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ABSTRACT

Dataset distillation (DD) generates small synthetic datasets that can efficiently train
deep networks with a limited amount of memory and compute. Despite the success
of DD methods for supervised learning, DD for self-supervised pre-training of deep
models has remained unaddressed. Pre-training on unlabeled data is crucial for
efficiently generalizing to downstream tasks with limited labeled data. In this work,
we propose the first effective DD method for SSL pre-training. First, we show,
theoretically and empirically, that naïve application of supervised DD methods to
SSL fails, due to the high variance of the SSL gradient. Then, we address this issue
by relying on insights from knowledge distillation (KD) literature. Specifically, we
train a small student model to match the representations of a larger teacher model
trained with SSL. Then, we generate a small synthetic dataset by matching the
training trajectories of the student models. As the KD objective has considerably
lower variance than SSL, our approach can generate synthetic datasets that can
successfully pre-train high-quality encoders. Through extensive experiments, we
show that our distilled sets lead to up to 13% higher accuracy than prior work,
on a variety of downstream tasks, in the presence of limited labeled data.

1 INTRODUCTION

Dataset distillation (DD) aims to generate a very small set of synthetic images that can simulate train-
ing on a large image dataset, with extremely limited memory and compute (Wang et al., 2018). This
facilitates training models on the edge, speeds up continual learning, and provides strong privacy guar-
antees (Kim et al., 2022; Cazenavette et al., 2022; Sajedi et al., 2023; Dong et al., 2022). As a result,
there has been a surge of interest in developing better DD methods for training neural networks in a su-
pervised manner. However, in many applications, very few labeled example are available. In this case,
supervised models often fail to generalize well. Instead, models are pre-trained, using self-supervised
learning (SSL), on a large amount of unlabeled data and then adapted to the downstream task using the
limited labeled data by training a linear classifier using the labeled examples of each downstream task
(linear probe). Remarkably, Chen et al. (2020) showed that SSL pre-training, followed by linear probe,
can outperform Supervised Learning (SL) by nearly 30% on ImageNet (Deng et al., 2009) when only
1% of labels are available. More impressively, by only training the linear layer (linear probe), SSL pre-
training is able to generalize to a variety of downstream tasks nearly as effectively as full fine-tuning
on the downstream task, for a fraction of the cost. Thus, SSL pre-training’s benefits are invaluable
in today’s modern ML ecosystem, where unlabeled data is plentiful and it is essential to generalize to
a plethora of downstream tasks, effectively and efficiently. With the datasets for SSL being far larger
than those for SL, the computational and privacy benefits of dataset distillation for SSL are even more
important than they are for SL. Nevertheless, DD for SSL pre-training has remained an open problem.

DD for SSL is, however, very challenging. One needs to ensure that pre-training on the synthetic
dataset, distilled from unlabeled data, results in a encoder that yields high-quality representations
for a variety of downstream tasks. Existing DD methods for SL generate synthetic data by matching
gradients (Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022) or trajectory (Cazenavette et al.,
2022; Du et al., 2023; Cui et al., 2022) of training on distribution of real data (Zhao & Bilen, 2023;
Sajedi et al., 2023; Wang et al., 2022a), or meta-model matching by generating synthetic data such
that training on it achieves low loss on real data (Wang et al., 2018; Nguyen et al., 2021; Loo et al.,
2022; Zhou et al., 2022). Among them, gradient and distribution matching methods heavily rely on
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labels and will suffer from representation collapse otherwise. Hence, they are not applicable to SSL
DD. Very recently, Lee et al. (2023) applied meta-model matching to generate synthetic examples for
SSL pre-training, and evaluated its performance by fine-tuning the entire pre-trained model on the
large labeled downstream datasets. However, we show that SSL pre-training on these distilled sets
does not provide any advantage over SSL pre-training on random real examples.

In this work, we address distilling small synthetic datasets for SSL pre-training via trajectory matching.
First, we show, theoretically and empirically, that naïve application of trajectory matching to SSL fails,
due to the high variance of the gradient of the SSL loss. Then, we rely on insights from knowledge
distillation (KD) to considerably reduce the variance of SSL trajectories. KD trains a smaller student
network to match the predictions of a larger teacher network trained with supervised learning (Hinton
et al., 2015). In doing so, the student network can match the performance of the larger teacher model.

Here, we apply KD for SSL by training a student encoder to match the representations of a larger
teacher encoder trained with SSL. Then, we propose generating synthetic data for SSL by Match-
ing Knowledge Distillation Trajectories (MKDT). Crucially, as the KD objective for training the
student model has considerably lower variance, it enables generating higher-quality synthetic data
by matching the lower-variance trajectories of the student model. As a result, the encoder can learn
high-quality representations from the synthetic data. We also provide theoretical and empirical
evidence showing that KD trajectories are indeed lower variance than SSL trajectories and that this
lower variance enables effective dataset distillation for SSL.

Finally, we conduct extensive experiments to validate the effectiveness of our proposal MKDT for
SSL pre-training. In particular, we distill both low resolution (CIFAR10, CIFAR100) and larger, high
resolution datasets (TinyImageNet) down to 2% and 5% of original dataset size and show that, across
various downstream tasks, MKDT distilled sets outperform all baselines by up to 13% in the presence
of limited labeled data. Moreover, we confirm that the datasets distilled with [smaller ConvNets
can transfer to architectures as large as ResNet-18]. Finally, we demonstrate that MKDT is effective
across SSL algorithms (BarlowTwins (Zbontar et al., 2021) and SimCLR (Chen et al., 2020)).

2 RELATED WORK

2.1 DATASET DISTILLATION

There has been a large body of recent work on dataset distillation for supervised learning. These
techniques can be broadly characterized into meta-model matching, gradient matching, distribution
matching and trajectory matching (Sachdeva & McAuley, 2023).

Meta-model Matching Meta-model matching generates synthetic data such that a model trained on
the synthetic dataset achieves low training loss on the real dataset (Wang et al., 2018). The traditional
meta-model matching approach is computation and memory inefficient as it requires solving a bi-level
optimization problem. Thus, several methods (Nguyen et al., 2021; Loo et al., 2022; Zhou et al.,
2022) have been proposed to solve the inner-optimization problem in closed form with kernel ridge
regression.

Gradient Matching Gradient matching generates synthetic data by matching the gradient of a
network trained on the original dataset with the gradient of the network trained on the synthetic
dataset (Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022). Gradient-matching is done for
each class separately, otherwise optimizing the synthetic images to match gradients is not possible
(Zhao et al., 2021). As a result, these methods require labels to be applicable.

Matching Training Trajectories (MTT) MTT, first proposed by Cazenavette et al. (2022), generates
synthetic data by matching the training trajectories of models trained on the real dataset with that of
the synthetic dataset. Cui et al. (2022) reduced the memory footprint of MTT and Du et al. (2023)
minimized the accumulated error in matching trajectories by distilling flatter trajectories.

Distribution Matching Distribution matching generates synthetic data by directly matching the
distribution of synthetic dataset and original dataset. One line of work does so by minimizing the
maximum mean discrepancy (MMD) between the representations of the synthetic and real data using
a large pool of feature extractors (Zhao & Bilen, 2023; Sajedi et al., 2023; Wang et al., 2022b). For
these methods, distilling examples per class is essential, as without labels, the models trained on the
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synthetic data suffer from representation collapse and cannot learn any discriminative features (Zhao
& Bilen, 2023). [More recently, (Yin et al., 2024; Zhou et al., 2024; Shao et al., 2024) apply ideas
from data-free knowledge distillationLopes et al. (2017) to match the distributions of synthetic and
real images using the batch norm statistics of models trained on the full data.] While these methods
do not distill per class, the distillation loss relies on the labels of the data and is essential to distill
data preserving class-discriminative features.

Dataset Distillation for SSL Very recently, KRR-ST (Lee et al., 2023) applied the kernel-based
meta-model matching to distillation for SSL. However, kernel ridge regression, with a relatively
unchanging encoder as the kernel function, prevents distilling synthetic data that is useful for training
the encoder effectively. We empirically confirm that the encoder learnt by pre-training on these
generated examples cannot outperform encoder learnt directly using SSL pre-training on random real
images. While KRR-ST also uses a MSE loss to representations instead of directly performing SSL,
they claim to do so to mitigate the bias of bi-level optimization in meta-model based matching for
SSL. In MKDT, we instead, use the knowledge distillation loss of MSE to representations of a larger
teacher model to reduce the high variance of SSL gradients, and thus lower variance trajectories
enable trajectory matching.

MTT is another dataset distillation method that is agnostic to the labels, and hence can be potentially
applied to SSL. Nevertheless, application of MTT to SSL has not been explored before. In our work,
we show that that naïve application of MTT to SSL yields poor performance. Then, we propose a
method that leverages knowledge distillation to enable effective dataset distillation for SSL.

2.2 DATA-EFFICIENT LEARNING VIA SUBSET SELECTION

Another line of work that enables data-efficient learning is selecting subsets of training data that gen-
eralize on par with the full data. This has been extensively studied for supervised learning (Coleman
et al., 2020; Toneva et al., 2019; Paul et al., 2021; Mirzasoleiman et al., 2020; Yang et al., 2023). At a
high level, these works show that difficult-to-learn examples with a higher loss or gradient norm or un-
certainty benefit SL the most. More recently, SAS (Joshi & Mirzasoleiman, 2023) has been proposed
for selecting subsets of data for self-supervised contrastive learning (CL). Interestingly, the most bene-
ficial subsets for SL are shown to be least beneficial for self-supervised CL. We use SAS as a baseline
and show that the synthetic data distilled by our method can outperform training on these subsets.

