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Abstract
Recent studies have demonstrated that large001
language models (LLMs) excel in diverse tasks002
through in-context learning (ICL) facilitated by003
task-specific prompts and examples. However,004
the existing literature shows that ICL encoun-005
ters performance deterioration when exposed to006
adversarial inputs. Enhanced performance has007
been observed when ICL is augmented with008
natural language explanations (NLEs) (we re-009
fer to it as X-ICL). Thus, this work investigates010
whether X-ICL can improve the robustness of011
LLMs on a suite of adversarial and challeng-012
ing datasets covering natural language infer-013
ence and paraphrasing identification. More-014
over, we introduce a new approach to X-ICL015
by prompting an LLM (ChatGPT in our case)016
with few human-generated NLEs to produce017
further NLEs (we call it ChatGPT few-shot),018
which we show superior to both ChatGPT zero-019
shot and human-generated NLEs alone. We020
evaluate five popular LLMs (GPT3.5-turbo,021
LLaMa2, Vicuna, Zephyr, Mistral) and show022
that X-ICL with ChatGPT few-shot yields over023
6% improvement over ICL. Furthermore, while024
prompt selection strategies were previously025
shown to improve ICL on in-distribution test026
sets significantly, we show that these strate-027
gies do not match the efficacy of the X-ICL028
paradigm in robustness-oriented evaluations.029

1 Introduction030

The landscape of AI has recently undergone a sig-031

nificant transformation with the advent of large032

language models (LLMs). These models can pro-033

duce accurate predictions on unseen test data after034

observing a small number of demonstrations. Re-035

markably, they achieve this without the necessity036

for further training or any modifications to their un-037

derlying parameters. This novel learning paradigm038

is referred to as in-context learning (ICL, Brown039

et al., 2020; Rae et al., 2021). However, it has been040

noted that ICL struggles with the execution of com-041

plex tasks, such as arithmetic, commonsense, and042

symbolic reasoning (Rae et al., 2021). To enhance 043

the capability of ICL in solving tasks requiring 044

complex reasoning, Wei et al. (2022b) draw in- 045

spiration from the extensive body of literature on 046

natural language explanations (NLEs) to introduce 047

a method denoted as the Chain-of-Thought (CoT) 048

prompting. This method empowers LLMs to utilize 049

human-written NLEs as a mechanism for deliberate 050

thinking before delivering a prediction. Note that 051

CoT and NLEs are interchangeable, describing the 052

same concept. Since NLEs were introduced before 053

CoT (Camburu et al., 2018; Hendricks et al., 2018), 054

we used the former term in this paper. We denote 055

the ICL equipped with NLEs as X-ICL. Albeit its 056

simplicity, X-ICL has advanced the performance 057

of ICL across a broad range of complex reasoning 058

tasks (Wei et al., 2022b; Wang et al., 2023b). 059

Similar to supervised learning, ICL demon- 060

strates vulnerability to adversarial and misleading 061

examples, causing a decline in performance (Wang 062

et al., 2023a). Given that X-ICL promotes deliber- 063

ate thinking in LLMs, we hypothesize that incorpo- 064

rating NLEs could enhance the resilience of LLMs 065

against adversarial inputs, aka robustness. To this 066

end, we leverage eight adversarial datasets to eval- 067

uate the added benefit of X-ICL to the robustness 068

of LLMs. 069

Moreover, the effectiveness of X-ICL so far re- 070

lies on human-written NLEs (Wei et al., 2022b), 071

which usually require domain-specific expertise, 072

thereby imposing constraints on its scalability. 073

However, the advent of ChatGPT1 uncovered a 074

range of possibilities where LLMs can assist hu- 075

man annotators (Bang et al., 2023; Guo et al., 076

2023). Motivated by this development, we lever- 077

age ChatGPT (specifically, GPT3.5-turbo) to gener- 078

ate NLEs for examples from human-written NLEs. 079

Following this generation step, four authors assess 080

the quality of the human-written and ChatGPT- 081

1https://openai.com/blog/chatgpt
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Figure 1: Human evaluation on ChatGPT-generated
NLEs (ChatGPT NLEs) and human-written NLEs (Hu-
man NLEs). The satisfaction scores span from 1 (ex-
tremely dissatisfied) to 5 (extremely satisfied).

