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Abstract: Magnetometer-based indoor navigation uses variations in the magnetic
field to determine the robot’s location. For that, a magnetic map of the environ-
ment has to be built beforehand from a collection of localized magnetic measure-
ments. Existing solutions built on sparse Gaussian Process (GP) regression do
not scale well to large environments, being either slow or resulting in discontin-
uous prediction. In this paper, we propose to model the magnetic field of large
environments based on GP regression. We first modify a deterministic training
conditional sparse GP by accounting for magnetic field physics to map small en-
vironments efficiently. We then scale the model on larger scenes by introducing
a local expert aggregation framework. It splits the scene into subdomains, fits a
local expert on each, and then aggregates expert predictions in a differentiable and
probabilistic way. We evaluate our model on real and simulated data and show
that we can smoothly map a three-story building in a few hundred milliseconds.

Keywords: Gaussian process regression, magnetic field maps, indoor localization

1 Introduction

Indoor positioning for robotics is an active and challenging field of research [1, 2]. While vision-
based approaches [3] are the most common to address this issue, they struggle in environments
with low or repetitive textures and when visual cues change over time [4]. Recently, a novel and
promising approach has emerged that leverages the spatial anomalies of the indoor ambient magnetic
field. [5]. These anomalies are sufficiently distinct to differentiate between locations [6] and stable
enough to ensure that magnetic field maps remain valid over the years [4].

Indoor magnetic-field-based localization solutions, such as [4] built upon extended Kalman filtering
and [1] built upon particle filtering, require a map of the field values at any position, and uncertainty
estimation. Kalman filters additionally assume a differentiable observation model. Classic Gaus-
sian Process (GP) regression [7] from magnetometer measurements can achieve a differentiable and
probabilistic representation. However, it has a O(N3) computational complexity, with N the num-
ber of data points, which becomes intractable for large datasets.

To address this, Vallivaara et al. [8] have downsampled the training data and then learned map values
using only training data in a small radius. Downsampling is suboptimal, and this local approach is
discontinuous [9]. Instead, Solin et al. [10] and Menzen et al. [11] proposed sparse approximations
of the GP. While these approaches scale well with increasing data density, they perform less effec-
tively with increasing area size [12, 13]. Besides, to date, the fastest sparse magnetic map [11] is
built upon structured kernel interpolation [14], which may produce discontinuous predictions [9].

This work proposes a new approach to model the magnetic field that scales with increasing area
size and data density. It also results in differentiable magnetic predictions that are efficiently com-
puted, thus being compatible with any localization algorithm. We propose splitting the scene into
subdomains and learning a Deterministic Training Conditional sparse GP [15] that has been mod-
ified to include prior knowledge from Maxwell equations. Then, neighboring experts’ predictions
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are smoothly and efficiently aggregated into what we call a Local Bayesian Committee Machine,
derived from the classic Bayesian Committee Machine [16] in a principled way.

We thoroughly illustrate our method with several toy examples. We also compare it against the state
of the art, on real and simulated data. Evaluations are performed regarding mean square error, mean
standardized log loss, smoothness, and runtimes. In particular, we can learn a magnetic map in a
three-story building from a trajectory of one kilometer in less than 100 milliseconds.

2 Background on Gaussian Process Regression

This section introduces the necessary background on Gaussian process regression, sparse approxi-
mations, and local expert aggregations. Computational complexities are discussed with respect to
data input x density and domain volume instead of the usual dataset size N and number of latent
variable M . It brings a new light on the scalability of each model.

2.1 Full Gaussian Process Regression

Let us consider a vector field f(x) ∈ Rd defined for any x ∈ Ω ⊂ Rd′ . It must be estimated from
a training dataset D = {(x1, y1), . . . , (xN , yN )}, where each observation yi of f(xi) (noted fi)
is corrupted by a Gaussian additive white noise. A classic approach is to model f as a zero mean
Gaussian process indexed by x [7]

f ∼ GP(0, κ), y = f(x) + ε, ε ∼ N (0, σ2
noiseId), (1)

where κ is the d × d covariance kernel such that κ(x, x′) = cov(f(x), f(x′)). The choice of a
specific covariance function encodes the a priori knowledge about the underlying process. It is
often defined with respect to hyperparameters, which are learned jointly with σnoise from data or
manually tuned to sensible values. For any test input x∗, the prior and posterior of f(x∗) (noted f∗)
are Gaussians and admit a closed-form expression

p(f∗) = N (0,Kf∗,f∗), p(f∗|D) = N (Kf∗,fΣy, Kf∗,f∗ −Kf∗,fΣK
>
f∗,f ) (2)

where Σ = (Kf ,f + σ2
noiseInd)

−1. The vectors y and f are the concatenation (y>1 , . . . , y
>
n )> and

(f>1 , . . . , f
>
n )> respectively. We also used the standard shorthand notation Ka,b = cov(a, b). The

covariances Kf ,f and Kf∗,f are matrices of size Nd × Nd, and d × Nd respectively. They are
defined by block via the covariance kernel (e.g. cov(fi, fj) = κ(xi, xj)).

Training the model is the pre-computation of all quantities in (2) that depend on training data only.
Training computational complexity is dominated by the matrix inversion in O(d3N3) operations.
Then a prediction requires O(d3N2) operations for each input x∗. We find it helpful to rewrite the
complexities as a function of the volume |Ω| and the number of points per unit volume ρx = N/|Ω|.
Training and test complexities respectively becomeO(d3ρ3x|Ω|3) andO(d3ρ2x|Ω|2). It is intractable
for dense data inputs or in a large environment.