2.3 KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is a technique used to transfer knowledge from a large teacher model
to a smaller student model, with the aim of retaining high performance with reduced complexity
(Hinton et al., 2015). For supervised learning, some techniques align the student’s outputs with
those of the teacher (Hinton et al., 2015), while others concentrate on matching intermediate features
(Romero et al., 2015), attention maps (Zagoruyko & Komodakis, 2017) or pairwise distances
between examples (Park et al., 2019). Recent works have adapted KD for SSL models (Passalis
& Tefas, 2018; Chen et al., 2017; Koohpayegani et al., 2020; Yu et al., 2019). DarkRank (Chen et al.,
2017) approaches KD for SSL as a rank matching problem between teacher and student encoders.
PKT (Passalis & Tefas, 2018) and Compress (Koohpayegani et al., 2020) model the similarities
in data samples within the representation space as a probability distribution, aiming to align these
distributions between the teacher and student encoders. Yu et al. (2019) introduced the concept
of minimizing the Mean Squared Error (MSE) between the representations of student and teacher
encoders. In this work, we rely on KD to enable effective dataset distillation for SSL.

3 PROBLEM FORMULATION

Consider a dataset Dreal = {xxxi}i∈[n] of n unlabeled training examples drawn i.i.d. from an unknown
distribution. Contrastive SSL methods (Zbontar et al., 2021; Chen et al., 2020) learn an encoder f that
produces semantically meaningful representations by training on Dreal. BarlowTwins, in particular,
learns these representations using the cross-correlation matrix of the outputs of different augmented
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views of a given batch of training data:

LBT :=

d∑
i=1

(1− Fii)
2 + λ

d∑
i=1

d∑
j=1,j ̸=i

F 2
ij , (1)

where F is the cross-correlation of outputs within in a batch B s.t. Fij =
Ex∈BEx1,x2∈A(x)[fi(x1)fj(x2)] with A(x) being the set of augmented views of x, d is the di-
mension of the encoder f and λ is a hyperparameter. After pre-training, a linear classifier is trained
on representations and labels of downstream task(s).

Our goal is to generate a synthetic dataset Dsyn from Dreal, such that |Dsyn| ≪ |Dreal| and the
representations of Dreal using the encoder fθsyn , trained on the the synthetic data Dsyn, are similar to
those obtained from encoder fθreal , trained on the real data Dreal. Formally,

D∗
syn := argmin

Dsyn

Ex∼Dreal
D(fθsyn(x), fθreal(x)), (2)

where D(·, ·) is a distance function.

Evaluation To evaluate the encoder trained on the synthetic data, for every downstream task Dd, we
train a linear classifier gDd

on the representations of fθsyn , and evaluate the generalization error of the
linear classifier on Dd:

Err[fθsyn(Dd)] := E(x,y)∼Dd
1
[
gDd

(fθsyn(x)) ̸= y
]

(3)

An effective encoder achieves small Err[fθsyn(Dd)] across all downstream tasks.

4 MATCHING TRAINING TRAJECTORIES FOR SSL

As discussed in Sec. 2, distribution matching and gradient matching methods cannot work without
labels, and meta-model matching cannot effectively update the encoder. Therefore, in our work, we fo-
cus on application of MTT to SSL distillation. First, we discuss the challenges of applying MTT in the
SSL setting and show that its naïve application does not work. Then, we present our method, MKDT,
that relies on recent results in knowledge distillation (KD) to enable trajectory matching for SSL.

4.1 CHALLENGES OF MATCHING SSL TRAINING TRAJECTORIES

In this section, we first introduce trajectory matching (MTT) for supervised learning (SL). Then, we
discuss why naively applying MTT to the SSL setting does not work.

Matching Training Trajectories for SL MTT Cazenavette et al. (2022) generates a synthetic dataset
by matching the trajectory of parameters θ̂ of a model trained on the synthetic data with trajectory of
parameters θ∗ of the model trained on real data (expert trajectory). This matching is guided by the
following loss function:

LDD(Dsyn) =
∥θ̂t+N − θ∗t+M∥2

∥θ∗t − θ∗t+M∥2
(4)

In equation 4, θ∗t denotes the model parameters after training on real data up to step t. The term θ̂t+N

represents the model parameters after training on the synthetic dataset for N steps, starting from θ∗t .
Similarly, θ∗t+M refers to the model parameters after M steps of training on the real dataset. The
primary goal of MTT is to ensure that the encoder’s weights after training on the synthetic dataset
for N steps closely match the encoder’s weights after training on real data for a significantly larger
number of steps M , usually with N ≪ M . MTT is agnostic to the training algorithm and doesn’t
rely on labels; thus, can be applied to dataset distillation for SSL. However, naïve application of MTT
cannot effectively distill synthetic data for SSL pre-training, as we will discuss next.

High Variance Gradients Prevent Effective Trajectory Matching for SSL SSL losses rely on
interaction between all examples in a batch and consequently have high variance over choices of
random batches (c.f., the Barlow-Twins loss in equation 1). As a result, the contribution of examples
to the loss and hence their gradients varies significantly based on the rest of examples in the batch
Robinson et al. (2021), unlike SL where each example’s contribution to the loss is independent of
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(a) Variance in Weights at End of
Trajectory v/s Trajectory Length

(b) Distillation Loss (Error in
Matching Trajectories) v/s

Distillation Iterations

(c) Average Absolute Change
in Pixel v/s # Distillation

Iterations

Figure 1: Challenges of MTT for SSL (Dataset: CIFAR100 (1%); Arch: 3-layer ConvNet)

other examples. The high variance in gradient over mini-batches in each iteration results in high
variance of the trajectories of SSL.

Theoretical Evidence for Higher Variance Gradients in SSL. We now present, in Theorem 4.1,
theoretical evidence, in a simplified setting, demonstrating that the variance of the gradient of SSL
over mini-batches is indeed greater than that of SL, i.e., Var

(
∇WLSSL(B)

)
> Var

(
∇WLSL(B)

)
.

Proof appears in Appendix C. Appendix D presents a more general version of this analysis, when
optimizing with synchronous parallel SGD.
Theorem 4.1. Let D = {(xi, yi)}ni=1 be a dataset with n examples, where xi is the i-th input and
yi ∈ {0, 1} is its corresponding class label. Assume the data xi are generated using the sparse
coding model Xue et al. (2023); Joshi et al. (2024): for class 0, xi = e0 + ϵi, and for class 1,
xi = e1 + ϵi, where e0 and e1 are basis vectors and ϵi ∼ N (0, σNI) is noise. Note that using mean
class vectors e0, e1 w.l.o.g. models the setting of arbitrary mean class vectors that are orthogonal
to each other. Each class has n

2 examples.

Consider a linear model fθ(x) = Wx, with W initialized as I (the identity matrix). The supervised
mean squared error (MSE) loss is given by:

LSL(B) =
1

|B|
∑
i∈B

∥fθ(xi)− eyi
∥2,

where eyi
is the one-hot encoded vector for class yi, and B is a mini-batch.

The SSL Loss (spectral contrastive loss used here for simplicity of analysis) is given by:

LSSL = −2Ex1,x2∼A(xi)
xi∈B

[
fθ(x1)

T fθ(x2)
]
+ Exi,xj∈B

[
fθ(xi)

T fθ(xj)
]2

,

where A(xi) = xi + ϵaug, with ϵaug ∼ N (0, I) representing augmentation noise.

Under stochastic gradient descent (SGD) with a mini-batch size B of 2:

Var(∇WLSL(B)) < Var(∇WLSSL(B)).

where for a matrix M, Var(M) := E[∥M − E[M ]∥2] as in Gower et al. (2020).

Empirical Evidence for Challenges of Matching SSL Trajectories Due to the high variance in
the gradient of SSL objectives, the naiv̈e application of MTT to SSL does not succeed. Firstly, the
slower convergence caused by high variance gradients necessitates much longer trajectories for both
training on real and synthetic data. Secondly, the higher variance of gradients results in greater
variance in the weights at the end of trajectories starting from the same initialization (henceforth
referred to as variance of trajectories), [as illustrated theoretically in the simplified setting above].
Attempting to match SSL’s longer, higher variance trajectories is extremely challenging, as matching
such trajectories results in chaotic updates to the synthetic images. Thus, the synthetic images cannot
move away from their initialization meaningfully. Fig. 1a shows empirically that the variance of SSL
trajectories is larger than that of SL trajectories, across different trajectory lengths. Additionally, the
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variance of trajectories grows faster, with length of trajectory, for SSL than for SL, exacerbating the
problem for longer trajectory matching. Fig. 1b compares a simplified distillation using MTT with a
single expert trajectory for SSL and SL. Despite extensive hyper-parameter tuning, matching even a
single expert trajectory is challenging for SSL, confirmed by the slow decrease of distillation loss.
This indicates that the training trajectory on the distilled set is unable to match the training trajectory
on the real data for SSL. Fig. 1c shows that the difficulty in aligning trajectories is due to the chaotic
updates of the synthetic image, as evidenced by the synthetic images being unable to move away
from their initialization. To further confirm that the inability to distill effectively is indeed due to
the variance of trajectories, we also include a comparison to MTT SSL with 4x larger batch size,
which leads to slightly lower variance. Fig. 1a confirms that indeed the larger batch size reduces the
variance of the trajectories slightly. However, Fig. 1b and 1c show that reducing the variance of SSL
trajectories via larger batch size is insufficient to help distillation since an infeasibly large batch size
will likely be required to achieve the necessary low variance trajectories.

Next, we will present our method, MKDT, designed to address the above challenges.

4.2 MATCHING KNOWLEDGE DISTILLATION TRAJECTORIES

To reduce the length and variance of SSL trajectories, our key idea is to leverage the recent results in
knowledge distillation (KD) Kim et al. (2021). We first introduce KD, and then discuss our method,
MKDT, Matching Knowledge Distillation Trajectories, that leverages KD to reduce the length and
variance of SSL trajectories.

