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a b s t r a c t 

Fully convolutional networks have shown outstanding performance in the salient object detection (SOD) 

field. The state-of-the-art (SOTA) methods have a tendency to become deeper and more complex, which 

easily homogenize their learned deep features, resulting in a clear performance bottleneck. In sharp con- 

trast to the conventional “deeper” schemes, this paper proposes a “wider” network architecture which 

consists of parallel sub-networks with totally different network architectures. In this way, those deep fea- 

tures obtained via these two sub-networks will exhibit large diversity, which will have large potential to 

be able to complement with each other. However, a large diversity may easily lead to the feature conflic- 

tions, thus we use the dense short-connections to enable a recursively interaction between the parallel 

sub-networks, pursuing an optimal complementary status between multi-model deep features. Finally, 

all these complementary multi-model deep features will be selectively fused to make high-performance 

salient object detections. Extensive experiments on several famous benchmarks clearly demonstrate the 

superior performance, good generalization, and powerful learning ability of the proposed wider frame- 

work. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

The objective of salient object detection is to identify the most 

isually distinctive object in the given image [1] . As a preprocess- 

ng tool, salient object detection (SOD) has a wide range of prac- 

ical applications, including visual tracking [2] , localization [3] , 

ideo saliency [4] , image captioning [5,6] , image retrieval [7] , 

isual question answering [8] and object retargeting [9] . 

Previous works frequently treat the SOD as a multi-level per- 

eption task [10–12] , in which its key rationale is to make full use

f the saliency clues at different perception levels [13] . Recently, 

he fully convolutional networks (FCNs) has been adopted for the 

obust SOD, in which such success should be attributed to its abil- 

ty to learn hierarchical saliency clues. Thus, the current state-of- 

he-art (SOTA) models [14–16] generally focus on how to utilize 

he hierarchical deep features in “single network” to produce high- 

uality SOD. Nevertheless, the hierarchical deep features revealed 
∗ Corresponding author. 
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n an identical network have a tendency to be homogenization, re- 

ulting in a limited performance eventually. 

In the view of the neuroscience, human visual system mainly 

omprises two largely independent subsystems that mediate dif- 

erent classes of visual behaviors [17,18] . The subcortical projection 

rom the retina to the cerebral cortex is strongly dominated by the 

wo pathways that are relayed by the magnocellular (M) and par- 

ocellular (P) subdivisions of the lateral geniculate nucleus (LGN), 

n which the parallel pathways generally exhibit two main charac- 

eristics: 1) the M cells contribute to the low-level transient pro- 

essing (e.g., visual motion perception, eye movement, etc.) while 

he P cells contribute more to the high-level recognition tasks (e.g., 

bject recognition, face recognition, etc.); 2) the M and P cells are 

eparated in the LGN, but it is recombined in visual cortex latter. 

Motivated by the above-mentioned theory, we propose to use 

wo parallel networks (see Fig. 1 ) to mimic the binocular vision 

f human visual system. The key point of the proposed parallel 

etwork architecture is its ability to conduct multi-level saliency 

stimation while avoiding the conventional single network archi- 

ecture inducted feature homogenization problem. To achieve it, 

e devise a novel multi-model deep fusion framework, which at- 

https://doi.org/10.1016/j.patcog.2021.108212
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patcog
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patcog.2021.108212&domain=pdf
mailto:cclz123@163.com
https://doi.org/10.1016/j.patcog.2021.108212
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Fig. 1. The major difference between our method and the conventional methods. 
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empts to fully exploit the complementary deep features from two 

ifferent parallel subnetworks: the coarse-level saliency localiza- 

ion network and the fine-scale detail polishing network. Mean- 

hile, inspired by the aforementioned attributes, we adopt the 

nter-model short-connections to recursively ensure a complemen- 

ary status between each of our subnetworks. Moreover, we uti- 

ize an FCNs based saliency regressor to conduct selective deep 

usion over those inter-model deep features, achieving a high- 

erformance SOD eventually. 

It should be noted that our “wide” scheme is solely imple- 

ented by using simple network architecture, yet it has achieved 

emarkable performance improvement comparing to the conven- 

ional complicated “deeper” schemes. And such performance im- 

rovements are mainly induced by the newly designed multi- 

odel fusion scheme, in which the adopted simple network archi- 

ecture is a hallmark of the proposed method. Moreover, to our 

est knowledge, our paper is the first attempt to handle the SOD 

rom the ”wider” perspective. 

To demonstrate the advantages of our method, we have con- 

ucted massive quantitative comparisons against 14 most repre- 

entative SOTA methods over 5 widely used publicly available 

atasets. Also, we have conducted extensive ablation studies to 

omprehensively verify the effectiveness of each essential compo- 

ent in our method. Specifically, the salient contributions of this 

aper can be summarized as follows: 

• We provide a deeper insight into the salient object detection 

task by imitating the binocular vision of human perception pro- 

cess; 
• To alleviate the obstinate feature homogenization problem in 

single network case, we utilize parallel subnetworks to auto- 

matically reveal saliency clues at different spatial levels; 
• We propose an end-to-end salient object detection model that 

learns diversity saliency clues in an iterative manner, aiming 

to achieve an optimal complementary status between the deep 

features extracted by our parallel subnetworks; 
• We also provide a novel selective fusion strategy to fuse multi- 

model saliency clues for high-performance salient object de- 

tection, achieving the new SOTA performance over the five 

adopted datasets. 
• The source code is available at: https://github.com/ 

Diamond101010/RMMDF , which may has large potential to 

benefit the image salient object detection community in the 

future. 

. Related work 

Early methods largely adopt various hand-crafted visual fea- 

ures [19–21] to model the human visual attention [22] , which 

re limited in generalization and effectiveness. However, these 

ethods have low computational efficiency and ignore rich con- 

extual semantic information. More details about traditional meth- 
2 
ds are discussed in [23,24] . Here we mainly discuss deep learning 

ased saliency detection models. 

