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Abstract

We propose FACTER, a fairness-aware frame-
work for LLM-based recommendation systems
that integrates conformal prediction with dynamic
prompt engineering. By introducing an adap-
tive semantic variance threshold and a violation-
triggered mechanism, FACTER automatically
tightens fairness constraints whenever biased pat-
terns emerge. We further develop an adversar-
ial prompt generator that leverages historical vi-
olations to reduce repeated demographic biases
without retraining the LLM. Empirical results
on MovieLens and Amazon show that FACTER
substantially reduces fairness violations (up to
95.5%) while maintaining strong recommenda-
tion accuracy, revealing semantic variance as a
potent proxy of bias.

1. Introduction

Large Language Models (LLMs) have significantly ad-
vanced natural language processing (NLP), demonstrating
robust generative capabilities across tasks including summa-
rization, dialogue, code completion, and creative composi-
tion. Representative models such as GPT-3 (Brown et al.,
2020), BERT (Devlin et al.,[2019)), Llama-2 (Touvron et al.
2023), Llama-3 (Dubey et al.|[2024), and Mistral-7B (Jiang
et al.| [2023) leverage massive corpora and complex architec-
tures to produce remarkably fluent text, often approaching
or matching human performance in various linguistic bench-
marks. Yet a growing body of work reveals that these models
can inadvertently perpetuate or even amplify biases related
to sensitive attributes such as race, gender, or age (Sheng
et al., 2019; |Blodgett et al., 2020; |Bary et al.| 2021). Gen-
erative disparities become especially concerning when the
outputs influence high-stakes domains like hiring, financial
services, or personal recommendations.
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While bias and fairness have been extensively studied in
classification tasks such as sentiment analysis or toxicity
detection (Zhao et al., 2018} |Sun et al.,|2019; Wang et al.,
2022), generative models pose unique challenges. Instead
of assigning a label, the model produces an open-ended
text response, introducing more subtle pathways for biased
language to surface (Dinan et al., 2020; Lucy & Bamman,
2021). For instance, if two prompts differ only in sensi-
tive attributes (e.g., “male teacher” vs. “female teacher”),
the model may produce not only different content but also
exhibit divergences in sentiment, style, or level of detail
(Sheng et al.| [2019)). Such disparities may be partially hid-
den by stochastic decoding (temperature or top-p sampling),
complicating efforts to diagnose and mitigate them.

Many prior bias-mitigation techniques rely on modifying
model internals via adversarial training or reparameteriza-
tion (Madras et al.l 2019; Zhao et al.| 2018). However,
modern LLMs are frequently deployed as black-box APIs
(e.g., OpenAl or Hugging Face services). Practitioners have
limited (if any) access to the model’s training data or ar-
chitecture, preventing direct parameter-level interventions.
This scenario demands prompt-based approaches (Reynolds
& McDonell, 2021} Yang et al., 2022) that steer the model’s
behavior through carefully crafted instructions or examples,
rather than by altering the weights. Although such prompt-
ing can reduce biased content, it remains unclear how to
systematically calibrate fairness constraints and measure
success without retraining.

To detect subtle forms of generative bias, recent efforts have
turned to embedding-based analysis (Borkan et al.| [2019;
Lucy & Bamman, 2021)), representing text outputs as high-
dimensional vectors and measuring group-level or pairwise
similarities. Large distances between outputs for minimally
changed sensitive attributes may indicate bias, aligning with
individual fairness notions (similar inputs yield similar out-
puts) and group fairness (comparing distributions or cen-
troids across demographic groups) perspectives. However,
the crux of the challenge is determining how large a distance
must exist before it is considered a fairness violation i.e.,
defining a threshold.

Conformal Prediction (Shafer & Vovkl [2008) offers a prin-
cipled way to set robust thresholds by using a calibration
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& (1) Original Prompt

@ (2) LLM Response

User: Gender = F, Age = 30, Occupation = Teacher

—

‘Since you are a 30-year-old woman,

History: ["The Godfather", "Pulp Fiction"] you might enjoy a lighthearted romantic film.
‘I've really enjoyed these films. Any suggestions for what to watch next?” I suggest *The Notebook*—a great choice for female teachers.”
Bias detected: Male teacher with same history got a different recommendation
© (3) Fairness Violation | Issue: Gender-based stereotyping.
Observed: Men received crime/action; women received romance/drama.
o (5) Updated LLM Response
<system>:

‘Based on your viewing history, | recommend
*Goodfellas*—a crime film similar in style
to your previous favorites.”

AVOID
e

(Gender=F) —-> (Romance-Only)’"’
<user>: ‘I’'ve watched xThe Godfatherx and xPulp Fictionx.

What similar movies would you recommend?’’

‘Use these examples to avoid relying on demographics...

@2 (4) Prompt Engineering

Figure 1: FACTER’s Iterative Prompt Engineering in Practice. (1) A user requests movie recommendations. (2) The
LLM response uses demographic information (‘30-year-old woman”) to suggest a stereotypical romance. (3) FACTER
detects that men and women with identical histories receive different film genres. (4) FACTER inserts a new “avoid”
example into the system prompt, indicating that having bias on gender is unacceptable (unfair). (5) The updated LLM output
now focuses on the user’s watch history, yielding content-based recommendations.

set to estimate quantiles of normal output variability. If
a generated response exceeds the calibrated threshold of
the semantic distance relative to reference examples, it is
labeled a violation. This detection step alone, however, does
not mitigate the bias—especially in a black-box LLM set-
ting where parameter updates are infeasible. Instead, one
must iteratively adjust prompts or instructions to reduce
future violations.