Knowledge Distillation (KD) KD refers to distilling the knowledge of a larger model (teacher) into
a smaller model (student) to achieve similar generalization as the larger model, but with reduced
complexity and faster inference times. Here, we rely on the knowledge distillation objective for SSL
models, introduced in Yu et al. (2019):

LKD = Ex∼Dreal

[
MSE(fS(x), fT (x))

]
, (5)

where fS and fT represent the student and teacher encoders respectively. (Yu et al., 2019) trains
student models with the aforementioned KD objective and the original SSL Loss. However, we only
minimize the MSE between student and teacher representations to avoid the issues with matching
SSL training trajectories (discussed in Sec. 4.1).

Converting SSL to SL trajectories via KD We use the objective presented in equation 5 i.e. min-
imizing the MSE between the representations of a student and a teacher model trained with SSL. In
doing so, we train the student model to match the performance of the teacher trained with SSL. Note
that training the student model by minimizing the MSE loss in equation 5 is a supervised objective.
Therefore, while the trained student model will produce similar representations to that of the teacher,
training with MSE loss is much faster than SSL, as its gradients have a much smaller variance (c.f. Fig.
1a). Thus, we can get shorter and lower variance expert trajectories from the student models trained
with KD using the MSE loss, instead of the teacher model trained with SSL. Then, we can generate syn-
thetic examples by matching these shorter and lower variance trajectories, without relying on labels.

Matching KD Trajectories (MKDT) We now describe our method MKDT: Matching Knowledge
Distillation Trajectories. MKDT has the following three steps: (1) training a teacher model with
SSL, (2) getting expert trajectories by training student models to match representations of the teacher
using KD objective, (3) generating synthetic examples by matching the expert trajectories. Below, we
discuss each of these steps in more details.

(1) Training the Teacher Model with SSL First, we train the teacher encoder fθT with LSSL on Dreal:

θT = argmin
θ

[
LSSL(fθ,Dreal)

]
, (6)

In our experiments, LSSL is the BarlowTwins loss function shown in equation 1, but our method
is agnostic to the choice of SSL algorithm. Since KD with larger models leads to better downstream
performance (Huang et al., 2022), we use a teacher model that is much larger than the student
encoder used for creating the expert trajectories for distillation. For example, in our experiments
we use a ResNet-18 as the teacher encoder and a 3 or 4-layer ConvNet as the student encoder.

(2) Getting Expert Trajectories with KD For training the expert trajectories, we encode the full
real data with the teacher model and train the student model to minimize the MSE between its
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Algorithm 1 MKDT: Matching Knowledge Distillation Trajectories
Require: K: Number of expert trajectories
Require: S: Number of distillation steps
Require: M : # of updates between starting and target expert params.
Require: N : # of updates to student network per distillation step.
Require: T+ < T : Maximum start epoch.
1: Train model fθT using LSSL on Dreal using augmentations A
2: {τ∗

i } ← Train K expert trajectories to minimize LKD(fsi , fθT )
3: Initialize distilled data Dsyn,Zsyn ∼ Dreal,Zreal

4: Initialize trainable learning rate αsyn := α0 for Dsyn

5: for S steps do
6: ▷ Sample expert trajectory: τ∗ ∼ {τ∗

i } with τ∗ = {θ∗t }T0
7: ▷ Choose random start epoch, t ≤ T+

8: ▷ Initialize student network with expert params:
9: θ̂t := θ∗t

10: for n = 0→ N − 1 do
11: ▷ Sample a mini-batch of distilled images:
12: bt+n ∼ Dsyn

13: ▷ Update student network w.r.t. MSE loss to reference representations:
14: θ̂t+n+1 = θ̂t+n − αsyn∇LMSEθ̂t+n

(bt+n,Zsyn)

15: end for
16: ▷ Compute loss between ending student and expert params:
17: LDD(Dsyn) = ∥θ̂t+N − θ∗t+M∥22 / ∥θ∗t − θ∗t+M∥22
18: ▷ Update Dsyn and αsyn with respect to LDD(Dsyn)
19: end for
Ensure: distilled data Dsyn,Zsyn and learning rate αsyn

representations and that of the teacher model. We refer to the representations of the real data from the
teacher model as teacher representations denoted by ZT =

[
· · · fθT (xi) · · ·

]
,∀xi ∈ Dreal. Formally,

min
θ∗

Exi∈Dreal
LMSE(fθ∗(xi), [ZT ]i). (7)

We train K such student encoders and save the weights after each epoch of training to generate the
expert trajectories that we will match in the distillation phase.

(3) Data Distillation by Matching KD Trajectories We now optimize the synthetic data such that
training on it results in trajectories that match the aforementioned expert trajectories. First, we
initialize Dsyn as a subset of Dreal and Zsyn as the corresponding teacher representations from ZT .
Then, in every distillation iteration, we sample an expert trajectory starting at epoch t, where t ≤ T+,
of length M . We then train on the synthetic data for N steps by minimizing the MSE between
representations of synthetic data from fθsyn and Zsyn fθT . Formally, ∀n ∈ [N ],

θ̂t+n+1 = θ̂t+n − αsyn∇LMSE(fθ̂t+n
(Dsyn),Zsyn) (8)

Now, we compute our distillation loss LDD(Dsyn) (shown in equation 4) using the parameters of
the encoder trained on the synthetic data and the encoder trained on the full data, and update the
synthetic data and learning rate, Dsyn and αsyn, respectively, to minimize this. Note that Zsyn remains
unchanged. We repeat this distillation for S iterations. Pseudo-code of MKDT is provided in Alg. 1.

Initializing Synthetic Data Empirically, we find that initializing Dsyn from the subset of examples
from Dreal that have high loss across the expert trajectories, leads to better downstream performance
than initializing with random subsets. In particular, for all expert trajectories, we use the encoders
after 1 epoch of training and use it to compute the MSE loss for all examples xi ∈ Dreal i.e.
LMSE(fθ∗

1
(xi), [ZT ]i). We then average the loss for examples across encoders from all expert

trajectories and choose the examples with highest loss to initialize our synthetic data. Sec. 5
compares initializing MKDT with random subsets and such high loss subsets.

Evaluating the Distilled Dataset For evaluation, we first pre-train the encoder fθsyn on the distilled
data by minimizing the MSE between the representations of the synthetic data Dsyn and Zsyn using
the distilled learning rate αsyn.

θsyn = argmin
θ

Exi∈DsynLMSE(fθ(x), [Zsyn]i) with l.r. αsyn (9)
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Table 1: Pre-training on CIFAR10 (2% of Full Data)

Size of Downstream
Labeled Data (%) Method Pre-Training Downstream

CIFAR10 Tiny ImageNet CIFAR100 Aircraft CUB2011 Dogs Flowers

1%

No Pre-Training 35.84±1.39 2.52±0.09 8.01±0.19 2.43±0.17 1.27±0.10 1.92±0.18 2.02±0.76

Random Subset 36.35±0.67 2.41±0.08 7.42±0.31 2.41±0.30 1.16±0.08 1.90±0.22 1.99±0.19

SAS Subset 36.02±1.52 2.69±0.31 7.77±0.35 2.29±0.26 1.14±0.01 1.78±0.32 2.22±0.23

KRR-ST 37.19±0.49 2.84±0.17 8.67±0.41 2.53±0.05 1.25±0.02 1.88±0.32 2.42±0.22

MKDT 44.36±1.61 3.58±0.09 10.58±0.24 2.58±0.18 1.37±0.09 2.11±0.28 2.52±0.07

Full Data 58.21±0.28 4.94±0.38 14.53±0.40 2.92±0.25 1.69±0.13 2.40±0.25 3.23±0.69

5%

No Pre-Training 46.23±0.07 5.37±0.39 16.12±0.13 5.61±0.68 1.97±0.13 2.90±0.18 5.22±0.52

Random Subset 46.62±1.02 5.49±0.12 15.28±0.66 5.35±0.96 1.51±0.08 2.52±0.22 3.64±0.46

SAS Subset 46.52±0.61 5.41±0.42 15.90±0.28 5.63±0.76 1.48±0.16 2.69±0.21 3.75±0.10

KRR-ST 46.75±0.45 6.85±0.20 16.65±0.31 5.41±0.45 1.88±0.10 2.76±0.40 4.52±0.14

MKDT 53.08±0.13 7.25±0.17 19.57±0.29 5.97±0.79 2.06±0.10 3.06±0.46 4.97±0.54

Full Data 67.16±0.43 10.85±0.16 26.38±0.52 6.92±0.61 2.51±0.08 3.88±0.25 6.37±0.67

We then evaluate the encoder fθsyn using Errfθsyn (Dd), defined in equation 3, i.e. the generalization
error of linear classifier gDd

trained on the representations obtained from encoder fθsyn and
corresponding labels of downstream task Dd.