.1. Single-stream network 

The single-stream network is one of standard architecture 

dopted by many state-of-the-art methods, consisting of a sequen- 

ial cascade of convolution layers, pooling layers and non-linear 

ctivation operations. Li et al. [25] first proposed a convolutional 

eural networks (CNNs) based computational model, which incor- 

orates the multi-scale deep features via simply vector-wise fea- 

ure concatenation. Inspired by the great success of fully con- 

olutional network (FCN) [26] in semantic segmentation, recent 

eep SOD models adapt popular classification models, e.g., VG- 

Net and ResNet to predict the whole saliency maps directly. Sim- 

larly, Liu et al. [27] proposed a hierarchical refinement model 

n which the coarse saliency map by gradually combining shal- 

ower features by using recurrent layers. In [14] , short con- 

ections are introduced from deeper side-outputs to shallower 

nes. In this way, higher-level features can help lower side- 

utputs to better locate the salient regions, while lower-level fea- 

ures can help enrich the higher-level side-outputs with finer de- 

ails. Wang et al. [28] present progressive feature polishing net- 

ork, a simple yet effective framework to progressively polish 

he multi-level features to be more accurate and representative. 

hang et al. [29] also proposed a novel method to aggregate multi- 

evel features at multiple resolutions, in which the key rationale is 

o simultaneously integrate high-level semantical information with 

ow-level details without considering the inter-layer relations. In- 

tead of concatenating multi-level features directly, we devise the 

 elective d eep f usion (SDF) to make full use of the multi-level fea-

ures. To be more specific, we first utilize the saliency maps in the 

revious stages, e.g., M 

t−1 , which contain both high-level semantic 

nformation and low-level details, to automatically ‘select’ which 

eatures in the next stage should be used. Moreover, after obtain- 

ng the refined features, the high-level fine-scale saliency will be 

used with multi-scale features derived from another subnetwork. 

Besides, Wang et al. [30] proposed a recurrent fully convolu- 

ional networks (RFCN) which recurrently refines the saliency pre- 

iction based on the input image and the saliency priors from 

euristic calculation or prediction of previous time step. At the 

rst glance, our proposed model is partially similar to the exist- 

ng RFCN, where both our model and the RFCN follow the coarse- 

o-fine manner for the SOD task. However, our model is different 

rom the RFCN in essence, and we would like to detail these critical 

ifferences as below: 1) The RFCN is heavily dependent on multi- 

le saliency priors, taking them as the auxiliary input to boost the 

raining convergency and yield more accurate SOD results; in sharp 

ontrast, our method doesn’t need such priors, where the perfor- 

ance gain is mainly ensured by seeking the complementary sta- 

us between different feature backbones. 2) In view of the network 

esign, the proposed model is a type of U-Net architecture, while 

https://github.com/Diamond101010/RMMDF
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Fig. 2. Deep features in networks with different architectures are generally complementary, in which these feature maps are obtained from the last convolutional layer. 
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he RFCN is a typical FCN based model; besides, our model follows 

he bi-stream structure, where our main focus is in the interactions 

etween different feature backbones. 

.2. Multi-stream networks 

The recent development of network architecture has a ten- 

ency to become deeper and more complicated [31] . Zeiler 

t al. [32] have demonstrated that a deeper architecture can 

enerally generate more discriminative features at the expense of 

ore complex architecture, leading the network difficult to train. 

n sharp contrast to the “deeper” strategy, the “wider” architecture 

ay become an intuitive choice, in this paper the term “wider”

eans to design network architecture with parallel sub-networks. 

or example, Lin et al. [33] proposed a bilinear architecture, utiliz- 

ng two feature extractors to obtain multi-scale deep features for 

mage recognition. Saito et al. [34] proposed a novel model for 

isual question answering, which attempts to learn discriminative 

eatures by using two independent sub-networks to conduct fea- 

ure extraction for multi-source data. Kim et al. [35] proposed to 

tilize a newly designed parallel feature pyramid network for ob- 

ect detection. Yang et al. [36] present a deep compact code learn- 

ng solution for efficient cross-modal similarity search. Deng et al. 

37] propose a novel strategy to exploit the semantic similarity 

f the training data and design an efficient generative adversarial 

ramework. Deng et al. [38] propose a novel two-stream ConvNet 

rchitecture, which learns hash codes with class-specific represen- 

ation centers. 

Recently, Multi-stream network, which typically has multiple 

etwork streams for explicitly learning multi-scale saliency fea- 

ures with different structures, is adopted in the image saliency 

etection and achieve promising results. Zhao et al. [39] designed 

 multi-context deep learning framework, in which the parallel re- 

ealed global context and local context are combined in an uni- 

ed deep learning framework to jointly locate the salient object. 

ang et al. [40] utilized parallel sub-networks to respectively 

onduct pixel-level/object-level saliency computation, and then the 

evealed saliency clues will be fused as the final predictions. Li 

t al. [41] built a multi-task deep network to explore the com- 

on saliency consistency between the salient object detection and 

he semantic segmentation. Wang et al. [42] design a two-stream 

etwork, i.e., a classification network and a caption generation net- 

ork, to highlight the most important regions for corresponding 

asks. Wu et al. [43] propose to integrate features of deeper layers 

n attention stream to get an initial saliency map, which is used 

o refine the features of the detection stream to generate the final 

ap. 
3 
Actually, the “wider” structure has its merit to balance the 

rade-off between the saliency performance and the network com- 

lexity. However, because the parallel structure adopted by the 

bove-mentioned methods are trained independently, those paral- 

el learned deep features may not be able to effectively comple- 

ent each other, not to mention those feature conflicts may lead 

he overall performance even worse. 

In contrast to the above-mentioned methods, the proposed 

odel is completely different in two aspects: 1) We utilize a novel 

ecursive learning strategy to train parallel sub-networks to obtain 

 complementary status between two subnetworks; 2) As for those 

lready learned complementary deep features, we utilize a selec- 

ive fusion module to ensure an optimal fusion status for high- 

uality SOD result. 