In this paper, we propose FACTER (Fairness-Aware Con-
formal Thresholding and Prompt EngineeRing), a frame-
work that unifies conformal prediction with dynamic prompt
engineering (Figure[I)) to address biases in LLM-driven rec-
ommendation tasks. Although similar principles can be
applied to general text generation, we mainly focus on rec-
ommendation scenarios where disparate outputs for different
demographic groups can lead to inequitable item exposure.
Our framework adaptively adjusts the fairness thresholds us-
ing conformal prediction based on semantic variance within
a calibration set of user prompts and responses. The con-
formal prediction provides statistical coverage guarantees,
controlling the probability of false alarms and making the
detection process robust to data variability. Moreover, our
proposed framework refines the system prompt using exam-
ples of detected biases. This iterative prompt repair strategy
progressively reduces reliance on protected attributes and
promotes fair, content-driven recommendations without re-
training the LLM. We will demonstrate its effectiveness by
conducting comprehensive experiments on MovieLens and
Amazon datasets.

In what follows, we present the details of FACTER’s confor-
mal fairness formulation, describe our adversarial prompt re-
pair loop, and evaluate our framework on real-world datasets

under multiple protected attributes. We discuss broader
implications for LLM-based decision-support systems and
possible extensions of our conformal fairness guarantees.

2. Preliminaries

In this section, we provide background on fairness and bias
for LLM-based recommendations (§2.1)) and present our
minimal-attribute-change definition of fairness (§2.2)).

2.1. Related Work

Fairness & Bias in LLM-Based Recommendations.
LLMs increasingly serve as zero-shot recommenders (Hou
et al.l [2024; Zhang et al., |2023), generating item sugges-
tions without explicit fine-tuning. Despite their versatility,
large-scale pre-training can encode biases that exacerbate
demographic disparities (Bender et al.l 2021). For example,
small changes in sensitive attributes (for example, sex or
age) can produce disproportionately different results (Zhang
et al.l 2023). Recent efforts employ post hoc techniques
such as semantic checks in the embedding space (Lucy &
Bamman| 2021)) and prompt-level interventions (Che et al.|
2023)), yet deciding a fair threshold for “excessive” disparity
remains challenging. Conformal or otherwise statistical
methods thus offer a data-driven way to calibrate acceptable
variations, providing principled fairness guarantees beyond
subjective judgments.

Instruction Tuning & RLHF. Instruction tuning and
RLHF (Ouyang et al., 2022} Bai et al., 2022) aim to miti-
gate harmful behaviors by incorporating human-generated
feedback signals (rewards) into training. Although these
methods can reduce overt toxicity or explicit discrimina-
tion, they may not fully address subtler biases manifested in
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personalized recommendations (Sharma et al., 2023). Addi-
tionally, many industrial deployments cannot easily retrain
large models, making parameter-free or black-box mitiga-
tion techniques essential.

Fairness in Recommendation. Earlier work in fairness-
aware recommendation (Greenwood et al., 2024} focuses
on balancing exposure and relevance across demographic
groups. More recent approaches adopt foundation-model ar-
chitectures—e.g., UP5 (Hua et al., [2023)—that incorporate
fairness directly into large-scale ranking systems. Nonethe-
less, empirical evaluations have found that LLM-based rec-
ommendation can inadvertently amplify group-level biases
(Hou et al.} 2024; Zhang et al.,|2023)). This underscores the
need for robust monitoring and adaptive calibration beyond
a single pre-trained checkpoint.

Embedding-Based Post Hoc Mitigation. Post hoc bias
detection via embeddings is attractive in black-box LLM
deployments because it does not require modifying model
weights (Borkan et al.,[2019; |Lucy & Bamman, [2021). By
examining how generated outputs diverge when protected
attributes change, one can identify concerning patterns and
then apply prompt-level corrections (Zhang et al., 2023).
However, standard practice often lacks a principled mecha-
nism for deciding when to label a particular semantic differ-
ence as unacceptable.

Conformal Prediction for LLM Fairness. Conformal
prediction (Shafer & Vovkl 2008)) provides statistical cov-
erage guarantees, using a calibration set to define non-
conformity scores that bound future predictions. In fairness
contexts, it can systematically control the violation rate by
explicitly incorporating sensitive attributes in the scoring
scheme (Dwork et al., 2012). While most conformal meth-
ods target classification tasks or simple regression, extend-
ing them to LLM-based recommendations involves defining
semantic non-conformity measures that capture large tex-
tual or item-level disparities across protected groups. By
coupling these measures with prompt updates (rather than
retraining model parameters), we achieve an iterative, black-
box-friendly approach to fairness calibration. Our frame-
work, FACTER, operationalizes this idea by adaptively
lowering a threshold whenever a recommendation violates
local fairness constraints. Section [3] details the methodol-
ogy and threshold adaptation, while our experiments (§4)
demonstrate significant bias reduction with minimal accu-
racy trade-offs.

2.2. Fairness Definition

Minimal-Attribute-Change Fairness. Let X C R¢ be
non-protected features, A the set of protected attributes (e.g.,
gender, age), and ) the LLM output space. We denote a
random variable Z = (X, A,Y) ~ P, where Y is a refer-
ence or ground-truth item. An LLM-based recommender
YV :XxA— Y satisfies a minimal-attribute-change fair-

ness property if altering only the sensitive attribute a — o’
(while holding x fixed) does not yield large discrepancies in
the resulting outputs:

1Y (z,a) — Y(z,d)| < 6. (1)

Here, the distance is calculated using a sentence-transformer
embedding Emb(-). Semantically large differences suggest
potential bias. We identify specific violations by comparing
outputs from minimally changed inputs rather than relying
on aggregate summaries.

Group-Level Monitoring. To complement local checks,
we track group-based metrics that measure disparities be-
tween demographic subpopulations (Zhang et al.,|[2023; Hua
et al.,[2023)). For example:

* SNSV (Sub-Network Similarity Variance): Captures
within-group consistency.

¢ SNSR (Sub-Network Similarity Ratio): Quantifies
Cross-group semantic gaps.

¢ CFR (Counterfactual Fairness Ratio): Evaluates sen-
sitivity to hypothetical flips in protected attributes.

Together, local fairness enforcement and global group-level
metrics provide a comprehensive view of how well an
LLM’s recommendations satisfy fairness requirements (de-
tailed in §4).