5 EXPERIMENTS

Table 2: Pre-training on CIFAR100 (2% of Full Data)

Size of Downstream
Labeled Data (%) Method Pre-Training Downstream

CIFAR100 Tiny ImageNet CIFAR10 Aircraft CUB2011 Dogs Flowers

1%

No Pre-Training 8.01±0.19 2.52±0.09 35.84±1.39 2.43±0.17 1.27±0.10 1.92±0.18 2.02±0.76

Random Subset 9.20±0.15 3.16±0.21 38.03±1.22 2.41±0.15 1.43±0.12 1.99±0.10 2.81±0.43

SAS Subset 9.39±0.18 3.23±0.19 38.73±1.48 2.53±0.04 1.42±0.04 2.07±0.14 2.95±0.37

High Loss Subset 10.03±0.12 3.33±0.10 39.78±1.61 2.47±0.29 1.56±0.14 2.13±0.24 2.63±0.51

KRR-ST 8.31±0.30 2.73±0.08 37.19±0.83 2.56±0.20 1.29±0.04 1.92±0.11 2.58±0.14

MKDT (Rnd Sub) 11.44±0.36 3.90±0.20 43.35±1.08 2.53±0.22 1.66±0.13 2.22±0.20 2.63±1.02

MKDT 12.36±0.67 4.13±0.29 44.90±1.18 2.74±0.30 1.61±0.14 2.15±0.39 3.24±0.44

Full Data 21.44±0.86 6.80±0.37 58.21±0.81 3.20±0.22 1.79±0.08 2.50±0.27 3.09±1.14

5%

No Pre-Training 16.12±0.13 5.37±0.39 46.23±0.07 5.61±0.68 1.97±0.13 2.90±0.18 5.22±0.52

Random Subset 17.75±0.42 6.79±0.06 48.59±0.26 5.66±0.71 2.12±0.23 3.02±0.31 5.44±0.22

SAS Subset 17.94±0.54 6.71±0.52 48.69±0.26 5.95±0.88 2.15±0.27 3.22±0.47 5.56±0.43

High Loss Subset 18.72±0.21 6.94±0.34 49.59±0.34 5.63±0.52 2.58±0.13 3.18±0.20 6.14±0.54

KRR-ST 16.40±0.63 6.16±0.45 47.96±0.32 5.54±0.97 2.00±0.08 2.95±0.25 4.69±0.15

MKDT (Rnd Sub) 21.71±0.28 8.01±0.08 53.08±0.19 6.24±0.79 2.53±0.03 3.38±0.23 6.26±0.22

MKDT 22.64±0.42 8.07±0.16 54.12±0.29 6.68±0.83 2.50±0.16 3.25±0.36 6.37±0.46

Full Data 35.78±0.54 14.11±0.55 67.25±0.49 7.46±0.53 3.00±0.05 4.23±0.21 8.41±0.60

Table 3: Pre-training on TinyImageNet (2% of Full Data)

Size of Downstream
Labeled Data (%) Method Pre-Training Downstream

Tiny ImageNet CIFAR10 CIFAR100 Aircraft CUB2011 Dogs Flowers

1%

No Pre-Training 2.63±0.22 30.40±1.02 7.14±0.35 2.25±0.11 1.28±0.16 1.76±0.13 2.84±0.20

Random Subset 3.03±0.20 34.46±1.13 7.66±0.67 2.27±0.22 1.24±0.05 1.92±0.26 2.16±0.47

KRR-ST 3.32±0.22 34.24±0.94 7.84±0.98 2.14±0.30 1.30±0.08 1.95±0.22 2.21±0.33

MKDT 3.87±0.05 37.25±0.47 8.95±0.34 2.30±0.19 1.36±0.22 1.99±0.20 2.86±0.25

Full Data 9.42±0.36 50.52±0.87 15.18±0.37 2.57±0.29 1.59±0.31 2.20±0.37 3.29±0.28

5%

No Pre-Training 5.69±0.45 39.91±0.36 13.32±0.30 4.46±0.81 1.71±0.06 2.51±0.18 4.83±0.32

Random Subset 6.76±0.16 43.74±0.82 13.83±0.13 4.49±0.91 1.66±0.14 2.67±0.31 4.23±0.70

KRR-ST 7.13±0.22 42.44±1.85 13.85±0.72 3.99±0.57 1.77±0.07 2.47±0.21 4.14±0.71

MKDT 7.99±0.32 45.97±0.27 16.50±0.35 4.66±0.70 2.07±0.11 2.91±0.10 5.49±0.51

Full Data 18.93±0.34 58.90±0.43 26.47±0.78 5.07±0.71 2.47±0.06 3.85±0.19 7.09±1.01

In this section, we evaluate the downstream generalization of models trained using the synthetic
sets distilled by MKDT that are 2% and 5% of the original dataset’s size for CIFAR10, CIFAR100
(Krizhevsky & Hinton, 2009), TinyImageNet (Le & Yang, 2015). We also conduct ablation stud-
ies over initialization of the distilled set and the SSL algorithm. Finally, we also consider the
generalization of the distilled sets to larger architectures.
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Table 4: Pre-training with Larger Distilled Set Size (5% of Full Data)

Pre-Training
Dataset

Size of Downstream
Labeled Data (%) Method Downstream Task Accuracy

CIFAR10 CIFAR100 Tiny ImageNet Aircraft CUB2011 Dogs Flowers

CIFAR10

1% Random Subset 37.63±2.28 7.63±0.13 2.63±0.07 2.28±0.22 1.13±0.11 1.81±0.18 2.05±0.23

[KRR-ST] [36.69±0.88] [8.69±0.32] [3.20±0.23] [2.26±0.13] [1.33±0.09] [1.91±0.34] [2.39±0.18]

MKDT 50.23±1.48 12.33±0.31 4.27±0.36 3.11±0.15 1.59±0.07 2.26±0.29 2.42±0.62

5% Random Subset 48.13±0.35 16.06±0.15 5.21±0.56 5.03±0.88 1.71±0.12 2.61±0.20 3.30±0.10

[KRR-ST] [47.40±0.34] [16.95±0.53] [7.10±0.27] [5.56±0.77] [1.98±0.07] [2.78±0.16] [4.38±0.04]

MKDT 58.37±0.17 23.15±0.71 8.84±0.20 6.79±0.88 2.30±0.14 3.34±0.35 5.94±0.24

CIFAR100

1% Random Subset 42.45±0.76 11.55±0.37 4.17±0.15 2.47±0.17 1.51±0.12 2.12±0.18 2.61±0.61

[KRR-ST] [37.86±1.14] [9.02±0.24] [2.94±0.13] [2.42±0.35] [1.50±0.07] [1.99±0.19] [3.04±0.36]

MKDT 47.77±1.12 13.40±0.31 4.45±0.33 2.93±0.42 1.61±0.02 2.22±0.27 2.59±1.07

5% Random Subset 51.92±0.33 20.34±0.20 7.83±0.24 6.06±0.79 2.27±0.18 3.22±0.39 5.78±0.34

[KRR-ST] [47.53±0.11] [17.24±0.47] [6.60±0.32] [5.37±0.85] [2.31±0.33] [2.87±0.27] [5.23±0.14]

MKDT 56.61±0.58 25.18±0.67 9.12±0.40 6.66±0.62 2.66±0.23 3.66±0.44 6.93±0.60

TinyImageNet

1% Random Subset 40.33±1.16 9.41±0.29 4.19±0.19 2.23±0.38 1.44±0.10 2.06±0.12 2.77±0.24

[KRR-ST] [34.27±1.36] [7.54±0.35] [3.19±0.22] [2.11±0.23] [1.30±0.12] [1.68±0.20] [2.65±0.64]

MKDT 41.44±0.85 10.29±0.38 5.09±0.45 2.16±0.28 1.29±0.06 2.02±0.28 2.92±0.49

5% Random Subset 48.46±0.40 15.63±0.62 8.99±0.61 4.55±0.80 1.98±0.18 2.91±0.47 5.06±0.84

[KRR-ST] [42.82±0.46] [13.71±0.30] [6.50±0.23] [4.36±0.49] [1.97±0.06] [2.75±0.37] [3.97±0.14]

MKDT 50.79±0.47 19.25±0.23 10.63±0.23 4.88±0.65 2.08±0.03 2.89±0.41 5.58±0.43

Table 5: Transfer to Larger Architectures (Pre-Training on CIFAR100 5%, 5% Downsteam Labels)

Method Pre-Training Downstream

CIFAR100 CIFAR10 TinyImageNet Aircraft CUB2011 Dogs Flowers

ResNet-10

No Pre-Training 1.36±0.31 13.18±1.74 1.03±0.07 1.00±0.01 0.43±0.13 0.60±0.01 0.75±0.14

Random 18.80±0.58 44.24±0.85 10.33±0.16 2.15±0.34 1.81±0.16 2.52±0.29 5.41±0.61

[KRR-ST] [13.84±0.78] [39.21±0.55] [8.04±0.52] [2.12±0.15] [1.16±0.05] [1.77±0.14] [4.56±0.42]

MKDT 23.23±0.79 49.13±0.69 13.35±0.24 1.68±0.10 1.67±0.09 2.64±0.16 6.15±0.47

ResNet-18

No Pre-Training 1.01±0.01 10.00±0.00 0.91±0.10 1.01±0.01 0.56±0.07 0.67±0.09 0.93±0.38

Random 16.82±0.69 40.11±1.16 8.95±0.23 1.84±0.25 1.62±0.06 2.40±0.25 5.16±0.59

[KRR-ST] [12.30±0.83] [35.73±1.07] [7.21±0.35] [2.32±0.39] [1.18±0.16] [1.81±0.14] [2.45±0.12]

MKDT 21.51±0.17 46.10±0.60 11.57±0.17 2.05±0.43 1.86±0.05 2.36±0.29 5.17±0.93

Distillation Setup We use ResNet-18 trained with Barlow Twins (Zbontar et al., 2021) as the teacher
encoder and train K = 100 student encoders (using ConvNets) to generate the expert trajectories. As
in previous work (Cazenavette et al., 2022; Zhao & Bilen, 2021; Zhao et al., 2021; Chen et al., 2023;
Du et al., 2023; Cui et al., 2022), we use a 3-layer ConvNet for the lower resolution CIFAR datasets
and a 4-layer ConvNet for the higher resolution TinyImageNet. Exact hyperparamters in Appendix A.

