
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

DATASET DISTILLATION VIA KNOWLEDGE DISTILLA-
TION: TOWARDS EFFICIENT SELF-SUPERVISED PRE-
TRAINING OF DEEP NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Dataset distillation (DD) generates small synthetic datasets that can efficiently train
deep networks with a limited amount of memory and compute. Despite the success
of DD methods for supervised learning, DD for self-supervised pre-training of deep
models has remained unaddressed. Pre-training on unlabeled data is crucial for
efficiently generalizing to downstream tasks with limited labeled data. In this work,
we propose the first effective DD method for SSL pre-training. First, we show,
theoretically and empirically, that naïve application of supervised DD methods to
SSL fails, due to the high variance of the SSL gradient. Then, we address this issue
by relying on insights from knowledge distillation (KD) literature. Specifically, we
train a small student model to match the representations of a larger teacher model
trained with SSL. Then, we generate a small synthetic dataset by matching the
training trajectories of the student models. As the KD objective has considerably
lower variance than SSL, our approach can generate synthetic datasets that can
successfully pre-train high-quality encoders. Through extensive experiments, we
show that our distilled sets lead to up to 13% higher accuracy than prior work,
on a variety of downstream tasks, in the presence of limited labeled data.

1 INTRODUCTION

Dataset distillation (DD) aims to generate a very small set of synthetic images that can simulate train-
ing on a large image dataset, with extremely limited memory and compute (Wang et al., 2018). This
facilitates training models on the edge, speeds up continual learning, and provides strong privacy guar-
antees (Kim et al., 2022; Cazenavette et al., 2022; Sajedi et al., 2023; Dong et al., 2022). As a result,
there has been a surge of interest in developing better DD methods for training neural networks in a su-
pervised manner. However, in many applications, very few labeled example are available. In this case,
supervised models often fail to generalize well. Instead, models are pre-trained, using self-supervised
learning (SSL), on a large amount of unlabeled data and then adapted to the downstream task using the
limited labeled data by training a linear classifier using the labeled examples of each downstream task
(linear probe). Remarkably, Chen et al. (2020) showed that SSL pre-training, followed by linear probe,
can outperform Supervised Learning (SL) by nearly 30% on ImageNet (Deng et al., 2009) when only
1% of labels are available. More impressively, by only training the linear layer (linear probe), SSL pre-
training is able to generalize to a variety of downstream tasks nearly as effectively as full fine-tuning
on the downstream task, for a fraction of the cost. Thus, SSL pre-training’s benefits are invaluable
in today’s modern ML ecosystem, where unlabeled data is plentiful and it is essential to generalize to
a plethora of downstream tasks, effectively and efficiently. With the datasets for SSL being far larger
than those for SL, the computational and privacy benefits of dataset distillation for SSL are even more
important than they are for SL. Nevertheless, DD for SSL pre-training has remained an open problem.

DD for SSL is, however, very challenging. One needs to ensure that pre-training on the synthetic
dataset, distilled from unlabeled data, results in a encoder that yields high-quality representations
for a variety of downstream tasks. Existing DD methods for SL generate synthetic data by matching
gradients (Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022) or trajectory (Cazenavette et al.,
2022; Du et al., 2023; Cui et al., 2022) of training on distribution of real data (Zhao & Bilen, 2023;
Sajedi et al., 2023; Wang et al., 2022a), or meta-model matching by generating synthetic data such
that training on it achieves low loss on real data (Wang et al., 2018; Nguyen et al., 2021; Loo et al.,
2022; Zhou et al., 2022). Among them, gradient and distribution matching methods heavily rely on

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

labels and will suffer from representation collapse otherwise. Hence, they are not applicable to SSL
DD. Very recently, Lee et al. (2023) applied meta-model matching to generate synthetic examples for
SSL pre-training, and evaluated its performance by fine-tuning the entire pre-trained model on the
large labeled downstream datasets. However, we show that SSL pre-training on these distilled sets
does not provide any advantage over SSL pre-training on random real examples.

In this work, we address distilling small synthetic datasets for SSL pre-training via trajectory matching.
First, we show, theoretically and empirically, that naïve application of trajectory matching to SSL fails,
due to the high variance of the gradient of the SSL loss. Then, we rely on insights from knowledge
distillation (KD) to considerably reduce the variance of SSL trajectories. KD trains a smaller student
network to match the predictions of a larger teacher network trained with supervised learning (Hinton
et al., 2015). In doing so, the student network can match the performance of the larger teacher model.

Here, we apply KD for SSL by training a student encoder to match the representations of a larger
teacher encoder trained with SSL. Then, we propose generating synthetic data for SSL by Match-
ing Knowledge Distillation Trajectories (MKDT). Crucially, as the KD objective for training the
student model has considerably lower variance, it enables generating higher-quality synthetic data
by matching the lower-variance trajectories of the student model. As a result, the encoder can learn
high-quality representations from the synthetic data. We also provide theoretical and empirical
evidence showing that KD trajectories are indeed lower variance than SSL trajectories and that this
lower variance enables effective dataset distillation for SSL.

Finally, we conduct extensive experiments to validate the effectiveness of our proposal MKDT for
SSL pre-training. In particular, we distill both low resolution (CIFAR10, CIFAR100) and larger, high
resolution datasets (TinyImageNet) down to 2% and 5% of original dataset size and show that, across
various downstream tasks, MKDT distilled sets outperform all baselines by up to 13% in the presence
of limited labeled data. Moreover, we confirm that the datasets distilled with [smaller ConvNets
can transfer to architectures as large as ResNet-18]. Finally, we demonstrate that MKDT is effective
across SSL algorithms (BarlowTwins (Zbontar et al., 2021) and SimCLR (Chen et al., 2020)).

2 RELATED WORK

2.1 DATASET DISTILLATION

There has been a large body of recent work on dataset distillation for supervised learning. These
techniques can be broadly characterized into meta-model matching, gradient matching, distribution
matching and trajectory matching (Sachdeva & McAuley, 2023).

Meta-model Matching Meta-model matching generates synthetic data such that a model trained on
the synthetic dataset achieves low training loss on the real dataset (Wang et al., 2018). The traditional
meta-model matching approach is computation and memory inefficient as it requires solving a bi-level
optimization problem. Thus, several methods (Nguyen et al., 2021; Loo et al., 2022; Zhou et al.,
2022) have been proposed to solve the inner-optimization problem in closed form with kernel ridge
regression.

Gradient Matching Gradient matching generates synthetic data by matching the gradient of a
network trained on the original dataset with the gradient of the network trained on the synthetic
dataset (Zhao et al., 2021; Zhao & Bilen, 2021; Lee et al., 2022). Gradient-matching is done for
each class separately, otherwise optimizing the synthetic images to match gradients is not possible
(Zhao et al., 2021). As a result, these methods require labels to be applicable.

Matching Training Trajectories (MTT) MTT, first proposed by Cazenavette et al. (2022), generates
synthetic data by matching the training trajectories of models trained on the real dataset with that of
the synthetic dataset. Cui et al. (2022) reduced the memory footprint of MTT and Du et al. (2023)
minimized the accumulated error in matching trajectories by distilling flatter trajectories.

Distribution Matching Distribution matching generates synthetic data by directly matching the
distribution of synthetic dataset and original dataset. One line of work does so by minimizing the
maximum mean discrepancy (MMD) between the representations of the synthetic and real data using
a large pool of feature extractors (Zhao & Bilen, 2023; Sajedi et al., 2023; Wang et al., 2022b). For
these methods, distilling examples per class is essential, as without labels, the models trained on the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

synthetic data suffer from representation collapse and cannot learn any discriminative features (Zhao
& Bilen, 2023). [More recently, (Yin et al., 2024; Zhou et al., 2024; Shao et al., 2024) apply ideas
from data-free knowledge distillationLopes et al. (2017) to match the distributions of synthetic and
real images using the batch norm statistics of models trained on the full data.] While these methods
do not distill per class, the distillation loss relies on the labels of the data and is essential to distill
data preserving class-discriminative features.

Dataset Distillation for SSL Very recently, KRR-ST (Lee et al., 2023) applied the kernel-based
meta-model matching to distillation for SSL. However, kernel ridge regression, with a relatively
unchanging encoder as the kernel function, prevents distilling synthetic data that is useful for training
the encoder effectively. We empirically confirm that the encoder learnt by pre-training on these
generated examples cannot outperform encoder learnt directly using SSL pre-training on random real
images. While KRR-ST also uses a MSE loss to representations instead of directly performing SSL,
they claim to do so to mitigate the bias of bi-level optimization in meta-model based matching for
SSL. In MKDT, we instead, use the knowledge distillation loss of MSE to representations of a larger
teacher model to reduce the high variance of SSL gradients, and thus lower variance trajectories
enable trajectory matching.

MTT is another dataset distillation method that is agnostic to the labels, and hence can be potentially
applied to SSL. Nevertheless, application of MTT to SSL has not been explored before. In our work,
we show that that naïve application of MTT to SSL yields poor performance. Then, we propose a
method that leverages knowledge distillation to enable effective dataset distillation for SSL.

2.2 DATA-EFFICIENT LEARNING VIA SUBSET SELECTION

Another line of work that enables data-efficient learning is selecting subsets of training data that gen-
eralize on par with the full data. This has been extensively studied for supervised learning (Coleman
et al., 2020; Toneva et al., 2019; Paul et al., 2021; Mirzasoleiman et al., 2020; Yang et al., 2023). At a
high level, these works show that difficult-to-learn examples with a higher loss or gradient norm or un-
certainty benefit SL the most. More recently, SAS (Joshi & Mirzasoleiman, 2023) has been proposed
for selecting subsets of data for self-supervised contrastive learning (CL). Interestingly, the most bene-
ficial subsets for SL are shown to be least beneficial for self-supervised CL. We use SAS as a baseline
and show that the synthetic data distilled by our method can outperform training on these subsets.

2.3 KNOWLEDGE DISTILLATION

Knowledge distillation (KD) is a technique used to transfer knowledge from a large teacher model
to a smaller student model, with the aim of retaining high performance with reduced complexity
(Hinton et al., 2015). For supervised learning, some techniques align the student’s outputs with
those of the teacher (Hinton et al., 2015), while others concentrate on matching intermediate features
(Romero et al., 2015), attention maps (Zagoruyko & Komodakis, 2017) or pairwise distances
between examples (Park et al., 2019). Recent works have adapted KD for SSL models (Passalis
& Tefas, 2018; Chen et al., 2017; Koohpayegani et al., 2020; Yu et al., 2019). DarkRank (Chen et al.,
2017) approaches KD for SSL as a rank matching problem between teacher and student encoders.
PKT (Passalis & Tefas, 2018) and Compress (Koohpayegani et al., 2020) model the similarities
in data samples within the representation space as a probability distribution, aiming to align these
distributions between the teacher and student encoders. Yu et al. (2019) introduced the concept
of minimizing the Mean Squared Error (MSE) between the representations of student and teacher
encoders. In this work, we rely on KD to enable effective dataset distillation for SSL.