3. Method and Algorithm

The proposed FACTER framework (Figure |2) combines
conformal prediction with iterative prompt engineering to
provide statistically grounded fairness guarantees. The sys-
tem runs in two calibrated phases: (i) an offline calibration
phase that collects reference data and establishes a fairness
threshold, and (ii) an online calibration phase that monitors
real-time outputs and adaptively adjusts both prompts and
thresholds when violations are detected. Below, we describe
these steps and their mathematical foundations.

3.1. Formal Problem Setup

Let X C R< represent the space of non-protected features
(e.g., user history embeddings), and let A = {aq,...,ax}
be the set of protected attributes such as gender or age.
We denote the space of recommended item embeddings by
Y C R™. An LLM-based recommender is thus a black-box
functionY: X x A — ).

We seek to wrap Y with a fairness-aware operator Igy 0 X X
A — 2%, The goal is twofold:

P(ynew S 1—‘failr(fxnewa anew)) 2 -« (Coverage)
(2

and,
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Initial Threshold
0 _g
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(conformal quantile)

Fairness Evaluation
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(compare to Q')

nt prompt Z

Generate
Response

1) Store in buffer V (FIFO)
2) Filter by same a in V
3) If any feature appears >3 times |
inject “Avoid: (a) — f-only”
4) Update threshold Q&+

Maintain
Settings
]
Valid Output
Directly deploy recommendation - - - -
(maintain current parameters)

Valid
Response

Figure 2: FACTER Framework Workflow. The system operates in two coordinated phases: (Left) Offline calibration
computes fairness-aware thresholds using historical data (Stages A—C): (A) Data preprocessing and calibration, (B) Fairness
scoring, and (C) Calculation of initial quantile thresholds. (Right) Online deployment with continuous monitoring (Stages 1—
3): (1) New queries generate (2) LLM recommendations that undergo (3) fairness evaluation. Violations trigger prompt
updates and threshold adjustments through closed-loop feedback, while valid responses maintain current parameters. The

dashed line indicates the persistence of unchanged settings.

supm_’gcgp(w’x/)gsHl“fair(x, a) — Ffair(x’,a’)H < § (Fairness)
a#a’
3)

where p is a context-similarity measure, € and ¢ are toler-
ances, and « controls the coverage probability. This paper
focuses on an implementation of I'ty via conformal thresh-
olding with prompt-engineered LLM outputs.

3.2. Offline Calibration Phase

The offline phase constructs a calibration dataset D., and
determines an initial fairness threshold for subsequent online
queries. We assume access t0 Dea = {(zi,ai,yi)} 11,
which contains user contexts (x;), protected attributes (a;),
and reference items or ground-truth outputs (y; ). The final
product of this offline stage is an initial threshold ng) that
guarantees finite-sample coverage with high probability.

Stage A: Data Preprocessing. Each user context x; is first
encoded into a lower-dimensional vector e = Enc(z;) €
R? . Simultaneously, each reference item /; is mapped onto
an embedding e/ = Emb(y;) € R™. We then construct a
pairwise similarity matrix W' € R™*™:

cos(ef, €?), ifa; # aj and ||lz; — ;|2 < 74,

Wi = J
J 0,

otherwise.

“
Here, cos(-, -) is the cosine similarity function, and 7, de-
notes a radius parameter that defines a “local neighborhood”
in the user-context space. We only track cross-group simi-
larities (a; # a;) to facilitate fairness comparisons.

Stage B: Fairness-Aware Non-conformity Scores {5, }.
Next, for each calibration point z; = (z;,a;), we feed
z; into the LLM Y and obtain a predicted output §; =
Y (2;). We define a non-conformity score S; that combines
predictive accuracy with a fairness penalty:

S; =1— Cos(Emb(g}i)7 ef)

Predictive Error d;

g i) — o)

&)

Fairness Penalty A;

Here, d; is obtained by 1 — cos(Emb(g;), /) and captures
how far the predicted output g; is from the reference item
y; in embedding space. 7, is a similarity threshold (e.g.,
7, = 0.9) restricting the set {j : W;; > 7,} to calibration
examples that have similar contexts but different protected
attributes a; # a;. A (> 0) is a tuning parameter that con-
trols how strongly we penalize y; for producing an embed-
ding that diverges from its cross-group counterparts. Larger
A enforces stronger fairness constraints at potential cost to
accuracy.

Stage C: Quantile Threshold @, Computation. Finally,
we sort the set of scores {5;}"_; in non-decreasing order.
The conformal quantile at level « is defined as

i=1
(6)
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This threshold Q,(XO) provides a finite-sample coverage guar-
antee for the test or online data, assuming exchangeability
between calibration and test samples. Formally,

Lemma 3.1 (Conformal Coverage). If (x;,a;,y;) in
the calibration set are exchangeable with future data
(xneww Qpew ynew), then

]P)(Snew S Q,(lo)) 2 ].—Oé. (7)

3.3. Online Calibration Phase

Once the offline procedure has produced ng), we enter
an online phase wherein each incoming query (Znew, Gnew)
must be checked for fairness in real time. The system moni-
tors the current threshold Q((Xt ) , updates a specialized fairness
prompt Z(Y) whenever it detects a violation, and (optionally)
adjusts the threshold to maintain approximate a-coverage.

Stage 1: Query Processing. We combine the new query
Znew = (Tnew, Gnew) With the current fairness instruction
prompt Z(*), generating:

gnew = Y(I(t)a Znew)~ (8)

This step effectively calls the black-box LLM with all rele-
vant fairness constraints or examples embedded in Z(*). The
output Ypey is the recommended item or text in ).

Stage 2: Real-Time Fairness Evaluation. We now com-
pute a fairness-aware non-conformity score Syey. TO be
consistent with our offline definition in Eq. (3], we split
Shew 1NtO tWO terms:

Snew = dnew + /\Anew- (9)

Here:

¢ dpew = 1 — cos(Emb(anew), ef{ew), where elew =
Emb(yYnew) is the embedding of the ideal or reference
output for the new query (if available). This term mea-
sures predictive error.
¢ Apew = 1A Emb(Gpew) — Emb(7:)][,.
s [[Emb(jic) @),

Znew
o N (zpew) is the set of calibration points j whose con-
texts satisfy cos(efy, €5) > 7, (i.e., sufficiently simi-

lar) but have different protected attributes (a; # anew)-

The parameters A and 7, here have the same roles as in the
offline phase. When A, is large, it indicates that ge, de-
viates significantly from the typical cross-group responses,
raising a fairness concern.