Evaluation Setup To test generalization in presence of limited labeled data, we evaluate encoders
pre-trained on the distilled data using linear probe on 1% and 5% of downstream labeled data.

Baselines We compare pre-training with MKDT distilled sets to pre-training with random subsets,
SAS subsets (Joshi & Mirzasoleiman, 2023), KRR-ST distilled sets (Lee et al., 2023) as well as
pre-training on the full data. For KRR-ST, we use the provided distilled sets for CIFAR100 and
Tiny ImageNet, and distill using the provided code for CIFAR10. We omit SAS for TinyImageNet
as this subset was not provided. For distilled sets of size 5%, we consider only Random and MKDT
, since other baselines did not provide distilled sets.

Downstream Generalization Performance Table 1 demonstrates that pre-training on CIFAR10
using MKDT with a 2% distilled set improves performance by 8% on CIFAR10 and 5% on down-
stream tasks over the KRR-ST baseline. Gains on CIFAR10 are consistent across 1% and 5% labeled
data, but improvements on downstream tasks are more pronounced with 5%, indicating MKDT
scales well with more labeled data. On CIFAR100, MKDT 2% distilled set improves performance
by 6% and 8% on CIFAR100 and downstream tasks, respectively. Additionally, MKDT shows up
to 3% improvement on downstream tasks for larger, higher-resolution datasets like TinyImageNet
(200K examples, 64x64 resolution), highlighting MKDT’s scalability. KRR-ST consistently fails
to outperform SSL pre-training on random subsets across all settings. In Appendix B, we verify that
this holds for fine-tuning experiments from KRR-ST (Lee et al., 2023), affirming MKDT as the only
effective DD method for SSL pre-training. Table 4 shows that pre-training with larger distilled sets
(5% of full data) further enhances performance by up to 13%, confirming MKDT scales effectively
with distilled set size as well. Table 7 shows that MKDT outperforms the strongest baseline (random
subsets) by 5% on pre-training and 7% on downstream tasks when using 10% and 50% labeled data.
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Table 6: Ablation over SSL Algorithm (SimCLR), Distilled Set Size 2%

Pre-Training
Dataset

Size of Downstream
Labeled Data (%) Method Downstream Task Accuracy

CIFAR10 CIFAR100 Tiny ImageNet Aircraft CUB2011 Dogs Flowers

CIFAR10

1% Random Subset 35.20±1.12 7.35±0.28 2.29±0.14 2.21±0.09 1.19±0.06 1.83±0.16 1.83±0.24

[KRR-ST] [36.90±1.30] [8.38±0.17] [2.95±0.12] [2.45±0.13] [1.19±0.09] [1.87±0.18] [2.35±0.06]

MKDT 40.77±1.05 9.17±0.13 3.06±0.16 2.69±0.21 1.35±0.06 2.02±0.23 1.88±0.22

5% Random Subset 45.69±0.43 15.09±0.39 5.71±0.15 5.21±1.04 1.52±0.18 2.48±0.16 3.36±0.20

[KRR-ST] [46.87±0.52] [16.29±0.37] [6.31±0.43] [5.31±0.63] [1.89±0.14] [2.66±0.18] [4.36±0.16]

MKDT 51.77±0.25 18.07±0.52 6.55±0.23 5.90±0.76 1.89±0.15 2.98±0.36 4.09±0.28

CIFAR100

1% Random Subset 34.67±0.89 7.35±0.54 2.29±0.16 2.23±0.21 1.10±0.06 1.78±0.26 1.77±0.13

[KRR-ST] [36.57±1.02] [8.38±0.36] [3.01±0.22] [2.41±0.15] [1.28±0.02] [1.71±0.30] [1.98±0.24]

MKDT 39.59±1.19 9.44±0.37 3.07±0.08 2.60±0.23 1.33±0.11 1.93±0.27 2.49±0.06

5% Random Subset 45.67±0.69 15.11±0.44 5.21±0.29 5.21±0.67 1.51±0.14 2.54±0.19 3.37±0.47

[KRR-ST] [46.76±0.50] [15.75±0.46] [6.17±0.20] [5.43±0.65] [1.93±0.06] [2.61±0.25] [3.55±0.29]

MKDT 49.87±0.75 18.47±0.21 6.65±0.21 5.56±0.86 1.93±0.13 2.98±0.32 4.83±0.27

Table 7: Larger Labeled Data Fractions (10%, 50%), Distilled Set Size 2%

Pre-Training
Dataset

Size of Downstream
Labeled Data (%) Method Downstream Task Accuracy

CIFAR10 CIFAR100 Tiny ImageNet Aircraft CUB2011 Dogs Flowers

CIFAR10

10% Random Subset 51.21±0.38 19.75±0.36 8.04±0.45 7.42±0.43 2.15±0.16 3.10±0.30 5.22±0.96

[KRR-ST] [51.02±0.53] [21.01±0.14] [8.95±0.26] [7.91±0.76] [2.44±0.12] [3.54±0.29] [6.82±0.64]

MKDT 56.88 ±0.85 24.61 ±0.42 9.76 ±0.28 8.96 ±0.71 2.78 ±0.22 4.37 ±0.37 7.38 ±1.00

50% Random Subset 57.18±0.63 26.86±0.36 15.16±0.03 16.11±0.90 4.18±0.05 6.17±0.08 12.98±0.35

[KRR-ST] [58.09±0.07] [29.01±0.30] [15.94±0.31] [17.60±1.04] [5.01±0.34] [6.81±0.35] [15.92±0.64]

MKDT 63.63 ±0.17 34.06 ±0.39 17.57 ±0.37 19.43 ±0.93 5.43 ±0.22 7.63 ±0.17 16.89 ±0.37

CIFAR100

10% Random Subset 52.23±0.38 21.56±0.62 8.57±0.43 8.01±0.61 2.73±0.17 3.94±0.28 7.50±1.33

[KRR-ST] [52.40±0.73] [21.39±0.16] [8.21±0.07] [7.64±0.36] [2.34±0.12] [3.76±0.25] [6.52±1.28]

MKDT 57.67 ±0.33 27.28 ±0.18 11.05 ±0.50 9.25 ±0.70 3.42 ±0.16 4.43 ±0.38 9.35 ±1.28

50% Random Subset 60.39±0.17 31.62±0.32 16.02±0.14 18.10±0.12 5.65±0.18 7.37±0.23 16.18±0.31

[KRR-ST] [58.57±0.78] [29.46±0.81] [15.70±0.07] [15.89±0.54] [4.82±0.41] [7.00±0.18] [15.07±0.46]

MKDT 65.85 ±0.33 38.09 ±0.35 17.46 ±0.24 20.73 ±0.24 6.67 ±0.05 8.48 ±0.21 21.15 ±0.50

TinyImageNet

10% Random Subset 44.08±1.91 16.43±0.12 8.84±0.85 5.57±0.61 2.12±0.30 3.07±0.17 6.51±1.27

[KRR-ST] [45.48±0.84] [17.02±0.26] [8.88±0.41] [5.29±0.16] [2.08±0.21] [3.21±0.15] [6.10±1.44]

MKDT 49.33 ±0.49 20.19 ±0.45 10.89 ±0.63 6.61 ±0.28 2.47 ±0.18 3.86 ±0.36 7.33 ±1.34

50% Random Subset 47.35±0.92 19.28±0.61 14.01±0.38 8.74±0.78 3.61±0.31 5.18±0.29 13.60±1.13

[KRR-ST] [48.16±1.18] [20.01±0.40] [13.59±0.47] [8.66±1.29] [3.46±0.22] [4.98±0.31] [15.12±0.37]

MKDT 51.98 ±0.44 24.41 ±0.39 16.99 ±0.25 10.84 ±0.25 4.44 ±0.28 6.22 ±0.15 16.47 ±0.46

Ablations We perform ablations over two factors: 1) initialization and 2) SSL algorithm. Table 2
presents results for pre-training with MKDT using random subset initialization, as well as results
for pre-training directly on the high-loss subset initialization used by MKDT. Interestingly, the KD
objective for SSL pre-training benefits slightly more from the high-loss subset than from random
subsets. Consequently, MKDT initialized from the high-loss subset performs better than when
initialized from a random subset. Table 6 shows results for MKDT using a teacher model trained
with SimCLR (Chen et al., 2020) instead of BarlowTwins. Specifically, we train a ResNet-18 for 400
epochs using SimCLR. Here too, MKDT achieves approximately 6% higher performance compared
to random subsets across downstream datasets. This confirms that MKDT generalizes across different
SSL training algorithms.

Generalization to Larger Architectures Table 5 compares CIFAR100 5% size MKDT distilled set
to 5% size random subsets, using the larger ResNet-10 and ResNet-18 architectures. Across all down-
stream tasks, we confirm that MKDT distilled sets outperform baselines even when using larger archi-
tectures. Surprisingly, the larger ResNet-18 slightly under-performs the smaller ResNet-10. This trend
is observed across all baselines, including no pre-training. We conjecture this is due to larger models
requiring a lot more data to be able to use their extra capacity to surpass their smaller counterparts.

6 CONCLUSION

To conclude, we propose MKDT, the first effective approach for dataset distillation for SSL pre-
training. We demonstrated the challenges of naïvely adapting previous supervised distillation method
and showed how knowledge distillation with trajectory matching can remedy these problems. Empiri-
cally, we showed up to 13% improvement in downstream accuracy when pre-training with MKDT
distilled sets over the next best baseline. Thus, we enable highly data-efficient SSL pre-training.
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A EXPERIMENT DETAILS

A.1 ADDITIONAL DETAILS FOR EXPERIMENTS IN TABLES 1, 2, 3, 4, 5, 6, 7

Training the Teacher Model Using SSL We trained the teacher model using BarlowTwins (Zbontar
et al., 2021) using the training setup ResNet18 specified in (Gedara Chaminda Bandara et al., 2023).
We used the Adam optimizer with batch size 256, learning rate 0.01, cosine annealing learning rate
schedule, and weight decay 10−6. The feature dimension is 1024. Finally, we use the pre-projection
head representation of the trained model for teacher representation, and its dimension is of size 512.