generated NLEs. As demonstrated in Figure 1,082

most of the evaluators (3 out of 4) exhibited a pref-083

erence for the NLEs produced by ChatGPT over084

those crafted by humans. The details of this evalu-085

ation are presented in Appendix D.1.086

In this paper, we evaluate the improvement in the087

robustness of LLMs provided by X-ICL in three088

regimes: utilizing NLEs generated by ChatGPT089

(generated in zero-shot and few-shot settings) and090

human-written NLEs. In the evaluation, we con-091

sider five popular LLMs (i.e., Mistral (Jiang et al.,092

2023), Zephyr (Tunstall et al., 2023), Vicuna (Chi-093

ang et al., 2023), LLaMA2 (Touvron et al., 2023)094

and GPT3.5-turbo) on the challenging datasets.095

Our experimental results suggest that X-ICL gen-096

erally produces more accurate results than ICL on097

eight adversarial and challenging datasets. Further-098

more, using few-shot ChatGPT-generated NLEs099

leads to more than 6% gains over ICL for the ma-100

jority of the LLMs and datasets. The findings from101

our comprehensive study suggest that an integrated102

approach, combining human input with the capabil-103

ities of ChatGPT (i.e., ChatGPT few-shot regime),104

provides a more effective solution than utilizing105

either human or ChatGPT (zero-shot) NLEs in iso-106

lation. Finally, while prompt-selection strategies107

(Gupta et al., 2023; Levy et al., 2023; Ye et al.,108

2023) considerably enhance ICL performance on109

in-distribution test sets, they are less effective on110

the adversarial datasets compared to the X-ICL ap-111

proaches.112

2 Related Work113

Learning with Explanations. There has been114

a surge of work on explaining predictions of115

neural NLP systems, from highlighting decision116

words (Ribeiro et al., 2016; Alvarez-Melis and117

Jaakkola, 2017; Serrano and Smith, 2019) to gener- 118

ating free-form natural language explanations (i.e., 119

NLEs) (Camburu et al., 2018; Narang et al., 2020; 120

Wiegreffe and Marasovic, 2021). Our work con- 121

centrates on the latter category, namely, the gen- 122

eration of NLEs for justifying model predictions. 123

Rajani et al. (2019) propose a two-stage training to 124

improve the prediction performance for common- 125

sense reasoning tasks. In their work, the first stage 126

revolves around creating an NLE, which aids in 127

label prediction during the second stage. Alterna- 128

tively, one can leverage a multi-task framework to 129

generate NLEs and labels simultaneously (Hase 130

et al., 2020). Li et al. (2022) propose advancing the 131

reasoning abilities of smaller LMs by leveraging 132

NLEs generated by GPT-3 (Brown et al., 2020). 133

NLEs have also vastly been employed beyond NLP, 134

such as in computer vision (Hendricks et al., 2018; 135

Zellers et al., 2019; Majumder et al., 2022), medi- 136

cal (Kayser et al., 2022), and self-driving cars (Kim 137

et al., 2018), with some works showing improved 138

task performance when training with NLEs (Kayser 139

et al., 2021). However, these studies primarily 140

concentrate on supervised fine-tuning approaches, 141

which is different from the focus of this work, i.e., 142

ICL. 143

Prompting with NLEs. Despite its remarkable 144

performance on several downstream tasks (Brown 145

et al., 2020), ICL continues to encounter difficulties 146

with tasks that require reasoning abilities, including 147

arithmetic, logical, and commonsense reasoning 148

tasks (Rae et al., 2021; Srivastava et al., 2022). To 149

augment the reasoning capabilities of LLMs, Wei 150

et al. (2022b) introduced a method known as CoT 151

prompting. This technique prompts an LM to gen- 152

erate a sequence of concise sentences that imitate 153

the reasoning process an individual might undergo 154

to solve a task before providing the ultimate answer, 155

essentially to provide an NLE/CoT before the pre- 156

diction. Subsequently, Zhou et al. (2023) demon- 157

strate that dividing complex problems into simpler 158

sub-problems and addressing them sequentially im- 159

proves the performance of CoT prompting. Addi- 160

tionally, Wang et al. (2023b) propose an alternative 161

method that enhances CoT prompting by combin- 162

ing multiple diverse reasoning paths generated by 163

LLMs, surpassing the performance of a greedy CoT 164

prompting approach. However, these aforemen- 165

tioned methods need human-written NLEs as CoT. 166

Instead, our ChatGPT zero-shot regime harnesses 167

the power of an LLM to synthesize NLEs without 168
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the need for human-written NLEs.169

Learning Robust Models. Several works show170

that NLP models are prone to performance degra-171

dation when presented with adversarial datasets, a172

consequence of inherent artifacts or biases within173

the annotation of the training dataset (Naik et al.,174

2018; McCoy et al., 2019; Nie et al., 2020; Liu175

et al., 2020b). To mitigate biases within NLP mod-176

els, various strategies have been proposed, e.g.,177

initially training a weak model to recognize superfi-178

cial features, subsequently enforcing a target model179

to learn more robust and generalizable characteris-180

tics (He et al., 2019; Clark et al., 2019; Karimi Ma-181

habadi et al., 2020). Additionally, data augmenta-182

tion presents another viable option (Minervini and183

Riedel, 2018; Wu et al., 2021, 2022). Moreover,184

studies have shown that incorporation of rational-185

ization methodologies into supervised models can186

significantly enhance the models’ resilience against187

adversarial datasets (Chen et al., 2022; Stacey et al.,188

2022). Deviating from the precedent research, our189

study probes the robustness of X-ICL on eight ex-190

isting adversarial datasets.191

3 Methodology192

This section first outlines the workflow of X-ICL.193

Subsequently, the focus shifts to detailing how an194

LLM, specifically ChatGPT, can be used to gener-195

ate an NLE for a labeled instance.196

3.1 ICL with NLEs (X-ICL)197

LLMs greatly enhance their performance across198

various reasoning tasks when supplied with human-199

written NLEs (Wei et al., 2022b,a). We can define200

X-ICL as follows:201

argmax
(r′,y′)∈R×Y

Pθ

(
(r′,y′)|(xi, ri,yi)

k
i=1, ..., (x

′)
)
,202

where x′ denotes an unlabeled instance, r ∈ R rep-203

resents the corresponding NLE, and y ∈ Y denotes204

the target label, where R is the space of all NLEs205

and Y is the set of possible labels for a given dataset.206

The objective of X-ICL is to maximize the likeli-207

hood of generating the optimal NLE, r′ ∈ R, and208

its corresponding label, y′ ∈ Y, given a demonstra-209

tion set (xi, ri,yi)
k
i=1 and an unlabeled instance x′.210

Consequently, this prompts the LLM to produce211

the most plausible NLE and label combination.212

3.2 Generating NLEs via ChatGPT213

In existing X-ICL works, human-written NLEs r214

were used for the instances within the demonstra-215

tion set. Instead, in this work, we opt for the NLEs 216

synthesized via ChatGPT (or GPT3.5-turbo). This 217

preference is driven by noting that NLEs produced 218

by ChatGPT tend to receive higher approval ratings 219

from human evaluators, as indicated in Figure 1. 220

We argue that this preference will boost the per- 221

formance of X-ICL. The methods utilized for the 222

generation of NLEs are outlined below. 223

Few-shot prompting for NLEs Our methodol- 224

ogy, also shown in Figure 2, initiates by leveraging 225

a set of labeled instances, each accompanied by 226

a human-crafted NLE, to prompt ChatGPT. The 227

primary aim is to encourage the LLMs to generate 228

a correct NLE (i.e., ground-truth arguments) for 229

the correctly-predicted answer for a test instance. 230

The NLE is generated as follows: 231

argmax
r′∈R

Pθ(r
′|s, (xj ,yj , rj)

m
j=1, ..., (x

′,y′)),

(1) 232

where s is a meta-prompt representing the task. 233

For the details of the meta-prompt, please refer to 234

Appendix B. 235

Zero-shot prompting for NLEs We further ex- 236

tend our approach to situations where human- 237

written NLEs are absent, which is generally more 238

prevalent across most datasets. In this context, 239

ChatGPT is prompted to generate an NLE for a 240

labeled instance devoid of any pre-existing exam- 241

ples with NLEs. The objective bears a resemblance 242

to Equation (1), albeit without the inclusion of the 243

demonstration set (xj ,yj , rj)
m
j=1. 244

Notably, the NLEs generated by the aforemen- 245

tioned approaches can be seamlessly integrated 246

into the existing X-ICL framework as delineated 247

in Section 3.1. These are referred to as X-ICL 248

(ChatGPTfew) and X-ICL (ChatGPTzero), respec- 249

tively.2 250

4 Experiments 251

We conduct a series of experiments to assess the 252

performance of our proposed X-ICL framework. 253

4.1 Experimental Setup 254

Tasks and datasets We consider the Natural Lan- 255

guage Inference (NLI) and paraphrasing identifi- 256

cation tasks as our testbed. To ascertain the ro- 257

bustness of LLMs when employing the proposed 258

2In addition, we explore the application of two other
widely-used, open-source LLMs for the generation of NLEs.
Detailed results of these experiments are provided in Ap-
pendix C.
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Task Description
===============
Premise: A boy peers out of an open window.
Hypothesis: The boy looks out the window.
Label: entailment
Reason: The boy peers out of a window, so the boy 
looks out the window.
………
Premise: A man in a jean jacket is sitting outside 
painting.
Hypothesis: There is a man outside.
Label: entailment
Reason:

The premise states that a man in a jean jacket is 
sitting outside painting, which implies that there is 
a man outside. Therefore, the hypothesis is true 
based on the information provided in the premise.

