B.

By Proposition 3.7, there is a∗ ∈ R2m such that for p̃∗ : Rd → R with p̃∗(x) = (a∗)⊤ϕ(x) we
have ∥f∗ − p̃∗∥Sref

≤ 3ϵ/2 and ∥f∗ − p̃∗∥S′
ref

≤ 3ϵ/2. Let K be a matrix in R2m×2m such that
Kz,w = K(z,w) for z,w ∈ Sref ∪ S′

ref . We additionally have that (a∗)⊤Ka∗ ≤ B. Therefore,
for any x ∈ Rd we have

(p̃∗(x))2 =
(〈 ∑

z∈Sref∪S′
ref

a∗zψ(z), ψ(x)
〉)2

≤
〈 ∑
z∈Sref∪S′

ref

a∗zψ(z),
∑

z∈Sref∪S′
ref

a∗zψ(z)
〉
· ⟨ψ(x), ψ(x)⟩

= (a∗)⊤Ka∗ · K(x,x) ≤ B · K(x,x) ,

where we used the Cauchy-Schwarz inequality. For x with ∥x∥2 ≤ R, we, hence, have (p̃∗(x))2 ≤
AB (recall that A = max∥x∥2≤R K(x,x)).

Similarly, by applying the representer theorem (Theorem 6.11 in Mohri et al. (2018)) for popt, we
have that there exists aopt = (aoptz)z∈Sref

∈ Rm such that for p̃opt : Rd → R with p̃opt(x) =∑
z∈Sref

aoptz K(z,x) we have LS̄ref
(p̃opt) ≤ LS̄ref

(popt) and
∑

z,w∈Sref
aoptz aoptw K(z,w) ≤ B.

Since p̂ in Algorithm 1 is formed by solving a convex program whose search space includes p̃opt,
we have

LS̄ref
(p̂) ≤ LS̄ref

(p̃opt) ≤ LS̄ref
(popt) (1)

In the following, we abuse the notation and consider â to be a vector in R2m, by appendingm zeroes,
one for each of the elements of S′

ref . Note that we then have â⊤Kâ ≤ B, and, also, (p̂(x))2 ≤ A·B
for all x with ∥x∥2 ≤ R.

Soundness. Suppose first that the algorithm has accepted. In what follows, we will use the triangle
inequality of the norms to bound for functions h1, h2, h3 the quantity ∥h1−h2∥D by ∥h1−h3∥D +
∥h2 − h3∥D. We also use the inequality LD(h1) ≤ LD(h2) + ∥h1 − h2∥D, as well as the fact that
∥clM ◦h1 − clM ◦h2∥D ≤ ∥clM ◦h1 −h2∥D ≤ ∥h1 −h2∥D. We bound the test error of the output
hypothesis h : Rd → [−M,M] of Algorithm 1 as follows.

LD′(h) ≤ ∥h− clM ◦ f∗∥D′
x
+ L′

D(f
∗)

Since (h(x) − clM (f∗(x)))2 ≤ 4M2 for all x and the hypothesis h does not depend on the set
S′
ref , by a Hoeffding bound and the fact that m is large enough, we obtain that ∥h− clM ◦ f∗∥D′

x
≤

∥h−clM ◦f∗∥S′
ref
+ϵ/10, with probability at least 1−δ/10. Moreover, we have ∥h−clM ◦f∗∥S′

ref
≤

∥h− clM ◦ p̃∗∥S′
ref

+ ∥p̃∗ − f∗∥S′
ref

. We have already argued that ∥p̃∗ − f∗∥S′
ref

≤ 3ϵ/2.

In order to bound the quantity ∥h − clM ◦ p̃∗∥S′
ref

, we observe that while the function h does
not depend on S′

ref , the function p̃∗ does depend on S′
ref and, therefore, standard concentration

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

arguments fail to bound the ∥h − clM ◦ p̃∗∥S′
ref

in terms of ∥h − clM ◦ p̃∗∥D′
x

. However, since
we have clipped p̃∗, and p̃∗ is of the form ⟨v∗, ψ⟩, we may obtain a bound using standard results
from generalization theory (i.e., bounds on the Rademacher complexity of kernel-based hypotheses
like Theorem 6.12 in Mohri et al. (2018) and uniform convergence bounds for classes with bounded
Rademacher complexity under Lipschitz and bounded losses like Theorem 11.3 in Mohri et al.
(2018)). In particular, we have that with probability at least 1− δ/10

∥h− clM ◦ p̃∗∥S′
ref

≤ ∥h− clM ◦ p̃∗∥D′
x
+ ϵ/10

The corresponding requirement form = |S′
ref | is determined by the bounds on the Lipschitz constant

of the loss function (y, t) 7→ (y − clM (t))2, with y ∈ [−M,M] and t ∈ R, which is at most
5M , the overall bound on this loss function, which is at most 4M2, as well as the bounds A =
maxx:∥x∥2≤R K(x,x) and (a∗)⊤Ka ≤ B (which give bounds on the Rademacher complexity).

By applying the Hoeffding bound, we are able to further bound the quantity ∥h − clM ◦ p̃∗∥D′
x

by
∥h − clM ◦ p̃∗∥S′

ver
+ ϵ/10, with probability at least 1 − δ. We have effectively managed to bound

the quantity ∥h− clM ◦ p̃∗∥S′
ref

by ∥h− clM ◦ p̃∗∥S′
ver

+ ϵ/5. This is important, because the set S′
ver

is a fresh set of examples and, therefore, independent from p̃. Our goal is now to use the fact that
our spectral tester has accepted. We have the following for the matrix Φ̂′ = (Φ̂′

z,w)z,w∈Sref∪S′
ref

with Φ̂′
z,w = 1

N

∑
x∈S′

ver
K(x, z)K(x,w).

∥h− clM ◦ p̃∗∥2S′
ver

≤ ∥p̂− p̃∗∥2S′
ver

= (â− a∗)⊤Φ̂′(â− a∗)

Since our test has accepted, we know that (â−a∗)⊤Φ̂′(â−a∗) ≤ (1+ρ)(â−a∗)⊤Φ̂(â−a∗), for
the matrix Φ̂ = (Φ̂z,w)z,w∈Sref∪Sref

with Φ̂z,w = 1
N

∑
x∈Sver

K(x, z)K(x,w). We note here that
having a multiplicative bound of this form is important, because we do not have any upper bound
on the norms of â and a∗. Instead, we only have bounds on distorted versions of these vectors, e.g.,
on â⊤Kâ, which does not imply any bound on the norm of â, because K could have very small
singular values.