. Network architecture 

Motivation Existing state-of-the-art methods have a tendency 

o design deeper and more complicated network to improve the 

OD performance along with expensive computation overhead. Re- 

ently, Zagoruyko et al. [44] suggest that wide residual network is 

ar superior over their commonly used thin and very deep counter- 

arts in terms of computational complexity and accuracy. Though 

he previous works have demonstrated that a wider network is ef- 

ective, it has not been fully exploited in salient object detection 

ask. On the other hand, as shown in Fig. 1 -A, previous works [45–

7] focused on how to effectively aggregate multi-level visual fea- 

ures within a single-stream network, ignoring the connection be- 

ween different structure network. Saito et al. [34] show that the 

eatures extracted from different structure networks contain differ- 

nt information. As shown in Fig. 2 , some information should be 

reserved (or lost) only by VGGNet, whereas some are preserved 

nly by ResNet. Inspired by above-mentioned, we propose to de- 

ign a bi-stream network consisting of two different subnetworks, 

n which these subnetworks will potentially be able to provide 

omplementary discriminative saliency clues generated by differ- 

nt models. Our goal is to fully take advantage of complementary 

nformation present in different kinds of features. 

As shown in Fig. 3 , we redesigned the basic convolutional 

locks of feature extractor. Compared to the original residual block 

f ResNet, we designed another parallel branches to mining com- 

lementary deep features. In other words, these two parallel sub- 

etworks will focus on different saliency clues by using indepen- 

ent loss function to obtain diversity features. 

We utilize X = { X i , i ∈ [1 , 5] } to denote the input maps for each

onvolutional block in the VGG-16 subnetwork, in which the W i 

nd the b i respectively represent the predefined kernel and bias. 

hus, the learning procedure of our method can be uniformly for- 
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Fig. 3. Basicblock of VGGNet, ResNet and our wide network. Batch normalization and ReLU precede each residual block are omitted for clarity. 

Fig. 4. The pipeline of our proposed method. Our network follows the encoder-decoder style, yet it different from previous methods, in which the encoder consists of two 

backbones with different structures, i.e., VGG16 and ResNet50. The input image is firstly passed through the encoder to extract multi-scale convolutional deep features. Then, 

we use both the newly proposed Dense Aggregation Module ( Section 4.2 ) and Selective Deep Fusion Module ( Section 5 ) to make full use the multi-scale deep features which 

are extracted from VGG16 and ResNet50 respectively. The decoder network takes the multi-scale convolutional features as input to generate a finer saliency prediction M 

t , 

which will latterly be refined by recursively using those low-level deep features in previous stage ( Section 4.1 ). In each learning stage, our method simultaneously uses the 

detail refinement module (to alleviate the spatial info loss) and the dense aggregation module (to avoid the learning ambiguity) to ensure the complementary status between 

the parallel sub-networks. When our recursive learning reaches the final stage, we simultaneously feed the last feature layer of ResNet-50 and all side layers of VGG-16 into 

the selective deep fusion network to produce the final SOD results. 
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ulated as Eq. (1) . 

 i +1 ← Con v ( X i ) : W 

s 
i ∗ X i + b i , (1) 

here Con v (·) denotes the convolutional operation and the super- 

cript s denotes the convolutional stride. Similarly, we represent 

he input features for convolutional blocks in our ResNet-50 sub- 

etwork as F = { F i , i ∈ [1 , 5] }. Deconvolution layers are to progres-

ively produce the fine-scale saliency score map M 

t , where the su- 

erscript t denotes the recursive learning stage. 

Figure 4 illustrates the overview of the proposed model, which 

ainly consists of three components: 1) detail refinement module; 

) dense aggregation module; and 3) selective deep fusion mod- 

le. All these components will cooperate our recursive multi-model 

eep learning, which will be respectively introduced in the follow- 

ng sections. 
4 
. Inter-model deep fusion 

.1. Detail refinement module 

Following the widely used encoder-decoder network architec- 

ure, the proposed detail refinement module (DRM) utilizes the 

esNet-50 subnetwork to conduct an end-to-end saliency regres- 

ion for the fine-scale saliency predictions, which will latter be 

pplied to another parallel sub-network (VGG-16) to alleviate the 

patial information loss problem, recursively. 

Recently, the conventional networks usually adopt multiple 

onvolution and pooling operations for their saliency regression, 

hich easily degrade their performance due to the spatial infor- 

ation progressively vanishes in deep layers. To alleviate it, Hou 

t al. [14] proposed to resort short connections to integrate multi- 

evel deep features to compensate the lost spatial details. However, 

eep features obtained by an identical single network have a ten- 
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Fig. 5. The illustration of the proposed modules. The subfigure A is the detailed architecture of the detail refinement module ( Section 4.1 ) in the tth stage. We resize the M 

t 

to the same size of the X t i and concatenate them together by performing convolutional operation. Then, the combined features will be fed into the next stage, obtaining the 

M 

t+1 with better details. The subfigure B shows how to convert the multi-level deep features X t i into the integrated feature maps X t 
i 
, which will latter prepare a set of finer 

deep features for the next learning stage ( Section 4.2 ). 
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ency of homogenization, which heavily limits the complementary 

tatus between inter-layer deep features. 

To address above limitations, we propose to construct dense 

onnections between our parallel networks, see the pictorial 

emonstration in Fig. 5 -A. Since the output of last layer of ResNet- 

0 can well represent the saliency details, we use it to recursively 

efine its parallel VGG-16 features ( X 

t 
i , i ∈ [1 , 2 , 3 , 4 , 5] ). Also, we

esize the resolution of M 

t according to each target features X 

t 
i , 

nd then fuse these linked deep features by using a 3 × 3 convolu- 

ion. Here we formulate the recursively fusion procedure as Eq. (2) . 

 

t+1 
i ← 

{ 

C on v { C at( X 

t 
i , ↑ ( M 

t )) } , i f ξ ( M 

t ) < ξ ( X 

t 
i ) 

C on v { C at( X 

t 
i , ↓ ( M 

t )) } , i f ξ ( M 

t ) > ξ ( X 

t 
i ) 

, (2) 

here ↑ (·) and ↓ (·) denote the upsampling and downsampling 

perations respectively. Cat(·) denotes concatenate operation and 

he function ξ (·) returns the feature size of the given input. 