Task Description
===============
Premise: A man in a jean jacket is sitting outside 
painting.
Hypothesis: There is a man outside.
Label: entailment
Reason:

The hypothesis, "There is a man outside," logically 
follows from the premise, "A man in a jean jacket is 
sitting outside painting." The presence of a man in 
a jean jacket sitting outside painting implies the 
existence of a man outside, thus establishing an 
entailment relationship between the premise and 
hypothesis.

Step 1A: Few-shot prompting for explanation

Step 1B: Zero-shot prompting for explanation

Step 2: Few-shot in-context learning with NLEsTask Description
===============
Premise: A man in a jean jacket is sitting outside 
painting.
Hypothesis: There is a man outside.
Reason: The premise states that a man in a jean 
jacket is sitting outside painting, which implies that 
there is a man outside. Therefore, the hypothesis is 
true based on the information provided in the premise.
Label: entailment
………
Premise: Children are playing in the street with a toy .
Hypothesis: The children have a ball .

Reason: The premise mentions that children are 
playing with a toy, but it does not specify what type 
of toy they are playing with. The hypothesis 
suggests that the children have a ball, which is a 
possibility but cannot be confirmed or denied 
based on the given information. Therefore, the 
label assigned is neutral.
Label: neutral

or

Figure 2: Our approach of using ChatGPT-generated NLEs for ICL consists of two steps: (1) prompt an LLM in
a few-shot or zero-shot manner to generate NLEs for new instances; (2) prompt LLMs using ICL with the NLEs
generated in step 1.

approach, we evaluate it across eight adversarial259

datasets. For the NLI task, we include HANS,260

ISCS, ST, PICD, PISP, NaN, and ANLI. The first261

five datasets (HANS, ISCS, ST, PICD, PISP) are262

from Liu et al. (2020b), while NaN and ANLI are263

sourced from Truong et al. (2022) and Nie et al.264

(2020), respectively. Regarding the paraphrasing265

identification task, we use PAWS-QQP (or PAWS)266

dataset (Zhang et al., 2019).267

Additionally, the SNLI dataset (Bowman et al.,268

2015) and QQP (Wang et al., 2018), which are269

non-adversarial, are employed for a comparative270

purpose. The details of these datasets are provided271

in Appendix A.272

Language models and prompts The evaluation273

of our approach is undertaken across five promi-274

nent LLMs: (1) Mistral (Jiang et al., 2023), (2)275

Zephyr (Tunstall et al., 2023), (3) Vicuna (Chiang276

et al., 2023), (4) LLaMA2 (Touvron et al., 2023),277

and (5) GPT3.5-turbo. Specifically, Mistral and278

Zephyr are models with 7B parameters. For Vicuna279

and LLaMA2, we use 30B and 70B-chat versions,280

respectively. 281

We perform all experiments in an 8-shot set- 282

ting, wherein each experiment is conducted four 283

times independently, thereby drawing 32 unique in- 284

stances from the training-associated datasets as fol- 285

lows. Specifically, for NLI datasets, barring ANLI 286

which includes its own training set and NLEs, we 287

adhere to the established methodology of using 288

the e-SNLI dataset as the demonstration set, as 289

suggested by Liu et al. (2020b). The e-SNLI (Cam- 290

buru et al., 2018) is a modified version of the SNLI 291

dataset, enhanced with NLEs written by humans. 292

In the case of the QQP and PAWS datasets, the 293

QQP dataset is utilized as the demonstration set, 294

including NLEs contributed by four authors. 295

Regarding the generation of NLEs via few-shot 296

learning described in section 3.2, the methodology 297

involves selecting a random instance from each la- 298

bel category within the training dataset to form the 299

demonstration set. Consequently, the demonstra- 300

tion set comprises three instances for the e-SNLI 301

dataset and two for the QQP dataset. 302
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Models Methods SNLI HANS ISCS NaN ST PICD PISP ANLI QQP PAWS Avg.

M
is

tr
al

7B
ICL 59.8 54.0 51.9 55.0 44.4 58.2 23.0 39.8 69.9 68.3 50.3

±3.4 ±2.2 ±1.4 ±1.3 ±1.7 ±2.6 ±2.6 ±4.6 ±1.7 ±2.7

X-ICL (Human) 60.0 56.0 54.7▽ 58.6▽ 51.7▼ 56.9 35.8▼ 43.9▼ 69.9 66.4 53.5
±2.0 ±2.9 ±2.5 ±2.9 ±4.0 ±3.3 ±6.7 ±1.7 ±0.8 ±1.5

X-ICL (ChatGPTzero) 56.7 51.8 47.7 55.9 44.9 56.7 25.1 28.8 67.3 64.7 46.4
±6.3 ±5.1 ±3.5 ±5.0 ±4.8 ±6.6 ±8.9 ±4.4 ±2.3 ±3.1

X-ICL (ChatGPTfew) 61.8 58.2▼ 57.2▼ 62.4▼ 55.2▼ 59.2 47.6▼ 46.9▼ 70.3 72.5▽ 57.1
±3.1 ±2.5 ±2.2 ±2.6 ±1.5 ±2.7 ±1.8 ±2.3 ±1.1 ±1.3

Z
ep

hy
r

7B

ICL 67.1 71.0 63.4 65.7 60.5 64.8 48.4 47.1 76.9 57.7 59.8
±3.4 ±1.8 ±1.2 ±1.8 ±1.0 ±1.5 ±1.4 ±1.6 ±0.4 ±1.1

X-ICL (Human) 72.4▼ 64.3 58.3 62.0 57.0 60.6 52.0 49.4 75.8 61.4▽ 59.3
±4.3 ±6.7 ±5.5 ±5.3 ±6.3 ±9.7 ±6.7 ±3.0 ±1.7 ±2.3