Overall, we have that ∥p̂− p̃∗∥S′
ver

−∥p̂− p̃∗∥Sver ≤
√
ρ(2∥p̂∥2Sver

+ 2∥p̃∗∥2Sver
) ≤

√
4ABρ ≤ 3ϵ

10 .

By using results from generalization theory once more, we obtain that with probability at least
1 − δ/5 we have ∥p̂ − p̃∗∥Sver

≤ ∥p̂ − p̃∗∥Sref
+ ϵ/5. This step is important, because the only

fact we know about the quality of p̂ is that it outperforms every polynomial on the sample Sref (not
necessarily over the entire training distribution). We once more may use bounds on the values of p̂
and p̃∗, this time without requiring clipping, since we know that the training marginal is bounded
and, hence, the values of p̂ and p̃∗ are bounded as well. This was not true for the test distribution,
since we did not make any assumptions about it.

In order to bound ∥p̂− p̃∗∥Sref
, we have the following.

∥p̂− p̃∗∥Sref
≤ LS̄ref

(p̂) + LS̄ref
(cl ◦ f∗) + ∥f∗ − p̃∗∥Sref

≤ LS̄ref
(p̃opt) + LS̄ref

(cl ◦ f∗) + ∥f∗ − p̃∗∥Sref
(By equation 1)

≤ LS̄ref
(popt) + LS̄ref

(cl ◦ f∗) + ∥f∗ − p̃∗∥Sref

The first term above is bounded as LS̄ref
(popt) ≤ LS̄ref

(clM ◦ fopt) + ∥popt − fopt∥Sref
, where the

second term is at most ϵ (by the definition of popt) and the first term can be bounded by LD(fopt)+
ϵ/10 = opt+ ϵ/10, with probability at least 1−δ/10, due to an application of the Hoeffding bound.

For the term LS̄ref
(cl ◦ f∗) we can similarly use the Hoeffding bound to obtain, with probability at

least 1− δ/10 that LS̄ref
(cl ◦ f∗) ≤ LD(f

∗) + ϵ/10.

Finally, for the term ∥f∗ − p̃∗∥Sref
, we have that ∥f∗ − p̃∗∥Sref

≤ 3ϵ/2, as argued above.

Overall, we obtain a bound of the form L′
D(h) ≤ LD(f

∗) = LD′(f∗) + LD(fopt) + 5ϵ, with
probability at least 1− δ, as desired.

Completeness. For the completeness criterion, we assume that the test marginal is equal to the
training marginal. Then, by Lemma 3.8 (where we observe that any (ψ,C, ℓ)-hypercontractive

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

distribution is also (ϕ,C, ℓ)-hypercontractive), with probability at least 1 − δ, we have that for all
a ∈ R2m, a⊤Φ̂′a ≤ 1+(ρ/4)

1−(ρ/4)a
⊤Φ̂a ≤ (1 + ρ)a⊤Φ̂a, because E[Φ̂] = E[Φ̂′] and the matrices are

sums of independent samples of ϕ(x)ϕ(x)⊤, where x ∼ Dx. It is crucial here that ϕ (which recall
is formed by using Sref , S

′
ref) does not depend on the verification samples Sver and S′

ver, which is
why we chose them to be fresh. Therefore, the test will accept with probability at least 1− δ.

Efficient Implementation. To compute â, we may run a least squares program, in time polyno-
mial in m. For the spectral tester, we first compute the SVD of Φ̂ and check that any vector in the
kernel of Φ̂ is also in the kernel of Φ̂′ (this can be checked without computing the SVD of Φ̂′).
Otherwise, reject. Then, let Φ̂

†
2 be the root of the Moore-Penrose pseudoinverse of Φ̂ and find the

maximum singular value of the matrix Φ̂
†
2 Φ̂′Φ̂

†
2 . If the value is higher than 1 + ρ, reject. Note that

this is equivalent to solving the eigenvalue problem described in Algorithm 1.

B.2 APPLICATIONS

We first state and prove our end to end results on TDS learning Sigmoid and Lipschitz nets over
bounded marginals that are C-hypercontractive for some constant C.

Theorem B.3 (TDS Learning for Nets with Sigmoid Activation). Let F on Rd be the class of neural
network with sigmoid activations, depth t and weight matrices W = (W (1), . . . ,W (t)) such that
∥W∥1 ≤W . Let ϵ ∈ (0, 1). Suppose the training and test distributions D,D′ over Rd ×R are such
that the following are true:

1. Dx is bounded within {x : ∥x∥2 ≤ R} and is C-hypercontractive for R,C ≥ 1,

2. The training and test labels are bounded in [−M,M] for some M ≥ 1.

Then, Algorithm 1 learns the class F in the TDS regression up to excess
error ϵ and probability of failure δ. The time and sample complexity is
poly

(
d, 1ϵ , C

ℓ,M, log(1/δ)ℓ, (2R)2
t·ℓ, (2∥W (1)∥∞2)ℓ ·WO((Wt log(W/ϵ))t−2)

)
where

ℓ = O
(
(R logR) · (∥W (1)∥∞2 W t−2) · (t log(W/ϵ))t−1

)
.

Proof. From Theorem A.21, we have that F is (ϵ, (2∥W (1)∥∞2)ℓWO(W t−2(t log(W/ϵ)t−2))-
approximately represented within radius R w.r.t MK

(t)
ℓ where ℓ is a degree vector whose product

is equal to ℓ = O
(
(R logR) · (∥W (1)∥∞2 W t−2) · (t log(W/ϵ))t−1

)
. Also, from Lemma A.16, we

have that A := sup∥x∥2≤R MK
(t)
ℓ (x,x) ≤ (2R)2

tℓ. From Lemma A.16, the entries of the ker-

nel can be computed in poly(d, ℓ) time and from Lemma A.17, we have that Dx is
(
MK

(t)
ℓ , C, ℓ

)
hypercontractive. Now, we obtain the result by applying Theorem B.2.

The following corollary on TDS learning two layer sigmoid networks in polynomial time readily
follows.

Corollary B.4. Let F on Rd be the class of two-layer neural networks with weight matrices W =
(W (1),W (2)) and sigmoid activations. Let ∥W (1)∥∞2 ≤ O(1) and ∥W∥1 ≤ W . Suppose the
training and test distributions satisfy the assumptions from Theorem B.3 with R = O(1). Then,
Algorithm 1 learns the class F in the TDS regression setting up to excess error ϵ and probability of
failure 0.1 in time and sample complexity poly(d, 1/ϵ,W,M).