3 PROBLEM FORMULATION

Consider a dataset Dreal = {xxxi}i∈[n] of n unlabeled training examples drawn i.i.d. from an unknown
distribution. Contrastive SSL methods (Zbontar et al., 2021; Chen et al., 2020) learn an encoder f that
produces semantically meaningful representations by training on Dreal. BarlowTwins, in particular,
learns these representations using the cross-correlation matrix of the outputs of different augmented

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

views of a given batch of training data:

LBT :=

d∑
i=1

(1− Fii)
2 + λ

d∑
i=1

d∑
j=1,j ̸=i

F 2
ij , (1)

where F is the cross-correlation of outputs within in a batch B s.t. Fij =
Ex∈BEx1,x2∈A(x)[fi(x1)fj(x2)] with A(x) being the set of augmented views of x, d is the di-
mension of the encoder f and λ is a hyperparameter. After pre-training, a linear classifier is trained
on representations and labels of downstream task(s).

Our goal is to generate a synthetic dataset Dsyn from Dreal, such that |Dsyn| ≪ |Dreal| and the
representations of Dreal using the encoder fθsyn , trained on the the synthetic data Dsyn, are similar to
those obtained from encoder fθreal , trained on the real data Dreal. Formally,

D∗
syn := argmin

Dsyn

Ex∼Dreal
D(fθsyn(x), fθreal(x)), (2)

where D(·, ·) is a distance function.

Evaluation To evaluate the encoder trained on the synthetic data, for every downstream task Dd, we
train a linear classifier gDd

on the representations of fθsyn , and evaluate the generalization error of the
linear classifier on Dd:

Err[fθsyn(Dd)] := E(x,y)∼Dd
1
[
gDd

(fθsyn(x)) ̸= y
]

(3)

An effective encoder achieves small Err[fθsyn(Dd)] across all downstream tasks.

4 MATCHING TRAINING TRAJECTORIES FOR SSL

As discussed in Sec. 2, distribution matching and gradient matching methods cannot work without
labels, and meta-model matching cannot effectively update the encoder. Therefore, in our work, we fo-
cus on application of MTT to SSL distillation. First, we discuss the challenges of applying MTT in the
SSL setting and show that its naïve application does not work. Then, we present our method, MKDT,
that relies on recent results in knowledge distillation (KD) to enable trajectory matching for SSL.

4.1 CHALLENGES OF MATCHING SSL TRAINING TRAJECTORIES

In this section, we first introduce trajectory matching (MTT) for supervised learning (SL). Then, we
discuss why naively applying MTT to the SSL setting does not work.

Matching Training Trajectories for SL MTT Cazenavette et al. (2022) generates a synthetic dataset
by matching the trajectory of parameters θ̂ of a model trained on the synthetic data with trajectory of
parameters θ∗ of the model trained on real data (expert trajectory). This matching is guided by the
following loss function:

LDD(Dsyn) =
∥θ̂t+N − θ∗t+M∥2

∥θ∗t − θ∗t+M∥2
(4)

In equation 4, θ∗t denotes the model parameters after training on real data up to step t. The term θ̂t+N

represents the model parameters after training on the synthetic dataset for N steps, starting from θ∗t .
Similarly, θ∗t+M refers to the model parameters after M steps of training on the real dataset. The
primary goal of MTT is to ensure that the encoder’s weights after training on the synthetic dataset
for N steps closely match the encoder’s weights after training on real data for a significantly larger
number of steps M , usually with N ≪ M . MTT is agnostic to the training algorithm and doesn’t
rely on labels; thus, can be applied to dataset distillation for SSL. However, naïve application of MTT
cannot effectively distill synthetic data for SSL pre-training, as we will discuss next.

High Variance Gradients Prevent Effective Trajectory Matching for SSL SSL losses rely on
interaction between all examples in a batch and consequently have high variance over choices of
random batches (c.f., the Barlow-Twins loss in equation 1). As a result, the contribution of examples
to the loss and hence their gradients varies significantly based on the rest of examples in the batch
Robinson et al. (2021), unlike SL where each example’s contribution to the loss is independent of

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Variance in Weights at End of
Trajectory v/s Trajectory Length

(b) Distillation Loss (Error in
Matching Trajectories) v/s

Distillation Iterations

(c) Average Absolute Change
in Pixel v/s # Distillation

Iterations

Figure 1: Challenges of MTT for SSL (Dataset: CIFAR100 (1%); Arch: 3-layer ConvNet)

other examples. The high variance in gradient over mini-batches in each iteration results in high
variance of the trajectories of SSL.

Theoretical Evidence for Higher Variance Gradients in SSL. We now present, in Theorem 4.1,
theoretical evidence, in a simplified setting, demonstrating that the variance of the gradient of SSL
over mini-batches is indeed greater than that of SL, i.e., Var

(
∇WLSSL(B)

)
> Var

(
∇WLSL(B)

)
.

Proof appears in Appendix C. Appendix D presents a more general version of this analysis, when
optimizing with synchronous parallel SGD.
Theorem 4.1. Let D = {(xi, yi)}ni=1 be a dataset with n examples, where xi is the i-th input and
yi ∈ {0, 1} is its corresponding class label. Assume the data xi are generated using the sparse
coding model Xue et al. (2023); Joshi et al. (2024): for class 0, xi = e0 + ϵi, and for class 1,
xi = e1 + ϵi, where e0 and e1 are basis vectors and ϵi ∼ N (0, σNI) is noise. Note that using mean
class vectors e0, e1 w.l.o.g. models the setting of arbitrary mean class vectors that are orthogonal
to each other. Each class has n

2 examples.

Consider a linear model fθ(x) = Wx, with W initialized as I (the identity matrix). The supervised
mean squared error (MSE) loss is given by:

LSL(B) =
1

|B|
∑
i∈B

∥fθ(xi)− eyi
∥2,

where eyi
is the one-hot encoded vector for class yi, and B is a mini-batch.

The SSL Loss (spectral contrastive loss used here for simplicity of analysis) is given by:

LSSL = −2Ex1,x2∼A(xi)
xi∈B

[
fθ(x1)

T fθ(x2)
]
+ Exi,xj∈B

[
fθ(xi)

T fθ(xj)
]2

,

where A(xi) = xi + ϵaug, with ϵaug ∼ N (0, I) representing augmentation noise.

Under stochastic gradient descent (SGD) with a mini-batch size B of 2:

Var(∇WLSL(B)) < Var(∇WLSSL(B)).

where for a matrix M, Var(M) := E[∥M − E[M]∥2] as in Gower et al. (2020).

Empirical Evidence for Challenges of Matching SSL Trajectories Due to the high variance in
the gradient of SSL objectives, the naiv̈e application of MTT to SSL does not succeed. Firstly, the
slower convergence caused by high variance gradients necessitates much longer trajectories for both
training on real and synthetic data. Secondly, the higher variance of gradients results in greater
variance in the weights at the end of trajectories starting from the same initialization (henceforth
referred to as variance of trajectories), [as illustrated theoretically in the simplified setting above].
Attempting to match SSL’s longer, higher variance trajectories is extremely challenging, as matching
such trajectories results in chaotic updates to the synthetic images. Thus, the synthetic images cannot
move away from their initialization meaningfully. Fig. 1a shows empirically that the variance of SSL
trajectories is larger than that of SL trajectories, across different trajectory lengths. Additionally, the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

variance of trajectories grows faster, with length of trajectory, for SSL than for SL, exacerbating the
problem for longer trajectory matching. Fig. 1b compares a simplified distillation using MTT with a
single expert trajectory for SSL and SL. Despite extensive hyper-parameter tuning, matching even a
single expert trajectory is challenging for SSL, confirmed by the slow decrease of distillation loss.
This indicates that the training trajectory on the distilled set is unable to match the training trajectory
on the real data for SSL. Fig. 1c shows that the difficulty in aligning trajectories is due to the chaotic
updates of the synthetic image, as evidenced by the synthetic images being unable to move away
from their initialization. To further confirm that the inability to distill effectively is indeed due to
the variance of trajectories, we also include a comparison to MTT SSL with 4x larger batch size,
which leads to slightly lower variance. Fig. 1a confirms that indeed the larger batch size reduces the
variance of the trajectories slightly. However, Fig. 1b and 1c show that reducing the variance of SSL
trajectories via larger batch size is insufficient to help distillation since an infeasibly large batch size
will likely be required to achieve the necessary low variance trajectories.

Next, we will present our method, MKDT, designed to address the above challenges.

4.2 MATCHING KNOWLEDGE DISTILLATION TRAJECTORIES

To reduce the length and variance of SSL trajectories, our key idea is to leverage the recent results in
knowledge distillation (KD) Kim et al. (2021). We first introduce KD, and then discuss our method,
MKDT, Matching Knowledge Distillation Trajectories, that leverages KD to reduce the length and
variance of SSL trajectories.

Knowledge Distillation (KD) KD refers to distilling the knowledge of a larger model (teacher) into
a smaller model (student) to achieve similar generalization as the larger model, but with reduced
complexity and faster inference times. Here, we rely on the knowledge distillation objective for SSL
models, introduced in Yu et al. (2019):

LKD = Ex∼Dreal

[
MSE(fS(x), fT (x))

]
, (5)

where fS and fT represent the student and teacher encoders respectively. (Yu et al., 2019) trains
student models with the aforementioned KD objective and the original SSL Loss. However, we only
minimize the MSE between student and teacher representations to avoid the issues with matching
SSL training trajectories (discussed in Sec. 4.1).

Converting SSL to SL trajectories via KD We use the objective presented in equation 5 i.e. min-
imizing the MSE between the representations of a student and a teacher model trained with SSL. In
doing so, we train the student model to match the performance of the teacher trained with SSL. Note
that training the student model by minimizing the MSE loss in equation 5 is a supervised objective.
Therefore, while the trained student model will produce similar representations to that of the teacher,
training with MSE loss is much faster than SSL, as its gradients have a much smaller variance (c.f. Fig.
1a). Thus, we can get shorter and lower variance expert trajectories from the student models trained
with KD using the MSE loss, instead of the teacher model trained with SSL. Then, we can generate syn-
thetic examples by matching these shorter and lower variance trajectories, without relying on labels.

Matching KD Trajectories (MKDT) We now describe our method MKDT: Matching Knowledge
Distillation Trajectories. MKDT has the following three steps: (1) training a teacher model with
SSL, (2) getting expert trajectories by training student models to match representations of the teacher
using KD objective, (3) generating synthetic examples by matching the expert trajectories. Below, we
discuss each of these steps in more details.