X-ICL (ChatGPTzero) 67.2 72.7 60.4 64.0 61.4 64.1 50.8 40.9 74.7 59.1 58.1
±3.9 ±2.6 ±5.3 ±5.2 ±5.7 ±5.4 ±5.2 ±3.8 ±1.8 ±2.4

X-ICL (ChatGPTfew) 74.2▼ 77.4▼ 67.0 67.7 69.3▼ 70.0▼ 65.6▼ 52.1▽ 77.3 61.5▽ 65.5
±3.6 ±2.2 ±1.6 ±2.3 ±1.5 ±2.1 ±2.5 ±2.8 ±0.9 ±1.0

V
ic

un
a

30
B

ICL 65.2 69.4 62.7 61.4 58.7 67.1 50.9 50.0 81.8 69.7 61.4
±2.7 ±1.2 ±0.9 ±3.5 ±0.8 ±1.6 ±1.3 ±2.6 ±0.5 ±2.6

X-ICL (Human) 67.8 62.9 60.9 64.2 57.3 63.7 55.0 48.2 77.4 63.4 59.8
±3.2 ±3.7 ±2.2 ±1.2 ±2.0 ±7.2 ±5.8 ±4.7 ±2.8 ±3.5

X-ICL (ChatGPTzero) 64.2 61.4 64.9 60.2 61.7 57.9 51.8 49.7 72.1 61.8 58.8
±5.9 ±7.7 ±2.3 ±4.0 ±3.1 ±8.7 ±8.7 ±3.6 ±3.2 ±4.9

X-ICL (ChatGPTfew) 65.0 74.5▽ 65.5▽ 66.3▽ 64.8▼ 61.6 65.9▼ 57.5▼ 78.6 70.0 65.4
±3.1 ±4.4 ±1.6 ±1.1 ±1.8 ±8.9 ±4.7 ±1.3 ±1.7 ±3.3

L
L

aM
A

2
70

B

ICL 69.3 65.7 63.1 61.5 58.8 67.6 48.5 54.2 80.8 44.5 60.3
±1.2 ±3.4 ±1.6 ±2.3 ±4.4 ±3.0 ±7.3 ±2.9 ±0.6 ±2.9

X-ICL (Human) 73.0▼ 65.2 59.6 62.4 55.7 64.3 50.4 49.0 74.5 42.6 57.7
±3.1 ±4.6 ±4.4 ±3.3 ±3.9 ±2.3 ±5.1 ±2.6 ±3.0 ±3.3

X-ICL (ChatGPTzero) 55.4 64.0 37.4 58.1 47.7 53.5 44.2 35.8 69.1 37.8 48.1
±5.5 ±6.3 ±6.0 ±5.4 ±5.4 ±8.5 ±8.7 ±0.8 ±4.1 ±4.8

X-ICL (ChatGPTfew) 74.2▼ 73.3▼ 57.7 65.9▽ 63.1▽ 70.6▽ 55.8▼ 59.2▼ 77.6 46.5▽ 63.6
±2.5 ±8.5 ±1.2 ±3.2 ±3.7 ±6.5 ±5.9 ±1.6 ±0.6 ±1.9

G
PT

3.
5-

tu
rb

o

ICL 71.9 72.4 64.4 70.0 62.1 64.0 51.2 56.1 81.5 42.9 62.4
±1.4 ±0.6 ±0.9 ±0.8 ±1.6 ±3.1 ±0.4 ±2.0 ±0.3 ±2.8

X-ICL (Human) 78.0▼ 71.0 69.0▽ 70.5 65.7▽ 72.7▼ 59.3▽ 59.8▽ 76.0 53.4▼ 66.2
±1.7 ±1.7 ±1.2 ±2.2 ±1.0 ±1.3 ±1.9 ±2.3 ±3.9 ±5.3

X-ICL (ChatGPTzero) 71.9 71.6 68.4▽ 70.2 67.6▽ 67.7▽ 61.7▼ 60.4▼ 80.4 51.2▼ 66.0
±2.7 ±0.8 ±0.3 ±0.0 ±1.3 ±4.1 ±1.9 ±2.0 ±0.8 ±3.1

X-ICL (ChatGPTfew) 75.5▽ 76.0▼ 74.9▼ 73.1▼ 73.3▼ 76.9▼ 75.5▼ 59.6▽ 79.0 54.0▼ 69.7
±2.8 ±2.0 ±0.1 ±1.4 ±0.4 ±0.4 ±3.0 ±1.8 ±1.7 ±2.6

Table 1: Accuracy of multiple LLMs using (1) standard ICL without NLEs, (2) X-ICL with human-written NLEs:
X-ICL (Human), (3) X-ICL with ChatGPT-generated NLEs in a zero-shot scenario: X-ICL (ChatGPTzero), (4)
X-ICL with ChatGPT-generated NLEs in a few-shot scenario: X-ICL (ChatGPTfew). The best performance for
each task within a model is shown in bold. Significance testing was assessed via an unequal variances t-test in
comparison with ICL: ▼ (resp. ▽) represents a p-value lower than 10-3 (resp. 10-1). The results of ANLI are the
average of ANLI R1, R2, and R3.

Baselines In addition to the proposed method,303

our study investigates two baselines for compara-304

tive analysis. The first baseline uses standard ICL305

without NLEs. The second employs human-written306

NLEs within the X-ICL process, referred to as X-307

ICL (Human).308

4.2 Main Results309

This section examines ICL and X-ICL across the310

studied datasets using Mistral, Zephyr, Vicuna,311

LLaMA2, and GPT3.5-turbo. The results are sum-312

marized in Table 1.313

Firstly, the results reveal a predictable outcome314

for both scenarios, namely with and without using315

X-ICL. As the models’ abilities escalate, an upward316

trajectory can be discerned in the average accuracy. 317

This progression is evident when comparing the 318

least potent model, exemplified by Mistral, to the 319

highest-performing one, represented by GPT3.5- 320

turbo. 321

Table 1 demonstrates that X-ICL (Human) yields 322

a better predictive accuracy than ICL across all 323

five LLMs assessed using the SNLI dataset, with 324

enhancements of up to 6.1%. This performance 325

elevation is, however, limited to the Mistral and 326

GPT-3.5-turbo models when subjected to all ad- 327

versarial NLI test sets. The advantage of X-ICL 328

(Human) relative to ICL diminishes when applied 329

to the QQP and PAWS datasets. 330

In the context of X-ICL (ChatGPTfew), the evi- 331
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dence points to a commanding lead in all evaluated332