Training Expert Trajectories Using KD We trained 100 expert trajectories for each dataset with
random initialization of the network for 20 epochs, using Stochastic Gradient Descent with learning
rate 0.1, momentum 0.9, and weight decay 1e-4. Similar to other DD works (Cazenavette et al., 2022;
Lee et al., 2023), we used depth 4 ConvNet for Tiny ImageNet and depth 3 ConvNet for both CIFAR
10 and CIFAR 100. We did not apply any augmentation except normalization, and did not apply the
ZCA-whitening.

Distillation Hyperparameters We distilled 2% of CIFAR 10, CIFAR 100, and Tiny ImageNet. We
used SGD for optimizing the synthetic images with batch size 256, momentum 0.5. We distilled
CIFAR 10 and CIFAR 100 with depth 3 ConvNet and Tiny ImageNet with depth 4 ConvNet. We
initialize the synthetic learning rate as 0.1 and used SGD with learning rate 10−4 and momentum 0.5
to update it. We distilled the datasets for 5000 iterations and evaluated their performance for all the
experiments except those in Table 5, where we use the distilled dataset after 1000 iterations. The
other hyper-parameters are recorded in Table 8.

Table 8: MKDT Hyperparameters on 2% Distilled Set

CIFAR10 CIFAR100 TinyImageNet

Percentage Distilled 2% 2% 2%
Model ConvNetD3 ConvNetD3 ConvNetD4

Synthetic Steps (N) 40 40 10
Expert Epochs (M) 2 2 2

Max Start Epoch (T+) 2 2 2
Learning Rate (Pixels) 103 103 105

Pre-training on Synthetic Data For the synthetic data, we pre-train them using the MSE loss with
their learned representation for 20 epochs using SGD with batch size 256, their distilled learning rate,
momentum 0.9, and weight decay 10−4. We use a depth 3 ConvNet for CIFAR 10 and CIFAR 100,
and a depth 4 ConvNet for Tiny ImageNet. For distilled datasets, we use the synthetic learning rate
αsyn. For other datasets (e.g., random subset), we use the same setting except a learning rate of 0.1.

Evaluation We use the models’ penultimate layer’s representations (as is standard in contrastive
learning (Zbontar et al., 2021; Chen et al., 2020)) of the downstream task’s training set and train
a linear classifier, using LBFGS with 100 iterations and regularization weight 10−3. We then use
the pre-projection head representations of the test set of the downstream task and evaluate using the
aforementioned linear classifer to report the downstream test accuracy.

Using SimCLR for Obtaining Teacher Representation. We conducted an ablation study using
a teacher model trained with SimCLR (Chen et al., 2020) instead of Barlow Twins (Zbontar et al.,
2021) for CIFAR 10 and CIFAR 100. The experiment steps are similar to the ones in A.1. During the
"Training the Teacher Model Using SSL" step , we used the Adam optimizer with batch size 512,
learning rate 0.001, and weight decay 10−6 to train a ResNet18 along with a 2-layer linear projection
head for 400 epochs. The projection head included Batch Normalization and ReLU after the first
layer, and Batch Normalization after the second layer, projecting to 128 dimensions. Then, we used
the pre-projection head representation of the trained model for getting the teacher representation of
size 512. The other steps are the same as the one in A.1. Table 6 shows that MKDT consistently
outperforms the random subset across all downstream datasets and various sizes of labeled data,
highlighting the method’s generalizability to other contrastive learning methods.

Scaling the Method to Larger Distillation Sets. In addition to distilling 2% subsets, we also
conducted experiments distilling 5% subsets of CIFAR10, CIFAR100, and TinyImageNet to evaluate
the generalizability of the method to larger distillation sets. Table 4 shows the scalability of the
method to larger distilled set sizes. The experiments procedure are the same as the ones in A.1 except
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Table 9: MKDT Hyperparameters on 5% Distilled Set

CIFAR10 CIFAR100 TinyImageNet

Percentage Distilled 5% 5% 5%
Model ConvNetD3 ConvNetD3 ConvNetD4

Synthetic Steps (N) 40 40 10
Expert Epochs (M) 2 2 2

Max Start Epoch (T+) 5 5 2
Learning Rate (Pixels) 104 104 105

that we use different distillation hyperparameters for the 5% distilled set. The hyperparameters are
summarized in Table 9.

Scaling the Method to Larger Downstream Labeled Dataset Sizes. We evaluated the performance
for CIFAR 10, CIFAR 100, and TinyImageNet on larger downstream labeled data sizes, specifically
10% and 50% labeled data sizes, using the 2% distilled set obtained with the method illustrated in
A.1. As shown in Table 7, MKDT continues to outperform random subset across all downstream
datasets and data sizes, demonstrating its scalability with larger labeled data sizes.

[Details for KRR-ST Lee et al. (2023) We use the code and hyper-parameters provided in (Lee et al.,
2023). As the original paper did not provide the results and the hyperparameters for CIFAR 10, we
use the same hyperparameters as CIFAR 100 to distill CIFAR 10. In particular, this invovles using
BarlowTwins ResNet-18 as the teacher model as well.]

A.2 ADDITIONAL DETAILS ON EXPERIMENTS IN FIG. 1

For the experiment in Figure 1a, we train 5 trajectories of each of MTT SSL and MTT SL for CIFAR
100 using the same random initialization of the network, respectively. For MTT SSL, we train the
models with the Adam optimizer with batch size 1024, learning rate 0.001, and weight decay 10−6.
For MTT SL, we train the model with SGD with batch size 256, learning rate 0.01, momentum 0,
and no weight decay.

For both of the experiments in Figure 1b and 1c, we distill the dataset using MTT SL with image
learning rate 1000, max start epoch 0, synthetic steps 20, and expert epochs 4. We distill using MTT
SLL with image learning rate 1000, max start epoch 0, synthetic steps 10, and expert epochs 2. We
distilled them for 100 iterations and record the change in the loss function and the average absolute
change in pixels.
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B ADDITIONAL COMPARISON OF RANDOM SUBSET SSL PRE-TRAINING TO
KRR-ST

This experiment is conducted in the setting of Lee et al. (2023) for pre-training on CIFAR100. This
experiment pre-trains on a distilled set / subset of 2% the size of CIFAR100 and then evaluates on
downstream tasks by finetuning the entire network with the entire labeled dataset for the downstream
task. KRR-ST compares with the random subset baseline by pre-training using SL. However, we use
SSL on the random subset as a baseline instead. Here, we show that, in fact, even in the finetuning
setting reported by Lee et al. (2023), KRR-ST cannot outperform SSL pre-training on random real
images. The baseline reported as ‘Random’ in Lee et al. (2023) refers to SL pre-training as opposed
to SSL pre-training.

Table 10: Pre-training on CIFAR100

Method Pre-Training Downstream

CIFAR100 CIFAR10 Aircraft Cars CUB2011 Dogs Flowers

No pre-training (from Lee et al. (2023)) 64.95±0.21 87.34±0.13 34.66±0.39 19.43±0.14 18.46±0.11 22.31±0.22 58.75±0.41

Random (Supervised Learning (from Lee et al. (2023)) 65.23±0.12 87.55±0.19 33.99±0.45 19.77±0.21 18.18±0.21 21.69±0.18 59.31±0.27

KRR-ST (from Lee et al. (2023)) 66.81±0.11 88.72±0.11 41.54±0.37 28.68±0.32 25.30±0.37 26.39±0.08 67.88±0.18

Random (SSL Pre-training) 66.44±0.14 88.74±0.20 42.02±0.06 28.75±0.23 25.12±0.19 26.57±0.22 68.21±0.40
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C PROOF FOR THEOREM 4.1

Proof. To analyze the variance of the gradient for both SL and SSL, we will conduct a case analysis.
There are 3 possible unique cases for constructing the mini-batch. Assuming n is extremely large s.t.
n/2
n ≈ n/2−1

n , we have:

1. Both examples are from class 0 with probability = 1
4

2. Both examples are from class 1 with probability = 1
4

3. 1 example from each class with probability = 1
2

Let x1, y1 refer to example 1 and its corresponding label vector; similarly, let x2, y2 refer to example
2 and its corresponding label vector.

To show the effect of each term, we refer to the class mean vectors for class 0 and class 1 as µ0 and
µ1, respectively; and use e0 and e1, the basis vectors to represent the labels for class 0 and class 1.