2.2 DTC Approximation

To tackle the intractability of exact regression, a large portion of the literature describes sparse
approximations [9, 17]. We overview the deterministic training conditional (DTC) sparse approx-
imation formalized by [15]. The starting point is a set of latent variables u = (u>1 , . . . , u

>
M )>

called inducing variables in the literature, where M � N . They are values of the GP (like any fi
and f∗) at the latent inputs z1, . . . , zM ∈ Rd′ . The latent variables are involved in two successive
approximations of the joint prior.

p(f∗, f ,u) = p(f∗, f |u) p(u) ' p(f∗|u) p(f |u) p(u) (3)

is a conditional independence assumption between the test variable f∗ and training variables f . The
training conditional is further approximated

p(f |u) = N (Kf ,uK
−1
u,uu, Kf ,f −Kf ,uK

−1
u,uKu,f )

DTC' N (Kf ,uK
−1
u,uu, 0), (4)

where Ku,u, Kf ,u and Ku,f are again shorthand notation for covariance matrices computed by
block (e.g. cov(fi, uj) = κ(xi, zj)). The approximation (4) assumes the training conditional co-
variance cov(f |u) is almost 0. Marginalization of u from the approximated p(f∗, f ,u) create an
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approximation of p(f∗, f). By injecting it into the classic GP framework, we get the DTC posterior

pDTC(f∗|y) = N (σ−2noiseKf∗,uSKu,fy, Kf∗,f∗ −Kf∗,u(K−1u,u − S)Ku,f∗), (5)

where S = (σ−2noiseKu,fKf ,u +Ku,u)−1. Training has a computational complexityO(d3NM2) and
an additional O(d3M2) operations are required at each test input x∗.

Prediction quality depends on the number of latent variables. Experiments show that using too few
of them in large input spaces smooths out the model [12, 13]. Thus, defining M proportionally to
the environment size: M = ρz|Ω| is natural. The training and test complexities become respectively
O(d3|Ω|3ρxρ2z) and O(d3|Ω|2ρ2z). The key takeaway is that sparse approximations scale well with
increasing input density ρx, but not so much when the environment size |Ω| increases. Therefore, it
is tempting to model the vector field on a partition of the input space [10].

2.3 Bayesian Committee Machine

As discussed above, splitting the data and fitting a (sparse) Gaussian process on each subset is
natural. It yields a discontinuous model, and prediction quality may be poor around the frontier,
even if sub-datasets overlap [11]. To improve upon this naive idea, we can take inspiration from the
literature on the aggregation of Gaussian experts Liu et al. [9]. We consider the classic Bayesian
Committee Machine (BCM) introduced by Tresp [16].

Let D1, . . . ,DJ be a partition of the dataset D. We assume a Gaussian model, i.e., the prior p(f∗)
and the posterior of each expert p(f∗|Di) are Gaussians. The BCM introduces a conditional inde-
pendence approximation between the Di. Combined with Bayes theorem, it follows that the BCM
posterior has the form of a product of expert regularized by a prior term

p(D|f∗)
BCM'

J∏
i=1

p(Di|f∗)
Bayes
=⇒ pBCM(f∗|D) ∝

∏J
i=1 p(f∗| Di)
p(f∗)J−1

(6)

The BCM posterior is Gaussian with closed-form mean and covariance [16]. It is a smooth aggrega-
tion that automatically decreases the influence of weak experts (i.e., experts with high uncertainty).
Compared to the naive approach, the quality is improved but slower since each prediction requires a
prediction from all the experts.

3 Method

We present a probabilistic method to learn the magnetic field at a large scale without discontinuities
in the prediction from magnetic vectors yi ∈ R3 and their respective positions xi ∈ R3. For that,
we split the domain into smaller subdomains. On each, we fit a sparse approximation that we call
Gradient-DTC (G-DTC) as described in section 3.1. It embeds prior knowledge from Maxwell
equations to reduce the computational complexity and improve the quality of the predictions. G-
DTC scales well with increasing spatial densities of the magnetic observation. Then, in section
3.2, we develop a local expert aggregation technique, built upon BCM, that scales with respect to
the environment size. Assuming local influence of magnetic data, each local expert in (6) makes
a negligible contribution far from its training domain. In our local approximation, we modify the
BCM posterior in a principled way so that the contribution of distant experts disappears seamlessly.

3.1 Gradient-DTC

Inspired by [10, 18], we wish to inject prior knowledge of magnetic field physics in the DTC for-
mulation to increase the model fidelity and reduce the computational cost. According to Maxwell’s
equations, the magnetic field is curl-free, provided no free current exists in the domain Ω [10]. Un-
der such conditions, a scalar potential φ exists such that H = −∇φ. Instead of u representing
magnetic field variables like f , the inter-domain Gaussian process method [19, 17] allows us to mix
f and u of different natures. Using this approach, we will manage to do the bulk of the calculation
with the scalar latent variables u1, . . . , uM , representing −φ(z1), . . . ,−φ(zM ). It will reduce the
complexity related to the observation dimension d.