tasks on both the Mistral and Zephyr, surpassing333

the results of ICL and X-ICL (Human) by margins334

of at least 5.7% and 3.6%, respectively. Despite335

the notable improvement on ICL when employing336

GPT3.5-turbo in comparison to other LLMs, X-337

ICL (ChatGPTfew) offers substantially additional338

gains, with an increase in absolute accuracy be-339

tween 11%-24% on tasks such as ISCS, ST, PICD,340

PISP and PAWS. In essence, X-ICL augments LLM341

performance on the in-distribution test and bolsters342

LLMs’ robustness in the face of adversarial test343

sets.344

Remarkably, despite the predominant prefer-345

ence of human evaluators for NLEs generated by346

ChatGPT over those written by humans, X-ICL347

(ChatGPTzero) consistently produces less accurate348

results than X-ICL (Human) across all models un-349

der study. The exception to this trend is GPT3.5-350

turbo, where a tie is observed. Furthermore, it ap-351

pears counter-intuitive that X-ICL (ChatGPTzero)352

is outperformed by ICL for 4 out of the 5 LLMs353

analyzed, especially on LLaMA2. This apparent354

discrepancy between human preferences and LLM355

performance strongly underlines the necessity for356

additional investigations to enhance our understand-357

ing of this intriguing phenomenon. Since this inves-358

tigation deserves a thorough and systematic study,359

we leave it for future work.360

In light of the encompassment of diverse ro-361

bustness scenarios by the seven adversarial NLI362

datasets, our primary focus henceforth will be the363

examination of these NLI datasets.364

4.3 Impacts of NLEs365

Our research has demonstrated that using NLEs366

generated by ChatGPT can substantially enhance367

the performance of X-ICL. To provide a more com-368

prehensive understanding of the NLEs’ influence,369

we conducted two investigations presented in the370

following.371

Data selection vs. X-ICL. The efficacy of ICL372

in LLMs is significantly influenced by the demon-373

strations provided, as the model depends on these374

demonstrations to comprehend and address the test375

instances (Zhao et al., 2021; Liu et al., 2022; Lu376

et al., 2022). Consequently, a spectrum of research377

has been directed towards optimizing data selection378

techniques that curate ICL demonstrations from379

a pertinent pool of candidate data in relation to380

the test instances (Gupta et al., 2023; Levy et al.,381

Models Methods SNLI AdvNLI ∆

M
is

tr
al

ICL 59.8 45.1 14.7
X-ICL (ChatGPTfew) 61.8 53.4 8.4
COSINE 67.9 46.0 21.9
BM25 65.2 44.2 21.0
SET-BSR 77.6 52.2 25.4

Z
ep

hy
r

ICL 67.1 57.2 9.9
X-ICL (ChatGPTfew) 74.2 63.7 10.5
COSINE 77.0 55.6 21.4
BM25 70.1 53.7 16.4
SET-BSR 79.9 59.7 20.2

V
ic

un
a

ICL 65.2 57.8 7.4
X-ICL (ChatGPTfew) 65.0 63.5 1.5
COSINE 72.5 53.6 18.9
BM25 67.2 52.2 15.0
SET-BSR 79.5 56.4 23.1

L
L

aM
A

2

ICL 69.3 58.7 10.6
X-ICL (ChatGPTfew) 74.2 62.7 11.5
COSINE 71.9 57.3 14.6
BM25 70.8 55.6 15.2
SET-BSR 76.7 59.2 17.5

G
PT

3.
5-

tu
rb

o ICL 71.9 61.4 10.5
X-ICL (ChatGPTfew) 75.5 69.8 5.6
COSINE 75.0 58.1 16.9
BM25 71.4 56.0 15.4
SET-BSR 77.4 59.5 17.9

Table 2: Performance of ICL, X-ICL (ChatGPTfew) and
three data selection approaches on SNLI and AdvNLI
(i.e., 7 adversarial test sets). ∆ indicates the difference
between SNLI and adversarial NLI test sets. We report
the average performance over all adversarial test sets.

2023; Ye et al., 2023). While these approaches have 382

proven to be highly effective on in-distribution test 383

sets, their performance on adversarial test sets re- 384

mains uncertain, as these sets have the potential to 385

misguide the selection algorithms. 386

In this context, we examine the performance of 387

X-ICL (ChatGPTfew) in relation to three prevalent 388

data selection techniques: COSINE, BM25, and 389

SET-BSR. COSINE incorporates sentence embed- 390

dings (Reimers and Gurevych, 2019) to identify the 391

most relevant demonstrations for each test instance, 392

while BM25 employs the BM25 algorithm (Sparck 393

Jones et al., 2000) for retrieving candidate demon- 394

strations. SET-BSR utilizes BERTScore (Zhang 395

et al., 2020), coupled with strategies to ensure in- 396

formation coverage at the set level, to promote the 397

choice of informative and diverse demonstration 398

sets (Gupta et al., 2023). Note that these data selec- 399

tion techniques are designed to sift through the en- 400

tirety of the training data to choose demonstrations, 401

a process that is both computationally demanding 402

and cost-inefficient for generating NLEs for the 403

full dataset. Therefore, our analysis is confined 404
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Figure 3: ICL performance of GPT3.5-turbo using
(1) standard ICL without NLEs, (2) X-ICL with
ChatGPT-generated NLEs in a few-shot scenario:X-ICL
(ChatGPTfew), (3) X-ICL with ChatGPT-generated
NLEs, where the NLEs of the prompt are swapped and
do not match the instances: X-ICL (ChatGPTswap),
and (4) X-ICL with random human NLEs: X-ICL
(Humanrand).