(1) Training the Teacher Model with SSL First, we train the teacher encoder fθT with LSSL on Dreal:

θT = argmin
θ

[
LSSL(fθ,Dreal)

]
, (6)

In our experiments, LSSL is the BarlowTwins loss function shown in equation 1, but our method
is agnostic to the choice of SSL algorithm. Since KD with larger models leads to better downstream
performance (Huang et al., 2022), we use a teacher model that is much larger than the student
encoder used for creating the expert trajectories for distillation. For example, in our experiments
we use a ResNet-18 as the teacher encoder and a 3 or 4-layer ConvNet as the student encoder.

(2) Getting Expert Trajectories with KD For training the expert trajectories, we encode the full
real data with the teacher model and train the student model to minimize the MSE between its

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Algorithm 1 MKDT: Matching Knowledge Distillation Trajectories
Require: K: Number of expert trajectories
Require: S: Number of distillation steps
Require: M : # of updates between starting and target expert params.
Require: N : # of updates to student network per distillation step.
Require: T+ < T : Maximum start epoch.
1: Train model fθT using LSSL on Dreal using augmentations A
2: {τ∗

i } ← Train K expert trajectories to minimize LKD(fsi , fθT)
3: Initialize distilled data Dsyn,Zsyn ∼ Dreal,Zreal

4: Initialize trainable learning rate αsyn := α0 for Dsyn

5: for S steps do
6: ▷ Sample expert trajectory: τ∗ ∼ {τ∗

i } with τ∗ = {θ∗t }T0
7: ▷ Choose random start epoch, t ≤ T+

8: ▷ Initialize student network with expert params:
9: θ̂t := θ∗t

10: for n = 0→ N − 1 do
11: ▷ Sample a mini-batch of distilled images:
12: bt+n ∼ Dsyn

13: ▷ Update student network w.r.t. MSE loss to reference representations:
14: θ̂t+n+1 = θ̂t+n − αsyn∇LMSEθ̂t+n

(bt+n,Zsyn)

15: end for
16: ▷ Compute loss between ending student and expert params:
17: LDD(Dsyn) = ∥θ̂t+N − θ∗t+M∥22 / ∥θ∗t − θ∗t+M∥22
18: ▷ Update Dsyn and αsyn with respect to LDD(Dsyn)
19: end for
Ensure: distilled data Dsyn,Zsyn and learning rate αsyn

representations and that of the teacher model. We refer to the representations of the real data from the
teacher model as teacher representations denoted by ZT =

[
· · · fθT (xi) · · ·

]
,∀xi ∈ Dreal. Formally,

min
θ∗

Exi∈Dreal
LMSE(fθ∗(xi), [ZT]i). (7)

We train K such student encoders and save the weights after each epoch of training to generate the
expert trajectories that we will match in the distillation phase.

(3) Data Distillation by Matching KD Trajectories We now optimize the synthetic data such that
training on it results in trajectories that match the aforementioned expert trajectories. First, we
initialize Dsyn as a subset of Dreal and Zsyn as the corresponding teacher representations from ZT .
Then, in every distillation iteration, we sample an expert trajectory starting at epoch t, where t ≤ T+,
of length M . We then train on the synthetic data for N steps by minimizing the MSE between
representations of synthetic data from fθsyn and Zsyn fθT . Formally, ∀n ∈ [N],

θ̂t+n+1 = θ̂t+n − αsyn∇LMSE(fθ̂t+n
(Dsyn),Zsyn) (8)

Now, we compute our distillation loss LDD(Dsyn) (shown in equation 4) using the parameters of
the encoder trained on the synthetic data and the encoder trained on the full data, and update the
synthetic data and learning rate, Dsyn and αsyn, respectively, to minimize this. Note that Zsyn remains
unchanged. We repeat this distillation for S iterations. Pseudo-code of MKDT is provided in Alg. 1.

Initializing Synthetic Data Empirically, we find that initializing Dsyn from the subset of examples
from Dreal that have high loss across the expert trajectories, leads to better downstream performance
than initializing with random subsets. In particular, for all expert trajectories, we use the encoders
after 1 epoch of training and use it to compute the MSE loss for all examples xi ∈ Dreal i.e.
LMSE(fθ∗

1
(xi), [ZT]i). We then average the loss for examples across encoders from all expert

trajectories and choose the examples with highest loss to initialize our synthetic data. Sec. 5
compares initializing MKDT with random subsets and such high loss subsets.

Evaluating the Distilled Dataset For evaluation, we first pre-train the encoder fθsyn on the distilled
data by minimizing the MSE between the representations of the synthetic data Dsyn and Zsyn using
the distilled learning rate αsyn.

θsyn = argmin
θ

Exi∈DsynLMSE(fθ(x), [Zsyn]i) with l.r. αsyn (9)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Pre-training on CIFAR10 (2% of Full Data)

Size of Downstream
Labeled Data (%) Method Pre-Training Downstream

CIFAR10 Tiny ImageNet CIFAR100 Aircraft CUB2011 Dogs Flowers

1%

No Pre-Training 35.84±1.39 2.52±0.09 8.01±0.19 2.43±0.17 1.27±0.10 1.92±0.18 2.02±0.76

Random Subset 36.35±0.67 2.41±0.08 7.42±0.31 2.41±0.30 1.16±0.08 1.90±0.22 1.99±0.19

SAS Subset 36.02±1.52 2.69±0.31 7.77±0.35 2.29±0.26 1.14±0.01 1.78±0.32 2.22±0.23

KRR-ST 37.19±0.49 2.84±0.17 8.67±0.41 2.53±0.05 1.25±0.02 1.88±0.32 2.42±0.22

MKDT 44.36±1.61 3.58±0.09 10.58±0.24 2.58±0.18 1.37±0.09 2.11±0.28 2.52±0.07

Full Data 58.21±0.28 4.94±0.38 14.53±0.40 2.92±0.25 1.69±0.13 2.40±0.25 3.23±0.69

5%

No Pre-Training 46.23±0.07 5.37±0.39 16.12±0.13 5.61±0.68 1.97±0.13 2.90±0.18 5.22±0.52

Random Subset 46.62±1.02 5.49±0.12 15.28±0.66 5.35±0.96 1.51±0.08 2.52±0.22 3.64±0.46

SAS Subset 46.52±0.61 5.41±0.42 15.90±0.28 5.63±0.76 1.48±0.16 2.69±0.21 3.75±0.10

KRR-ST 46.75±0.45 6.85±0.20 16.65±0.31 5.41±0.45 1.88±0.10 2.76±0.40 4.52±0.14

MKDT 53.08±0.13 7.25±0.17 19.57±0.29 5.97±0.79 2.06±0.10 3.06±0.46 4.97±0.54

Full Data 67.16±0.43 10.85±0.16 26.38±0.52 6.92±0.61 2.51±0.08 3.88±0.25 6.37±0.67

We then evaluate the encoder fθsyn using Errfθsyn (Dd), defined in equation 3, i.e. the generalization
error of linear classifier gDd

trained on the representations obtained from encoder fθsyn and
corresponding labels of downstream task Dd.

5 EXPERIMENTS

Table 2: Pre-training on CIFAR100 (2% of Full Data)

Size of Downstream
Labeled Data (%) Method Pre-Training Downstream

CIFAR100 Tiny ImageNet CIFAR10 Aircraft CUB2011 Dogs Flowers

1%

No Pre-Training 8.01±0.19 2.52±0.09 35.84±1.39 2.43±0.17 1.27±0.10 1.92±0.18 2.02±0.76

Random Subset 9.20±0.15 3.16±0.21 38.03±1.22 2.41±0.15 1.43±0.12 1.99±0.10 2.81±0.43

SAS Subset 9.39±0.18 3.23±0.19 38.73±1.48 2.53±0.04 1.42±0.04 2.07±0.14 2.95±0.37

High Loss Subset 10.03±0.12 3.33±0.10 39.78±1.61 2.47±0.29 1.56±0.14 2.13±0.24 2.63±0.51

KRR-ST 8.31±0.30 2.73±0.08 37.19±0.83 2.56±0.20 1.29±0.04 1.92±0.11 2.58±0.14

MKDT (Rnd Sub) 11.44±0.36 3.90±0.20 43.35±1.08 2.53±0.22 1.66±0.13 2.22±0.20 2.63±1.02

MKDT 12.36±0.67 4.13±0.29 44.90±1.18 2.74±0.30 1.61±0.14 2.15±0.39 3.24±0.44

Full Data 21.44±0.86 6.80±0.37 58.21±0.81 3.20±0.22 1.79±0.08 2.50±0.27 3.09±1.14

5%

No Pre-Training 16.12±0.13 5.37±0.39 46.23±0.07 5.61±0.68 1.97±0.13 2.90±0.18 5.22±0.52

Random Subset 17.75±0.42 6.79±0.06 48.59±0.26 5.66±0.71 2.12±0.23 3.02±0.31 5.44±0.22

SAS Subset 17.94±0.54 6.71±0.52 48.69±0.26 5.95±0.88 2.15±0.27 3.22±0.47 5.56±0.43

High Loss Subset 18.72±0.21 6.94±0.34 49.59±0.34 5.63±0.52 2.58±0.13 3.18±0.20 6.14±0.54

KRR-ST 16.40±0.63 6.16±0.45 47.96±0.32 5.54±0.97 2.00±0.08 2.95±0.25 4.69±0.15

MKDT (Rnd Sub) 21.71±0.28 8.01±0.08 53.08±0.19 6.24±0.79 2.53±0.03 3.38±0.23 6.26±0.22

MKDT 22.64±0.42 8.07±0.16 54.12±0.29 6.68±0.83 2.50±0.16 3.25±0.36 6.37±0.46

Full Data 35.78±0.54 14.11±0.55 67.25±0.49 7.46±0.53 3.00±0.05 4.23±0.21 8.41±0.60

Table 3: Pre-training on TinyImageNet (2% of Full Data)

Size of Downstream
Labeled Data (%) Method Pre-Training Downstream

Tiny ImageNet CIFAR10 CIFAR100 Aircraft CUB2011 Dogs Flowers

1%

No Pre-Training 2.63±0.22 30.40±1.02 7.14±0.35 2.25±0.11 1.28±0.16 1.76±0.13 2.84±0.20

Random Subset 3.03±0.20 34.46±1.13 7.66±0.67 2.27±0.22 1.24±0.05 1.92±0.26 2.16±0.47

KRR-ST 3.32±0.22 34.24±0.94 7.84±0.98 2.14±0.30 1.30±0.08 1.95±0.22 2.21±0.33

MKDT 3.87±0.05 37.25±0.47 8.95±0.34 2.30±0.19 1.36±0.22 1.99±0.20 2.86±0.25

Full Data 9.42±0.36 50.52±0.87 15.18±0.37 2.57±0.29 1.59±0.31 2.20±0.37 3.29±0.28

5%

No Pre-Training 5.69±0.45 39.91±0.36 13.32±0.30 4.46±0.81 1.71±0.06 2.51±0.18 4.83±0.32