By definition, if f and u are two Gaussian processes defined over Ωf and Ωu, and if for every
x1, . . . , xn ∈ Ωf and z1, . . . , zm ∈ Ωu the vector (f(x1), . . . , f(xn), u(z1), . . . , u(zm)) is Gaus-
sian, then f and u are said to be jointly Gaussian, or to form an inter-domain Gaussian process. It is
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(a) input space (b) G-DTC posterior (c) partial grid (d) G-DTC posterior

Figure 1: Latent inputs degeneracy problem. (a) Training inputs (black) are placed on the Ox
axis. Latent inputs (orange) are spread on this line. (b) With degenerate 1D placement in 3D
space, the posterior of the field’s Oy and Oz components are equal to their prior (fy and fz curves
are superimposed). Only the Ox component has been learned. (c-d) With non-degenerated latent
inputs, the three components of the posterior are learned properly.

completely defined by their respective mean and kernel function µf (x), κf (x, x′), µu(z), κu(z, z′),
as well as the inter-domain kernel κuf (z, x) = κfu(x, z)>. [10] suggest to define u as a Gaussian
process with differentiable mean µu = 0 and twice differentiable kernel:

κu(x, x′) = κSE(x, x′) = σ2
SE exp

(
−0.5 (||x− x′||/lSE)

2
)
, (7)

where lSE and σSE are respectively the characteristic length-scale and amplitude of the process.
Under such regularity conditions, f = ∇u is a well defined Gaussian process and f, u are jointly
Gaussian [20] with explicit expressions for the mean and covariance kernels

µf (x) = ∇xµu(x) = 0, (8)

κfu(x, x′) = ∇xκu(x, x′) = −κSE(x, x′)(x− x′)/l2SE, (9)

κf (x, x′) = ∇x∇>x′κu(x, x′) = κSE(x, x′)(I3 − (x− x′)(x− x′)>/l2SE)/l2SE. (10)

We directly substitute the overloaded kernel κu, κf , κfu in (5) to compute the covariance matrices
and get what we call G-DTC (G for gradient). Using the overloaded kernel reduces the size ofKf∗,u,
Kf ,u, Ku,f and Ku,u. Indeed, each block computed from κfu(x, x′) is a vector of size d × 1, and
κu(x, x′) is a scalar. Compare it against previous block matrices, all computed from κf (x, x′) of
size d × d. By mixing vectors of size d with scalars, the new training and test complexities are the
same as in a vanilla DTC except that they are proportional to d = 3 instead of d3 = 27.

The remaining question is whether the DTC sparse process is a good approximation in this gradient
setting. Assuming a differentiable scalar function is perfectly known, then its gradient must also
be perfectly known. With enough latent variable u, the DTC hypothesis cov(f |u) ' 0 from (4)
should be valid. However, Fig. 1 shows that the posterior is not properly learned when we test
this hypothesis on a toy example. In this example, all latent inputs zi ∈ R3 are set along the Ox
axis. Therefore, the variations of u are modeled in this direction only. Only the first component of
f = ∇u can be estimated confidently, and it is indeed possible to check that cov(f |u) 6= 0. This
weakness is shared among state-of-the-art maps using the latent scalar potential [10, 11]. They map
the field in 3D even though some of their datasets have positions on a 2D plane.

To solve this issue, we set the latent inputs zi so that the scalar potential variations are modeled in
all directions. The zi are vertices of a cubic grid of step δ = lSE/2. We keep only the vertices at
a distance R or less from at least one training xi. The parameter R should be as small as possible
to reduce the number of latent inputs but large enough such that even isolated xi have enough zi in
their neighborhood. We set R =

√
δ2 + (δ/2)2 + (δ/2)2 ' 1.23 · δ as justified in the appendix F.

3.2 Local Expert Aggregation

As explained previously, the number of latent variables in sparse GP must grow with the domain
size. Therefore, we split the domain and fit a G-DTC for each subdomain. Then, we aggregate each
local expert prediction with a local version of the BCM. To reduce BCM test runtime, we seek to
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consider only experts ’nearby’ the prediction location x∗ [21, 22], where the ’proximity’ is defined
by the Gaussian process kernel κ. The subdomain Ωi is ’far’ from x∗ if κ(x, x∗) is small for all
x ∈ Ωi [21]. Using the classic squared exponential (SE) kernel (8), we would like to ignore all the
experts farther than a distance lmax set to a few lSE.

3.2.1 A Local Bayesian Committee Machine

In the BCM framework, it is easy to see from (6) that discarding the prediction of the i-th expert is
equivalent to replacing the expert posterior by the prior (it cancels out with the denominator). Thus,
farther than lmax from Ωi, we approximate the posterior of the i-th expert by the prior. Inside Ωi,
we keep the posterior with no further approximations. Everywhere in between, we approximate the
posterior of each expert by a geometric mean (GM) of the posterior and the prior

p(f∗|Di) ' pGM(f∗|Di) ∝ p(f∗|Di)β(ri)p(f∗)1−β(ri), (11)
where 0 ≤ β(ri) ≤ 1, and ri is the distance separating x∗ from Ωi. When β(ri) = 1, there is no
approximation; when β(ri) = 0 the posterior is replaced by the prior. We may drop the argument ri
and note it βi for notional simplicity.

Let A(x∗) = {i|β(ri) 6= 0} be the set of index of active experts. By injecting the geometric approx-
imation (11) in the BCM posterior (6), we define the Local Bayesian Committee Machine (LBCM)
posterior

pLBCM(f∗|D) ∝
∏J
i=1 p(f∗|Di)βi

p(f∗)−1+
∑J

i=1 βi
=

∏
i∈A(x∗)

p(f∗|Di)βi

p(f∗)
−1+

∑
i∈A(x∗) βi

. (12)

Then, as developed in the appendix E, the predictive equations are

pLBCM(f∗|D) = N

Λ−1

 ∑
i∈A(x∗)

βi cov(f∗|Di)−1E(f∗|Di)

 , Λ−1

 (13)

where Λ = (1−
∑
i∈A(x∗)

βi)cov(f∗)
−1 +

∑
i∈A(x∗)

βi cov(f∗|Di)−1. The notation E(f∗|Di) and
cov(f∗|Di) are for the mean and covariance of the exact posterior p(f∗|Di). When all the experts are
active, this posterior is precisely what was called the Robust Bayesian Committee Machine (RBCM)
in [23]. The difference between our LBCM and their RBCM is the choice of βi. Theirs are not
functions of the distance ri. They set βi equal to the differential entropy between the prior and the
posterior of expert i since their goal was to increase the robustness in the presence of weak experts.
On the contrary, we design our βi to save computation time by imposing that its support is known
and bounded around Ωi. We use the cubic hermit spline β(r) = 2(r/lmax)3−3(r/lmax)2 +1 where
0 ≤ r ≤ lmax. It is defined such that it is differentiable, even at the transition points 0 and lmax.
The optimal lmax depends on your computational budget and quality requirements. In appendix C
we illustrate β and derive the exact expression of pGM. It is a Gaussian, which allows us to compute
its Kullback-Leibler Divergence from the true local expert posterior and justify that lmax = 2lSE is
a reasonable choice.