to applying ICL to these methods. To facilitate a405

generic comparison with the in-distribution set, we406

consider the average performance across all adver-407

sarial NLI test sets.408

According to Table 2, as expected, the data se-409

lection approaches markedly enhance ICL perfor-410

mance on the SNLI dataset for all studied LLMs,411

with notable improvements observed in SET-BSR,412

achieving gains of up to 17.8% over standard413

ICL. However, this pronounced advantage dimin-414

ishes considerably on adversarial test sets, partic-415

ularly for COSINE and BM25 models, which416

are outperformed by ICL across all tested LLMs.417

This discrepancy results in a marked disparity be-418

tween the in-distribution test set and adversarial419

test sets, contrary to what is observed in X-ICL420

(ChatGPTfew). These results imply that current421

data selection approaches may be prone to over-422

fitting on in-distribution tests, potentially leading423

to significant challenges in processing OOD and424

adversarial datasets due to their limited generaliz-425

ability.426

Do proper NLEs really help? The prevailing as-427

sumption argues that the benefits of the X-ICL pri-428

marily originate from the NLEs provided. To con-429

clusively attribute these gains to the NLEs rather430

than any potential influence of additional sentences,431

we investigate two experimental setups. In the432

first setup, we randomly swap the NLEs within433

the prompt, leading to a mismatched NLE for each434

instance. This variant is henceforth referred to as435

X-ICL (ChatGPTswap). Regarding the second vari- 436

ant, for each instance in the demonstration set, we 437

randomly select an unrelated human NLE from the 438

corresponding training set, referred to as X-ICL 439

(Humanrand). 440

As depicted in Figure 3, despite identical con- 441

tent being provided to GPT3.5-turbo, a misalign- 442

ment between the NLE and the instance results 443

in a marked reduction in the performance of X- 444

ICL (ChatGPTswap) when compared to X-ICL 445

(ChatGPTfew). This decline is discernible across 446

various datasets, including NaN, PICD, and ANLI 447

(R1/R2).3 It is also shown that an irrelevant and 448

arbitrary NLE triggers a performance reduction 449

within the X-ICL framework. Furthermore, the effi- 450

ciency of both X-ICL (ChatGPTswap) and X-ICL 451

(Humanrand) substantially lags behind that of ICL. 452

Therefore, it can be inferred that the efficacy of 453

the X-ICL (ChatGPTfew) hinges on providing an 454

accurate and relevant NLE. 455

4.4 Supplementary Studies 456

Does model size matter? We have shown the ef- 457

ficacy of X-ICL across a range of LLMs of varying 458

sizes. However, the variability in data and training 459

processes among these models renders the appli- 460

cability of our approach to smaller-scale models 461

inconclusive, especially since the smaller models 462

often exhibit less benefit from NLEs compared to 463

larger models within the same family (Wei et al., 464

2022a). Therefore, we have evaluated our approach 465

using three distinct sizes of LLaMA2 models: 7B, 466

13B, and 70B parameters. 467

Referring to Figure 4, one can find the perfor- 468

mance of both ICL and X-ICL generally improves 469

in correspondence with the escalation of model 470

size, except for X-ICL (ChatGPTzero). Moreover, 471

the gap in performance between ICL and X-ICL 472

(ChatGPTfew) widens, indicating that models with 473

greater capabilities derive increased benefits from 474

NLEs. This observation aligns with the results re- 475

ported by Wei et al. (2022a). 476

Distribution Shift Prompting. Previous works 477

indicate that X-ICL can potentially encourage 478

LLMs to engage in deliberate thinking, a predomi- 479

nant factor responsible for substantial performance 480

improvements over the standard ICL in complex 481

reasoning tasks (Wei et al., 2022b). In addition, our 482

findings have demonstrated a dramatic enhance- 483

ment in the robustness of LLMs due to X-ICL, 484

3Similar patterns have been detected in other datasets
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Figure 4: ICL performance of LLaMA2 (7B, 13B, 70B) using (1) standard ICL without NLEs, (2) X-ICL with
human-written NLEs: X-ICL (Human), (3) X-ICL with ChatGPT-generated NLEs in a zero-shot scenario: X-ICL
(ChatGPTzero), (4) X-ICL with ChatGPT-generated NLEs in a few-shot scenario:X-ICL (ChatGPTfew). ANLI is
the average of R1, R2 and R3.

NaN PICD ANLI (R1) ANLI (R2)

e-SNLI ANLI |∆| e-SNLI ANLI |∆| e-SNLI ANLI |∆| e-SNLI ANLI |∆|

ICL 70.0 69.4 0.6 64.0 64.1 0.1 52.6 62.4 9.7 43.9 51.7 7.8
X-ICL (ChatGPTfew) 73.1 71.8 1.2 76.9 76.1 0.8 65.0 68.5 3.5 53.2 54.4 1.2

Table 3: Performance of ICL and X-ICL (ChatGPTfew) employing e-SNLI and ANLI as prompts for testing NaN,
PICD, and ANLI (R1/R2). |∆| signifies the absolute difference in the performance outcomes when utilizing e-SNLI
in contrast to ANLI. The backbone model is GPT3.5-turbo.

which contributes to significant improvements in485

ICL when applied to various adversarial datasets.486

Moreover, a previous study established that upon487

understanding the concept underlying particular488

tasks, humans can address similar tasks despite489

a distribution shift (Scott, 1962). To explore the490

robustness of ICL and X-ICL against distribution491

shifts, we employ the e-SNLI dataset as the demon-492

stration set for ANLI (R1/R2), while utilizing the493

ANLI training set for testing NaN and PICD. Due494

to its outstanding performance, we use GPT3.5-495

turbo as the backbone model.496

As suggested in Table 3, for NaN and PICD,497

using e-SNLI as the prompt proves to be more498

effective than ANLI for both ICL and X-ICL499

(ChatGPTfew). This improvement can be at-500

tributed to the distribution shift. Likewise, the501

distribution shift results in a noticeable distinc-502

tion between e-SNLI and ANLI for ICL on ANLI503

(R1/R2). Nonetheless, incorporating NLEs enables504

X-ICL (ChatGPTfew) to substantially reduce this505

gap, from 9.7 to 3.5 for ANLI (R1), and from 7.8506

to 1.2 for ANLI (R2). This finding indicates that507

X-ICL may improve the robustness of LLMs in the508

face of distribution shifts. 509

5 Summary and Outlook 510

We introduced a simple yet effective method called 511

X-ICL (ChatGPTfew), leveraging human-written 512

NLEs to generate synthetic NLEs by prompt- 513

ing ChatGPT. X-ICL (ChatGPTfew) significantly 514

boosts accuracy across various adversarial datasets 515

and five LLMs, compared to standard in-context 516

learning and X-ICL using human-written NLEs. 517

Additionally, our analysis revealed that data selec- 518

tion methodologies may exhibit overfitting within 519

the in-distribution dataset, thus potentially failing 520

to extend to unseen or adversarial datasets. In con- 521

trast, our approach employing NLEs has shown 522

consistent performance in both in-distribution and 523

adversarial contexts. Our work paves the way for 524

more robust performance and enhanced explain- 525

ability capabilities of LLMs. 526

Limitations 527

One limitation of X-ICL might be the observed 528

lack of fidelity in the NLEs generated by LLMs, 529

despite their capability to provide accurate answers. 530
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These NLEs may sometimes include unfaithful or531

hallucinated information, which if relied upon by532

users for model trust, can lead to severe implica-533

tions. Testing and enhancing the faithfulness of534

NLEs is a challenging open question (Atanasova535

et al., 2023). In this work, we show that X-ICL im-536

proves robustness, but we do not advocate for the537

usage of the generated NLEs as faitfhul explana-538

tions without further testing. Second, our approach539

exhibited promising results when tested against ad-540

versarial datasets in two notable NLP tasks: natural541

language inference and paraphrasing identification.542

However, further research is required to examine543

the performance of LLMs and their generalizability544

across diverse NLP tasks in the context of adversar-545

ial examples.546
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A Details of Datasets932