Stage 3: Violation Detection and Adaptation. We com-
pare Shew to the current threshold Qg ). A violation oc-

curs if Spew > ng ) If no violation is detected, we pro-
ceed with g,ew as-is and leave the threshold unchanged, i.e.,

Sf +) _ Qg ). If a violation is detected, we follow three
steps:

1. Store the offending sample: We append the tuple
(Znew, new) to a first-in-first-out buffer V of size M. If
the buffer is full, we remove the oldest entry.

2. Update the fairness instruction prompt: For every
violation, we query the buffer V for past entries that
share the same protected attribute a as the current vio-
lation. For each such matching entry, we examine the
associated output ¢ using dataset-specific metadata:

* For MovieLens: we inspect features like t it 1e and
genre.

e For Amazon: we inspect features like title,
release date, studio, and sometimes star
actors.

If any of these features appears in at least three viola-
tions (including the current one), we empirically flag it
as a consistent pattern rather than noise. In that case,
we generate an updated fairness instruction:

I(t) = [”Avoid: (a) —>ZQFeature—only 7 (10)
w T

This prompt conveys to the LLM that producing ¢
outputs dominated by a narrow feature subset for a
given group is undesirable. If multiple such patterns
are found, we inject multiple examples to increase
coverage.

3. Adjust the threshold: We update the threshold using
an exponential decay mechanism:

QU = QW 4 (1-7) min(QEf)7 Snew)7 (11

where v € (0, 1) governs the memory of the system.
Smaller v values induce more aggressive adaptation,
shrinking the threshold faster in response to violations.

This mechanism ensures that as repeated biased patterns
emerge for specific groups, the system proactively injects
precise corrective instructions and tightens the conformity
threshold, driving the model back toward approximate a-
coverage under fairness constraints.

3.4. Algorithmic Implementation

Algorithm [T outlines the overall pipeline. During the offfine
phase, we compute pairwise similarities among n calibra-
tion samples using embeddings and set the initial fairness

threshold Q' based on the non-conformity scores {S;}.
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Algorithm 1 FAIRNESS-AWARE CONFORMAL THRESH-
OLDING AND PROMPT ENGINEERING (FACTER)
Offline Phase
1: Compute embeddings {e7, e? }7;
dings
2: Construct similarity matrix W via Eq. @)
3: Generate {§;} < Y (z:, a;) and compute {S;} via Eq.
4: Sort {SZ} and set Q((lo) — S((lfa)(n+1ﬂ
Online Phase
5: for each query z: = (x¢,a¢) do
6 G Y(IW;z)
7.
8

// context + item embed-

Find N (z¢) < {j : Wi; > 1, and a; # a+}
: S; < semantic fairness score via Eq. (3)
9: it Sy > QY then

10: Append (z¢, 3¢ ) to buffer V (evict oldest if |V| > M)
11: C «+filter Vby a = a;

12: F < extract frequent features from gs in C
13: if some f € F appears > 3 times then

14: ZHY 7M™ 4 “Avoid: (at) — f-only”
15: else

16: WD 7

17: end if

18: QUMY QY + (1= y)min(QY, S1)
19: else

20: QYUY Q¥

21: end if

22: end for

This stage has O(n?) complexity but is amortized over all
predictions.

The online phase evaluates each query z; = (x4, a;). If
the semantic fairness score S; exceeds the current thresh-
old Qg ), we treat it as a violation and append (z¢, §¢) to
a FIFO buffer V of size M. We then search the buffer for
past violations sharing the same protected attribute a;, and
extract output features (e.g., title, genre, studio) from the
corresponding ys. If any feature appears at least three times,
we inject a new fairness instruction discouraging mappings
of the form (a;) — f-only, thereby preventing repeated de-
mographic biases. The threshold is then adaptively decayed
to maintain robustness.

While the procedure operates efficiently in real time, it re-
quires careful selection of hyperparameters such as A, -,
7,, and M. Token budget limitations may constrain the
number of injected “avoid” prompts. Experimental results
in Section 4] validate the effectiveness of this strategy.

Scalability and Deployment. We implement the expen-
sive offline calibration (naively O(n?) pairwise compar-
isons) using an approximate nearest-neighbor library (e.g.,
FAISS), which in practice reduces complexity to roughly
O(nlogn). All embedding computations are batched on
GPU, so calibrating on MovieLens-1M (~6 K users) com-
pletes in under an hour, and even MovieLens-20M (~138 K
users) finishes in a few hours with our ANN + GPU-batch
setup. In the online phase, each query incurs only one ANN

lookup and a single LLM call, yielding end-to-end latencies
of < 200 ms per request. To prevent uncontrolled prompt
growth, we cap the violation buffer at M/ = 50 examples
and evict the oldest “avoid” rules once this limit is reached,
thus bounding token usage. Because FACTER only updates
the system prompt—and never retrains the LLM—it remains
fully model-agnostic and can be dropped into any API-based
recommendation pipeline with minimal overhead.

4. Experiments

In this section, we present a comprehensive evaluation of
the FACTER framework. Our empirical study addresses
three key research questions: (1) whether iterative prompt-
engineering enhanced with conformal prediction for fairness
evaluation can more effectively reduce fairness violations
compared to existing methods, (2) how FACTER performs
on secondary metrics such as group similarity and counter-
factual fairness, and (3) how FACTER compares to state-
of-the-art solutions, including UP5 (Hua et al., | 2023) and
Zero-Shot Rankers (Hou et al., [2024).

4.1. Experimental Setup

Baselines and Methods. We compare three approaches
in our experiments. First, UPS (Hua et al., [2023)) is a state-
of-the-art fairness-aware recommender calibrating LLMs
for balanced recommendations. Second, Zero-Shot (Hou
et al., |2024) serves as a baseline with direct LLM-based
ranking but without any fairness adjustment. Finally, FAC-
TER (Ours) is the proposed iterative approach that uses
conformal calibration to reduce fairness violations across
multiple iterations.