Our final model defines a G-DTC expert on each of the J subdomains of volume V , and it ag-
gregates their predictions with LBCM. The training and test complexities are O(d|Ω|V 2ρxρ

2
z) and

O(d|A(x∗)|V 2ρ2z) respectively, where |A(x∗)| is the number of active experts. Computing predic-
tions of the magnetic field became independent from the input density and the scene volume.

3.2.2 Domain Partition

LBCM is based on BCM, whose performance depends on the domain partition. With smaller subdo-
mains, each expert is faster. However, the conditional independence assumption in (6) is challenged
at the frontier between domains. The predictions are better at the interior of a domain, and therefore,
the domains must be large enough with respect to lSE. You should also use ’bulky’ subdomains to
minimize the contact surface. For instance, prefer cubes over flat cuboids. Furthermore, if possible,
it is better to set boundaries such that there is little or no data near them. For instance, you could
cut horizontally between two floors in a multi-story building. We create a regular partition of input
space using boxes of shape [0, L1)×· · ·× [0, Ld′). Furthermore, we advise that min(Li) > lmax so
that the number of active experts |A(x∗)| ≤ 2d

′
with equality when x∗ is near the corner of a sub-

domain. In three dimensions |A(x∗)| <= 8. Using cuboids makes it straightforward to determine
the active experts in constant time and to compute the distances r. Details are in the appendix G.
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Figure 2: Test trajectory of Corridor and the norm of the map learned from the training data

4 Experiments

In this section, we compare our approach against the state-of-the-art [10] on both real and simulation
data. We first illustrate how G-DTC can take advantage of the spatial distribution of the dataset on a
manifold, such as when a robot trajectory is constrained in narrow spaces or limited to 2D navigation
on the floor. Then, we show that LBCM combined with G-DTC map efficiently and smoothly the
magnetic field of large areas.

4.1 Experimental Protocol

Datasets. Here we introduce three small simulated datasets called Simu1D, Simu2D and Simu3D
illustrated Fig. 4 and a large-scale real one called Corridor shown Fig. 2. All datasets are available
in our repository https://github.com/CEA-LIST/large-scale-magnetic-mapping.

The simulated datasets are in a 3 × 3 × 3 m3 box, typical of a local expert’s domain. Each dataset
comprises 1000 noisy training data points and 100 test data points. Simu1D is representative of
a dataset acquired with motion constrained by the environment, such as in a narrow corridor. All
positions are within a tube of 0.5 meter in diameter. Simu2D represents approximately planar motion
in open spaces. All positions are within a box of height 0.5 meter. Simu3D represents aerial motion,
with positions spread in 3D. Observations are generated jointly from a zero mean Gaussian process
as described in more detail in appendix A.

Real data in Corridor were collected by the magnetometer and the IMU in an SBG-Ellipse-N rigidly
fixed to 4 FLIR Blackfly S cameras. The IMU and the four cameras are used in a graph SLAM [3]
to obtain accurate localization of the magnetic observations. The dataset comprises one training and
one test trajectory of approximately one kilometer each. They contain 15600 and 16600 observa-
tions, respectively, in 1400 m3 of corridors and staircases in a three-story building. Our model uses
a 0 mean prior, so the training observations are preprocessed to subtract their empirical mean, which
is then added back to the predictions.

Metrics. We evaluate all models with the Mean Squared Error (MSE) and the Mean Standardized
Log Loss (MSLL). Both are standard metrics described in [7]. The MSE evaluates how close the
posterior mean is from the ground truth. The MSLL also takes into account the quality of the
uncertainty. The lower both are, the better the model is. All runtimes are measured on the same
laptop from a C++ implementation. We used one core of an 11th Gen Intel® CoreTM i7-11800H
with 16 GB of RAM. Prediction times refer to processing the entire test dataset, not just one x∗.

G-DTC And LBCM Setup. G-DTC depends on the hyper-parameters lSE, σSE, and σnoise. They
have the same physical meaning as in a full GP using the covariance kernel (10). Therefore,
on Simu1D, Simu2D, and Simu3D we use the available ground truth. Despite our best efforts,
unaccounted-for localization errors remain on Corridor. We reflected it in the sensor noise by setting
σnoise = 4 µT. Then, we randomly selected 1000 training observations in a small area and optimized
a GP log marginal likelihood to tune lSE and σSE. We get lSE = 1.35 m and σSE = 6.9 µT.

LBCM depends on the domain partition and lmax. For reasons that will become clear after the
experiment 4.2, we set the side length of the boxes to be equal to 3lSE, except when the data covers
a multi-story building. In this case, we exploit the natural floor partition and decrease the box height
to the height of a story (' 3 meter). Finally, we take lmax = 2lSE as justified section C.