The details of all studied datasets are delineated as933

follows934

• SNLI Dataset: The SNLI dataset, a benchmark935

in natural language inference, encompasses ap-936

proximately 570,000 human-annotated sentence937

pairs, each pair formed by a premise and a hy-938

pothesis. These sentences originate from an ex-939

isting corpus of image captions, thus offering a940

broad spectrum of common subjects and linguis-941

tic structures (Bowman et al., 2015).942

• HANS Dataset: McCoy et al. (2019) developed943

a dataset with the express purpose of scrutiniz-944

ing the performance of models when confronted945

with sentences characterized by several types of946

distracting signals. These signals encompass the947

presence of lexical overlap, sub-sequences, and948

constituent heuristics between the corresponding949

hypotheses and premises.950

• Datasets Sensitive to Compositionality (ISCS):951

As proposed by Nie et al. (2019), a softmax re-952

gression model was employed to utilize lexical953

features present in the premise and hypothesis954

sentences, thereby generating instances of mis-955

classification. Here, the Lexically Misleading956

Score (LMS) denotes the predicted probability of957

the misclassified label. Adapting the approach of958

Liu et al. (2020b), we concentrated on the subsets959

possessing LMS values exceeding 0.7.960

• Not another Negation (NaN) NLI Dataset:961

NaN dataset is developed to probe the capabilities962

of NLP models in comprehending sub-clausal963

negation (Truong et al., 2022).964

• Stress Test Datasets (ST): Our analysis also in-965

corporates various stress tests described by Naik966

et al. (2018) such as “word overlap” (ST-WO),967

“negation” (ST-NE), “length mismatch” (ST-LM),968

and “spelling errors” (ST-SE). Specifically, ST-969

WO aims to identify lexical overlap heuristics be-970

tween the premise and hypothesis, ST-NE seeks971

to detect intense negative lexical cues in partial-972

input sentences, ST-LM aspires to create mis-973

leading predictions by artificially lengthening the974

premise using nonsensical phrases, and ST-SE975

employs spelling errors as a means to deceive the976

model.977

• Datasets Detected by Classifier (PICD): In the978

approach proposed by Gururangan et al. (2018),979

fastText was applied to hypothesis-only inputs. 980

Subsequent instances from the SNLI test sets 981

(Bowman et al., 2015) that could not be accu- 982

rately classified were designated as ‘hard’ in- 983

stances. 984

• Surface Pattern Datasets (PISP): Liu et al. 985

(2020a) identified surface patterns that exhibit 986

strong correlation with specific labels, thereby 987

proposing adversarial test sets counteracting the 988

implications of surface patterns. As suggested by 989

Liu et al. (2020b), we employed their ‘hard’ in- 990

stances extracted from the MultiNLI mismatched 991

development set (Williams et al., 2018) as adver- 992

sarial datasets. 993

• Adversarial NLI (ANLI): ANLI dataset (Nie 994

et al., 2020) is a challenging resource created 995

for training and testing models on NLI, featuring 996

adversarial examples intentionally curated to ob- 997

fuscate or mislead benchmark models, thereby 998

increasing its challenge factor. This dataset is 999

constructed in multiple rounds, with each subse- 1000

quent round featuring human-created examples 1001

specifically designed to outsmart models trained 1002

on the previous rounds. In total, the dataset com- 1003

prises three distinct rounds, specifically ANLI 1004

R1, ANLI R2, and ANLI R3, highlighting the 1005

layered complexity of this resource. 1006

• Quora Question Pairs (QQP): QQP 1007

dataset (Wang et al., 2018) comprises pairs of 1008

questions sourced from the Quora community 1009

question-answering platform. The primary 1010

objective is to ascertain whether each question 1011

pair exhibits semantic equivalence. 1012

• Paraphrase Adversaries from Word Scram- 1013

bling (PAWS): The PAWS-QQP dataset (Zhang 1014

et al., 2019), derived from the QQP datasets, tar- 1015

gets the intricate task of paraphrasing identifica- 1016

tion, emphasizing the differentiation of sentences 1017

that, despite high lexical similarity, convey dis- 1018

tinct meanings. It incorporates adversarial exam- 1019

ples generated via word scrambling, presenting a 1020

stringent assessment for NLP models. 1021

B Meta-prompts for Generating 1022

Synthetic NLEs 1023

Table 4 and 5 present the meta-prompts employed 1024

for producing NLEs utilizing ChatGPT in zero- and 1025

few-shot scenarios. 1026
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Meta-prompt for zero-shot generation

Assume that you’re an expert working on natu-
ral language inference tasks. Given a premise,
a hypothesis, and the corresponding label.
Please write a concise and precise reason to
explain why the label is assigned to the exam-
ple:

Meta-prompt for few-shot generation

Assume that you’re an expert working on
natural language inference tasks. Given a
premise, a hypothesis and the corresponding
label. Please write a concise and precise rea-
son to explain why the label is assigned to the
example by following the provided examples:

Table 4: Meta-prompts used to generate NLEs via Chat-
GPT in zero- and few-shot scenarios for natural lan-
guage inference tasks.

Meta-prompt for zero-shot generation

Assume that you’re an expert working on para-
phrasing identification tasks. Given two sen-
tences and the corresponding label. Please
write a concise and precise reason to explain
why the label is assigned to the example:

Meta-prompt for few-shot generation

Assume that you’re an expert working on para-
phrasing identification tasks. Given two sen-
tences and the corresponding label. Please
write a concise and precise reason to explain
why the label is assigned to the example by
following the provided examples:

Table 5: Meta-prompts used to generate NLEs via Chat-
GPT in zero- and few-shot scenarios for paraphrasing
identification tasks.