Random Subset 6.76±0.16 43.74±0.82 13.83±0.13 4.49±0.91 1.66±0.14 2.67±0.31 4.23±0.70

KRR-ST 7.13±0.22 42.44±1.85 13.85±0.72 3.99±0.57 1.77±0.07 2.47±0.21 4.14±0.71

MKDT 7.99±0.32 45.97±0.27 16.50±0.35 4.66±0.70 2.07±0.11 2.91±0.10 5.49±0.51

Full Data 18.93±0.34 58.90±0.43 26.47±0.78 5.07±0.71 2.47±0.06 3.85±0.19 7.09±1.01

In this section, we evaluate the downstream generalization of models trained using the synthetic
sets distilled by MKDT that are 2% and 5% of the original dataset’s size for CIFAR10, CIFAR100
(Krizhevsky & Hinton, 2009), TinyImageNet (Le & Yang, 2015). We also conduct ablation stud-
ies over initialization of the distilled set and the SSL algorithm. Finally, we also consider the
generalization of the distilled sets to larger architectures.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Pre-training with Larger Distilled Set Size (5% of Full Data)

Pre-Training
Dataset

Size of Downstream
Labeled Data (%) Method Downstream Task Accuracy

CIFAR10 CIFAR100 Tiny ImageNet Aircraft CUB2011 Dogs Flowers

CIFAR10

1% Random Subset 37.63±2.28 7.63±0.13 2.63±0.07 2.28±0.22 1.13±0.11 1.81±0.18 2.05±0.23

[KRR-ST] [36.69±0.88] [8.69±0.32] [3.20±0.23] [2.26±0.13] [1.33±0.09] [1.91±0.34] [2.39±0.18]

MKDT 50.23±1.48 12.33±0.31 4.27±0.36 3.11±0.15 1.59±0.07 2.26±0.29 2.42±0.62

5% Random Subset 48.13±0.35 16.06±0.15 5.21±0.56 5.03±0.88 1.71±0.12 2.61±0.20 3.30±0.10

[KRR-ST] [47.40±0.34] [16.95±0.53] [7.10±0.27] [5.56±0.77] [1.98±0.07] [2.78±0.16] [4.38±0.04]

MKDT 58.37±0.17 23.15±0.71 8.84±0.20 6.79±0.88 2.30±0.14 3.34±0.35 5.94±0.24

CIFAR100

1% Random Subset 42.45±0.76 11.55±0.37 4.17±0.15 2.47±0.17 1.51±0.12 2.12±0.18 2.61±0.61

[KRR-ST] [37.86±1.14] [9.02±0.24] [2.94±0.13] [2.42±0.35] [1.50±0.07] [1.99±0.19] [3.04±0.36]

MKDT 47.77±1.12 13.40±0.31 4.45±0.33 2.93±0.42 1.61±0.02 2.22±0.27 2.59±1.07

5% Random Subset 51.92±0.33 20.34±0.20 7.83±0.24 6.06±0.79 2.27±0.18 3.22±0.39 5.78±0.34

[KRR-ST] [47.53±0.11] [17.24±0.47] [6.60±0.32] [5.37±0.85] [2.31±0.33] [2.87±0.27] [5.23±0.14]

MKDT 56.61±0.58 25.18±0.67 9.12±0.40 6.66±0.62 2.66±0.23 3.66±0.44 6.93±0.60

TinyImageNet

1% Random Subset 40.33±1.16 9.41±0.29 4.19±0.19 2.23±0.38 1.44±0.10 2.06±0.12 2.77±0.24

[KRR-ST] [34.27±1.36] [7.54±0.35] [3.19±0.22] [2.11±0.23] [1.30±0.12] [1.68±0.20] [2.65±0.64]

MKDT 41.44±0.85 10.29±0.38 5.09±0.45 2.16±0.28 1.29±0.06 2.02±0.28 2.92±0.49

5% Random Subset 48.46±0.40 15.63±0.62 8.99±0.61 4.55±0.80 1.98±0.18 2.91±0.47 5.06±0.84

[KRR-ST] [42.82±0.46] [13.71±0.30] [6.50±0.23] [4.36±0.49] [1.97±0.06] [2.75±0.37] [3.97±0.14]

MKDT 50.79±0.47 19.25±0.23 10.63±0.23 4.88±0.65 2.08±0.03 2.89±0.41 5.58±0.43

Table 5: Transfer to Larger Architectures (Pre-Training on CIFAR100 5%, 5% Downsteam Labels)

Method Pre-Training Downstream

CIFAR100 CIFAR10 TinyImageNet Aircraft CUB2011 Dogs Flowers

ResNet-10

No Pre-Training 1.36±0.31 13.18±1.74 1.03±0.07 1.00±0.01 0.43±0.13 0.60±0.01 0.75±0.14

Random 18.80±0.58 44.24±0.85 10.33±0.16 2.15±0.34 1.81±0.16 2.52±0.29 5.41±0.61

[KRR-ST] [13.84±0.78] [39.21±0.55] [8.04±0.52] [2.12±0.15] [1.16±0.05] [1.77±0.14] [4.56±0.42]

MKDT 23.23±0.79 49.13±0.69 13.35±0.24 1.68±0.10 1.67±0.09 2.64±0.16 6.15±0.47

ResNet-18

No Pre-Training 1.01±0.01 10.00±0.00 0.91±0.10 1.01±0.01 0.56±0.07 0.67±0.09 0.93±0.38

Random 16.82±0.69 40.11±1.16 8.95±0.23 1.84±0.25 1.62±0.06 2.40±0.25 5.16±0.59

[KRR-ST] [12.30±0.83] [35.73±1.07] [7.21±0.35] [2.32±0.39] [1.18±0.16] [1.81±0.14] [2.45±0.12]

MKDT 21.51±0.17 46.10±0.60 11.57±0.17 2.05±0.43 1.86±0.05 2.36±0.29 5.17±0.93

Distillation Setup We use ResNet-18 trained with Barlow Twins (Zbontar et al., 2021) as the teacher
encoder and train K = 100 student encoders (using ConvNets) to generate the expert trajectories. As
in previous work (Cazenavette et al., 2022; Zhao & Bilen, 2021; Zhao et al., 2021; Chen et al., 2023;
Du et al., 2023; Cui et al., 2022), we use a 3-layer ConvNet for the lower resolution CIFAR datasets
and a 4-layer ConvNet for the higher resolution TinyImageNet. Exact hyperparamters in Appendix A.

Evaluation Setup To test generalization in presence of limited labeled data, we evaluate encoders
pre-trained on the distilled data using linear probe on 1% and 5% of downstream labeled data.

Baselines We compare pre-training with MKDT distilled sets to pre-training with random subsets,
SAS subsets (Joshi & Mirzasoleiman, 2023), KRR-ST distilled sets (Lee et al., 2023) as well as
pre-training on the full data. For KRR-ST, we use the provided distilled sets for CIFAR100 and
Tiny ImageNet, and distill using the provided code for CIFAR10. We omit SAS for TinyImageNet
as this subset was not provided. For distilled sets of size 5%, we consider only Random and MKDT
, since other baselines did not provide distilled sets.

Downstream Generalization Performance Table 1 demonstrates that pre-training on CIFAR10
using MKDT with a 2% distilled set improves performance by 8% on CIFAR10 and 5% on down-
stream tasks over the KRR-ST baseline. Gains on CIFAR10 are consistent across 1% and 5% labeled
data, but improvements on downstream tasks are more pronounced with 5%, indicating MKDT
scales well with more labeled data. On CIFAR100, MKDT 2% distilled set improves performance
by 6% and 8% on CIFAR100 and downstream tasks, respectively. Additionally, MKDT shows up
to 3% improvement on downstream tasks for larger, higher-resolution datasets like TinyImageNet
(200K examples, 64x64 resolution), highlighting MKDT’s scalability. KRR-ST consistently fails
to outperform SSL pre-training on random subsets across all settings. In Appendix B, we verify that
this holds for fine-tuning experiments from KRR-ST (Lee et al., 2023), affirming MKDT as the only
effective DD method for SSL pre-training. Table 4 shows that pre-training with larger distilled sets
(5% of full data) further enhances performance by up to 13%, confirming MKDT scales effectively
with distilled set size as well. Table 7 shows that MKDT outperforms the strongest baseline (random
subsets) by 5% on pre-training and 7% on downstream tasks when using 10% and 50% labeled data.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 6: Ablation over SSL Algorithm (SimCLR), Distilled Set Size 2%

Pre-Training
Dataset

Size of Downstream
Labeled Data (%) Method Downstream Task Accuracy

CIFAR10 CIFAR100 Tiny ImageNet Aircraft CUB2011 Dogs Flowers

CIFAR10

1% Random Subset 35.20±1.12 7.35±0.28 2.29±0.14 2.21±0.09 1.19±0.06 1.83±0.16 1.83±0.24

[KRR-ST] [36.90±1.30] [8.38±0.17] [2.95±0.12] [2.45±0.13] [1.19±0.09] [1.87±0.18] [2.35±0.06]

MKDT 40.77±1.05 9.17±0.13 3.06±0.16 2.69±0.21 1.35±0.06 2.02±0.23 1.88±0.22

5% Random Subset 45.69±0.43 15.09±0.39 5.71±0.15 5.21±1.04 1.52±0.18 2.48±0.16 3.36±0.20

[KRR-ST] [46.87±0.52] [16.29±0.37] [6.31±0.43] [5.31±0.63] [1.89±0.14] [2.66±0.18] [4.36±0.16]

MKDT 51.77±0.25 18.07±0.52 6.55±0.23 5.90±0.76 1.89±0.15 2.98±0.36 4.09±0.28

CIFAR100

1% Random Subset 34.67±0.89 7.35±0.54 2.29±0.16 2.23±0.21 1.10±0.06 1.78±0.26 1.77±0.13

[KRR-ST] [36.57±1.02] [8.38±0.36] [3.01±0.22] [2.41±0.15] [1.28±0.02] [1.71±0.30] [1.98±0.24]

MKDT 39.59±1.19 9.44±0.37 3.07±0.08 2.60±0.23 1.33±0.11 1.93±0.27 2.49±0.06

5% Random Subset 45.67±0.69 15.11±0.44 5.21±0.29 5.21±0.67 1.51±0.14 2.54±0.19 3.37±0.47

[KRR-ST] [46.76±0.50] [15.75±0.46] [6.17±0.20] [5.43±0.65] [1.93±0.06] [2.61±0.25] [3.55±0.29]

MKDT 49.87±0.75 18.47±0.21 6.65±0.21 5.56±0.86 1.93±0.13 2.98±0.32 4.83±0.27

Table 7: Larger Labeled Data Fractions (10%, 50%), Distilled Set Size 2%

Pre-Training
Dataset

Size of Downstream
Labeled Data (%) Method Downstream Task Accuracy

CIFAR10 CIFAR100 Tiny ImageNet Aircraft CUB2011 Dogs Flowers

CIFAR10

10% Random Subset 51.21±0.38 19.75±0.36 8.04±0.45 7.42±0.43 2.15±0.16 3.10±0.30 5.22±0.96