Competing Method Setup. Solin et al. [10] introduced a sparse approximation of local experts
and a strategy to partially smooth the predictions at the subdomains’ boundaries. We abbreviate
both contributions G-Hilbert and Overlap respectively. Overlap requires to define a space partition,
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Simu1D Simu2D Simu3D

G-DTC G-Hilbert G-DTC G-Hilbert G-DTC G-Hilbert

MSE 7.7×10−5 7.8×10−5 1.9×10−4 1.9×10−4 4.9×10−4 5.1×10−4

MSLL -11.8 -12.3 -11.6 -11.7 -11.1 -10.9
Fit (ms) 8.2 131 29 132 111 135
Predict (ms) 2.2 28 8.7 28 43 28

M 91 512 211 512 477 512

Table 1: Comparison of G-DTC and G-Hilbert using datasets defined near 1D,2D, and 3D manifolds.

(a) inputs and boxes (b) Naive (c) Overlap (d) LBCM

Figure 3: Regression discontinuities at the borders. The dotted lines are the test observations used
as ground truth. When the test trajectory crosses domain borders, simple aggregation methods are
discontinuous, whereas LBCM is differentiable by definition.

and we use the same as for LBCM. Furthermore, each local expert extends its domain by a range
ltrain to include training data from neighbor experts, such that the ”training boxes” overlap. We
set ltrain = 0.5lSE as in [11]. G-Hilbert relies on basis functions analogous to our latent variables.
Three of them are responsible for modeling the unknown mean of the GP prior. In this work, all
datasets are preprocessed to be compatible with our 0 mean GP prior assumption. Thus, we remove
these three additional basis functions for a fair comparison. Because of mathematical details, G-
Hilbert must be defined on a larger domain than the training boxes. We extend each training box by
2lSE as in [11]. Finally, G-DTC and G-Hilbert share the same values for lSE, σSE, and σnoise.

4.2 Evaluation of G-DTC Efficiency

In this first experiment, we illustrate G-DTC efficiency when training inputs are located on or near
a manifold of lower dimension. For that, we evaluate G-DTC and G-Hilbert on Simu1D, Simu2D,
Simu3D and summarize the results in table 1. On Simu1D, G-DTC has similar prediction quality
and is one order of magnitude faster than G-Hilbert. Increasing the manifold’s dimension in Simu2D
and then in Simu3D decreases our speed advantage. In this box of size 3lSE×3lSE×3lSE, we could
have at most 8 × 8 × 8 = 512 latent inputs. Our worst case is the same as the normal case for G-
Hilbert. Suppose we use the same number of latent variables; by looking at the posterior equations,
we expect G-DTC to have the same fit time and twice larger prediction time than G-Hilbert. This
experiment confirms it on Simu3D. For robotic indoor navigation, 1D and 2D input distributions
are the most common, which is where our method shines. Notice that we consider the intrinsic
dimension and that in this regard, even a trajectory in a staircase is 1D.

4.3 Smooth Local Experts Aggregation In Large-Scale Regression

We proved the pertinence of G-DTC on a small domain. Now, we evaluate the scalability and re-
gression quality of LBCM combined with G-DTC. We compare LBCM against Overlap and against
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G-DTC
& Naive

G-DTC
& Overlap

G-DTC
& LBCM

G-Hilbert
& Overlap [10]

MSE (µT)2 1.45 1.14 1.17 1.17
MSLL -5.38 -5.35 -5.37 -4.70
Fit (ms) 65 135 64 4061
Predict (ms) 108 170 578 4738

Table 2: Aggregation methods evaluation in a large building with 16600 test predictions.

the naive aggregation method that uses the space partition as is, without any smoothing strategy. We
also compare our full model G-DTC & LBCM against [10] for completeness.

Fig. 2 shows the map built from our model, and table 2 exposes the quantitative results. Surprisingly,
the MSE and MSLL are similar for LBCM, Overlap and the naive approach. These metrics do not
convey the discontinuity issues visible in Fig. 3 that arise at the box boundaries. We see that
overlapping training data is insufficient and that LBCM is the only smooth aggregation method.
It matters because such discontinuities happen every few meters at each domain transition. Using
LBCM comes at the cost of slightly slower predictions because it aggregates a few neighbor experts.
On the other hand, Overlap is slower to train since overlapping boxes are bigger and contain more
inputs and latent inputs. Furthermore, overlapping the domains creates 186 experts instead of 140,
with additional experts on the training trajectory’s side, top, or bottom. Compared to ours (G-DTC
& LBCM), the approach of [10] is two orders of magnitude slower to fit and one order of magnitude
slower to predict, mainly because G-Hilbert does not exploit the intrinsic smaller dimension of
Corridor. Finally, our method combines efficiency with prediction quality and differentiability.

5 Discussion

Limitations: Our method demonstrated its scalability on large datasets. However, several reasons
limit our approach’s deployment:

For now, the method fits the map to the data offline. Adding measures incrementally to DTC (called
Projected Process in [24, 25]) is possible, and we could extend it to G-DTC.

Furthermore, we assumed that the localization x of each measurement y is perfect, which is false in
practice and deteriorates predictions. We solved it by increasing the observation noise, which is an
easy fix for model discrepancies [1], but it would be more rigorous to explicitly model input noise
[26, 27].

Moreover, we use a low number of latent points to improve runtimes, but it can lead to under-
confident G-DTC predictions on dense datasets, especially when the latent point layers are thin,
such as in Simu1D and Simu2D.

Another limitation is in the number of new parameters introduced. There is lmax and the subdomain
size and shape for LBCM, and G-DTC requires a step size δ and a range R for its partial grid. We
described some heuristics to tune them throughout the article, but they remain empirical.