Proof. The proof immediately follows from Theorem B.3 by setting t = 2 and the other parameters
to the appropriate constants.

Theorem B.5 (TDS Learning for Nets with Lipschitz Activation). Let F on Rd be the class of
neural network with L-Lipschitz activations, depth t and weight matrices W = (W (1), . . . ,W (t))
such that ∥W∥1 ≤W . Let ϵ ∈ (0, 1). Suppose the training and test distributions D,D′ over Rd×R
are such that the following are true:

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

1. Dx is bounded within {x : ∥x∥2 ≤ R} and is C-hypercontractive for R,C ≥ 1,

2. The training and test labels are bounded in [−M,M] for some M ≥ 1.

Then, Algorithm 1 learns the class F in the TDS regression up to excess error ϵ and probability of
failure δ. The time and sample complexity is poly

(
d, 1ϵ , C

ℓ,M, log(1/δ)ℓ, (2R(k + ℓ))O(ℓ)
)

where

ℓ = O
(
∥W (1)∥∞2 (WL)t−1Rk

√
k/ϵ
)

. When k = 1, we have that the time and sample complexity

is poly(d, 1ϵ , C
ℓ,M, log(1/δ)ℓ, (2R)O(ℓ) where ℓ = O

(
∥W (1)∥∞2 (WL)t−1R/ϵ

)
Proof. From Theorem A.19, for k > 1 we have that F is (ϵ, (k + ℓ)O(ℓ))-approximately rep-
resented within radius R w.r.t MK

(1)
ℓ where ℓ is a degree vector whose product is equal to

ℓ = O
(
∥W (1)∥∞2 (WL)t−1Rk

√
k/ϵ
)

. For k = 1, we have that we have that F is (ϵ, 2O(ℓ))-

approximately represented within radius R w.r.t MK
(1)
ℓ where ℓ is a degree vector whose prod-

uct is equal to ℓ = O
(
∥W (1)∥∞2 (WL)t−1R/ϵ

)
. Also, from Lemma A.16, we have that A :=

sup∥x∥2≤R MK
(t)
ℓ (x,x) ≤ (2R)O(ℓ). From Lemma A.16, the entries of the kernel can be computed

in poly(d, ℓ) time and from Lemma A.17, we have that Dx is
(
MK

(1)
ℓ , C, ℓ

)
hypercontractive. Now,

we obtain the result by applying Theorem B.2.

The above theorem implies the following corollary about TDS learning the class of ReLUs.
Corollary B.6. Let F = {x → max(0,w · x) : ∥w∥2 = 1} on Rd be the class of ReLU functions
with unit weight vectors. Suppose the training and test distributions satisfy the assumptions from
Theorem B.5 with R = O(1). Then, Algorithm 1 learns the class F in the TDS regression setting up
to excess error ϵ and probability of failure 0.1 in time and sample complexity poly(d, 2O(1/ϵ),M).

Proof. The proof immediately follows from Theorem B.5 by setting t = 2,W = (w) and the
activation to be the ReLU function.

In particular, this implies that the class of ReLUs is TDS learnable in polynomial time when ϵ <
O(1/ log d).

C TDS LEARNING AND UNIFORM APPROXIMATION

C.1 PRELIMINARIES

We first define the notion of a subspace junta which will be useful in this section. Intuitively, we
want to consider the neural network as a function of Wx after the first layer of weights has been
applied, which allows us to project from the higher d-dimensional input space to a k-dimensional
subspace (and improve th.
Definition C.1 (Subspace Junta). A function f : Rd → R is a k-subspace junta (where k ≤ d) if
there exists W ∈ Rk×d with ∥W∥2 = 1 and WW⊤ = Ik and a function g : Rk → R such that

f(x) = fW (x) = g(Wx) ∀x ∈ Rd.

Note that by taking k = d, letting W = Id covers all functions f : Rd → R.

We obtain the following corollary which gives the analogous bound on the (ϵ, R)-uniform approxi-
mation to a k-subspace junta, given the (ϵ, R)-uniform approximation to the corresponding function
g.
Corollary C.2. Let ϵ > 0, R ≥ 1, and f : Rd → R be a k-subspace junta, and consider the
corresponding function g(Wx). Let q : Rk → R be an (ϵ, R)-uniform approximation polynomial
for g, and define p : Rd → R as p(x) := q(Wx). Then |p(x)− f(x)| ≤ ϵ for all ∥Wx∥2 ≤ R.

In this section, we obtain TDS learning algorithms with respect to a training marginal which is a
strictly sub-exponential distribution, which we now define.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Definition C.3 (Strictly Sub-exponential Distribution). A distribution D on Rd is γ-strictly subex-
ponential if there exist constants C, γ ∈ (0, 1] such that for all w ∈ Rd, ∥w∥ = 1, t ≥ 0,

Prx∼D[|⟨w,x⟩| > t] ≤ e−Ct1+γ

.

These distributions have the following bounds on their moments.
Fact C.4 (see Vershynin (2018)). Let D on Rd be a γ-strictly subexponential distribution. Then for
all w ∈ Rd, ∥w∥ = 1, t ≥ 0, p ≥ 1, there exists a constant C ′ such that

Ex∼D[|⟨w,x⟩|p] ≤ (C ′p)
p

1+γ .

In fact, the two conditions are equivalent.

We will use the following bounds on the concentration of subexponential moments in the analysis
of our algorithm. This will be useful in showing the sample complexity N required in order for the
empirical moments of the sample S concentrate around the moments of the training marginal Dx.
Lemma C.5 (Moment Concentration of Subexponential Distributions). Let Dx be a distribution
over Rd such that for any w ∈ Rd with ∥w∥2 = 1 and any t ∈ N we have Ex∼Dx [|w ·
x|t] ≤ (Ct)t for some C ≥ 1. For α = (αi)i∈[d] ∈ Nd, we denote with xα the quantity
xα =

∏d
i=1 x

αi
i , where x = (xi)i∈[d]. Then, for any ∆, δ ∈ (0, 1), if S is a set of at least

N = 1
∆2 (Cc)

4ℓℓ8ℓ+1(log(20d/δ))4ℓ+1 i.i.d. examples from Dx for some sufficiently large universal
constant c ≥ 2, we have that with probability at least 1− δ, the following is true.