So far, by using Eq. (2) , we have utilized the fine-scale saliency 

redicted by the ResNet-50 sub-network to refine its parallel sub- 

etwork VGG-16. Meanwhile, in order to achieve an optimal inter- 

odel complimentary status, those deep features generated by 

GG-16 in turn are used to reduce the false positive regions de- 

ected by the ResNet branch. Therefore, we recursively update M 

 M 

t+1 ← M 

t ) in the ResNet-50 subnetwork. 

.2. Dense aggregation module 

Previous works [14,16,29] have shown that a good saliency 

odel should take full advantage of its intermediate multi-level 

eep features, in which high-level deep features usually concen- 

rate on the high-level semantical information while low-level fea- 

ures frequently focus on the subtle details. 

As we all know, the lower-level features contain many spa- 

ial details along with non-salient distractors, while the higher- 

evel features focus more on those discriminative regions, such 

on-salient distractors in deep features are gradually suppressed 

hen the CNNs go deeper. Since the non-salient distractors are 

n lower-level features, the straightforward fusion strategies (e.g., 
5 
he point-to-point style [48] ) will easily introduce inconsisten- 

ies/conflictions. To address this issue, we have devised a novel 

ense aggregation scheme, which refines each layer of the ResNet 

ranch by integrating all-level features of the VGGNet branch, see 

he pictorial demonstration in Fig. 5 -B. In this way, the distractors 

idden in the low-level features will be suppressed effectively. 

For each recursive learning stage (i.e., noted by superscript t), 

e first utilize 1 × 1 convolution to reduce the feature channel. 

hus, we can easily aggregate each feature block X 

t 
i to 32 chan- 

el feature map 

ˆ X 

t 

i . Then, for each 

ˆ X 

t 

i , we resize ˆ X 

t 

j ( j � = i ) to be an

dentical size of ˆ X 

t 

i and aggregate all theses resized feature maps 

o an identical size of each ResNet-50’ feature block F t i by using 

 × 1 convolution, which can be formulated as Eq. (3) . 

 

t 
i = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

C on v { C at( ̂  X 

t 

1 , ↑ ( ̂  X 

t 

2 ) , . . . , ↑ ( ̂  X 

t 

5 )) } if i = 1 

C on v { C at( . . . , ↓ ( ̂  X 

t 

i −1 ) , ̂  X 

t 

i , ↑ ( ̂  X 

t 

i +1 ) , . . . ) } if i = { 2 , 3 , 4 }

C on v { C at(↓ ( ̂  X 

t 

1 ) , . . . , ↓ ( ̂  X 

t 

4 ) , ̂  X 

t 

5 ) } if i = 5 , 

(3) 

here ↑ (·) and ↓ (·) respectively denote the upsam- 

ling/downsampling operation, Cat(·) denotes the concatenation 

peration. 

In general, those computed deep feature X 

t 
i 

( i ∈ { 1 , 2 , 3 , 4 , 5 } )
an well represent the intermediate coarse-level saliency clues in 

he VGG-16 subnetwork, and we recursively aggregate these fea- 

ures into the ResNet-50 subnetwork as Eq. (4) . 

 

t+1 
i ← Con v ( F t i , X 

t 
i ) , (4) 

here X 

t 
i 

denotes the processed i th feature block in ResNet-50 at 

he t learning stage. Once the ResNet-50’ deep features F t i have 

een updated to F t+1 
i , we can achieve more finer saliency map 

 

t+1 accordingly, which will be used to initiate another round of 

ecursively learning in our detail refinement module. 

In summary, there are totally three major advantages regarding 

he proposed dense aggregation module: 
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Fig. 6. Visual comparison of saliency maps. Note that GT stands for the groundtruth. Apparently, it can be observed that our proposed model is able to handle diverse 

challenging scenes. 
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(1) Each coarse-level deep features generated from VGG-16 fa- 

cilitate the computation of fine-scale saliency prediction of 

current ResNet-50 network, which ensures an effective com- 

plementary status between our parallel sub-networks; 

(2) The proposed dense aggregation scheme can correct the 

consistency of those intermediate multi-level deep features, 

making the fine-scale saliency prediction of ResNet-50 net- 

work more accurate; 

(3) The coarse-level deep features produced by VGG-16 can be 

treated as attention maps to suppress the false positive re- 

gions detected by the ResNet branch. 

. Selective deep fusion 

The conventional methods have investigated various hand- 

rafted fusion strategies (e.g., the multiplicative based ones, the 

dditive based ones, and the maximum combination based ones) 

o combine saliency clues which are revealed at different spatial- 

evels. However, these methods are elaborately designed for cer- 

ain types of image scenes, which may fail to generalize well in 

ther image scenes. To this end, we propose to utilize a newly 

esigned selective deep fusion to address the above-mentioned 

imitation. 

Concretely, when CNNs extract multi-level features from an in- 

ut image, the distractors in features are gradually suppressed 

s CNNs go deeper. Since there are many distractors in lower- 
6 
evel features, we propose a novel selective deep fusion module, 

hich refines each layer feature of one branch by integrating high- 

evel features of the other branch. On the other hand, considering 

revious stage M 

t−1 contains both high-level semantic informa- 

ion (e.g., location) and low-level class-agnostic details information 

e.g., edge), we combine the fine-scale saliency clue ( M 

t−1 ) with 

ur proposed selective deep fusion module, which can be formu- 

ated as Eq. (5) . 

 

t 
l = 

5 ∑ 

i = l 
Con v 

(
T F ( M 

t−1 ) � T F (X 

t 
i ) 

)
, (5) 

here TF is a scale transformation operation along with a 1 × 1 

onvolutional layer with 32 output channel number, which aims 

o ensure the spatial size consistent with the corresponding F t l . �

s element-wise multiplication. S t l denotes the fused feature, which 

ntrinsically contains complementary saliency clues. After obtain- 

ng S t l , we feed it into another branch to learn complementary 

aliency clues. In this selective deep fusion module, the inputs ( X 

t 
i 

nd M 

t−1 ) usually vary between different levels of SDF. For ex- 

mple, the lowest-level SDF takes all levels (i.e., 5 levels) of deep 

eatures { X 

t 
i 
, i = 1 , 2 , . . . , 5 } as input, while the top-level SDF only

akes a single X 

t 
5 

as input. This makes the state of the proposed 

DF explicitly discriminative at different levels because each SDF 

as its own weights. Thus, we should assign one individual SDF 

odule for each level of the proposed network. Besides, the selec- 
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Fig. 7. Quantitative comparisons (Pecision-recall curves and F-measure curves) between our method and 14 state-of-the-art methods over 5 adopted datasets, in which the 

left part is the Precision-recall curve and the right part is the F-measure curve. Due to the limitation of space, we only provide the quantitative results over 3 datasets here, 

and the remaining 3 results can be found in Fig. 8 . 