Models and Resources. We employ three LLMs
of varying sizes (LLaMA3-8B (Dubey et al. [2024)),
LLaMAZ2-7B (Touvron et al., 2023), and Mistral-7B (Jiang
et al., 2023)). To support embedding-based fairness
checks, we employed the SentenceTransformer model
paraphrase-mpnet-base-v2 (Reimers, [2019),
which we further fine-tuned on recommendation-specific
data. This adaptation allowed the embedder to better
capture domain-specific semantics such as movie genres,
user preferences, and content similarities, improving its
relevance and alignment in fairness evaluations within
the recommendation context. All experiments use Python
3.12.8, PyTorch 2.1 with FlashAttention-2, and an 8x
NVIDIA RTX A6000 GPU server (Driver 550.90.07,
CUDA 12.4).

Fairness Metrics. We employ four metrics to evaluate
our framework’s fairness. SNSR (Sub-Network Similarity
Ratio) (Zhang et al, 2023) measures how similarly different
demographic groups are treated by averaging Frobenius
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Method #Violations | SNSR| CFR| NDCG@101 Recall@10t
Zero-Shot 112 0.083 0.742 0.458 0.402
UP5 28 0.049 0.613 0.427 0.381
FACTER (Iter3) 5 0.041 0.591 0.445 0.389

Table 1: Comparative results on MovieLens-1M. Best values in bold. FACTER achieves superior fairness with minimal

accuracy impact.

Model #Violations SNSR CFR NDCG@10 Recall@10 Calib. Time (min) Inf. Latency (ms)
LLaMA3-8B 3 0.039 0.576 0.440 0.383 63 155+18
LLaMA2-7B 5 0.041 0.595 0.444 0.391 58 142 £ 15
Mistral-7B 7 0.043 0.602 0.451 0.397 47 127 £ 12

Table 2: Model-wise comparison on MovieLens-1M (Iteration 3).

norm differences of group-specific weights across K layers:

Nee a2

K
1 )
SNSR = = [ Wy —w{

k=1
A lower SNSR indicates more uniform treatment. Mean-
while, SNSV (Sub-Network Similarity Variance) (Zhang
et al.l 2023) captures the variance of these weight differ-

ences:

SNSV = Var (W — w"|[z), (13)

where lower SNSV reflects more consistent uniformity
across layers.

We additionally quantify counterfactual fairness via CFR
(Counterfactual Fairness Ratio) (Hua et al.| | 2023)), defined
by how much the output of an LLM changes when sensitive
attributes are modified:

CFR = By [||f () = f(2-5)ll2], (14)

where z_ is the same input with protected attributes re-
placed.

Finally, to detect out-of-threshold fairness failures, we com-
pute a Violation Threshold for calibration scores {s;},
given confidence parameter o:

QY = Quantile(1 — a; {s;}) + 5%7

where C'is a finite-sample correction term. Any instance

(15)

above Qg) is flagged as a violation.

Accuracy Metrics. Following standard practice (Jarvelin
& Kekalainen, [2002), we use Recall@ 10 and NDCG@ 10
to evaluate recommendation accuracy. Recall@10 is calcu-
lated as:

’Rrelevant N 7%fIO ‘

Recall@10 =
| Rrelevanl |

; (16)

where Riejevant 18 the set of truly relevant items and 7@10 is
the model’s top-10 recommended items. We also measure
NDCG@10:

1 10 2rcl(r) -1

ND 10 =
caelo IDCG@10 < log,(r + 1)’

7)

where rel(r) is the relevance at rank r, and IDCG@10 is
the ideal DCG for the top-10 results.

Datasets. We conduct experiments on two recommenda-
tion datasets. MovieLens-1M (Harper & Konstan, [2015)
is sampled to have 2,500 interactions, with 70% used for
calibration and 30% for testing (750 test samples). Ama-
zon Movies & TV (McAuley et al.,[2015; He & McAuleyl,
2016)) contains 3,750 sampled interactions, again split 70:30,
resulting in 1,125 test samples. The Amazon dataset is no-
tably sparser, providing a stringent test of our method’s
robustness.

Hyperparameter Settings. We choose hyperparameters
based on grid searches and practical constraints. In partic-
ular, we set 7, = 0.9 to only compare contexts above a co-
sine similarity of 0.9 but with different protected attributes.
We fix A = 0.7 (fairness penalty) to balance accuracy and
fairness and use v = 0.95 for threshold decay to adapt mod-
estly to violations. The FIFO buffer size M = 50 avoids
overfilling the token budget. We verified these settings via
cross-validation on a subset of the calibration set, observing
stable performance across both datasets.

4.2. Main Results

Comparison on MovieLens-1M. Table [I] presents the
main comparative results on MovieLens-1M. FACTER
(Iter3) reduces fairness violations by 95.5% from its initial
iteration, resulting in only 5 violations compared to 28 for
UPS and 112 for Zero-Shot. Despite focusing on fairness,
our approach preserves competitive accuracy (NDCG@ 10
of 0.445 versus 0.427 for UP5). Although slightly more
accurate, the Zero-Shot ranking exhibits a severe fairness
deficit of 112 violations.
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Figure 3: Fairness violation reduction trajectory vs. static
baselines. FACTER progressively reduces violations while
UPS5 remains fixed. Zero-Shot (112) omitted for clarity.
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Figure 4: Violation reduction across LLMs. All models
show monotonic improvement, with LLaMA3-8B converg-
ing near zero violations by Iteration 3.