For any α ∈ Nd with ∥α∥1 ≤ 2ℓ we have |Ex∼S [x
α]− Ex∼Dx [x

α]| ≤ ∆.

Proof. Let α = (αi)i∈[d] ∈ Nd with ∥α∥1 ≤ 2ℓ. Consider the random variable X =
1
|S|
∑

x∈S xα = 1
|S|
∑

x∈S

∏
i∈[d] x

αi
i . We have that E[X] = Ex∼Dx [x

α] and also the following.

Pr[|X − E[X]| > ∆] ≤ E[(X − E[X])2t]

∆2t

≤ 2(4t)t

(N∆2)t
E[(xα − E[xα])2t]

where the last inequality follows from the Marcinkiewicz–Zygmund inequality (see Ferger (2014)).
We have that E[(xα − E[xα])2t] ≤ 4tE[(xα)2t]. Since ∥α∥1 ≤ 2ℓ, we have that E[(xα)2t] ≤
sup∥w∥2=1[E[(w · x)4tℓ]] ≤ (4Ctℓ)4tℓ, which yields the desired result, due to the choice of N and
after a union bound over all the possible choices of α (at most d2ℓ).

C.2 CENTRAL THEOREM

We now present the assumptions that are required by our TDS learner under strictly sub-exponential
distributions.
Assumption C.6. For a function class F ⊆ {Rd → R} consisting of k-subspaces juntas, and
training and test distributions D,D′ over Rd × R, we assuming the following.

1. For f ∈ F , there exists an (ϵ, R)-uniform approximation polynomial for f with degree at
most ℓ = R logR · gF (ϵ), where gF (ϵ) is a function depending only on the class F and ϵ.

2. For f ∈ F , the value rf := sup∥Wx∥2≤R |f(x)| is bounded by a constant r > 0.

3. The training marginal Dx is a γ-strictly subexponential distribution.

4. The training and test labels are both bounded in [−M,M] for some M ≥ 1.

Given this assumption, we now give the statement of the TDS learning algorithm.
Theorem C.7 (TDS Learning via Uniform Approximation). Assume Assumption C.6 holds. Let
ϵ, δ ∈ (0, 1). Then, algorithm (Algorithm 2) learns F in the TDS regression setting up to excess
error 4ϵ and has probability of failure δ. The time complexity is poly(ds, ln(1/δ)ℓ, 1/ϵ) where

s = poly
(
(kgF (ϵ) log(r) log(M/ϵ))

1+1/γ
)

and TDS learns F with respect to Dx up to excess
error 4ϵ and with failure probability δ.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

The following lemma allows us to relate the squared loss of the difference of polynomials under a
set S and under D, as long as we have a bound on the coefficients of the polynomials.

Lemma C.8 (Transfer Lemma for Square Loss, see Klivans et al. (2024a)). Let D be a distribution
over Rd and S be a set of points in Rd. If |Ex∼S [x

α] − Ex∼D[x
α]| ≤ ∆ for all α ∈ Nd with

∥α∥1 ≤ 2ℓ, then for any degree ℓ polynomials p1, p2 with coefficients absolutely bounded by B, it
holds that ∣∣Ex∼S [(p1(x)− p2(x))

2]− Ex∼D[(p1(x)− p2(x))
2]
∣∣ ≤ 4B2d2ℓ∆

Proof. The polynomial (p1 − p2) has degree ℓ and coefficients bounded in absolute value by 2B.
Let p′ = (p1 − p2)

2 =
∑

∥α∥1≤2ℓ p
′
αx

α. By Lemma A.7,
∑

∥α∥1≤2ℓ |p′α| ≤ 4B2d2ℓ. Using the
moment matching assumption,

|Ex∼S [p
′(x)]− Ex∼D[p

′(x)]| =

∣∣∣∣∣∣
∑

∥α∥1≤2ℓ

p′α (Ex∼S [x
α]− Ex∼D[x

α])

∣∣∣∣∣∣
≤

∑
∥α∥1≤2max(ℓ,t)

|p′α|∆

≤ 4B2d2ℓ∆.

Algorithm 2: TDS Regression via Uniform Approximation
Input: Parameters ϵ > 0, δ ∈ (0, 1), R ≥ 1, M ≥ 1, and sample access to D,D′

x

Set ϵ′ = ϵ/11, δ′ = δ/4, ℓ = R logR · gF (ϵ), t = 2 log
(
2M
ϵ′

)
, B = r(2(k+ ℓ))3ℓ, ∆ = ϵ′2

4B2d2ℓt

Set mtrain = poly(M, ln(1/δ)ℓ, 1/ϵ, dℓ, r) and mtest =
8M4 ln(2/δ′)

ϵ′4 and draw mtrain i.i.d.
labeled examples S from D and mtest i.i.d. unlabeled examples D′

x.
For each α ∈ Nd with ∥α∥1 ≤ 2max(ℓ, t), compute the quantity
M̂α = Ex∼S′ [xα] = Ex∼S′

[∏
i∈[d] x

αi
i

]
Reject and terminate if |M̂α − Ex∼Dx [x

α]| > ∆ for some α with ∥α∥1 ≤ 2max(ℓ, t).
Otherwise, solve the following least squares problem on S up to error ϵ′

min
p

E(x,y)∼S

[
(y − p(x))2

]
s.t. p is a polynomial with degree at most ℓ

each coefficient of p is absolutely bounded by B

Let p̂ be an ϵ′2-approximate solution to the above optimization problem.
Accept and output clM (p̂(x)).

Proof. We will prove soundness and completeness separately.

Soundness. Suppose the algorithm accepts and outputs clM (p̂). Let f∗ = argminf∈F [LD(f) +
LD′(f)] and fopt = argminf∈F [LD(f)]. By the uniform approximation assumption in Assump-
tion C.6, there are polynomials p∗, popt which are (ϵ, R)-uniform approximations for f∗ and fopt,
respectively. Let f∗ and fopt have the corresponding matrices W ∗,Wopt ∈ Rk×d, respectively.
Denote λtrain = LD(f

∗) and λtest = LD′(f∗). Note that for any f, g : Rd → R, “unclipping” both
functions will not increase their squared loss under any distribution, i.e. ∥clM (f)− clM (g)∥D ≤
∥f − g∥D, which can be seen through casework on x and when f(x), g(x) are in [−M,M] or not.
Recalling that the training and test labels are bounded, we can use this fact as we bound the error of
the hypothesis on D′.