Table 1 

Details of our selective deep fusion module, in which the “DeC.” denotes the deconvolution and the “ConvC.” denotes the convolution 

and classifier. For simplicity, we have omitted the channel number of the “output” because they have an identical channel number (i.e., 

64), excepting for the last ConvC which has 2 channels only. 

Layers Conv1 Conv2 Conv3 Conv4 DeC.4 DeC.3 DeC.2 DeC.1 ConvC. 

Kernel 33 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 3 × 3 1 × 1 

Channel 64 64 64 64 64 64 64 64 2 

Output 256 × 256 128 × 128 64 × 64 32 × 32 32 × 32 64 × 64 128 × 128 256 × 256 256 × 256 

t

s

i

i

d

s

b

e

m

e

ReLU. 
ive fusion costs less computation overhead than point-to-point fu- 

ion strategy. Moreover, the performance also achieves consistently 

ncrease because less distractors have been introduced in feature 

ntegration. 

We show the architecture details of the proposed selective 

eep fusion module in Table 1 . Actually, this module mainly con- 
7 
ists of two components: the encoder block and the decoder 

lock. The encoder block are composed of 4 convolutional lay- 

rs. Each of these convolution layers is followed by a batch nor- 

alization and a ReLU activation function. Meanwhile, we assign 

ach encoder layer with one corresponding decoder without using 
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Fig. 8. Continued Quantitative comparisons (Precision-recall curves and F-measure curves) between our method and 14 state-of-the-art methods over 5 adopted datasets. 

Fig. 9. Deep feature visualization. (c) and (d) respectively show the low-level and high-level features; (f) is the fused features by DAM. 
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. Experiments and results 

.1. Implementation details 

The proposed method is developed on the public deep learn- 

ng framework Caffe. We run our model in a quad-core PC with 

n i7-6700 CPU (3.4 GHz and 8 GB RAM) and an NVIDIA GeForce 

TX 1080 GPU (with 8G memory). Our model is trained on the 
8 
SRA10K dataset. Then, we test our model on other datasets. Due 

o the limited GPU memory, we set the mini-batch size to 4. We 

se the stochastic gradient descent (SGD) method to train with a 

omentum 0.99, and the same weight decay 0.0 0 05. Meanwhile, 

or our feature integration module, we use SGD with a momentum 

.9, and weight decay 0.0 0 05. We set the learning rate as 10 −8 and

t reduces by a factor of 0.1 at 10k iterations. The training process 

f our model takes about 14 hours. During testing, the proposed 
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Table 2 

Comparison of quantitative results including the max F-measure, S-measure and MAE on five well-known SOD benchmarks: DUT-OMRON [57] , DUTS-TE [39] , EC- 

SSD [58] , HKU-IS [39] and PASCAL-S [59] . The top three results are highlighted in bold, italic, and bold-italic fonts, respectively. 

Method 

DUT-OMRON DUTS-TE HKU-IS ECSSD PASCAL-S 

max F β S-m MAE max F β S-m MAE max F β S-m MAE max F β S-m MAE max F β S-m MAE 

Ours 0.824 0.843 0.053 0.887 0.895 0.041 0.941 0.925 0.028 0.945 0.928 0.031 0.895 0.861 0.078 

RANet20 [49] 0.799 0.825 0.058 0.874 0.874 0.044 0.928 0.908 0.036 0.941 0.917 0.042 0.866 0.847 0.078 

R 2 Net20 [50] 0.793 0.824 0.061 0.855 0.861 0.050 0.921 0.903 0.039 0.935 0.915 0.044 0.864 0.847 0.075 

CPD19 [43] 0.797 0.825 0.056 0.865 0.868 0.044 0.925 0.906 0.034 0.939 0.918 0.037 0.884 0.828 0.089 

PoolNet19 [51] 0.805 0.831 0.054 0.889 0.886 0.037 0.936 0.919 0.030 0.949 0.926 0.035 0.902 0.847 0.081 

AFNet19 [52] 0.797 0.826 0.057 0.862 0.866 0.046 0.923 0.905 0.036 0.935 0.918 0.042 0.885 0.833 0.086 

MWS19 [42] 0.718 0.756 0.109 0.769 0.757 0.092 0.856 0.818 0.084 0.878 0.828 0.096 0.814 0.753 0.151 

PAGRN18 [53] 0.771 0.775 0.071 0.855 0.837 0.056 0.918 0.887 0.048 0.927 0.889 0.061 0.869 0.793 0.115 

DGRL18 [54] 0.774 0.806 0.062 0.829 0.841 0.050 0.911 0.895 0.036 0.922 0.903 0.041 0.881 0.828 0.082 

RADF18 [16] 0.786 0.813 0.072 0.814 0.824 0.072 0.907 0.888 0.050 0.917 0.895 0.060 0.857 0.797 0.119 

RAS18 [55] 0.787 0.814 0.062 0.831 0.838 0.060 0.913 0.887 0.045 0.921 0.893 0.056 0.852 0.774 0.125 

SRM17 [15] 0.769 0.798 0.069 0.827 0.835 0.059 0.906 0.888 0.046 0.917 0.895 0.054 0.868 0.817 0.100 

Amulet17 [29] 0.743 0.781 0.098 0.778 0.803 0.085 0.896 0.883 0.052 0.915 0.894 0.059 0.862 0.820 0.103 

UCF17 [56] 0.735 0.758 0.132 0.771 0.778 0.118 0.886 0.866 0.074 0.911 0.883 0.078 0.851 0.808 0.128 

DSS17 [14] 0.727 0.748 0.092 0.785 0.790 0.081 0.880 0.852 0.067 0.877 0.836 0.090 0.824 0.749 0.144 

Table 3 

The number of model size, FLOPs and parameters comparisons of our method with 3 state-of- 

the-art models. 