[KRR-ST] [51.02±0.53] [21.01±0.14] [8.95±0.26] [7.91±0.76] [2.44±0.12] [3.54±0.29] [6.82±0.64]

MKDT 56.88 ±0.85 24.61 ±0.42 9.76 ±0.28 8.96 ±0.71 2.78 ±0.22 4.37 ±0.37 7.38 ±1.00

50% Random Subset 57.18±0.63 26.86±0.36 15.16±0.03 16.11±0.90 4.18±0.05 6.17±0.08 12.98±0.35

[KRR-ST] [58.09±0.07] [29.01±0.30] [15.94±0.31] [17.60±1.04] [5.01±0.34] [6.81±0.35] [15.92±0.64]

MKDT 63.63 ±0.17 34.06 ±0.39 17.57 ±0.37 19.43 ±0.93 5.43 ±0.22 7.63 ±0.17 16.89 ±0.37

CIFAR100

10% Random Subset 52.23±0.38 21.56±0.62 8.57±0.43 8.01±0.61 2.73±0.17 3.94±0.28 7.50±1.33

[KRR-ST] [52.40±0.73] [21.39±0.16] [8.21±0.07] [7.64±0.36] [2.34±0.12] [3.76±0.25] [6.52±1.28]

MKDT 57.67 ±0.33 27.28 ±0.18 11.05 ±0.50 9.25 ±0.70 3.42 ±0.16 4.43 ±0.38 9.35 ±1.28

50% Random Subset 60.39±0.17 31.62±0.32 16.02±0.14 18.10±0.12 5.65±0.18 7.37±0.23 16.18±0.31

[KRR-ST] [58.57±0.78] [29.46±0.81] [15.70±0.07] [15.89±0.54] [4.82±0.41] [7.00±0.18] [15.07±0.46]

MKDT 65.85 ±0.33 38.09 ±0.35 17.46 ±0.24 20.73 ±0.24 6.67 ±0.05 8.48 ±0.21 21.15 ±0.50

TinyImageNet

10% Random Subset 44.08±1.91 16.43±0.12 8.84±0.85 5.57±0.61 2.12±0.30 3.07±0.17 6.51±1.27

[KRR-ST] [45.48±0.84] [17.02±0.26] [8.88±0.41] [5.29±0.16] [2.08±0.21] [3.21±0.15] [6.10±1.44]

MKDT 49.33 ±0.49 20.19 ±0.45 10.89 ±0.63 6.61 ±0.28 2.47 ±0.18 3.86 ±0.36 7.33 ±1.34

50% Random Subset 47.35±0.92 19.28±0.61 14.01±0.38 8.74±0.78 3.61±0.31 5.18±0.29 13.60±1.13

[KRR-ST] [48.16±1.18] [20.01±0.40] [13.59±0.47] [8.66±1.29] [3.46±0.22] [4.98±0.31] [15.12±0.37]

MKDT 51.98 ±0.44 24.41 ±0.39 16.99 ±0.25 10.84 ±0.25 4.44 ±0.28 6.22 ±0.15 16.47 ±0.46

Ablations We perform ablations over two factors: 1) initialization and 2) SSL algorithm. Table 2
presents results for pre-training with MKDT using random subset initialization, as well as results
for pre-training directly on the high-loss subset initialization used by MKDT. Interestingly, the KD
objective for SSL pre-training benefits slightly more from the high-loss subset than from random
subsets. Consequently, MKDT initialized from the high-loss subset performs better than when
initialized from a random subset. Table 6 shows results for MKDT using a teacher model trained
with SimCLR (Chen et al., 2020) instead of BarlowTwins. Specifically, we train a ResNet-18 for 400
epochs using SimCLR. Here too, MKDT achieves approximately 6% higher performance compared
to random subsets across downstream datasets. This confirms that MKDT generalizes across different
SSL training algorithms.

Generalization to Larger Architectures Table 5 compares CIFAR100 5% size MKDT distilled set
to 5% size random subsets, using the larger ResNet-10 and ResNet-18 architectures. Across all down-
stream tasks, we confirm that MKDT distilled sets outperform baselines even when using larger archi-
tectures. Surprisingly, the larger ResNet-18 slightly under-performs the smaller ResNet-10. This trend
is observed across all baselines, including no pre-training. We conjecture this is due to larger models
requiring a lot more data to be able to use their extra capacity to surpass their smaller counterparts.

6 CONCLUSION

To conclude, we propose MKDT, the first effective approach for dataset distillation for SSL pre-
training. We demonstrated the challenges of naïvely adapting previous supervised distillation method
and showed how knowledge distillation with trajectory matching can remedy these problems. Empiri-
cally, we showed up to 13% improvement in downstream accuracy when pre-training with MKDT
distilled sets over the next best baseline. Thus, we enable highly data-efficient SSL pre-training.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu. Dataset
distillation by matching training trajectories. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 4750–4759, 2022.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

Xuxi Chen, Yu Yang, Zhangyang Wang, and Baharan Mirzasoleiman. Data distillation can be
like vodka: Distilling more times for better quality. International Conference on Representation
Learning (ICLR), 2023.

Yuntao Chen, Naiyan Wang, and Zhaoxiang Zhang. Darkrank: Accelerating deep metric learning via
cross sample similarities transfer, 2017.

C Coleman, C Yeh, S Mussmann, B Mirzasoleiman, P Bailis, P Liang, J Leskovec, and M Zaharia.
Selection via proxy: Efficient data selection for deep learning. In International Conference on
Learning Representations (ICLR), 2020.

Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling up dataset distillation to imagenet-1k
with constant memory. arXiv preprint arXiv:2211.10586, 2022.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

Tian Dong, Bo Zhao, and Lingjuan Lyu. Privacy for free: How does dataset condensation help
privacy? In International Conference on Machine Learning, pp. 5378–5396. PMLR, 2022.

Jiawei Du, Yidi Jiang, Vincent Y. F. Tan, Joey Tianyi Zhou, and Haizhou Li. Minimizing the
accumulated trajectory error to improve dataset distillation, 2023.

Wele Gedara Chaminda Bandara, Celso M De Melo, and Vishal M Patel. Guarding barlow twins
against overfitting with mixed samples. arXiv e-prints, pp. arXiv–2312, 2023.

Robert M. Gower, Mark Schmidt, Francis Bach, and Peter Richtarik. Variance-reduced methods for
machine learning, 2020. URL https://arxiv.org/abs/2010.00892.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Tao Huang, Shan You, Fei Wang, Chen Qian, and Chang Xu. Knowledge distillation from a stronger
teacher, 2022.

Siddharth Joshi and Baharan Mirzasoleiman. Data-efficient contrastive self-supervised learning:
Most beneficial examples for supervised learning contribute the least. In Andreas Krause, Emma
Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.),
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 15356–15370. PMLR, 23–29 Jul 2023. URL
https://proceedings.mlr.press/v202/joshi23b.html.

Siddharth Joshi, Arnav Jain, Ali Payani, and Baharan Mirzasoleiman. Data-efficient contrastive
language-image pretraining: Prioritizing data quality over quantity. In Sanjoy Dasgupta, Stephan
Mandt, and Yingzhen Li (eds.), Proceedings of The 27th International Conference on Artifi-
cial Intelligence and Statistics, volume 238 of Proceedings of Machine Learning Research, pp.
1000–1008. PMLR, 02–04 May 2024. URL https://proceedings.mlr.press/v238/
joshi24a.html.

Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo Yun, Hwanjun Song, Joonhyun Jeong, Jung-
Woo Ha, and Hyun Oh Song. Dataset condensation via efficient synthetic-data parameterization.
In Proceedings of the 39th International Conference on Machine Learning, 2022.

Taehyeon Kim, Jaehoon Oh, NakYil Kim, Sangwook Cho, and Se-Young Yun. Comparing kullback-
leibler divergence and mean squared error loss in knowledge distillation, 2021.

11

https://arxiv.org/abs/2010.00892
https://proceedings.mlr.press/v202/joshi23b.html
https://proceedings.mlr.press/v238/joshi24a.html
https://proceedings.mlr.press/v238/joshi24a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Soroush Abbasi Koohpayegani, Ajinkya Tejankar, and Hamed Pirsiavash. Compress: Self-supervised
learning by compressing representations, 2020.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical Report 0, University of Toronto, Toronto, Ontario, 2009.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https:
//api.semanticscholar.org/CorpusID:16664790.

Dong Bok Lee, Seanie Lee, Joonho Ko, Kenji Kawaguchi, Juho Lee, and Sung Ju Hwang. Self-
supervised dataset distillation for transfer learning, 2023.

Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo Yun, and Sungroh Yoon. Dataset condensa-
tion with contrastive signals. In Proceedings of the 39th International Conference on Machine
Learning, pp. 12352–12364, 2022.

Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Efficient dataset distillation using
random feature approximation. In Advances in Neural Information Processing Systems, 2022.

Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge distillation for deep
neural networks, 2017. URL https://arxiv.org/abs/1710.07535.

Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec. Coresets for data-efficient training of
machine learning models. In International Conference on Machine Learning, pp. 6950–6960.
PMLR, 2020.

Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset meta-learning from kernel ridge-
regression. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=l-PrrQrK0QR.

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. Relational knowledge distillation, 2019.

Nikolaos Passalis and Anastasios Tefas. Learning deep representations with probabilistic knowledge
transfer. In Proceedings of the European Conference on Computer Vision (ECCV), September
2018.

Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziugaite. Deep learning on a data diet: Finding
important examples early in training. Advances in Neural Information Processing Systems, 34:
20596–20607, 2021.

Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
hard negative samples, 2021.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets, 2015.

Noveen Sachdeva and Julian McAuley. Data distillation: A survey, 2023.

Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z Liu, Yuri A Lawryshyn, and Konstantinos N
Plataniotis. Datadam: Efficient dataset distillation with attention matching. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 17097–17107, 2023.

Shitong Shao, Zeyuan Yin, Muxin Zhou, Xindong Zhang, and Zhiqiang Shen. Generalized large-
scale data condensation via various backbone and statistical matching, 2024. URL https:
//arxiv.org/abs/2311.17950.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des Combes, Adam Trischler, Yoshua Ben-
gio, and Geoffrey J. Gordon. An Empirical Study of Example Forgetting During Deep Neu-
ral Network Learning, November 2019. URL http://arxiv.org/abs/1812.05159.
arXiv:1812.05159 [cs, stat].

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan
Bilen, Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12196–12205, 2022a.