Analyzing cases for SL

∇W (LSL(B)) =
1

2

2∑
i=1

2(Wxi − yi)x
⊤
i (10)

= (Wx1 − y1)(x1)
⊤ + (Wx2 − y2)(x2)

⊤ (11)

Case 1: Both examples from class 0

∇W (LSL(B)) = (Wx1 − e0)(x1)
⊤ + (Wx2 − e0)(x2)

⊤ (12)

E[∇W (LSL(B))] = E[(Wx1 − e0)(x1)
⊤ + (Wx2 − e0)(x2)

⊤] (13)

= E[(Wx1 − e0)(x1)
⊤] + E[Wx2 − e0)(x2)

⊤] (14)

= E[(Wµ0 +WϵN1
− e0)(e0 + ϵN1

)⊤] + E[(Wµ0 +WϵN2
− e0)(e0 + ϵN2

)⊤]
(15)

= E[(µ0 + ϵN1
− e0)(µ0 + ϵN1

)⊤] + E[(µ0 + ϵN2
− e0)(µ0 + ϵN2

)⊤]by substituting W = I
(16)

= E[µ0µ
⊤
0 + ϵN1µ

⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1ϵ
⊤
N1

− e0ϵ
⊤
N1

]

+ E[µ0µ
⊤
0 + ϵN2

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N2

+ ϵN2
ϵ⊤N2

− e0ϵ
⊤
N2

] (17)

= 2(µ0µ
⊤
0 − e0µ

T
0 ) (18)

∇W (LSL(B)) = µ0µ
⊤
0 + ϵN1

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ µ0µ
⊤
0 + ϵN2µ

⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N2

+ ϵN2ϵ
⊤
N2

− e0ϵ
⊤
N2

= 2µ0µ
⊤
0 + (ϵN1 + ϵN2)µ

⊤
0 − 2e0µ

⊤
0 + µ0(ϵ

⊤
N1

+ ϵ⊤N2
)

+ ϵN1
ϵ⊤N1

+ ϵN2
ϵ⊤N2

− e0(ϵ
⊤
N1

+ ϵ⊤N2
) (19)

Case 2: Both examples from class 1

By symmetry, we have:

E[∇W (LSL(B))] = 2(µ1µ
⊤
1 − e1µ

⊤
1 ) (20)
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and

∇WLSL(B) = 2µ1µ
⊤
1 + (ϵN1

+ ϵN2
)µ⊤

1 − 2e1µ
⊤
1 + µ1(ϵ

⊤
N1

+ ϵ⊤N2
)

+ ϵN1
ϵ⊤N1

+ ϵN2
ϵ⊤N2

− e1(ϵ
⊤
N1

+ ϵ⊤N2
) (21)

Case 3: 1 example from each class

E[∇W (LSL(B))] = µ0µ
⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1 (22)

and

∇WLSL(B) = µ0µ
⊤
0 + ϵN1

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ µ1µ
⊤
1 + ϵN2

µ⊤
1 − e1µ

⊤
1 + µ1ϵ

⊤
N2

+ ϵN2
ϵ⊤N2

− e1ϵ
⊤
N2

(23)

Putting it together

E[∇W (LSL(B))] =
1

4
· 2(µ0µ

⊤
0 − e0µ

⊤
0 ) (24)

+
1

4
· 2(µ1µ

⊤
1 − e1µ

⊤
1 ) (25)

+
1

2

(
µ0µ

⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1

)
(26)

= µ0µ
⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1 (27)

Finally,

V ar(∇W (LSL(B))) = E[∥∇W (LSL(B))− E[∇W (LSL(B))]∥2] (28)

=
1

4
E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 1]

+
1

4
E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 2]

+
1

2
E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 3] (29)

Simplifying term 1: E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 1]

∇W (LSL(B))− E[∇W (LSL(B))] = 2µ0µ
⊤
0 + (ϵN1 + ϵN2)µ

⊤
0 − 2e0µ

⊤
0 + µ0(ϵ

⊤
N1

+ ϵ⊤N2
)

+ ϵN1ϵ
⊤
N1

+ ϵN2ϵ
⊤
N2

− e0(ϵ
⊤
N1

+ ϵ⊤N2
)

−
(
µ0µ

⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1

)
= µ0µ

⊤
0 + ϵN1

µ⊤
0 + ϵN2

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ µ0ϵ
⊤
N2

+ ϵN1ϵ
⊤
N1

+ ϵN2ϵ
⊤
N2

− e0ϵ
⊤
N1

− e0ϵ
⊤
N2

− µ1µ
⊤
1 + e1µ

⊤
1 (30)

By symmetry, term 2 i.e. E[(∥∇W (LSL(B)) − E[∇W (LSL(B))]∥2)|case 2] can be simplified as
follows:

∇W (LSL(B))− E[∇W (LSL(B))] = µ1µ
⊤
1 + ϵN1µ

⊤
1 + ϵN2µ

⊤
1 − e1µ

⊤
1 + µ1ϵ

⊤
N1

+ µ1ϵ
⊤
N2
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+ ϵN1
ϵ⊤N1

+ ϵN2
ϵ⊤N2

− e1ϵ
⊤
N1

− e1ϵ
⊤
N2

− µ0µ
⊤
0 + e0µ

⊤
0 (31)

Simplifying term 3:

E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 3] (32)

∇W (LSL(B))− E[∇W (LSL(B))] = µ0µ
⊤
0 + ϵN1

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ µ1µ
⊤
1 + ϵN2µ

⊤
1 − e1µ

⊤
1 + µ1ϵ

⊤
N2

+ ϵN2ϵ
⊤
N2

− e1ϵ
⊤
N2

−
(
µ0µ

⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1

)
= ϵN1

µ⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ ϵN2µ
⊤
1 + µ1ϵ

⊤
N2

+ ϵN2ϵ
⊤
N2

− e1ϵ
⊤
N2

(33)

Analyzing cases for SSL

We will now analyze the same for SSL and show by comparing each of the 3 terms, element-wise,
above to their counterparts that V ar(LSSL(B)) > V ar(LSL(B))

From Xue et al. (2023), we have that LSSL can be re-written as

∇WLSSL(W ) = −Tr(2M̃WW⊤) + Tr(MW⊤WMW⊤W )

where

M =
1

2m

2m∑
i=1

xix
⊤
i

with m being the number of augmentations, and M represents the covariance of the training data.
The matrix M̃ is defined as:

M̃ =
1

2

n∑
i=1

 1

m

∑
x∈A(xi)

x

 1

m

∑
x∈A(xi)

x⊤


where A(xi) denotes the set of augmentations for the sample xi.

As m → ∞, M = M̃ = 1
2

(
x1x

T
1 + x2x

T
2

)
.

Hence, ∇W (LSSL(B)) = −4WM + 4WMW⊤WM

Substituting W = I , we get ∇W (LSSL(B)) = −4M + 4M2

Case 1: Both examples from class 0

M =
1

2

(
x1x

⊤
1 + x2x

⊤
2

)
(34)

=
1

2

(
(µ0 + ϵN1

)(µ0 + ϵN1
)⊤ + (µ0 + ϵN2

)(µ0 + ϵN2
)⊤

)
(35)

=
1

2

(
µ0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

+ µ0µ
⊤
0 + µ0ϵ

⊤
N2

+ ϵN2µ
⊤
0 + ϵN2ϵ

⊤
N2

)
(36)

= µ0µ
⊤
0 +

1

2

(
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

+ µ0ϵ
⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
(37)

M2 =
(
µ0µ

⊤
0 +

1

2

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1
(38)
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+ µ0ϵ
⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

))2
(39)

= µ0µ
⊤
0 µ0µ

⊤
0

+ µ0µ
⊤
0 · 1

2

(
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

)
+ µ0µ

⊤
0 · 1

2

(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
+

1

2

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

)
µ0µ

⊤
0

+
1

2

(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
µ0µ

⊤
0

+
1

4

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

)2
+

1

4

(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)2
+

1

4

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

) (
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
+

1

4

(
µ0ϵ

⊤
N2

+ ϵN2µ
⊤
0 + ϵN2ϵ

⊤
N2

) (
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

)
(40)

E[−4M + 4MM ] = −4µ0µ
⊤
0 + 4µ0µ

⊤
0 µ0µ

⊤
0 (41)

Case 2: Both examples from class 1

By symmetry,

M = µ1µ
⊤
1 +

1

2

(
µ1ϵ

⊤
N1

+ ϵN1
µ⊤
1 + ϵN1

ϵ⊤N1

+ µ1ϵ
⊤
N2

+ ϵN2µ
⊤
1 + ϵN2ϵ

⊤
N2

)
(42)

E[−4M + 4MM ] = −4µ1µ
⊤
1 + 4µ1µ

⊤
1 µ1µ

⊤
1 (43)

Case 3: 1 example from each class

M =
1

2

(
x1x

⊤
1 + x2x

⊤
2

)
(44)

=
1

2

(
(µ0 + ϵN1

)(µ0 + ϵN1
)⊤ + (µ1 + ϵN2

)(µ1 + ϵN2
)⊤

)
(45)

=
1

2

(
µ0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

+ µ1µ
⊤
1 + µ1ϵ

⊤
N2

+ ϵN2µ
⊤
1 + ϵN2ϵ

⊤
N2

)
(46)

E[−4M + 4MM ] = −2µ0µ
⊤
0 − 2µ1µ

⊤
1 + 2µ0µ

⊤
0 µ0µ

⊤
0 + 2µ1µ

⊤
1 µ1µ

⊤
1 (47)

Putting it together

Hence.