LD′(clM (p̂)) ≤ LD′(clM (f∗)) + ∥clM (f∗)− clM (p̂)∥D′

≤ LD′(f∗) + ∥clM (f∗)− clM (p̂)∥S′ + ϵ′.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

The second inequality follows from unclipping the first term and by applying Hoeffding’s inequality,
so that for |S′| ≥ 8M4 ln(2/δ′)

ϵ′4 , the second term is bounded with probability ≥ 1 − δ′. Proceeding
with more unclipping and using the triangle inequality:

LD′(clM (p̂)) ≤ λtest + ∥clM (f∗)− clM (p∗)∥S′ + ∥clM (p∗)− clM (p̂)∥S′ + ϵ′

≤ λtest + ∥clM (f∗)− clM (p∗)∥S′ + ∥p∗ − p̂∥S′ + ϵ′.

We first bound ∥clM (f∗)− clM (p∗)∥S′ =
√
Ex∼S′ [(clM (f∗(x))− clM (p∗(x)))2]. Since p∗(x)

is an (ϵ, R)-uniform approximation to f∗(x), we separately consider when we fall in the region of
good approximation (∥W ∗x∥ ≤ R) or not.

Ex∼S′ [(clM (f∗(x))− clM (p∗(x)))2]

= Ex∼S′ [(clM (f∗(x))− clM (p∗(x)))2 · 1[∥W ∗x∥ ≤ R]

+ Ex∼S′ [(clM (f∗(x))− clM (p∗(x)))2 · 1[∥W ∗x∥ > R]]

≤ ϵ2 + Ex∼S′ [2(clM (f∗(x))2 + clM (p∗(x))2) · 1[∥W ∗x∥ > R]]

Then by applying Cauchy-Schwarz, (and similarly for clM (p∗)):

Ex∼S′ [clM (f∗(x))2 · 1[∥W ∗x∥ > R]] ≤
√

Ex∼S′ [clM (f∗(x))4] ·
√

Prx∼S′ [∥W ∗x∥ > R]].

By definition, clM (p∗)2, clM (f∗)2 ≤M2. So it suffices to bound Prx∼S′ [∥W ∗x∥ > R]], since we
now have

Ex∼S′ [(clM (f∗(x))− clM (p∗(x)))2] ≤ ϵ2 + 4M2
√
Prx∼S′ [∥W ∗x∥ > R]]. (2)

In order to bound this probability of the test samples falling outside the region of good approxima-
tion, we use the property that the first 2t moments of S′ are close to the moments of D (as tested by
the algorithm). Applying Markov’s inequality, we have

Prx∼S′ [∥W ∗x∥ > R]] ≤ Ex∼S′ [∥W ∗x∥2t]
R2t

.

Write ∥W ∗x∥2t =
(∑k

i=1⟨W ∗
i ,x⟩2

)t
, where

∑k
i=1⟨W ∗

i ,x⟩2 =
∑k

i=1

(∑d
j=1W

∗
ijxj

)2
is a

degree 2 polynomial with each coefficient bounded in absolute value by 2k (noting that since
WW⊤ = 1, then |Wij | ≤ 1). Let aα denote the coefficients of ∥W ∗x∥2t. Applying Lemma A.7,∑

∥α∥1≤2t |aα| ≤ (2k)td2t ≤ dO(t). By linearity of expectation, we also have |Ex∼S′ [∥W ∗x∥2t −
Ex∼D[∥W ∗x∥2t]| ≤

∑
∥α∥1≤2t |aα| · ∆ ≤ dO(t) · ∆ ≤ ϵ, where ∆ ≤ ϵ′ · d−Ω(t). Since D is

γ-strictly subexponential, then by Fact C.4, Ex∼D[⟨W ∗
i ,x⟩2t] ≤ (2C ′t)

2t
1+γ . Then, we can bound

the numerator Ex∼S′ [∥W ∗x∥2t] ≤ Ex∼D[∥W ∗x∥2t] + ϵ′ ≤ (Ckt)
2t

1+γ for some large constant C.
So we have that

Prx∼S′ [∥W ∗x∥ > R]] ≤ (Ckt)
2t

1+γ

R2t
.

Setting t ≥ C ′(log(M/ϵ)) and R ≥ C ′(kt) ≥ C ′k log(M/ϵ) for large enough C ′ makes the
above probability at most 16ϵ′4/M4 so that 4M2

√
Prx∼S′ [∥W ∗x∥ > R]] ≤ ϵ′2. Thus, from Equa-

tion (2), we have that
∥clM (f∗)− clM (p∗)∥S′ ≤ ϵ+ ϵ′.

We now bound the second term ∥clM (p∗)− clM (p̂)∥S′ . By Lemma C.5, the first 2ℓ moments
of S will concentrate around those of Dx whenever |S| ≥ 1

∆2 (Cc)
4ℓℓ8ℓ+1(log(20d/δ))4ℓ+1, and

similarly the first 2ℓ moments of S′ match with Dx because the algorithm accepted. Using the
transfer lemma (Lemma C.8) when considering p′ = (p∗ − p̂)2, along with the triangle inequality,
we get:

∥p∗(x)− p̂(x)∥S′ ≤ ∥p∗(x)− p̂(x)∥D +
√
4B2d2ℓ∆

≤ ∥p∗(x)− p̂(x)∥S + 2ϵ′

≤ LS(p
∗) + LS(p̂) + 2ϵ′,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

where we note that we can bound the sum of the magnitudes of the coefficients by r(2(k + ℓ))3ℓ

using Lemma A.6. Recall that by definition p̂ is an ϵ′2-approximate solution to the optimization
problem in Algorithm 2, so LS(p̂) ≤ LS(popt) + ϵ′. Plugging this in, we obtain

∥p∗(x)− p̂(x)∥S′ ≤ LS(p
∗) + LS(popt) + 3ϵ′

≤ ∥p∗ − clM (f∗)∥S + L(clM (f∗))S

+ ∥popt(x)− clM (fopt(x))∥S + LS(clM (fopt)) + 3ϵ′.