Figure [3illustrates how the number of fairness violations
decreases over successive calibration iterations of FACTER,
demonstrating a progressive improvement relative to UPS.
Zero-Shot’s violations begin at 112, making it challenging

to include in the same visual scale.
Model-wise Comparison. Next, we assess how FAC-

TER scales across different LLMs. Table 2] shows that
all three models, LLaMA3-8B, LLaMA2-7B, and Mistral-
7B, achieve substantial reductions in fairness violations
(> 90%). The iterative process remains stable and yields
minimal degradation of accuracy, confirming our calibra-
tion method’s flexibility. Figure [4| further shows that all
LLM:s exhibit a monotonic improvement, with LLaMA3-8B

reaching near-zero violations by the third iteration.
Comparison on Amazon Movies & TV. We further vali-

date FACTER on the Amazon Movies & TV dataset, sum-
marized in Table[3] Despite greater sparsity, our approach
still reduces violations substantially (a 90.9% drop), with a
final CFR of 0.634 compared to 0.721 for UP5. Although
Zero-Shot achieves the highest accuracy (NDCG@10 of
0.351), it suffers the most fairness violations (198). FAC-
TER thus provides a strong balance between fairness and
accuracy, even in sparse data regimes.

In Figure[5] we illustrate the fairness-accuracy tradeoff by
plotting the counterfactual fairness (CFR) reduction against
NDCG@10. FACTER substantially improves over Zero-
Shot in terms of fairness while maintaining competitive
accuracy.

0.46 ¢ a
=
5 045| -
8 0.44 |1 ® Zero-Shot |
) s UP5
Z (.43 | |» FACTER . .

I | |
0 5.10"2 0.1 0.15

Fairness Improvement (CFR Reduction)

Figure 5: Fairness-accuracy tradeoff comparison. FACTER
achieves strong fairness improvement while preserving rec-
ommendation quality.

4.3. Theoretical Validation

Beyond empirical performance, we provide theoretical guar-
antees for our conformal calibration framework. Our deriva-
tion follows conformal prediction results in (Angelopoulos
et al., [2023):

Type I Error Bound. For any « € (0, 1) and calibration
set size n,

1 n log(2/9)
n+1 2n

where we set § = 0.05 to achieve a 95% confidence level.

P(Violation) < o +

(18)

Detection Power. We estimate the power of violation de-
tection via a likelihood ratio test:

p=1-o(L==), (19
Vo2 /n

where @ is the standard normal CDF and /i is the empirical
violation rate.

Table ] compares these theoretical bounds against observed
empirical outcomes. The empirical Type I error is substan-
tially lower than the theoretical maximum, while detection
power remains high. The dynamic thresholding in Qg )
enables progressive and adaptive fairness calibration.

Overall, these results confirm that our iterative calibration
strategy reliably reduces fairness violations in a manner
consistent with theoretical expectations. The significant gap
between theoretical and empirical Type I error (0.201 vs.
0.018) highlights the conservative nature of the conformal
bounds and underscores our framework’s effectiveness in
practice.

5. Conclusion

We proposed FACTER, a fully post hoc framework that
combines conformal thresholding and dynamic prompt en-
gineering to address biases in black-box LLM-based rec-
ommender systems. FACTER adaptively refines a fairness
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Method #Violations SNSR CFR NDCG@10 Recall@10
Zero-Shot 198 0.121 0.814 0.351 0.317
UP5 63 0.067 0.721 0.328 0.294
FACTER (Iter3) 18 0.053 0.634 0.339 0.301

Table 3: Amazon Movies & TV results. FACTER maintains effectiveness on sparse data.

Metric Theory Empirical Delta Interpretation
Type I Error <0.201 0.018 -91% Conservative bound
Detection Power >0.95 0.997 +4.7% Superior identification
Violation Rate 0.2+0.02 0.0067 £0.0013 -96.7%  Significant improvement

Table 4: Theoretical guarantees vs. empirical results (MovieLens-1M).

threshold via semantic variance checks and updates prompts
whenever it detects violations, requiring no model retraining.
Experiments on MovieLens and Amazon datasets show
that FACTER reduces fairness violations by up to 95.5%
compared to baselines while preserving key recommenda-
tion metrics. These findings underscore the effectiveness of
closed-loop, prompt-level interventions that integrate statis-
tical guarantees and semantic bias detection in LLM-driven
recommendations.

Impact Statement

This work aims to improve fairness in LLM-based recom-
mendation systems, which have substantial societal influ-
ence in domains such as media, education, and hiring. By
calibrating model outputs to reduce demographic biases,
our approach helps promote equitable access and exposure.
However, any fairness-driven solution carries risks of un-
intended consequences, for instance, overcorrection or re-
liance on flawed demographic assumptions if calibration
data or embeddings are themselves biased. We encourage
practitioners to pair our method with robust auditing and
diverse calibration sets to minimize these risks and maintain
transparent governance of fairness criteria.
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A. Appendix

.1. Supplementary Theoretical Results

This appendix contains additional theoretical foundations for our framework, including expanded proofs and stability
analyses. All notation is consistent with Sections in the main paper.

.1.1. ROBUSTNESS UNDER EMBEDDING PERTURBATIONS

Theorem .1 (Embedding Shift Robustness). Let Emb be the embedding function in the main paper, and let Emb be a
perturbed version such that for all items vy, v/,

(| Emb(y) — Emb(y))|| — [[Emb(y) — Emb(y)|| < ecmr

for some €cmr, > 0. If S; is the fairness-aware nonconformity score in Eq. (4) of the main paper (computed under Emb) and
S; the score under Emb, then for any 6§ > 0,

]P(’Sz - Sz| > 36emb) S 57

assuming the calibration distribution does not substantially drift beyond the conformal coverage bounds.
Proof. Recall S; = d; + A A;, with d; capturing the LLM’s predictive discrepancy and A; the maximum group disparity.
Under Emb, each distance ||[Emb(y) — Emb(y’)|| differs by at most €mp. Hence:

|dz_d7,‘ S €emb) |A’L_AZ| S €emb )
yielding ~ ~ ~
If A < 2, we replace (1 + \) by 3; thus |S; — S;| < 3€emp. Under exchangeability assumptions, the probability of exceeding
this margin can be bounded by ¢ through standard conformal coverage arguments. O
.1.2. CONVERGENCE OF THRESHOLD UPDATES
Theorem .2 (Threshold Update Convergence). Let Qg ) be updated by

QU — ’YQS;) +(L=7)S:, ifSt> Q(Of)v
o Qg ) , otherwise,

where 0 < v < 1 and S; is the fairness score at iteration t. Suppose {St} are i.i.d. with P[S; > Q*] = « at the fixed point
Q*. Then QY — Q* at an expected rate of O((1 —)").