E[−4M + 4M2] =
1

4

(
− 4µ0µ

⊤
0 + 4µ0µ

⊤
0 µ0µ

⊤
0

)
+

1

4

(
− 4µ1µ

⊤
1 + 4µ1µ

⊤
1 µ1µ

⊤
1

)
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+
1

2

(
− 2µ0µ

⊤
0 − 2µ1µ

⊤
1 + 2µ0µ

⊤
0 µ0µ

⊤
0 + 2µ1µ

⊤
1 µ1µ

⊤
1

)
(48)

= −2µ0µ
⊤
0 − 2µ1µ

⊤
1 + 2µ0µ

⊤
0 µ0µ

⊤
0 + 2µ1µ

⊤
1 µ1µ

⊤
1 (49)

Comparing each term, element-wise

Comparing Term 1

∇W (LSL(B))− E[∇W (LSL(B))] = µ0µ
⊤
0 + ϵN1

µ⊤
0 + ϵN2

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ µ0ϵ
⊤
N2

+ ϵN1
ϵ⊤N1

+ ϵN2
ϵ⊤N2

− e0ϵ
⊤
N1

− e0ϵ
⊤
N2

− µ1µ
⊤
1 + e1µ

⊤
1 (50)

∇W (LSSL(B))− E[∇W (LSSL(B))] = −2µ0µ
⊤
0 − 2µ0ϵ

⊤
N1

− 2ϵN1µ
⊤
0 − 2ϵN1ϵ

⊤
N1

− 2µ0ϵ
⊤
N2

− 2ϵN2
µ⊤
0 − 2ϵN2

ϵ⊤N2

= 2µ0µ
⊤
0 µ0µ

⊤
0

+ µ0µ
⊤
0 · 2

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

)
+ µ0µ

⊤
0 · 2

(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
+ 2

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

)
µ0µ

⊤
0

+ 2
(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
µ0µ

⊤
0

+ 1
(
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

)2
+ 1

(
µ0ϵ

⊤
N2

+ ϵN2µ
⊤
0 + ϵN2ϵ

⊤
N2

)2
+ 1

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

) (
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
+ 1

(
µ0ϵ

⊤
N2

+ ϵN2µ
⊤
0 + ϵN2ϵ

⊤
N2

) (
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

)
(51)

Recall that µ0 = e0.

Use ϵ1 and ϵ2 to denote the value of an abtrirary element of ϵN1
and ϵN2

, respectively.

Comparing the expectation of the square of element (0, 0) of ∇W (L(B))− E[∇W (L(B))]:

For SL: E[(1 + ϵ1 + ϵ2 − 1 + ϵ1 + ϵ2 + ϵ21 + ϵ22 − ϵ1 − ϵ2 − 1 + 1)2] = E[(ϵ1 + ϵ2 + ϵ21 + ϵ22)] =

From Eq. 51, it is easy to see that the expectation of the square of element (0, 0) is far larger due to
far more ϵ1, ϵ2, ϵ21 and ϵ22 terms.

Similar argument holds for diagonal terms that are not (0, 0), due to the greater number of terms that
only have ϵ21 and ϵ22 (all terms having only ϵ1 and ϵ2 are only present in element (0, 0) since they are
always multiplied with e0).

An analogous argument holds for off-diagonal elements. Here, the contribution is only due to terms
containing only ϵN1

and/or ϵN2
.

Comparing Term 2

By symmetry, it must be that the same holds for term 2.

Comparing Term 3

∇W (LSL(B))− E[∇W (LSL(B))] = ϵN1
µ⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ ϵN2
µ⊤
1 + µ1ϵ

⊤
N2

+ ϵN2
ϵ⊤N2

− e1ϵ
⊤
N2

(52)

∇W (LSSL(B))− E[∇W (LSSL(B))] = −2
(
µ0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1
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+ µ1µ
⊤
1 + µ1ϵ

⊤
N2

+ ϵN2
µ⊤
1 + ϵN2

ϵ⊤N2

)
+ 4

(
µ0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

+ µ1µ
⊤
1 + µ1ϵ

⊤
N2

+ ϵN2µ
⊤
1 + ϵN2ϵ

⊤
N2

)2
(53)

Again, from analogous arugments from Term 1, we can see that the expression for LSSL has larger
expected square element-wise than that of LSL.

Conclusion

Since, for each term (corresponding to the 3 cases of mini-batch), we have that

E[∥∇W (LSSL(B))− E[∇W (LSSL(B))]∥2] > E[∥∇W (LSL(B))− E[∇W (LSL(B))]∥2], (54)

Thus, we can conclude
Var(∇WLSL(B)) < Var(∇WLSSL(B)).
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D PROPOSITION D.1: GENERALIZED ANALYSIS OF VARIANCE OF
TRAJECTORY UNDER SYNCHRONOUS PARALLEL SGD

Proposition D.1. Let D = {(xi, yi)}Ni=1 be a dataset with N examples, where xi is the i-th input
and yi ∈ {1, 2, . . . ,K} is its corresponding class label from K classes. We assume the data xi is
generated from a distribution where each example from class k can be modeled as a d-dimensional
(k ≪ d) 1-hot vector ek plus some noise ϵi, i.e. xi = eyi

+ ϵi, where µyi
is the vector corresponding

to class yi and ϵi ∼ N (0, I). Moreover, we consider a linear model fθ(x) = θx where θ ∈ RK×d.

The supervised loss function LSL is defined as a loss function that depends solely on each individual
example:

LSL(B) =
1

|B|
∑
i∈B

ℓSL(fθ(xi), yi), (55)

where ℓSL is an arbitrary supervised loss function (e.g., MSE, Cross-Entropy, etc.) and B is a
mini-batch of examples.

For SSL, we consider the spectral contrastive loss:

LSSL = −2Ex1,x2∼A(xi)
xi∼B

[
f(x1)

T f(x2)
]
+ Exi,xj∼A(B)

[
f(xi)

T f(xj)
]2

(56)

where A denotes the augmentation that are modeled as: A(xi) ∼ xi + ϵaug, where ϵaug ∼ N (0, I).

We analyze this setting under synchronous parallel SGD, where the number of mini-batches equals
the number of parallel threads. Let P represent a partition of the dataset D into a set of disjoint
mini-batches, each of size |B|. The synchronous parallel SGD update for an arbitrary loss function
L(B) on mini-batch B at time step t is θt+1 := θt − α

∑
B∈P ∇θtL(B).

Let θ be the initial parameters and θSL, θSSL be the model parameters after a single epoch of
training with synchronous parallel using the supervised loss LSL and the self-supervised loss LSSL,
respectively, with a learning rate α. Then, for sufficiently large batch size |B|,

VarP (θSL) < VarP (θSSL), (57)

where VarP represents the variance over different partitions P , and for a vector random variable X ,
we define the scalar variance as Var(X) = E[∥X − E[X]∥2]

Proof. For synchronous parallel SGD, we have:

θt+1 = θt − α
∑
B∈P

∇θtL(B),

where L is an arbitrary loss function.

Variance of Trajectory in Supervised Learning

Consider two arbitrary partitions P1 and P2. Let θ represent the initial parameters, and let θSL1

and θSL2
represent the parameters after a single epoch of synchronous parallel SGD for supervised

learning using LSL on the partitions P1 and P2, respectively.

We can express the updates as:

θSL1
= θ + α

∑
B∈P1

∇θLSL(B) (58)

= θ + α
∑
B∈P1

∑
(xi,yi)∈B

1

|B|
∇θLSL({xi, yi}) (due to independence of loss for each example)

(59)

= θ + α
∑

(xi,yi)∈D

1

|B|
∇θLSL({xi, yi}) (60)

= θ + α
∑
B∈P2

∑
(xi,yi)∈B

1

|B|
∇θLSL({xi, yi}) (61)
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= θSL2
. (62)

Since θSL1 = θSL2 for arbitrary partitions P1 and P2, we can conclude that:

VarP (θSL) = 0.

Variance of Trajectory in Self-Supervised Learning

Next, we need to show that VarP (θSSL) > 0. Let θ represent the initial parameters, and let θSSL1

and θSSL2
represent the parameters after a single epoch of synchronous parallel SGD using the

self-supervised loss LSSL with partitions P1 and P2, respectively.

To show VarP (θSSL) > 0, it suffices to show that there exist partitions P1 and P2 such that
θSSL1 ̸= θSSL2 .

Consider the following two partitions:

• Let P1 be a partition where each mini-batch is constructed by iterating over classes, until
|B| examples are selected, and picking a single example from the remaining examples in
each class

• Let P2 be a partition where each mini-batch is constructed by picking examples from the
remaining examples each class until |B| examples

It is easy to see, from prior work in hard negative mining for contrastive SSL such as Robinson
et al. (2021), that P2 will have a different gradient across all batches from P1 as P2 only contrasts
examples within the same class, whereas P1 contrasts examples across different classes. Hence,
θSSL1 ̸= θSSL2 .

We will now prove this for our setting, considering two random partitions P1 and P2.

Xue et al. (2023) shows the LSSL can be rewritten as LSSL = −Tr(2MθθT ) + Tr(M ′θT θM ′θT θ)

where M = 1
m|B|

∑m|B|
i=1 xix

T
i , M ′ = 1

|B|
∑|B|

i=1

(
1
m

∑
x∈A(xi)

x
)(

1
m

∑
x∈A(xi)

x
)T

where m is
the number of augmentations sampled.

From Xue et al. (2023), we also have ∇θ(LSSL) = −4θM + 4θM ′θT θM ′

With m i.e. number of augmentations large enough, M = M ′.

We now refer to M for P1 as M1 and M for P2 as M2.

From the construction of P1, we have M1 = I and from the construction of P2, we have [M2]i,j =
δi,kδj,k where δi,j = 1[i = j] for batch where examples from class k are selected.

From this, we can see that, the ∇θ(LSSL) is not equal for P1 and P2.

Hence, we can conclude that θSSL1 ̸= θSSL2
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E [EXAMPLES FROM MKDTAND KRR-ST (LEE ET AL., 2023)]

[Here, we show examples from CIFAR10, CIFAR100 and TinyImageNet for the data distilled using
MKDTand KRR-ST (Lee et al., 2023).]

(a) [MKDT] (b) [KRR-ST]

Figure 2: [Examples of Distilled Images for CIFAR10]

(a) [MKDT] (b) [KRR-ST]

Figure 3: [Examples of Distilled Images for CIFAR100]

(a) [MKDT] (b) [KRR-ST]

Figure 4: [Examples of Distilled Images for TinyImageNet]
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F SOCIETAL IMPACT

Our work democratizes the development of models trained with SSL pre-training, by reducing the
volume of data needed to train such models, and thus the costs of training these models. However,
the risk with dataset distillation is augmenting the biases of the original dataset.
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