12

https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://arxiv.org/abs/1710.07535
https://openreview.net/forum?id=l-PrrQrK0QR
https://openreview.net/forum?id=l-PrrQrK0QR
https://arxiv.org/abs/2311.17950
https://arxiv.org/abs/2311.17950
http://arxiv.org/abs/1812.05159

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang, Shuo Wang, Guan Huang, Hakan Bilen,
Xinchao Wang, and Yang You. Cafe: Learning to condense dataset by aligning features, 2022b.

Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation. arXiv
preprint arXiv:1811.10959, 2018.

Yihao Xue, Siddharth Joshi, Eric Gan, Pin-Yu Chen, and Baharan Mirzasoleiman. Which features
are learnt by contrastive learning? on the role of simplicity bias in class collapse and feature
suppression, 2023.

Yu Yang, Hao Kang, and Baharan Mirzasoleiman. Towards sustainable learning: Coresets for
data-efficient deep learning. International Conference on Machine Learning (ICML), 2023.

Zeyuan Yin, Eric Xing, and Zhiqiang Shen. Squeeze, recover and relabel: Dataset condensation at
imagenet scale from a new perspective. Advances in Neural Information Processing Systems, 36,
2024.

Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost van de Weijer, Yongmei Cheng, and Arnau Ramisa.
Learning metrics from teachers: Compact networks for image embedding, 2019.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer, 2017.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction, 2021.

Bo Zhao and Hakan Bilen. Dataset condensation with differentiable siamese augmentation. In
International Conference on Machine Learning, pp. 12674–12685. PMLR, 2021.

Bo Zhao and Hakan Bilen. Dataset condensation with distribution matching. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023.

Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset condensation with gradient matching. In
International Conference on Learning Representations, 2021.

Muxin Zhou, Zeyuan Yin, Shitong Shao, and Zhiqiang Shen. Self-supervised dataset distillation: A
good compression is all you need, 2024.

Yongchao Zhou, Ehsan Nezhadarya, and Jimmy Ba. Dataset distillation using neural feature regres-
sion. In Advances in Neural Information Processing Systems, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A EXPERIMENT DETAILS

A.1 ADDITIONAL DETAILS FOR EXPERIMENTS IN TABLES 1, 2, 3, 4, 5, 6, 7

Training the Teacher Model Using SSL We trained the teacher model using BarlowTwins (Zbontar
et al., 2021) using the training setup ResNet18 specified in (Gedara Chaminda Bandara et al., 2023).
We used the Adam optimizer with batch size 256, learning rate 0.01, cosine annealing learning rate
schedule, and weight decay 10−6. The feature dimension is 1024. Finally, we use the pre-projection
head representation of the trained model for teacher representation, and its dimension is of size 512.

Training Expert Trajectories Using KD We trained 100 expert trajectories for each dataset with
random initialization of the network for 20 epochs, using Stochastic Gradient Descent with learning
rate 0.1, momentum 0.9, and weight decay 1e-4. Similar to other DD works (Cazenavette et al., 2022;
Lee et al., 2023), we used depth 4 ConvNet for Tiny ImageNet and depth 3 ConvNet for both CIFAR
10 and CIFAR 100. We did not apply any augmentation except normalization, and did not apply the
ZCA-whitening.

Distillation Hyperparameters We distilled 2% of CIFAR 10, CIFAR 100, and Tiny ImageNet. We
used SGD for optimizing the synthetic images with batch size 256, momentum 0.5. We distilled
CIFAR 10 and CIFAR 100 with depth 3 ConvNet and Tiny ImageNet with depth 4 ConvNet. We
initialize the synthetic learning rate as 0.1 and used SGD with learning rate 10−4 and momentum 0.5
to update it. We distilled the datasets for 5000 iterations and evaluated their performance for all the
experiments except those in Table 5, where we use the distilled dataset after 1000 iterations. The
other hyper-parameters are recorded in Table 8.

Table 8: MKDT Hyperparameters on 2% Distilled Set

CIFAR10 CIFAR100 TinyImageNet

Percentage Distilled 2% 2% 2%
Model ConvNetD3 ConvNetD3 ConvNetD4

Synthetic Steps (N) 40 40 10
Expert Epochs (M) 2 2 2

Max Start Epoch (T+) 2 2 2
Learning Rate (Pixels) 103 103 105

Pre-training on Synthetic Data For the synthetic data, we pre-train them using the MSE loss with
their learned representation for 20 epochs using SGD with batch size 256, their distilled learning rate,
momentum 0.9, and weight decay 10−4. We use a depth 3 ConvNet for CIFAR 10 and CIFAR 100,
and a depth 4 ConvNet for Tiny ImageNet. For distilled datasets, we use the synthetic learning rate
αsyn. For other datasets (e.g., random subset), we use the same setting except a learning rate of 0.1.

Evaluation We use the models’ penultimate layer’s representations (as is standard in contrastive
learning (Zbontar et al., 2021; Chen et al., 2020)) of the downstream task’s training set and train
a linear classifier, using LBFGS with 100 iterations and regularization weight 10−3. We then use
the pre-projection head representations of the test set of the downstream task and evaluate using the
aforementioned linear classifer to report the downstream test accuracy.

Using SimCLR for Obtaining Teacher Representation. We conducted an ablation study using
a teacher model trained with SimCLR (Chen et al., 2020) instead of Barlow Twins (Zbontar et al.,
2021) for CIFAR 10 and CIFAR 100. The experiment steps are similar to the ones in A.1. During the
"Training the Teacher Model Using SSL" step , we used the Adam optimizer with batch size 512,
learning rate 0.001, and weight decay 10−6 to train a ResNet18 along with a 2-layer linear projection
head for 400 epochs. The projection head included Batch Normalization and ReLU after the first
layer, and Batch Normalization after the second layer, projecting to 128 dimensions. Then, we used
the pre-projection head representation of the trained model for getting the teacher representation of
size 512. The other steps are the same as the one in A.1. Table 6 shows that MKDT consistently
outperforms the random subset across all downstream datasets and various sizes of labeled data,
highlighting the method’s generalizability to other contrastive learning methods.

Scaling the Method to Larger Distillation Sets. In addition to distilling 2% subsets, we also
conducted experiments distilling 5% subsets of CIFAR10, CIFAR100, and TinyImageNet to evaluate
the generalizability of the method to larger distillation sets. Table 4 shows the scalability of the
method to larger distilled set sizes. The experiments procedure are the same as the ones in A.1 except

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 9: MKDT Hyperparameters on 5% Distilled Set

CIFAR10 CIFAR100 TinyImageNet

Percentage Distilled 5% 5% 5%
Model ConvNetD3 ConvNetD3 ConvNetD4

Synthetic Steps (N) 40 40 10
Expert Epochs (M) 2 2 2

Max Start Epoch (T+) 5 5 2
Learning Rate (Pixels) 104 104 105

that we use different distillation hyperparameters for the 5% distilled set. The hyperparameters are
summarized in Table 9.

Scaling the Method to Larger Downstream Labeled Dataset Sizes. We evaluated the performance
for CIFAR 10, CIFAR 100, and TinyImageNet on larger downstream labeled data sizes, specifically
10% and 50% labeled data sizes, using the 2% distilled set obtained with the method illustrated in
A.1. As shown in Table 7, MKDT continues to outperform random subset across all downstream
datasets and data sizes, demonstrating its scalability with larger labeled data sizes.

[Details for KRR-ST Lee et al. (2023) We use the code and hyper-parameters provided in (Lee et al.,
2023). As the original paper did not provide the results and the hyperparameters for CIFAR 10, we
use the same hyperparameters as CIFAR 100 to distill CIFAR 10. In particular, this invovles using
BarlowTwins ResNet-18 as the teacher model as well.]

A.2 ADDITIONAL DETAILS ON EXPERIMENTS IN FIG. 1

For the experiment in Figure 1a, we train 5 trajectories of each of MTT SSL and MTT SL for CIFAR
100 using the same random initialization of the network, respectively. For MTT SSL, we train the
models with the Adam optimizer with batch size 1024, learning rate 0.001, and weight decay 10−6.
For MTT SL, we train the model with SGD with batch size 256, learning rate 0.01, momentum 0,
and no weight decay.

For both of the experiments in Figure 1b and 1c, we distill the dataset using MTT SL with image
learning rate 1000, max start epoch 0, synthetic steps 20, and expert epochs 4. We distill using MTT
SLL with image learning rate 1000, max start epoch 0, synthetic steps 10, and expert epochs 2. We
distilled them for 100 iterations and record the change in the loss function and the average absolute
change in pixels.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B ADDITIONAL COMPARISON OF RANDOM SUBSET SSL PRE-TRAINING TO
KRR-ST

This experiment is conducted in the setting of Lee et al. (2023) for pre-training on CIFAR100. This
experiment pre-trains on a distilled set / subset of 2% the size of CIFAR100 and then evaluates on
downstream tasks by finetuning the entire network with the entire labeled dataset for the downstream
task. KRR-ST compares with the random subset baseline by pre-training using SL. However, we use
SSL on the random subset as a baseline instead. Here, we show that, in fact, even in the finetuning
setting reported by Lee et al. (2023), KRR-ST cannot outperform SSL pre-training on random real
images. The baseline reported as ‘Random’ in Lee et al. (2023) refers to SL pre-training as opposed
to SSL pre-training.

Table 10: Pre-training on CIFAR100

Method Pre-Training Downstream

CIFAR100 CIFAR10 Aircraft Cars CUB2011 Dogs Flowers

No pre-training (from Lee et al. (2023)) 64.95±0.21 87.34±0.13 34.66±0.39 19.43±0.14 18.46±0.11 22.31±0.22 58.75±0.41

Random (Supervised Learning (from Lee et al. (2023)) 65.23±0.12 87.55±0.19 33.99±0.45 19.77±0.21 18.18±0.21 21.69±0.18 59.31±0.27

KRR-ST (from Lee et al. (2023)) 66.81±0.11 88.72±0.11 41.54±0.37 28.68±0.32 25.30±0.37 26.39±0.08 67.88±0.18

Random (SSL Pre-training) 66.44±0.14 88.74±0.20 42.02±0.06 28.75±0.23 25.12±0.19 26.57±0.22 68.21±0.40

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C PROOF FOR THEOREM 4.1

Proof. To analyze the variance of the gradient for both SL and SSL, we will conduct a case analysis.
There are 3 possible unique cases for constructing the mini-batch. Assuming n is extremely large s.t.
n/2
n ≈ n/2−1

n , we have:

1. Both examples are from class 0 with probability = 1
4

2. Both examples are from class 1 with probability = 1
4

3. 1 example from each class with probability = 1
2

Let x1, y1 refer to example 1 and its corresponding label vector; similarly, let x2, y2 refer to example
2 and its corresponding label vector.

To show the effect of each term, we refer to the class mean vectors for class 0 and class 1 as µ0 and
µ1, respectively; and use e0 and e1, the basis vectors to represent the labels for class 0 and class 1.