Finally, we describe how to scale the fit and predict operations on large datasets. Still, we do not
provide a way to scale the tuning of our model hyper-parameter σnoise, σSE, and lSE. Instead, we
learned them from the full GP on a subset of data. It is sensible because they share the same physical
meaning for both models, but it is suboptimal.

Conclusion: We introduced an efficient approach that creates a smooth map of the magnetic field
values and associated uncertainties. We first introduced G-DTC to model the magnetic field, which
scales well with respect to increasing data density. It includes physics knowledge from Maxwell
equations and can exploit the intrinsic lower dimensions of inputs that naturally arise when collecting
measurements along a trajectory. It is faster than other smooth and sparse GP approximations of the
magnetic field. We then introduced LBCM to scale with the scene size. Unlike the other approaches,
it aggregates local experts in a differentiable way. Efficiency and differentiability are key properties
required to develop graph SLAM localization algorithms. For that, online update strategies and
robustness to training localization error may be the focus of future research.
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(a) Simu1D (b) Simu2D (c) Simu3D

Figure 4: Simulated dataset and G-DTC latent inputs. G-DTC uses a partial grid that creates
fewer latent inputs (also called inducing inputs) on Simu1D and Simu2D because the training data
cover only a fraction of the complete domain.

A Simulated Datasets

The three simulated datasets Simu1D, Simu2D, Simu3D displayed in Fig. 4 are, in fact, just one
dataset of 3100 data points split into four parts. Each simulated dataset comprises 1000 data points
for training, and all share the same 100 test data points. The 3100 observations were sampled jointly
from a Gaussian process prior using the kernel (10) where lSE = 1 and σSE = 1. Gaussian white
noise was also added to the training observation of each dataset, with σnoise = 0.1.

B Gaussian Identities

This appendix provides useful identities for manipulating Gaussian distributions and computing the
Kullback-Leibler divergence.

Let p(x) = N (x|µ0,Σ0) be the density of a multivariate Gaussian vector of dimension D, and
α > 0 a positive scalar. After re-normalization, the power of a Gaussian remains Gaussian

1

const
p(x)α = N (x|µ0,

1

α
Σ0). (14)

Furthermore, if q(x) = N (x|µ1,Σ1) is another density of a multivariate Gaussian vector, then after
re-normalization, the following product is Gaussian as well

1

const
p(x)q(x) = N (x|µ2,Σ2), (15)

where
µ2 = Σ2(Σ−10 µ0 + Σ−11 µ1), Σ2 = (Σ−10 + Σ−11 )−1.

Their quotient also admits a Gaussian expression

p(x)

q(x)
∝ exp

(
−1

2
(x− µ3)>Σ−13 (x− µ3)

)
, (16)

where
µ3 = Σ3(Σ−10 µ0 − Σ−11 µ1), Σ3 = (Σ−10 − Σ−11 )−1.

Notice that Σ3 can be non-positive, making this quotient unsuitable for a random variable density.
However, if Σ3 is definite positive, this expression can be normalized into a proper Gaussian density
N (µ3,Σ3).

Working with Gaussian densities is convenient since, among many other reasons, their Kullback-
Leibler divergence admits a closed-form expression

DKL (p || q) =
1

2

(
log

(
|Σ1|
|Σ0|

)
− d+ (µ0 − µ1)>Σ−11 (µ0 − µ1) + tr(Σ−11 Σ0))

)
, (17)

where the notation |A| and tr(A) mean respectively the determinant and trace of a matrix A.
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Figure 5: Illustration of the geometric approximation on a 1D toy dataset. On all figures, dotted
vertical lines delimit the transitions from β = 1 to β = 0. The geometric approximation KLD is low
everywhere, with a small peak toward the end of the transition zone. Small peaks translate into small
posterior mean errors, remaining within the 1σ-error curves of the true posterior. It also translates
into higher uncertainties.

C Choosing The Beta Function

Section 3.2 we approximated the BCM posterior to introduce LBCM, which happens to have the
same posterior as RBCM [23], up to the choice of β. To the best of our knowledge, it is the first time
RBCM is viewed as an approximation of each posterior by a geometric mean between the posterior
and prior. We use this theoretical reinterpretation to derive a new metric on the approximation
quality with respect to β.

Assuming the BCM is a good approximation for the full GP posterior, a reasonable and simple
way to evaluate the quality of LBCM is to evaluate the approximation separately for each expert.
We consider the Kullback-Leibler Divergence (KLD) of the geometric approximation compared to
the true posterior: DKL(p(f∗|Di) || pGM(f∗|Di)). To compute it, we need an explicit expression
for pGM(f∗|Di). After normalization, identities (14) and (15) tell us that the power of a Gaussian
density and the product of two Gaussian densities are also Gaussian. Combining these two results,
we get

pGM(f∗|Di) = N
(
Λ−1

(
βicov(f∗|Di)−1E(f∗|Di) + (1− βi)cov(f∗)

−1E(f∗)
)
, Λ−1

)
(18)

where Λ = βicov(f∗|Di)−1 + (1− βi)cov(f∗)
−1. Then, the KLD between two Gaussian distribu-

tions admits a closed-form expression.

We can now experiment with the β function to choose one for which the KLD remains small ev-
erywhere. For differentiability, we restrict our-self to the cubic hermit spline β(r) = 2(r/lmax)3 −
3(r/lmax)2 + 1, where r is the distance separating x∗ from the expert domain. β is defined up to a
hyper-parameter lmax that we will tune experimentally in the remainder of this appendix.