C Supplementary Studies1027

Using NLEs Generated by Vicuna and LLaMA2.1028

Our research demonstrates that the integration1029

of NLEs generated by ChatGPT significantly en-1030

hances the performance of X-ICL for five ad-1031

vanced LLMs. To assess the efficacy of these1032

ChatGPT-generated NLEs, we explore the genera-1033

tion of synthetic NLEs using Vicuna and LLaMA2,1034

ranked as the third and second-best models respec-1035

tively. Likewise, these NLEs are generated in a1036

few-shot setting, referred to herein as Vicunafew1037

Tasks NLEs

Vicunafew LLaMA2few ChatGPTfew

SNLI 62.9 ( -5.0) 64.1 ( -3.7) 65.0 ( -2.9)
HANS 55.5 ( -7.4) 67.4 ( +4.5) 74.5 (+11.6)
ISCS 65.1 ( +4.2) 63.6 ( +2.7) 65.5 ( +4.6)
NaN 62.6 ( -1.6) 65.1 ( +0.9) 66.3 ( +2.1)
ST 59.5 ( +2.2) 61.9 ( +4.6) 64.8 ( +7.5)

PICD 60.2 ( -3.5) 60.8 ( -2.9) 61.6 ( -2.1)
PISP 66.0 (+11.0) 66.1 (+11.1) 66.0 (+11.0)

ANLI (R1) 66.1 ( +9.1) 65.8 ( +8.8) 64.9 ( +7.9)
ANLI (R2) 55.4 ( +6.5) 55.9 ( +7.0) 55.5 ( +6.6)
ANLI (R3) 49.6 (+10.8) 50.7 (+11.9) 52.0 (+13.2)

Average 60.3 ( +3.8) 62.1 ( +5.6) 63.5 ( +6.9)

Table 6: ICL performance of Vicuna using (1) standard
ICL without NLEs, (2) X-ICL with Vicuna-generated
NLEs in a few-shot scenario: Vicunafew, (3) X-ICL
with LLaMA2-generated NLEs in a few-shot scenario:
LLaMA2few, (4) X-ICL with ChatGPT-generated NLEs
in a few-shot scenario: ChatGPTfew. Numbers in the
parentheses represent differences compared to X-ICL
(Human).

and LLaMA2few, respectively. To ensure a fair 1038

comparison, we employ Vicuna as the underly- 1039

ing model to evaluate X-ICL(Vicunafew), X-ICL 1040

(LLaMA2few), and X-ICL (ChatGPTfew) on all 1041

studied datasets. 1042

Our results, detailed in Table 6, highlight that 1043

X-ICL generally gains greater benefit from LLM- 1044

generated NLEs as opposed to those produced by 1045

humans. Meanwhile, X-ICL (ChatGPTfew) consis- 1046

tently outperforms X-ICL(Vicunafew) and X-ICL 1047

(LLaMA2few) considerably, except for ANLI R1 1048

and R2. These findings suggest that in order to 1049

fully harness the potential of AI-generated NLEs, 1050

the employment of a powerful LLM is integral. 1051

Analysis on memorization LLMs such as Chat- 1052

GPT have occasionally replicated instances from 1053

renowned benchmark datasets, including MNLI 1054

and BoolQ (Sainz et al., 2023). This unintentional 1055

‘contamination’ might contribute to misconceptions 1056

regarding the superior performance of LLMs on 1057

these widespread benchmarks due to data memo- 1058

rization. 1059

Following Carlini et al. (2023), we merge the 1060

premise and hypothesis of each test instance into a 1061

single sentence, using the first part as the prefix. If 1062

an LLM could perfectly replicate the second part, 1063

we labeled the instance as ‘extractable’. Evaluating 1064

all studied models, we observe that the proportion 1065

of extractable instances is under 0.001% across 1066

all datasets and backbone models, indicating that 1067

the superior performance of LLMs might not be 1068
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ascribed to memorization.1069

D Qualitative Analysis on NLEs1070

D.1 Qualitative Analysis on NLEs for1071

Demonstration Set1072

We first conducted a qualitative analysis of NLEs1073

generated by ChatGPT under zero- and few-shot1074

scenarios, using the demonstration set as a basis.1075

Note that each instance in the demonstration set has1076

three distinct NLEs: (1) the zero-shot NLE from1077

ChatGPT, (2) the few-shot NLE from ChatGPT,1078

and (3) the human-written NLE. From these three1079

NLEs per instance, one was randomly selected,1080

and both the instance and the chosen NLE were1081

incorporated into the evaluation set.1082

Subsequently, this evaluation set was rated inde-1083

pendently by four authors on a 5-point Likert scale1084

to assess the quality of the NLEs. The scale ranges1085

were 1 (extremely dissatisfied), 2 (dissatisfied), 31086

(neutral), 4 (satisfied), and 5 (extremely satisfied).1087

Finally, we calculated the average scores for both1088

ChatGPT-generated and human-written NLEs for1089

each evaluator.1090

D.2 Qualitative Analysis on NLEs for1091

Inference Set1092

We also conducted a qualitative analysis of NLEs1093

generated by X-ICL (ChatGPTfew), utilizing1094

GPT3.5-turbo as the foundational model. A total of1095

280 randomly sampled, correctly predicted exam-1096

ples from X-ICL (ChatGPTfew) were distributed1097

evenly among seven evaluators. These evalua-1098

tors were tasked to assess the quality of the NLE1099

for each assigned instance, based on the premise-1100

hypothesis pair and its corresponding correctly pre-1101

dicted label.1102

The evaluators were required to rate the quality1103

of the NLE using the aforementioned 5-point Likert1104

scale. In case of dissatisfaction, they were asked to1105

identify the reason from a list of predefined factors,1106

including:1107

• template: The NLE simply restates the input1108

and employs it as a justification.1109

• insufficient justification: The NLE requires1110

more support for the prediction.1111

• too verbose: The NLE is overly detailed and1112

includes unnecessary information.1113

46.6%

39.3%

8.5%

5.1%
extremely satisfied

satisfied

neutral

dissatisfied

extremely dissatisfied

34.8%

23.9%

23.9%

13.0%

template

insufficient justification

too verbose

incorrect arguments

contradicts 
commonsense

hallucinations

Figure 5: Human evaluation on ChatGPT-generated
NLEs for the correct predictions from X-ICL
(ChatGPTfew). Top: distribution of satisfaction scores.
Bottom: distribution of reasons for dissatisfaction.

• incorrect arguments: Despite the prediction 1114

being accurate, the NLE fails to support it due 1115

to erroneous arguments. 1116

• contradict commonsense: The NLE is incor- 1117

rect and contradicts commonsense. 1118

• hallucinations: The NLE includes fabricated 1119

information. 1120

According to Figure 5, 46.6% and 39.3% of 1121

NLEs are marked as ‘extremely satisfied’ and ‘sat- 1122

isfied’ respectively, constituting 85.9% of the total 1123

280 NLE samples. This suggests a high-quality 1124

output from GPT3.5-turbo in general. As for the 1125

lower-quality NLEs, the primary reasons for dissat- 1126

isfaction include ‘template’, ‘insufficient justifica- 1127

tion’, and ‘too verbose’. Interestingly, this suggests 1128

that, despite the expressed dissatisfaction, evalua- 1129

tors generally did not find incorrect justifications 1130

in most instances. 1131
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