Analyzing cases for SL

∇W (LSL(B)) =
1

2

2∑
i=1

2(Wxi − yi)x
⊤
i (10)

= (Wx1 − y1)(x1)
⊤ + (Wx2 − y2)(x2)

⊤ (11)

Case 1: Both examples from class 0

∇W (LSL(B)) = (Wx1 − e0)(x1)
⊤ + (Wx2 − e0)(x2)

⊤ (12)

E[∇W (LSL(B))] = E[(Wx1 − e0)(x1)
⊤ + (Wx2 − e0)(x2)

⊤] (13)

= E[(Wx1 − e0)(x1)
⊤] + E[Wx2 − e0)(x2)

⊤] (14)

= E[(Wµ0 +WϵN1
− e0)(e0 + ϵN1

)⊤] + E[(Wµ0 +WϵN2
− e0)(e0 + ϵN2

)⊤]
(15)

= E[(µ0 + ϵN1
− e0)(µ0 + ϵN1

)⊤] + E[(µ0 + ϵN2
− e0)(µ0 + ϵN2

)⊤]by substituting W = I
(16)

= E[µ0µ
⊤
0 + ϵN1µ

⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1ϵ
⊤
N1

− e0ϵ
⊤
N1

]

+ E[µ0µ
⊤
0 + ϵN2

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N2

+ ϵN2
ϵ⊤N2

− e0ϵ
⊤
N2

] (17)

= 2(µ0µ
⊤
0 − e0µ

T
0) (18)

∇W (LSL(B)) = µ0µ
⊤
0 + ϵN1

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ µ0µ
⊤
0 + ϵN2µ

⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N2

+ ϵN2ϵ
⊤
N2

− e0ϵ
⊤
N2

= 2µ0µ
⊤
0 + (ϵN1 + ϵN2)µ

⊤
0 − 2e0µ

⊤
0 + µ0(ϵ

⊤
N1

+ ϵ⊤N2
)

+ ϵN1
ϵ⊤N1

+ ϵN2
ϵ⊤N2

− e0(ϵ
⊤
N1

+ ϵ⊤N2
) (19)

Case 2: Both examples from class 1

By symmetry, we have:

E[∇W (LSL(B))] = 2(µ1µ
⊤
1 − e1µ

⊤
1) (20)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

and

∇WLSL(B) = 2µ1µ
⊤
1 + (ϵN1

+ ϵN2
)µ⊤

1 − 2e1µ
⊤
1 + µ1(ϵ

⊤
N1

+ ϵ⊤N2
)

+ ϵN1
ϵ⊤N1

+ ϵN2
ϵ⊤N2

− e1(ϵ
⊤
N1

+ ϵ⊤N2
) (21)

Case 3: 1 example from each class

E[∇W (LSL(B))] = µ0µ
⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1 (22)

and

∇WLSL(B) = µ0µ
⊤
0 + ϵN1

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ µ1µ
⊤
1 + ϵN2

µ⊤
1 − e1µ

⊤
1 + µ1ϵ

⊤
N2

+ ϵN2
ϵ⊤N2

− e1ϵ
⊤
N2

(23)

Putting it together

E[∇W (LSL(B))] =
1

4
· 2(µ0µ

⊤
0 − e0µ

⊤
0) (24)

+
1

4
· 2(µ1µ

⊤
1 − e1µ

⊤
1) (25)

+
1

2

(
µ0µ

⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1

)
(26)

= µ0µ
⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1 (27)

Finally,

V ar(∇W (LSL(B))) = E[∥∇W (LSL(B))− E[∇W (LSL(B))]∥2] (28)

=
1

4
E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 1]

+
1

4
E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 2]

+
1

2
E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 3] (29)

Simplifying term 1: E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 1]

∇W (LSL(B))− E[∇W (LSL(B))] = 2µ0µ
⊤
0 + (ϵN1 + ϵN2)µ

⊤
0 − 2e0µ

⊤
0 + µ0(ϵ

⊤
N1

+ ϵ⊤N2
)

+ ϵN1ϵ
⊤
N1

+ ϵN2ϵ
⊤
N2

− e0(ϵ
⊤
N1

+ ϵ⊤N2
)

−
(
µ0µ

⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1

)
= µ0µ

⊤
0 + ϵN1

µ⊤
0 + ϵN2

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ µ0ϵ
⊤
N2

+ ϵN1ϵ
⊤
N1

+ ϵN2ϵ
⊤
N2

− e0ϵ
⊤
N1

− e0ϵ
⊤
N2

− µ1µ
⊤
1 + e1µ

⊤
1 (30)

By symmetry, term 2 i.e. E[(∥∇W (LSL(B)) − E[∇W (LSL(B))]∥2)|case 2] can be simplified as
follows:

∇W (LSL(B))− E[∇W (LSL(B))] = µ1µ
⊤
1 + ϵN1µ

⊤
1 + ϵN2µ

⊤
1 − e1µ

⊤
1 + µ1ϵ

⊤
N1

+ µ1ϵ
⊤
N2

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

+ ϵN1
ϵ⊤N1

+ ϵN2
ϵ⊤N2

− e1ϵ
⊤
N1

− e1ϵ
⊤
N2

− µ0µ
⊤
0 + e0µ

⊤
0 (31)

Simplifying term 3:

E[(∥∇W (LSL(B))− E[∇W (LSL(B))]∥2)|case 3] (32)

∇W (LSL(B))− E[∇W (LSL(B))] = µ0µ
⊤
0 + ϵN1

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ µ1µ
⊤
1 + ϵN2µ

⊤
1 − e1µ

⊤
1 + µ1ϵ

⊤
N2

+ ϵN2ϵ
⊤
N2

− e1ϵ
⊤
N2

−
(
µ0µ

⊤
0 − e0µ

⊤
0 + µ1µ

⊤
1 − e1µ

⊤
1

)
= ϵN1

µ⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ ϵN2µ
⊤
1 + µ1ϵ

⊤
N2

+ ϵN2ϵ
⊤
N2

− e1ϵ
⊤
N2

(33)

Analyzing cases for SSL

We will now analyze the same for SSL and show by comparing each of the 3 terms, element-wise,
above to their counterparts that V ar(LSSL(B)) > V ar(LSL(B))

From Xue et al. (2023), we have that LSSL can be re-written as

∇WLSSL(W) = −Tr(2M̃WW⊤) + Tr(MW⊤WMW⊤W)

where

M =
1

2m

2m∑
i=1

xix
⊤
i

with m being the number of augmentations, and M represents the covariance of the training data.
The matrix M̃ is defined as:

M̃ =
1

2

n∑
i=1

 1

m

∑
x∈A(xi)

x

 1

m

∑
x∈A(xi)

x⊤


where A(xi) denotes the set of augmentations for the sample xi.

As m → ∞, M = M̃ = 1
2

(
x1x

T
1 + x2x

T
2

)
.

Hence, ∇W (LSSL(B)) = −4WM + 4WMW⊤WM

Substituting W = I , we get ∇W (LSSL(B)) = −4M + 4M2

Case 1: Both examples from class 0

M =
1

2

(
x1x

⊤
1 + x2x

⊤
2

)
(34)

=
1

2

(
(µ0 + ϵN1

)(µ0 + ϵN1
)⊤ + (µ0 + ϵN2

)(µ0 + ϵN2
)⊤

)
(35)

=
1

2

(
µ0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

+ µ0µ
⊤
0 + µ0ϵ

⊤
N2

+ ϵN2µ
⊤
0 + ϵN2ϵ

⊤
N2

)
(36)

= µ0µ
⊤
0 +

1

2

(
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

+ µ0ϵ
⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
(37)

M2 =
(
µ0µ

⊤
0 +

1

2

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1
(38)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

+ µ0ϵ
⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

))2
(39)

= µ0µ
⊤
0 µ0µ

⊤
0

+ µ0µ
⊤
0 · 1

2

(
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

)
+ µ0µ

⊤
0 · 1

2

(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
+

1

2

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

)
µ0µ

⊤
0

+
1

2

(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
µ0µ

⊤
0

+
1

4

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

)2
+

1

4

(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)2
+

1

4

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

) (
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
+

1

4

(
µ0ϵ

⊤
N2

+ ϵN2µ
⊤
0 + ϵN2ϵ

⊤
N2

) (
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

)
(40)

E[−4M + 4MM] = −4µ0µ
⊤
0 + 4µ0µ

⊤
0 µ0µ

⊤
0 (41)

Case 2: Both examples from class 1

By symmetry,

M = µ1µ
⊤
1 +

1

2

(
µ1ϵ

⊤
N1

+ ϵN1
µ⊤
1 + ϵN1

ϵ⊤N1

+ µ1ϵ
⊤
N2

+ ϵN2µ
⊤
1 + ϵN2ϵ

⊤
N2

)
(42)

E[−4M + 4MM] = −4µ1µ
⊤
1 + 4µ1µ

⊤
1 µ1µ

⊤
1 (43)

Case 3: 1 example from each class

M =
1

2

(
x1x

⊤
1 + x2x

⊤
2

)
(44)

=
1

2

(
(µ0 + ϵN1

)(µ0 + ϵN1
)⊤ + (µ1 + ϵN2

)(µ1 + ϵN2
)⊤

)
(45)

=
1

2

(
µ0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

+ µ1µ
⊤
1 + µ1ϵ

⊤
N2

+ ϵN2µ
⊤
1 + ϵN2ϵ

⊤
N2

)
(46)

E[−4M + 4MM] = −2µ0µ
⊤
0 − 2µ1µ

⊤
1 + 2µ0µ

⊤
0 µ0µ

⊤
0 + 2µ1µ

⊤
1 µ1µ

⊤
1 (47)

Putting it together

Hence.