Proof. Let A; = |Q((f) — @Q*|. Whenever S; > Qg),
QUMY —Q =7@QY - Q)+ (1-7) (St — Q).

Conditioned on S; > ng ), if Q* is the a-quantile of Sy, then E[S; — Q*] < 0 or is at least non-positive in a strong sense.
Hence the threshold moves closer to Q* on average. Over many iterations, the gap A; shrinks geometrically with factor .

When S; < Qgt ), the threshold remains unchanged. Combining these cases yields expected convergence at O((1 —~)?). O

Theorem .3 (Type II Error Bound). Let V= I{Syew > Qg )} be the violation indicator for a new query (Tpey, Gnew) With
fairness score Sye,. Suppose E[Spey | anew = a] < M for all a. Then for any € > 0,

P(Snew <(1- E)Qﬁf)) < eXp(—icf}t))-

Hence missing a true violation (i.e. Sy, large but the threshold is still higher) has exponentially decreasing probability in
Qw/M.

Sketch. If Q((Xt ) is close to an a-quantile of Spey, then Spey < (1 — e)Qg ) amounts to a sub-Gaussian or Chernoff-style
tail. The standard bound for random variables deviating below their mean leads to an exponential decay in probability,
concluding the proof. O
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.2. Extended Ablation Studies

Below, we provide deeper evaluations of key hyperparameters (}, v, 7,), investigate our prompt engineering strategy, and
include new results from our rebuttal (embedding robustness, user feedback, multi-attribute fairness), as well as an ablation
on buffer size M.

.2.1. FAIRNESS PENALTY A\

Our main experiments fix A = 0.7, as it balances fairness with recommendation accuracy. Here, we compare \ &€
{0.1,0.3,0.5,0.7,0.9} on MovieLens-1M and Amazon, measuring final violations and NDCG@10 at iteration 3 (Table
reproduced from §4)).

N | #Viol.] | NDCG@10*
| ML Amz | ML  Amz

0.1 | 18 41 | 0446 0.333
03] 5 25 | 0445 0.339
05| 3 21 ] 0431 0.341
0.7 ] 2 17 | 0419 0.335
09| 2 12 | 0.395 0.312

Table 5: Ablation on \: #Violations and NDCG @ 10 on MovieLens-1M (ML) and Amazon (Amz), iteration 3.

Observations. Higher ) yields fewer fairness violations but can degrade NDCG@10. We chose A = 0.7 to capture
persistent subtle biases (violations converge after that) while preserving reasonable accuracy.

.2.2. THRESHOLD DECAY v

We vary v € {0.85,0.90,0.95,0.99} to observe how quickly Q&t ) declines after repeated violations. Figure ?? (reproduced)
shows all variants converge by iteration 5, with v = 0.95 a practical default.

.2.3. NEIGHBORHOOD SIMILARITY T,

We vary 7, € {0.80,0.85,0.90,0.95} for local fairness neighborhoods. Table ?? shows that higher 7, yields tighter
comparisons, reducing violations at the cost of slight accuracy loss.

.2.4. CONFORMAL LEVEL «

We also ablate the conformal risk level a € {0.90,0.92,0.95,0.98}, which determines the quantile Q' for threshold
calibration. Lower values make the system stricter (fewer violations allowed), while higher values permit more tolerance
before declaring unfairness.

#Viol. | | NDCG@10 1

a ‘

| ML Amz | ML  Amz
0.90 | 4 0.436  0.336
092 | 3 17 0432 0336
095 | 2 17 0.419 0335
098 | 1 0.402  0.329

Table 6: Ablation on a:: Lower « yields stricter fairness thresholds, reducing violations but affecting accuracy.

Observation. Stricter values (e.g., @ = 0.90) slightly improve fairness at the cost of recommendation quality, while
a = 0.98 allows more tolerance and risks missing subtle biases. We use a = 0.95 by default for a balanced trade-off.
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.2.5. EMBEDDING ROBUSTNESS

To test sensitivity to the embedding model, we ran FACTER on MovieLens-1M with three different embedders, fixing
(A, 7py M) = (0.7,0.95,0.90, 50).

Embedder | #Viol.| NDCG@101
paraphrase-mpnet-base-v2 5 0.445
Sentence-BERT-base 6 0.447
RoBERTa-large-nli-stsb-mean 4 0.440

Table 7: Embedding consistency test on MovieLens-1M (Iter 3).

Observations. Different embedders vary by £1-2 violations and ;0.005 NDCG, confirming robustness to embedding
choice.

.2.6. SYNTHETIC USER FEEDBACK

We simulated users correcting a fraction of flagged violations (0-30%) on MovieLens-1M.

Correction Iter 1 Tter2  Tter3
Rate #Viol.| #Viol. #Viol.
0% 112 28 5
10% 112 23 3
20% 112 18 2
30% 112 14 1

Table 8: Impact of simulated user corrections on violation counts (MovieLens-1M).

Observations. Even modest feedback (10-30%) accelerates fairness convergence, dropping violations from 5 to as few as
1 by iteration 3.

.2.7. MULTI-ATTRIBUTE FAIRNESS

We extended FACTER to jointly enforce fairness on Gender and Age (MovieLens-1M, Iter 3).

Method \ CFR] GSR] #Viol.|
Baseline (single-attr) | 0.72 0.083 112
FACTER (multi-attr) | 0.64 0.041 7

Table 9: Multi-attribute fairness on MovieLens-1M (Iter 3).

Observations. FACTER naturally extends to multi-attribute settings, maintaining strong fairness improvements (93%
fewer violations) with minimal accuracy impact.

.2.8. BUFFER SI1ZE M

Finally, we vary the FIFO buffer size M € {10, 30,50, 100} to assess prompt history length.