By applying Hoeffding’s inequality, we get that ∥clM (f∗)− y∥S ≤ ∥clM (f∗)− y∥D + ϵ′ which

holds with probability ≥ 1 − δ′ when |S| ≥ 8M4 ln(2/δ′)
ϵ′4 . By unclipping clM (f∗), this is at most

λtrain + ϵ′. Similarly, with probability ≥ 1 − δ′, ∥clM (fopt(x))− y∥S ≤ opt + ϵ′. It remains to
bound ∥p∗(x)− clM (f∗)∥S and ∥popt − clM (fopt(x))∥S . The analysis for both is similar to how
we bounded ∥clM (p∗)− clM (f∗)∥S , except since we do not clip p∗ or popt we will instead take
advantage of the bound on p∗(x) on ∥W ∗x∥ > R (respectively popt(x) on ∥Woptx∥ > R). We
show how to bound ∥p∗(x)− clM (f∗)∥S :

Ex∼S [(clM (f∗(x))− p∗(x))2] = Ex∼S [(clM (f∗(x))− p∗(x))2 · 1[∥W ∗x∥ ≤ R]

+ Ex∼S [(clM (f∗(x))− p∗(x))2 · 1[∥W ∗x∥ > R]]

≤ ϵ2 + 2Ex∼S [clM (f∗(x))2 · 1[∥W ∗x∥ > R]]

+ 2Ex∼S [p
∗(x)2 · 1[∥W ∗x∥ > R]].

We can bound the first expectation term with ϵ′2/4 since the same analysis holds for bounding
Ex∼S′ [clM (f∗(x))2 · 1[∥W ∗x∥ > R]], except instead of matching the first 2t moments of S′ with
Dx, we match the first 2ℓ moments of S with Dx. We use the strictly subexponential tails of Dx to
bound the second term. Cauchy-Schwarz gives

Ex∼S [p
∗(x)2 · 1[∥W ∗x∥ > R]] ≤

√
Ex∼S [p∗(x)4] ·Prx∼S [∥W ∗x∥ > R]]

Note that by definition of r and using that p∗ is an (ϵ, R)-uniform approximation of f∗, then p∗(x) ≤
(r+ϵ) when ∥W ∗x∥ ≤ R. By Lemma A.6, |p∗(x)| ≤ (r+ϵ) ·(2kℓ)cℓ ∥(W ∗x)/R∥ℓ for sufficiently
large constant c1 > 0. Then since R ≥ 1, p∗(x) ≤ (r + ϵ)4 · (2kℓ)cℓ ∥W ∗x∥4ℓ. Then we have

Ex∼S [p
∗(x)4] ≤ (r + ϵ)4 · (2kℓ)c1ℓ · Ex∼S [∥W ∗x∥4ℓ]

≤ (r + ϵ)4 · (2kℓ)c1ℓ · (Ex∼Dx [∥W ∗x∥4ℓ] + 1)

≤ (r + ϵ)4 · (2kℓ)cℓ

where using Fact C.4 we bound on Ex∼Dx [∥W ∗x∥4ℓ] ≤ k2ℓ(4ℓ)
4Cℓ
1+γ similar to above, which can be

upper bounded with (2kℓ)c2ℓ for c2 > 0 a sufficiently large constant. Take c = c1 + c2. We bound
Prx∼S [∥W ∗x∥ > R]] as follows:

Prx∼S [∥W ∗x∥ > R]] = Prx∼S

[
k∑

i=1

⟨W ∗
i ,x⟩2 > R2

]

≤
k∑

i=1

Prx∼S [⟨W ∗
i ,x⟩2 > R2/k]

≤ k sup
∥w∥2=1

Prx∼S [⟨W,x⟩2 > R2/k],

where the first inequality follows from a union bound. Since ⟨w,x⟩2 is a degree 2 polynomial, we
can view sign(⟨w,x⟩2 −R2/k) as a degree-2 PTF. The class of these functions has VC dimension
at most d2 (e.g. by viewing it as the class of halfspaces in d2 dimensions). Using standard VC
arguments, whenever |S| ≥ C · d2+log(1/δ′)

(ϵ′′/k)2 for some sufficiently large universal constant C > 0,
with probability ≥ 1− δ′ we have

Prx∼S [⟨w,x⟩2 > R2/k] ≤ Prx∼Dx [⟨w,x⟩2 > R2/k] + ϵ′′/k.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Using the strictly subexponential tails of Dx, we have

Prx∼S [∥W ∗x∥ > R]] ≤ k

(
sup

∥w∥=1

Prx∼Dx [⟨w,x⟩2 > R2/k] + ϵ′′/k

)
≤ 2k · exp

(
− (R/k)

1+γ
)
+ ϵ′′.

Choose ϵ′′ = ϵ′4

(r+ϵ)4(2kℓ)cℓ
. Putting it together:

Ex∼S [p
∗(x)4] ·Prx∼S [∥W ∗x∥ > R]] ≤ (r + ϵ)4 · (2kℓ)cℓe−(R/k)1+γ

+ ϵ′4

≤ (r + ϵ)4 · exp
(
cℓ log(2kℓ)− (R/k)1+γ

)
+ ϵ′4.

We want to bound the first part with ϵ′4. Equivalently, we need to show that the ex-
ponent is ≤ 4 ln ϵ′

r+ϵ . Substituting ℓ = R logR · gF (ϵ), we get that cℓ log(2kℓ) ≤
cgF (ϵ)R(logR)

2 log(2kgF (ϵ)). Thus, it suffices to show that(
R

k

)1+γ

≥ cgF (ϵ)R(logR)
2(2kgF (ϵ))− 4 ln

ϵ′

r + ϵ
.

This is satisfied when R ≥ poly
(
(kgF (ϵ) log(r) log(M/ϵ))

1+ 1
γ

)
. Then, we have that

Ex∼S [p
∗(x)2 · 1[∥W ∗x∥ > R]] ≤ ϵ′2

√
2.

So,

∥clM (f∗)− p∗∥S ≤
√
ϵ2 + 2 · ϵ′2/4 + 2ϵ′2

√
2 ≤ ϵ+ ϵ′

√
1/2 + 2

√
2.

The same argument will also give

∥clM (fopt(x))− popt(x)∥S ≤ ϵ+ ϵ′
√
1/2 + 2

√
2.

Putting everything together, we have

LD′(clM (p̂)) ≤ λ+ opt + 3ϵ+ 11ϵ′ ≤ λ+ opt + 4ϵ.

The result holds with probability at least 1− 5δ′ = 1− δ (taking a union bound over 5 bad events).

Completeness. For completeness, it is sufficient to ensure that mtest ≥ mconc. This is because the
moment concentration of subexponential distributions (Lemma C.5) gives that the moments of S are
close to the moments of Dx with probability ≥ 1 − δ′. Then when Dx = D′

x, the probability of
acceptance is at least 1− δ, as required.