For clarity of the exposition, we start by analyzing a 1D toy example illustrated in Fig 5. The dataset
comprises 400 observations on the segment Ωj = [0, 6]. They are sampled from a Gaussian process
prior defined by κSE and additive white noise. Hyper-parameters are set to lSE = 1, σSE = 13.4
and σnoise = 1.4. The KLD between the prior and the posterior is high in the training domain
because the posterior incorporates a lot of information from training data. However, at a distance
2lSE from [0, 6], the KLD between the posterior and prior is almost 0, which means the posterior is
well approximated by the prior. Therefore, we set lmax = 2lSE, and we verify that the KLD between
the posterior and the geometric approximation remains small everywhere.

Then, we conduct the same analysis to tune lmax on real 3D magnetic data. Fig 6 displays the dataset
extracted from Corridor. We select all the observations made inside a cube of size 4.05× 4.05× 3
m3, where 4.05m = 3lSE and 3m is the height of one story in the building. Then, we fit a GP on the
training data using the kernel defined in (10), which embeds prior knowledge from magnetic field
physics. The second subfigure of Fig. 6 shows that the KLD between the posterior and the prior is
almost zero at a distance of 2lSE or more from the training data. Therefore, we use lmax = 2lSE
in the cubic hermit spline formulae given above, which defines the β function in the geometric
approximation. We then display the KLD between the posterior and the geometric approximation to
show that it remains small everywhere, as intended.
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(a) training data and beta (b) KLD post. vs prior (c) KLD post. vs geometric

Figure 6: Illustration of the geometric approximation on a real dataset. All figures are top views
of the 3D space. The red and green squares delimit the transitions from β = 1 to β = 0. The figure
on the left displays the training dataset of a local expert, as well as β. The figure in the middle shows
the KLD between the posterior and the prior (saturated to 10 for visualization purposes, but it goes
up to 43), which is almost zero at a distance of 2lSE or more from the training data. The figure on
the right shows KLD between the posterior and the geometric approximation. It is small everywhere
and peaks at 3 toward the end of the transition zone.

D Definite Positive Symmetric Matrices

Here, we introduce some well-known results about definite positive symmetric matrices that will be
useful to manipulate covariances and derive the LBCM posterior in appendix E. We use the standard
notation S � 0 and S1 � S2 to indicate that the symmetric matrices S and S1 − S2 are definite
positive.

Theorem 1 Let S1, S2 be two symmetric positive matrices with at least one definite positive, and
α1, α2 two strictly positive scalars, then α1S1 + α2S2 � 0.

Theorem 2 Let S be a symmetric definite positive matrix, then S−1 � 0.

Theorem 3 Let S1, S2 be two symmetric definite positive matrices, then S1 � S2 if and only if
S−12 � S−11 .

Theorem 4 Let S be a symmetric definite positive matrix and V a (possibly rectangular) matrix
with full column rank, then A>SA � 0.

E Derivation of LBCM Posterior

In this section, we detail the derivation of the LBMC posterior. It is based on an approximation of
the BCM that we can also quickly derive here for completeness.

In general, if we have J experts trained on a partition D1, . . . ,DJ of the dataset D, then from Bayes
theorem:

p(f∗| D)
Bayes∝ p(D|f∗)p(f∗) = p(D1, . . . ,DJ |f∗)p(f∗). (19)

The BCM introduces a conditional independence approximation between theDi, which we inject in
(19), and then we use Bayes a second time on each expert posterior

p(D1, . . . ,DJ |f∗)p(f∗)
BCM∝ p(f∗)

J∏
i=1

p(Di|f∗)
Bayes∝ p(f∗)

J∏
i=1

p(f∗| Di)
p(f∗)

=

∏J
i=1 p(f∗| Di)
p(f∗)J−1

(20)

Then, we recall that we inject our geometric approximation in (20) to get the LBCM posterior

pLBCM(f∗|D) ∝
∏J
i=1 p(f∗|Di)βip(f∗)

1−βi

p(f∗)J−1
=

∏
i∈A(x∗)

p(f∗|Di)βi

p(f∗)
−1+

∑
i∈A(x∗) βi

. (21)
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whereA(x∗) = {i|βi 6= 0}. This expression comprises a quotient, products, and powers of Gaussian
densities. We straightforwardly combine all the Gaussian identities from appendix B. With a zero
mean Gaussian prior, the LBCM posterior has the following exponential form

pLBCM(f∗|D) ∝ exp

(
−1

2
(x− µ)>Λ(x− µ)

)
, (22)

where

µ = Λ−1

 ∑
i∈A(x∗)

βi cov(f∗|Di)−1E(f∗|Di)

 ,

Λ = (1−
∑

i∈A(x∗)

βi)cov(f∗)
−1 +

∑
i∈A(x∗)

βi cov(f∗|Di)−1.
(23)

For pLBCM to be a proper Gaussian density N (µ,Λ−1), all there is left is to check that Λ−1 is
symmetric definite positive. Symmetry is stable by sum, inverse, and multiplication by a scalar,
so Λ−1 is symmetric. Showing positive definiteness is slightly more cumbersome. According to
theorem 2, we can directly consider Λ. We start by rewriting it

Λ = cov(f∗)
−1 +

∑
i∈A(x∗)

βi
(
cov(f∗|Di)−1 − cov(f∗)

−1) . (24)

which is a sum of matrices weighted by positive coefficients that would be positive definite if each
matrix is positive definite as well (theorem 1). Using the inversion results (theorem 2), we have
cov(f∗)

−1 � 0. And according to 3, the matrix cov(f∗|Di)−1 − cov(f∗)
−1 is positive definite if

and only if cov(f∗) � cov(f∗|Di).