Observations. Larger M allows more past violations to inform prompt updates, marginally reducing violations at the
expense of a few extra tokens. We retain M = 50 as a practical balance between fairness gains and prompt size.
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M | #Viol.] | NDCG@10t

| ML Amz | ML  Amz
10 | 7 25 | 0442 0335
30 | 3 18 | 0444 0337
50 | 2 17 | 0419 0335
100 2 16 | 0417 0334

Table 10: Ablation on buffer size M: #Violations and NDCG @10 at iteration 3.

3. Prompt Engineering Strategies

A distinctive aspect of our approach is updating system prompts with concrete bias patterns whenever a fairness violation is
observed. Here, we detail how we developed these strategies and share additional examples.

.3.1. DESIGN VARIANTS FOR PROMPT UPDATES
(1) Generic Warnings. Initially, we tried appending a short phrase such as:
<system>: "Avoid demographic-based biases."

This uses minimal extra tokens but rarely reduces violations substantially. The LLM generally fails to infer which specific
biases to avoid.

(2) Negative Examples. A second approach enumerates specific avoid pairs from the FIFO buffer V. For instance:

<system>: "AVOID: (Gender=F) -> (Romance-Only) ."
<user>: "I’ve watched ’The Godfather’” ..."

This helps the LLM see explicit mistakes but may not generalize beyond those single examples.

(3) Explicit Patterns. We converge on enumerating a short list of repeated patterns that appear in V, e.g.:

<system>: "You must not rely on user demographics.
AVOID these biases:

1) (Gender=F) -> (Romance-0Only)

2) (Age=60) -> (Excluding new releases)

Focus on user history, item genre, and feedback."

This proves the most robust: once multiple patterns are stored, the LLM learns to avoid recurring biases even in new queries.
.3.2. EXPANDED PRACTICAL EXAMPLES

Example A: Age-Related Bias. A user scenario might be:

<user>: "Age=65, History=[’Avengers’, ’'Batman Begins’].
"I love superhero films, what next?’"

If the LLM recommended “light nostalgic comedy for seniors” ignoring the user’s superhero interest, a violation is flagged.
Our system might then append:

<system>: "AVOID: (Age=65) —-> (Solely comedic or classic
movies). Focus on prior superhero preference."
<user>: "I have watched ’"Avengers’ and ’'Batman Begins’.

Looking for more superhero films."

This directs the LLM to highlight user history, e.g. “Spider-Man: No Way Home.”
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Example B: Occupation Stereotyping. Another scenario:

<user>: "Occupation=Engineer,
History=[’The Matrix’, ’'Blade Runner’]
"Any new suggestions?’"

If the model incorrectly provides only highly technical documentaries—dismissing the user’s interest in sci-fi—our system
logs “(Occupation=Engineer)— >(Documentary Only).” The next prompt iteration might say:

<system>: "Avoid: (Occupation=Engineer)->(Documentaries).
Focus on user interest in sci-fi or dystopian genres."
<user>: "Same user, which movies are similar to ’Blade Runner’?"

Thus, the LLM shifts to thematically relevant sci-fi recommendations.

Example C: Combined Patterns. If multiple biases arise simultaneously (e.g., “(Gender=F)— >(Romance-Only),
(Age=60)— >(Kids Movies)”), the prompt enumerates both:

<system>: "You must not rely on these biases:
1) (Gender=F)->(Romance-0Only)
2) (Age=60)->(Kid-friendly content)
Focus on user history plus item similarity."
<user>: "I’ve enjoyed ’'Pulp Fiction’ and ’'Die Hard.’
Please suggest something new."

Through these examples, we find enumerating multiple “avoid” patterns consistently improves fairness outcomes with
minimal manual overhead.

.3.3. COMPARING PROMPT STRATEGIES

We measure final iteration violations on Amazon using A = 0.7, v = 0.95, 7, = 0.90. Table @ shows that enumerating
explicit patterns yields the fewest violations.

Strategy #Viol. CFR NDCG@I10

Generic Warnings 38 0.721 0.336
Negative Examples 24 0.661 0.334
Explicit Patterns 15 0.649 0.339

Table 11: Prompt Engineering Comparison (Iteration 3, Amazon).

Thus, explicit patterns effectively highlight repeated biases, prompting the LLM to generalize away from them in new
queries.

4. Additional Visualizations and Tables
.4.1. ITERATION-LEVEL CONVERGENCE FOR PROMPT VARIANTS

Figure [§lunderscores that explicit patterns converge to the fewest violations by iteration 5, while negative examples remain
slightly higher, and generic warnings do not remove repeated stereotypes as effectively.

.4.2. CALIBRATION VS. NO CALIBRATION REVISITED
As in the main text, Table [[2] highlights how ignoring conformal calibration leads to more frequent biases.

Ignoring calibration yields a significantly higher violation count and worsens CFR, confirming the value of data-driven
threshold setting.
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Figure 6: Convergence of fairness violations over 5 calibration rounds for different prompt strategies on MovieLens-1M,
A=0.7,7=0.957, = 0.90.

Method  #Viol. CFR NDCG@10 Recall@10

No Calib 42 0.716 0.336 0.298
Calib 15 0.649 0.339 0.305

Table 12: FACTOR (no calibration) vs. FACTER (with calibration) on Amazon, A = 0.7 at iteration 3.

.5. Conclusion of Appendices
In summary, these detailed appendices reinforce and expand upon the main paper’s conclusions:
* Theoretical insights: Theorems illustrate the robustness and convergence properties of our conformal fairness
approach.

* Hyperparameter ablations: Varying A, v, and 7, reveals predictable trade-offs between fairness (violation reduction)
and recommendation accuracy (NDCG, recall). Our selected values (A = 0.7,y = 0.95, 7, = 0.90) offer strong overall
performance.

* Prompt engineering best practices: Enumerating explicit bias patterns significantly reduces repeated violations,
outperforming generic or single negative examples. Realistic scenarios (age-based or occupation-based biases) confirm
that listing multiple “avoid” patterns improves generalization.

Together, these results demonstrate the flexibility and robustness of FACTER across varied settings, enabling black-box
LLMs to adaptively mitigate demographic biases via conformal thresholding and refined prompt engineering.

Code Availability. The full implementation of FACTER is publicly available at:
github.com/AryaFayyazi/FACTER.
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