Method Model(MB) Encoder(MB) Decoder(MB) FLOPs(G) Params(M) 

Ours 263.7 138.5 125.2 74.23 69.48 

PoolNet19 [51] 278.5 94.7 183.8 88.91 68.26 

BASNet19 [63] 348.5 87.3 261.2 127.32 87.06 

DGRL18 [54] 573 95.6 477.4 215.62 146.37 
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odel runs about 14 FPS with 256 × 256 resolution. We assign the 

umber of recursive stage N = 3 according to the qualitative results 

emonstrated in Fig. 10 . 

The performance improvements of our method are mainly 

rought by the newly-designed multi-model fusion scheme and we 

an implement the parallel subnetworks using “simple” networks. 

or each subnetwork, the complexity and memory requirements 

re more than the conventional single network cases, while the 

verall complexity and memory requirements for our parallel sub- 

etworks is comparable to the mainstream single network cases 

see in Table 3 ). 

Algorithm 1 to show the details of our training process. We set 

lgorithm 1 Training Procedure. 

equire: Training data I = { (I i , y i ) } N i =1 
; Max epoch number N=100;

Number of iterations: T ; 

1: for t = 1 , . . . , N do 

2: for i= 1, …, T do 

3: Data-loading: image, gt = DataLoader(I); 

4: Predicting: pred = Model(image); 

5: Computing Loss: loss= BCELoss(pred, gt); 

6: Backpropagate loss and updating parameters: 

loss.backward(). 

7: end for 

8: end for 

he max epoch number N= 100, and the iteration number T varies 

ith the training data and batch size. As shown in Algorithm 1, we 

rst first load the training set using the DataLoader(). Next, we be- 

in to train the defined model using the binary cross entropy loss 

BCEL). Finally, at the end of each iteration, we will back-propagate 

he loss and update the network parameters. The above procedure 

ill be repeated until reaching the max epoch number. 
9 
.2. Datasets and evaluation metrics 

We have evaluated our method on 5 widely used publicly avail- 

ble datasets, including DUT-OMRON [57] , DUTS-TE [39] , EC- 

SD [58] , HKU-IS [39] and PASCAL-S [59] . DUT-OMRON con- 

ains 5168 high-quality images. Images of this dataset have one 

r more salient objects with complex backgrounds. DUTS-TE has 

019 images with high-quality pixel-wise annotations, which is se- 

ected from the currently largest SOD benchmark DUTS. ECSSD has 

0 0 0 natural images, which contain many semantically meaning- 

ul and complex structures. As an extension of the complex scene 

aliency dataset, ECSSD is obtained by aggregating the images from 

SD [60] and PASCAL VOC [61] . HKU-IS contains 4 4 47 images. 

ost of the images in this dataset have low contrast with more 

han one salient object. PASCAL-S contains 850 natural images with 

everal objects, which are carefully selected from the PASCAL VOC 

ataset with 20 object categories and complex scenes. 

We have adopted 4 commonly used standard metrics to eval- 

ate our method, including Precision-Recall curve, F-measure, S- 

easure [62] , and Mean Absolute Error (MAE). 

.3. Comparison with the state-of-the-art methods 

We have compared our method with 14 most representative 

OTA methods, including Amulet17 [29] , DSS17 [14] , UCF17 [56] , 

RM17 [15] , RAS18 [55] , RADF18 [16] , PAGRN18 [53] , 

GRL18 [54] , MWS19 [42] , CPD19 [43] , AFNet19 [52] , Pool- 

et19 [51] , RANet20 [49] and R 

2 Net20 [50] . For all of these meth- 

ds, we use the original codes with recommended settings or 

he saliency maps provided by the authors. Moreover, our results 

re diametrically generate by model without relying on any post- 

rocessing and all the predicted saliency maps are evaluated with 

he same evaluation code. 

Quantitative Comparisons . As a commonly used quantita- 

ive evaluation venue, we first investigate our model using the 

recision-recall curves. As shown in the left of Figs. 7 and 8 , our 

odel can consistently outperform the state-of-the-art models on 
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Fig. 10. Qualitative illustration of our recursive learning scheme, where t denotes the saliency maps obtained at different learning stages. 

Fig. 11. Examples of ReLU transformations of low-dimensional manifolds embedded in higher-dimensional spaces. In these examples the initial spiral is embedded into an 

n-dimensional space using random matrix T followed by ReLU, and then projected back to the 2D space using T −1 . In examples above n = 2 , 3 result in information loss 

where certain points of the mainfold collapse into each other, while for n = 15 to 30 the transformation is highly non-convex. 

Table 4 

Runtime comparison (GPU time) with previous deep learning based saliency models. 

Method Ours CPD19 AFNet19 DGRL18 RADF18 SRM17 Amulet17 UCF17 DSS17 RFCN18 

Time(s) 0.073 0.063 0.062 0.150 0.154 0.070 0.093 0.134 0.201 4.72 

Table 5 

Ablation study of our model on DUT-OMRON [57] , DUTS-TE [39] , ECSSD [58] , and HKU-IS [39] . We change one component at a time, to assess individual contributions. 

VGGNet and ResNet are used as the backbone. DRM is Details Refinement Module, DAM denotes Dense Aggregation Module and SDF stand for Selective Deep Fusion Module. 