Runtime. The runtime of the algorithm is poly(dℓ, |S|, |S′|), where ℓ = R logR · gF (ϵ). As
noted above, the two lower bounds on R required in the proof are satisfied by setting R ≥(
(kgF (ϵ) log(r) log(M/ϵ))

O(1
γ)
)

. Note that the lower bounds we required for |S| in the proof

are satisfied whenever |S| = poly(M, ln(1/δ)ℓ, 1/ϵ, dℓ, r). For |S′| the only requirement was that
|S′| ≥ 8M4 ln(2/δ′)

ϵ′4 . Putting this altogether, we see that the runtime is poly(ds, ln(1/δ)ℓ, 1/ϵ) where

s =
(
(kgF (ϵ) log(r) log(M/ϵ))

O(1/γ)
)

.

C.3 APPLICATIONS

We are now ready to state our theorem for TDS learning neural networks with sigmoid activations.
Theorem C.9 (TDS Learning for Nets with Sigmoid Activation and Strictly Subexponential
Marginals). Let F on Rd be the class of neural network with sigmoid activations, depth t and weight
matrices W = (W (1), . . . ,W (t)) such that ∥W∥1 ≤ W . Let ϵ ∈ (0, 1). Suppose the training and
test distributions D,D′ over Rd × R are such that the following are true:

1. Dx is γ-strictly subexponential,

2. The training and test labels are bounded in [−M,M] for some M ≥ 1.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Then, Algorithm 2 learns the class F in the TDS regression up to excess error ϵ and proba-
bility of failure δ. The time and sample complexity is at most poly(ds, log(1/δ)s) where s =(
k logM · (∥W (1)∥∞2 W t−2) · (t log(W/ϵ))t−1

)O(1
γ)

.

Proof. From Theorem A.21, we have that F there is an (ϵ, R)-uniform approximation poly-
nomial for f with degree ℓ = O

(
(R logR) · (∥W (1)∥∞2 W t−2) · (t log(W/ϵ))t−1

)
. Here, let

gF (ϵ) := (∥W (1)∥∞2 W t−2) · (t log(W/ϵ))t−1. We also have that r = sup∥x∥2≤R,f∈F |f(x)| ≤
poly(Rk∥W (1)∥∞2 W t−2) from the Lipschitzness of the sigmoid nets (Lemma A.18) and the fact
that the sigmoid evaluated at 0 has value 1. The theorem now directly follows from Theo-
rem C.7.

We now state our theorem on TDS learning neural networks with arbitrary Lipschitz activations.
Theorem C.10 (TDS Learning for Nets with Lipschitz Activation with strictly subexponential
marginals). Let F on Rd be the class of neural network with L-Lipschitz activations, depth t and
weight matrices W = (W (1), . . . ,W (t)) such that ∥W∥1 ≤ W . Let ϵ ∈ (0, 1). Suppose the
training and test distributions D,D′ over Rd × R are such that the following are true:

1. Dx is γ-strictly subexponential,

2. The training and test labels are bounded in [−M,M] for some M ≥ 1.

Then, Algorithm 2 learns the class F in the TDS regression up to excess error ϵ and proba-
bility of failure δ. The time and sample complexity is at most poly(ds, log(1/δs) where s =(
k logM · ∥W (1)∥∞2 (WL)t−1/ϵ

)O(1
γ)

.

Proof. From Theorem A.19, we have that F there is an (ϵ, R)-uniform approxima-
tion polynomial for f with degree ℓ = O

(
Rk

√
k · ∥W (1)∥∞2 (WL)t−1/ϵ

)
. Here, let

gF (ϵ) := k
√
k∥W (1)∥∞2 (WL)t−1/ϵ. We also have that r = sup∥x∥2≤R,f∈F |f(x)| ≤

poly(Rk∥W (1)∥∞2 W t−2) from the Lipschitz constant(Lemma A.18) and the fact that the each in-
dividual activation has value at most 1 when evaluated at 0 (see Definition A.12. The theorem now
directly follows from Theorem C.7.

D ASSUMPTIONS ON THE LABELS

Our main theorems involve assumptions on the labels of both the training and test distributions.
Ideally, one would want to avoid any assumptions on the test distribution. However, we demonstrate
that this is not possible, even when the training marginal and the training labels are bounded, and the
test labels have bounded second moment. On the other hand, we show that obtaining algorithms that
work for bounded labels is sufficient even in the unbounded labels case, as long as some moment of
the labels (strictly higher than the second moment) is bounded.

We begin with the lower bound, which we state for the class of linear functions, but would also hold
for the class of single ReLU neurons, as well as other unbounded classes.
Proposition D.1 (Label Assumption Necessity). Let F be the class of linear functions over Rd,
i.e., F = {x 7→ w · x : w ∈ Rd, ∥w∥2 ≤ 1}. Even if we assume that the training marginal is
bounded within {x ∈ Rd : ∥x∥2 ≤ 1}, that the training labels are bounded in [0, 1], and that for the
test labels we have Ey∼D′

y
[y2] ≤ Y where Y > 0, no TDS regression algorithm with finite sample

complexity can achieve excess error less than Y/4 and probability of failure less than 1/4 for F .

The proof is based on the observation that because we cannot make any assumption on the test
marginal, the test distribution could take some very large value with very small probability, while
still being consistent with some linear function. The training distribution, on the other hand, gives
no information about the ground truth and is information theoretically indistinguishable from the
constructed test distribution. Therefore, the tester must accept and its output will have large excess
error. The bound on the second moment of the labels does imply a bound on excess error, but this
bound cannot be made arbitrarily small by drawing more samples.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Proof of Proposition D.1. Suppose, for contradiction that we have a TDS regression algorithm for F
with excess error ϵ < Y/4 and probability of failure δ < 1/4. Let m ∈ N be the sample complexity
of the algorithm and p ∈ (0, 1) such that m ≪ 1/p. We consider three distributions over Rd × R.
First D(1) outputs (0, 0) with probability 1. Second, D(2) outputs (0, 0) with probability 1 − p and
(
√
Y√
p w,

√
Y√
p) with probability p, for some w ∈ Rd with ∥w∥2 = 1. Third, D(3) outputs (0, 0) with

probability 1− p and (
√
Y√
p w, 0) with probability p.