Intuitively, the prior covariance is larger than the posterior one. Thus, cov(f∗) � cov(f∗|Di) should
be valid for any sensible expert model, but to finish the formal proof, we need to limit ourself to
specific examples. For instance, using full GP experts with kernel κSE,

cov(f∗)− cov(f∗|Di) = K>f ,f∗ΣKf ,f∗ , (25)

where Σ = (Kf ,f + σ2
noiseInd)

−1. The matrix Kf ,f∗ has full column rank and using theorem 1 and
2 we have Σ � 0. From theorem 4, it follows that cov(f∗) � cov(f∗|Di) holds for each GP expert
and LBCM is well defined. If, instead, we use the DTC or the G-DTC sparse approximation defined
from this GP

cov(f∗)− cov(f∗|Di) = K>u,f∗(K
−1
u,u − S)Ku,f∗ , (26)

where S = (σ−2noiseKu,fKf ,u +Ku,u)−1. We can see that S−1 = σ−2noiseKu,fKf ,u +Ku,u � Ku,u,
thus from theorem 3, we have K−1u,u−S � 0. It follows from theorem 4 that cov(f∗) � cov(f∗|Di)
holds for each experts. Therefore, LBCM is again well-defined.

F Partial Grid

G-DTC is based on extracting a partial grid of latent inputs near the training dataset. Here, we give
efficient computation techniques for the partial grid, describe some subtleties about latent inputs
near the subdomains border, and motivate the chosen value for the parameter R.

Given inputs x1, . . . , xn and a radius R, we retrieve all the vertices z1, . . . zM from a cubic grid
of step δ, that are at a distance R or less from at least one xi. To do so efficiently, for each xi,
we generate all the vertices z in a box of center xi and side length 2R (the generation process is
described below). Then, we loop through all the vertices of this box to remove those at a distance
greater than R from xi. Each remaining z is inserted inO(log(M)) into a set data structure to avoid
duplicates. Thus, the partial grid is created in O((R/δ)3N log(M)) operations, where (R/δ)3 is
proportional to the number of vertices in a ball of radius R.

All that is left is to describe the vertices generation process in a box of center x = (α1, . . . , αd′) and
side length 2R. Let p0 = (γ1, . . . , γd′) be the origin of the cubic grid of step δ, then it is possible to
describe any vertex z by its grid macro coordinates v ∈ Zd′ :

z = δ × v + p0 (27)
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(a) R = 0.5× δ (b) R = δ (c) R =
√

3/2× δ (d) Worse case

Figure 7: Vertices selection from one cell of the cubic grid. The selected vertices (orange) are
extracted from a cubic grid (gray) at a distance R or less than an input x (blue). We represent one
grid cell only for clarity. (a) R is too small, and only one vertex is selected. (b) R is still too small
because the four selected vertices are coplanar (beware, the 4 gray vertices on the back are outside
the sphere)(c) R is larger, and the six selected vertices are not coplanar anymore. (d) In the worst
case, the input is located in the middle of a face, andR should be greater than the red segment length√
δ2 + (δ/2)2 + (δ/2)2 =

√
3/2× δ.

The lowest and highest macro coordinate values of all the vertices inside the box are respectively

vmin =

(⌈
α1 −R− γ1

δ

⌉
, . . . ,

⌈
αd′ −R− γd′

δ

⌉)
vmax =

(⌊
α1 +R− γ1

δ

⌋
, . . . ,

⌊
αd′ +R− γd′

δ

⌋) (28)

where dae and bac denotes the ceiling and integer part of a scalar a respectively. Then
Jvmin,1, vmax,1K× · · · × Jvmin,d′ , vmax,d′K is the list of grid macro coordinates of the vertices inside
the box.

As a side note, when we split the space Ω in Ω1, . . . ,ΩJ to create the data partition, we allow the
partial grid of expert i to go outside Ωi. In other words, each expert’s partial grid can overlap at the
subdomain boundaries.

Now we can focus on the ideal value of R in the case of 3D inputs (d′ = 3). In particular, we
want R large enough such that any input x has neighbor vertices spread in 3D, and we say that
R =

√
δ2 + (δ/2)2 + (δ/2)2 is the smallest of such values that work for any input x. Fig. 7

illustrates it.

G Box Partition

For any given input x, LBCM is based on efficiently retrieving to which expert domain x belongs
and which are the neighbor experts. We must also compute the distance r from x to any neighbor
expert domains. A regular partition of the space into boxes is convenient to compute these quantities
in constant time.

Let c = (γ1, . . . , γd′) be the center of a box of shape [0, L1)× · · ·× [0, Ld′). Then its distance from
any x = (α1, . . . , αd′)

> is

r =

√√√√ d′∑
i=1

max

(
|αi − γi| −

Li
2
, 0

)2

(29)

where the notation |a| stands for the absolute value of a scalar a.

Each box can be identified by its macro coordinates b ∈ Zd′ , which represents how many boxes
should be skipped in each direction from an origin box at b = (0, . . . , 0), defined arbitrarily. If c is
the center of the origin box, then the macro coordinates of the box containing x are

b(x) =

(⌊
α1 − γ1
L1

⌋
, . . . ,

⌊
αd′ − γd′
Ld′

⌋)
. (30)
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where bac denotes the integral part of a.

To get all the neighbor boxes that intersect the ball of center x and radius l, we start by finding
all boxes that intersect the box of center x and shape [0, l) × · · · × [0, l). It creates a small list of
candidate boxes. Then we loop through all of them, compute the distance r according to (29), and
keep only the ones such that r ≤ l.
All that is left is to compute the candidates list. For that, we compute b(x− λ) and b(x+ λ) where
λ = (l, . . . , l). Then Jb(x− λ)1, b(x+ λ)1K× · · · × Jb(x− λ)d′ , b(x+ λ)d′K is the list of candidate
macro coordinates, where the double brackets Ja, bK stands for the set of integers between a and b
included.
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