Configurations 

DUT-OMRON DUTS-TE HKU-IS ECSSD 

max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ 
Baseline VGG16 0.743 0.734 0.078 0.798 0.824 0.069 0.865 0.864 0.050 0.871 0.853 0.053 

Baseline ResNet50 0.756 0.746 0.076 0.813 0.832 0.065 0.876 0.862 0.049 0.884 0.870 0.047 

VGG16 + ResNet50+DRM 0.772 0.793 0.065 0.846 0.864 0.057 0.893 0.905 0.046 0.910 0.884 0.042 

VGG16 + ResNet50+DRM+DAM 0.803 0.821 0.061 0.863 0.876 0.054 0.925 0.917 0.034 0.924 0.903 0.037 

VGG16 + ResNet50+DRM+DAM+SDF 0.824 0.843 0.053 0.887 0.895 0.041 0.941 0.925 0.028 0.945 0.928 0.031 

VGG16 + ResNet50+DRM+SDF 0.806 0.824 0.061 0.860 0.862 0.049 0.922 0.904 0.036 0.934 0.911 0.043 

Stage1 0.791 0.817 0.061 0.853 0.872 0.049 0.923 0.894 0.037 0.916 0.886 0.040 

Stage2 0.816 0.836 0.056 0.872 0.879 0.044 0.935 0.905 0.032 0.928 0.906 0.038 

Stage3 0.824 0.843 0.053 0.887 0.895 0.041 0.941 0.925 0.028 0.945 0.928 0.031 

Table 6 

Ablation study for different scale input. For example, { S ResNet = 1 , S VGG = 0 . 5 } denotes that the ResNet branch takes the whole image as input while the VGG branch reduces 

the image size by half. 

Configrations 

DUT-OMRON DUTS-TE HKU-IS ECSSD PASCAL-S 

max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ 
S ResNet = 1 , S VGG = 1 0.824 0.843 0.053 0.887 0.895 0.041 0.941 0.925 0.028 0.945 0.928 0.031 0.895 0.861 0.078 

S ResNet = 0 . 5 , S VGG = 1 0.813 0.837 0.062 0.873 0.888 0.047 0.935 0.921 0.032 0.926 0.915 0.034 0.878 0.855 0.085 

S ResNet = 0 . 25 , S VGG = 1 0.804 0.824 0.063 0.867 0.874 0.049 0.924 0.918 0.035 0.923 0.912 0.036 0.867 0.846 0.087 

S ResNet = 1 , S VGG = 0 . 5 0.821 0.836 0.056 0.882 0.887 0.046 0.934 0.912 0.032 0.938 0.925 0.035 0.887 0.854 0.083 

S ResNet = 1 , S VGG = 0 . 25 0.817 0.832 0.057 0.874 0.877 0.045 0.927 0.905 0.033 0.934 0.920 0.037 0.883 0.853 0.085 

Table 7 

Quantitative comparisons with other state-of-the-arts in term of F-measure (larger is better) and MAE (smaller is better) on five dataset. The best results are shown in bold. 

Ours-D represents for training on DUTS while Ours-DH represents for training on DUTS and HRSOD. 

Configrations 

HRSOD-Test DAVIS-S DUTS-Test HKU-IS THUR 

max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ 
Ours-DH 0.888 0.897 0.030 0.888 0.876 0.026 0.791 0.822 0.051 0.886 0.877 0.042 0.749 0.826 0.064 

Ours-D 0.857 0.876 0.040 0.850 0.875 0.029 0.796 0.827 0.052 0.891 0.882 0.042 0.740 0.820 0.067 

10 
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Table 8 

Quantitative comparison of the models with or without using the ReLU function in the proposed selective deep fusion module. 

Configrations 

DUT-OMRON DUTS-TE HKU-IS ECSSD PASCAL-S 

max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ max F β ↑ S-m ↑ MAE ↓ 
w/o ReLU 0.824 0.843 0.053 0.887 0.895 0.041 0.941 0.925 0.028 0.945 0.928 0.031 0.895 0.861 0.078 

w/ ReLU 0.822 0.840 0.053 0.882 0.889 0.042 0.938 0.924 0.028 0.943 0.925 0.033 0.891 0.856 0.079 
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ll tested benchmark datasets. Specifically, the proposed model 

utperforms other models on DUT-OMRON datasets. Meanwhile, 

ur model also is evaluated by F-measure curves as shown in the 

ight of Figs. 7 and 8 , which also demonstrates the superiority of 

ur method. The detailed F-measure, MAE values are provided in 

able 2 , in which our method also performs favorably against other 

tate-of-the-art approaches. As for the DUT-OMRON dataset, our 

odel achieves 82 . 4 % in max F-measure and 0 . 053 in MAE while 

he second best (PoolNet19) achieves 80 . 5 % in max F-measure and 

 . 054 % in MAE. Also, similar tendencies can be found in the HKU- 

S dataset, which is one of the most challenge datasets. Compared 

o the recent published RANet20, our model increases 1 . 3 % in max 

-measure and decreases 8 % in MAE. 

Qualitative Comparisons . We demonstrate the qualitative com- 

arisons in Fig. 6 . The proposed method not only detects the 

alient objects accurately and completely, but preserves subtle de- 

ails well. Specifically, the proposed model can adapt to various 

cenarios as well, including the small object case (row 3), the ob- 

ect occlusion case (raw 6), the complex background case (row 7), 

nd the low contrast case (row 9). Moreover, our method can con- 

istently highlight the foreground regions with sharp object bound- 

ries. 

Running Time and Model Complexity Comparisons . 

able 4 shows the running time comparisons. This evaluation 

as conducted on the same machine with an i7-6700 CPU and 

 GTX 1080 GPU, in which our model achieves 14 FPS. Besides, 

able 3 shows the model complexity comparisons, in which 

e may easily notice that most of the previous single-stream 

odels resort to heavy decoders. For example, the total model 

ize of the top-tier PoolNet is about 278MB, while its decoder 

art (about 183MB) takes more than half of the total size. In 

harp contrast, the decoder size of our proposed method is only 

25MB. 

.4. Component evaluation 

To validate the effectiveness of our method, we have evalu- 

ted several key components of the proposed model on the DUT- 

MRON, DUTS-TE, ECSSD and HKU-IS dataset. We start with two 

ingle-stream networks and progressively extend it with our newly 

esigned modules, including the parallel backbones, the detail re- 

nement module, the dense aggregation module and the selective 

eep fusion module. 