We consider two instances of the TDS regression problem. The first instance corresponds to the case
D = D(1) and D′ = D(2). The second corresponds to the case D = D(1) and D′ = D(3). Note
that the assumptions we asserted regarding the test distribution and the test labels are true for both
instances. For D(2), in particular, we have E

y∼D(2)
y

[y2] = p · (
√
Y /

√
p)2 = Y . Moreover, in each of

the cases, there is a hypothesis in F that is consistent with all of the examples (either the hypothesis
x 7→ 0 or x 7→ w · x), so opt := minf∈F [LD(f)] = 0 = minf ′∈F [LD(f

′) + LD′(f ′)] =: λ.

Note that the total variation distance between D(1) and D(2) is p and similarly between D(1) and
D(3). Therefore, by the completeness criterion, as well as the fact that sampling only increases total
variation distance at a linear rate, i.e., dtv((D)⊗m, (D′)⊗m) ≤ m ·dtv(D,D′) ≤ m ·p, we have that
in each of the two instances, the algorithm will accept with probability at least 1−m · p− δ (due to
the definition of total variation distance1).

Suppose that the algorithm accepts in both instances (which happens w.p. at least 1 − 2δ − 2mp).
By the soundness criterion, with overall probability at least 1− 4δ − 2mp, we have the following.

p · (h(x)− 0)2 < Y/4

p · (h(x)−
√
Y /

√
p)2 < Y/4

The inequalities above cannot be satisfied simultaneously, so we have arrived to a contradiction. It
only remains to argue that 1− 4δ− 2mp > 0, which is true if we choose p < 1−4δ

2m . Therefore, such
a TDS regression algorithm cannot exist.

The lower bound of Proposition D.1 demonstrates that, in the worst case, the best possible excess
error scales with the second moment of the distribution of the test labels. In contrast, we show that
a bound on any strictly higher moment is sufficient.

Corollary D.2. Suppose that for anyM > 0, we have an algorithm that learns a class F in the TDS
setting up to excess error ϵ ∈ (0, 1), assuming that both the training and test labels are bounded in
[−M,M]. Let T (M) and m(M) be the corresponding time and sample complexity upper bounds.

Then, in the same setting, there is an algorithm that learns F up to excess error 4ϵ under the relaxed
assumption that for both training and test labels we have E[y2g(|y|)] ≤ Y for some Y > 0 and
g some strictly increasing, positive-valued and unbounded function. The corresponding time and
sample complexity upper bounds are T (g−1(Y/ϵ2)) and m(g−1(Y/ϵ2)).

The proof is based on the observation that the effect of clipping on the labels, as measured by the
squared loss, can be controlled by drawing enough samples, whenever a moment that is strictly
higher than the second moment is bounded.

Lemma D.3. Let Y > 0 and g : (0,∞) → (0,∞) be strictly increasing and surjective. Let y be a
random variable over R such that E[y2g(|y|)] ≤ Y . Then, for any ϵ ∈ (0, 1), if M ≥ g−1(Y/ϵ2),
we have

√
E[(y − clM (y))2] ≤ ϵ.

Proof of Lemma D.3. We have that E[(y−clM (y))2] ≤ E[y21{|y| > M}], because y ≥ clM (y) and
y, clM (y) always have the same sign, so (y−clM (y))2 ≥ y2 and also (y−clM (y))2 = 0 if |y| ≤M .
Since g(|y|) is non-zero whenever y > 0, we have E[y21{|y| > M}] = E[y2 · g(|y|)

g(|y|) ·1{|y| > M}].

1We know that the algorithm would accept with probability at least 1 − δ if the set of test examples was
drawn from (Dx)

⊗m. Since (D′
x)

⊗m is (mp)-close to (Dx)
⊗m, no algorithm can have different behavior if

we substitute (Dx)
⊗m with (D′

x)
⊗m except with probability m · p. Hence, any algorithm must accept with

probability at least 1−m · p− δ.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

We now use the fact that g is increasing to conclude that E[y21{|y| > M}] ≤ E[y2g(|y|)]
g(M) ≤ Y

g(M) .
By choosing M ≥ g−1(Y/ϵ2), we obtain the desired bound.

We are now ready to prove Corollary D.2, by reducing TDS learning with moment-bounded labels
to TDS learning with bounded labels.

Proof of Corollary D.2. The idea is to reduce the problem under the relaxed label assumptions to a
corresponding bounded-label problem for M = g−1(Y/ϵ2). In particular, consider a new training
distribution clM ◦D and a new test distribution clM ◦D′, where the samples are formed by drawing a
sample (x, y) from the corresponding original distribution and clipping the label y to clM (y). Note
that whenever we have access to i.i.d. examples from D, we also have access to i.i.d. examples from
clM ◦D and similarly for (D′

x, clM ◦D′
x). Therefore, we may solve the corresponding TDS problem

for clM ◦ D and clM ◦ D′, to either reject or obtain some hypothesis h such that

LclM◦D′(h) ≤ min
f∈F

[LclM◦D(f)] + min
f ′∈F

[LclM◦D(f
′) + LclM◦D′(f ′)] + ϵ

Our algorithm either rejects when the algorithm for the bounded labels case rejects or accepts and
outputs h. It suffices to show LD′(h) ≤ minf∈F [LD(f)] + minf ′∈F [LD(f

′) + LD′(f ′)] + 4ϵ,
because the marginal distributions do not change and completeness is, therefore, satisfied directly.

It suffices to show that for any distribution D, we have |LD(h)−LclM◦D(h)| ≤ ϵ. To this end, note
that LclM◦D(h) =

√
E(x,y)∼D[(clM (y)− h(x))2]. We have the following.

LclM◦D(h) =
√
E(x,y)∼D[(clM (y)− h(x))2]

=
√

E(x,y)∼D[(clM (y)− y + y − h(x))2]

≤
√

E(x,y)∼D[(clM (y)− y)2] +
√
E(x,y)∼D[(y − h(x))2]

≤ ϵ+ LD(h)

The first inequality follows from an application of the triangle inequality for the L2-norm and the
second inequality follows from Lemma D.3. The other side follows analogously.

34

	Introduction
	Technical Statement of Results
	Our Techniques
	Related Work

	Preliminaries
	Bounded Training Marginals
	TDS Regression via the Kernel Method
	Applications

	Unbounded Distributions
	Polynomial Approximations of Neural Networks
	Results from Approximation Theory
	Useful Notation and Facts
	Kernel Representations
	Nets with Lipschitz activations
	Sigmoids and Sigmoid-nets

	TDS Learning and Kernel Methods
	General Theorem
	Applications

	TDS Learning and Uniform Approximation
	Preliminaries
	Central Theorem
	Applications

	Assumptions on the Labels