E[−4M + 4M2] =
1

4

(
− 4µ0µ

⊤
0 + 4µ0µ

⊤
0 µ0µ

⊤
0

)
+

1

4

(
− 4µ1µ

⊤
1 + 4µ1µ

⊤
1 µ1µ

⊤
1

)
20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

+
1

2

(
− 2µ0µ

⊤
0 − 2µ1µ

⊤
1 + 2µ0µ

⊤
0 µ0µ

⊤
0 + 2µ1µ

⊤
1 µ1µ

⊤
1

)
(48)

= −2µ0µ
⊤
0 − 2µ1µ

⊤
1 + 2µ0µ

⊤
0 µ0µ

⊤
0 + 2µ1µ

⊤
1 µ1µ

⊤
1 (49)

Comparing each term, element-wise

Comparing Term 1

∇W (LSL(B))− E[∇W (LSL(B))] = µ0µ
⊤
0 + ϵN1

µ⊤
0 + ϵN2

µ⊤
0 − e0µ

⊤
0 + µ0ϵ

⊤
N1

+ µ0ϵ
⊤
N2

+ ϵN1
ϵ⊤N1

+ ϵN2
ϵ⊤N2

− e0ϵ
⊤
N1

− e0ϵ
⊤
N2

− µ1µ
⊤
1 + e1µ

⊤
1 (50)

∇W (LSSL(B))− E[∇W (LSSL(B))] = −2µ0µ
⊤
0 − 2µ0ϵ

⊤
N1

− 2ϵN1µ
⊤
0 − 2ϵN1ϵ

⊤
N1

− 2µ0ϵ
⊤
N2

− 2ϵN2
µ⊤
0 − 2ϵN2

ϵ⊤N2

= 2µ0µ
⊤
0 µ0µ

⊤
0

+ µ0µ
⊤
0 · 2

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

)
+ µ0µ

⊤
0 · 2

(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
+ 2

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

)
µ0µ

⊤
0

+ 2
(
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
µ0µ

⊤
0

+ 1
(
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

)2
+ 1

(
µ0ϵ

⊤
N2

+ ϵN2µ
⊤
0 + ϵN2ϵ

⊤
N2

)2
+ 1

(
µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

) (
µ0ϵ

⊤
N2

+ ϵN2
µ⊤
0 + ϵN2

ϵ⊤N2

)
+ 1

(
µ0ϵ

⊤
N2

+ ϵN2µ
⊤
0 + ϵN2ϵ

⊤
N2

) (
µ0ϵ

⊤
N1

+ ϵN1µ
⊤
0 + ϵN1ϵ

⊤
N1

)
(51)

Recall that µ0 = e0.

Use ϵ1 and ϵ2 to denote the value of an abtrirary element of ϵN1
and ϵN2

, respectively.

Comparing the expectation of the square of element (0, 0) of ∇W (L(B))− E[∇W (L(B))]:

For SL: E[(1 + ϵ1 + ϵ2 − 1 + ϵ1 + ϵ2 + ϵ21 + ϵ22 − ϵ1 − ϵ2 − 1 + 1)2] = E[(ϵ1 + ϵ2 + ϵ21 + ϵ22)] =

From Eq. 51, it is easy to see that the expectation of the square of element (0, 0) is far larger due to
far more ϵ1, ϵ2, ϵ21 and ϵ22 terms.

Similar argument holds for diagonal terms that are not (0, 0), due to the greater number of terms that
only have ϵ21 and ϵ22 (all terms having only ϵ1 and ϵ2 are only present in element (0, 0) since they are
always multiplied with e0).

An analogous argument holds for off-diagonal elements. Here, the contribution is only due to terms
containing only ϵN1

and/or ϵN2
.

Comparing Term 2

By symmetry, it must be that the same holds for term 2.

Comparing Term 3

∇W (LSL(B))− E[∇W (LSL(B))] = ϵN1
µ⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
ϵ⊤N1

− e0ϵ
⊤
N1

+ ϵN2
µ⊤
1 + µ1ϵ

⊤
N2

+ ϵN2
ϵ⊤N2

− e1ϵ
⊤
N2

(52)

∇W (LSSL(B))− E[∇W (LSSL(B))] = −2
(
µ0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

+ µ1µ
⊤
1 + µ1ϵ

⊤
N2

+ ϵN2
µ⊤
1 + ϵN2

ϵ⊤N2

)
+ 4

(
µ0µ

⊤
0 + µ0ϵ

⊤
N1

+ ϵN1
µ⊤
0 + ϵN1

ϵ⊤N1

+ µ1µ
⊤
1 + µ1ϵ

⊤
N2

+ ϵN2µ
⊤
1 + ϵN2ϵ

⊤
N2

)2
(53)

Again, from analogous arugments from Term 1, we can see that the expression for LSSL has larger
expected square element-wise than that of LSL.

Conclusion

Since, for each term (corresponding to the 3 cases of mini-batch), we have that

E[∥∇W (LSSL(B))− E[∇W (LSSL(B))]∥2] > E[∥∇W (LSL(B))− E[∇W (LSL(B))]∥2], (54)

Thus, we can conclude
Var(∇WLSL(B)) < Var(∇WLSSL(B)).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D PROPOSITION D.1: GENERALIZED ANALYSIS OF VARIANCE OF
TRAJECTORY UNDER SYNCHRONOUS PARALLEL SGD

Proposition D.1. Let D = {(xi, yi)}Ni=1 be a dataset with N examples, where xi is the i-th input
and yi ∈ {1, 2, . . . ,K} is its corresponding class label from K classes. We assume the data xi is
generated from a distribution where each example from class k can be modeled as a d-dimensional
(k ≪ d) 1-hot vector ek plus some noise ϵi, i.e. xi = eyi

+ ϵi, where µyi
is the vector corresponding

to class yi and ϵi ∼ N (0, I). Moreover, we consider a linear model fθ(x) = θx where θ ∈ RK×d.

The supervised loss function LSL is defined as a loss function that depends solely on each individual
example:

LSL(B) =
1

|B|
∑
i∈B

ℓSL(fθ(xi), yi), (55)

where ℓSL is an arbitrary supervised loss function (e.g., MSE, Cross-Entropy, etc.) and B is a
mini-batch of examples.

For SSL, we consider the spectral contrastive loss:

LSSL = −2Ex1,x2∼A(xi)
xi∼B

[
f(x1)

T f(x2)
]
+ Exi,xj∼A(B)

[
f(xi)

T f(xj)
]2

(56)

where A denotes the augmentation that are modeled as: A(xi) ∼ xi + ϵaug, where ϵaug ∼ N (0, I).

We analyze this setting under synchronous parallel SGD, where the number of mini-batches equals
the number of parallel threads. Let P represent a partition of the dataset D into a set of disjoint
mini-batches, each of size |B|. The synchronous parallel SGD update for an arbitrary loss function
L(B) on mini-batch B at time step t is θt+1 := θt − α

∑
B∈P ∇θtL(B).

Let θ be the initial parameters and θSL, θSSL be the model parameters after a single epoch of
training with synchronous parallel using the supervised loss LSL and the self-supervised loss LSSL,
respectively, with a learning rate α. Then, for sufficiently large batch size |B|,

VarP (θSL) < VarP (θSSL), (57)

where VarP represents the variance over different partitions P , and for a vector random variable X ,
we define the scalar variance as Var(X) = E[∥X − E[X]∥2]

Proof. For synchronous parallel SGD, we have:

θt+1 = θt − α
∑
B∈P

∇θtL(B),

where L is an arbitrary loss function.

Variance of Trajectory in Supervised Learning

Consider two arbitrary partitions P1 and P2. Let θ represent the initial parameters, and let θSL1

and θSL2
represent the parameters after a single epoch of synchronous parallel SGD for supervised

learning using LSL on the partitions P1 and P2, respectively.

We can express the updates as:

θSL1
= θ + α

∑
B∈P1

∇θLSL(B) (58)

= θ + α
∑
B∈P1

∑
(xi,yi)∈B

1

|B|
∇θLSL({xi, yi}) (due to independence of loss for each example)

(59)

= θ + α
∑

(xi,yi)∈D

1

|B|
∇θLSL({xi, yi}) (60)

= θ + α
∑
B∈P2

∑
(xi,yi)∈B

1

|B|
∇θLSL({xi, yi}) (61)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

= θSL2
. (62)

Since θSL1 = θSL2 for arbitrary partitions P1 and P2, we can conclude that:

VarP (θSL) = 0.

Variance of Trajectory in Self-Supervised Learning

Next, we need to show that VarP (θSSL) > 0. Let θ represent the initial parameters, and let θSSL1

and θSSL2
represent the parameters after a single epoch of synchronous parallel SGD using the

self-supervised loss LSSL with partitions P1 and P2, respectively.

To show VarP (θSSL) > 0, it suffices to show that there exist partitions P1 and P2 such that
θSSL1 ̸= θSSL2 .

Consider the following two partitions:

• Let P1 be a partition where each mini-batch is constructed by iterating over classes, until
|B| examples are selected, and picking a single example from the remaining examples in
each class

• Let P2 be a partition where each mini-batch is constructed by picking examples from the
remaining examples each class until |B| examples

It is easy to see, from prior work in hard negative mining for contrastive SSL such as Robinson
et al. (2021), that P2 will have a different gradient across all batches from P1 as P2 only contrasts
examples within the same class, whereas P1 contrasts examples across different classes. Hence,
θSSL1 ̸= θSSL2 .

We will now prove this for our setting, considering two random partitions P1 and P2.

Xue et al. (2023) shows the LSSL can be rewritten as LSSL = −Tr(2MθθT) + Tr(M ′θT θM ′θT θ)

where M = 1
m|B|

∑m|B|
i=1 xix

T
i , M ′ = 1

|B|
∑|B|

i=1

(
1
m

∑
x∈A(xi)

x
)(

1
m

∑
x∈A(xi)

x
)T

where m is
the number of augmentations sampled.

From Xue et al. (2023), we also have ∇θ(LSSL) = −4θM + 4θM ′θT θM ′

With m i.e. number of augmentations large enough, M = M ′.

We now refer to M for P1 as M1 and M for P2 as M2.

From the construction of P1, we have M1 = I and from the construction of P2, we have [M2]i,j =
δi,kδj,k where δi,j = 1[i = j] for batch where examples from class k are selected.

From this, we can see that, the ∇θ(LSSL) is not equal for P1 and P2.

Hence, we can conclude that θSSL1 ̸= θSSL2

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

E [EXAMPLES FROM MKDTAND KRR-ST (LEE ET AL., 2023)]

[Here, we show examples from CIFAR10, CIFAR100 and TinyImageNet for the data distilled using
MKDTand KRR-ST (Lee et al., 2023).]

(a) [MKDT] (b) [KRR-ST]

Figure 2: [Examples of Distilled Images for CIFAR10]

(a) [MKDT] (b) [KRR-ST]

Figure 3: [Examples of Distilled Images for CIFAR100]

(a) [MKDT] (b) [KRR-ST]

Figure 4: [Examples of Distilled Images for TinyImageNet]

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

F SOCIETAL IMPACT

Our work democratizes the development of models trained with SSL pre-training, by reducing the
volume of data needed to train such models, and thus the costs of training these models. However,
the risk with dataset distillation is augmenting the biases of the original dataset.

26

	Introduction
	Related Work
	Dataset Distillation
	Data-efficient Learning via Subset Selection
	Knowledge Distillation

	Problem Formulation
	Matching Training Trajectories for SSL
	Challenges of Matching SSL Training Trajectories
	Matching Knowledge Distillation Trajectories

	Experiments
	Conclusion
	Experiment Details
	Additional Details for Experiments in Tables 1, 2, 3, 4, 5, 6, 7
	Additional Details on Experiments in Fig. 1

	Additional Comparison of Random Subset SSL Pre-Training to KRR-ST
	Proof for Theorem 4.1
	Proposition D.1: Generalized analysis of variance of trajectory under synchronous parallel SGD
	[Examples from MKDTand KRR-ST lee2023selfsupervised]
	Societal Impact