As shown in Table 5 , our newly designed parallel architecture 

quipped with detail refinement module only (see the 3rd row) 

an achieve much better performance than the single sub-network 

the 1st row and 2nd row). Meanwhile, the overall performance of 

he proposed parallel architecture with dense aggregation module 

an get the overall performance further improved, see the 4th row 

n Table 5 . Specially, we notice that the proposed selective deep 

usion module obtains a significant performance improvement, see 

he 5th row. All these results have demonstrated the effectiveness 

f the proposed method. 

For a better understanding, we also provide some qualitative 

emos in Fig. 9 . The lower-level features ( Fig. 9 -c) usually con-

ain many spatial details along with the non-salient distractors, 

hile the higher-level features ( Fig. 9 -d) tend to focus more on the
11 
ost discriminative regions, and the non-salient distractors would 

e gradually suppressed when the CNNs go deeper. The proposed 

AM is able to take full advantage of both low-level and high- 

evel features simultaneously, where the fused features ( Fig. 9 -f) 

an well suppress non-salient noises and retain spatial details si- 

ultaneously. As a result, it reveals the consistency of multi-level 

eatures, showing that the deep model with DAM can guarantee a 

etter consistency between the multi-level features. 

.5. Recursive learning validation 

As described in Section 4 , our method is trained in a recursive 

anner. To validate the effectiveness of our stage-wise recursive 

earning scheme, we perform a detailed comparison of the pro- 

osed model at different recursive learning stages using max F- 

easure, S-measure and MAE scores. As shown in the last three 

ows of Table 5 , the overall performance of our method becomes 

etter as the stage-wise recursive learning continues, and the cor- 

esponding qualitative demonstrations can be found in Fig. 10 . 

.6. Ablation study for different scale input 

Considering that the M cells contribute to the low-level tran- 

ient processing while the P cells contribute more to the high-level 

ecognition tasks, we also investigate the effectiveness adopting 

ifferent input scales for different networks. As shown in Table 6 , 

e have newly conducted a series of quantitative experiments to 

alidate it. 

Instead of being beneficial to the SOD task, the experimental 

esults show that different input scale for different network de- 

reases the overall performances. The main reason could be that, 

s demonstrated by the previous work [64] , the low-resolution 

mage usually shows unimpressive representation, which is mainly 

nduced by its limited information towards the SOD task (e.g., 

lurry object boundaries). In the proposed network, the VGG 

ranch was designed to play a role of coarse localization, and thus 

t can ensure good performance (about 0 . 5% degeneration in its 

erformance) when assigning a small scale to its features. Mean- 

hile, compared with the VGG sub-network, the ResNet branch 

hat is designed for tiny saliency details has a significant perfor- 

ance degeneration (about 1% ) due to a low-resolution input. 

To make our experimental results more convincing, we would 

ike to resort to third-party experimental results. Zeng et al. 

64] proposed a high-resolution salient object detection dataset 

HRSOD), aiming to solve the inherited defects (i.e., blurry bound- 

ry) of low-resolution image. And, their experiments demonstrate 

hat the HRSOD dataset can improve the overall performance by a 

arge margin. For convenience, we show the experiment results in 

able 7 . Their experiment results partly support our conclusion: a 

eep model trained on a high-resolution dataset can achieve better 

erformance than the model trained on a low-resolution dataset. 

hus, we prefer to inputs with the higher resolutions. Besides, us- 

ng different scales of input for different networks would degen- 

rate the overall performance, because, in our method, the multi- 

cale information has been fully considered from the perspective 

f the deep features, and using different input scales would limit 

he interactions between the multi-scale deep features. 
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.7. The effectiveness of ReLU in SDF 

In our SDF module, we get rid of the ReLU in decoder part. The 

ole of the ReLU is to enhance the non-linear perception ability of 

he neural network. Unfortunately, the ReLU is not always playing 

 positive role in improving neural networks’ capacities. For ex- 

mple, Sandler el al. [65] proposed the famous MobileNetV2 with 

he linear bottleneck, which discarded the ReLU in the bottleneck 

ayer, where the authors have fully proved that using ReLU in the 

ottleneck layer indeed hurting the overall performance. On the 

ne hand, as can be seen in Fig. 11 , ReLU is capable of preserving

omplete information in a high-dimensional subspace, and it in- 

vitably loses information in a low-dimensional subspace. On the 

ther hand, to save the computational cost, we compressed the de- 

oder feature channels to 32. These two insights provide us with 

n empirical hint: we can capture low-dimensional information by 

pplying linear layers without ReLU. In addition, our experimen- 

al evidence (in Table 8 ) also suggests that using linear fusion is 

rucial as it prevents nonlinearities from destroying too much in- 

ormation. 

.8. Limitations 

Compared with previous works, our method can capture more 

owerful saliency clues from different saliency perspective while 

voiding the obstinate feature conflictions by using the proposed 

ulti-model fusion scheme. In the clutter background case, our 

ethod can well suppress those non-salient regions and preserves 

ubtle salient details, which is proved by the increased precision 

ate and F-measure score in Fig. 7 and Fig. 8 . Nonetheless, we have

oticed a slight decrease regarding the average recall rate, which is 

ainly induced by an unbalanced bias in our multi-model fusion 

hen computing those complementary deep features. Another lim- 

tation of our model is the computational overhead for the stage- 

ise training. In the future, we plan to explore a more efficient fu- 

ion approach by using the off-the-shelf model compression tech- 

iques to alleviate the computational burden. 

. Conclusion 

In this paper, we proposed a novel multi-model fusion scheme, 

n which two parallel subnetworks are coordinated to learn com- 

lementary deep features recursively. The key rationale of our pro- 

osed method is to take full advantage of the complementary fea- 

ures encoded in different subnetworks, revealing saliency clues 

rom different perspectives. To achieve this goal, we newly design 

hree components: 1) Detail Refinement Module, 2) Dense Aggre- 

ation Module, and 3) Selective Deep Fusion Module. Specifically, 

e propose a detail refinement module to recursively compensate 

or the lost spatial details, and the dense aggregation module is 

esigned to make full use of multi-level deep features. Meanwhile, 

e propose a selective deep fusion module to effectively fuse com- 

lementary information encoded in different sub-branches. Exper- 

ments show that the proposed model outperforms existing state- 

f-the art algorithms on five benchmark datasets. 
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