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ABSTRACT

This paper investigates theoretical and methodological foundations for stochastic
optimal control (SOC) in discrete time. We start formulating the control prob-
lem in a general dynamic programming framework, introducing the mathematical
structure needed for a detailed convergence analysis. The associate value function
is estimated through a sequence of approximations combining nonparametric re-
gression methods and Monte Carlo subsampling. The regression step is performed
within reproducing kernel Hilbert spaces (RKHSs), exploiting the classical KRR
algorithm, while Monte Carlo sampling methods are introduced to estimate the
continuation value. To assess the accuracy of our value function estimator, we
propose a natural error decomposition and rigorously control the resulting error
terms at each time step. We then analyze how this error propagates backward
in time-from maturity to the initial stage-a relatively underexplored aspect of the
SOC literature. Finally, we illustrate how our analysis naturally applies to a key
financial application: the pricing of American options.

1 INTRODUCTION AND RELATED WORK

Stochastic optimal control (SOC) provides a principled framework for sequential decision-making
under uncertainty. It plays a foundational role in a wide range of scientific and engineering do-
mains, including economics and finance [Fleming & Stein| (2004); Pham| (2009); Astrom| (2012),
robotics|Gorodetsky et al.| (2018)); Theodorou et al.| (201 1)), molecular dynamics Hartmann & Schiitte
(2012); Hartmann et al.| (2013)); [Zhang et al.| (2014); |Holdijk et al.| (2023), and stochastic filtering
and data assimilation Mitter] (2002); Reich| (2019). More recently, SOC has inspired advances in
machine learning, particularly in tasks such as sampling from unnormalized distributions |Zhang &
Chen| (2021)); Berner et al.| (2022); Richter & Berner (2023); |Vargas et al.[ (2023)), nonconvex opti-
mization (Chaudhari et al.| (2018), optimal transport |Villani et al.| (2008), and the numerical solution
of backward stochastic differential equations (BSDEs) Carmona, (2016).

While continuous-time SOC has been extensively studied in the literature Bertsekas| (2012)), its
discrete-time counterpart naturally arises in computational and data-driven applications, where de-
cisions are made at fixed time intervals |[Bertsekas & Shrevel (1996)); |Puterman| (2014)). Despite its
practical relevance, discrete-time SOC has historically received less theoretical attention and often
presents greater challenges due to the absence of many of the mathematical tools available in con-
tinuous time. Nevertheless, it still offers opportunities for the development of scalable numerical
methods, particularly through dynamic programming and function approximation. Discrete-time
SOC is central to modern applications in operations research, financial engineering or reinforce-
ment learning (RL) Sutton et al.| (1998). At its core lies a dynamic programming (DP) recursion,
where the value function is computed backward in time via the Bellman operator Bellman|(1966). In
high-dimensional settings, solving this recursion exactly is often infeasible, inspiring a large body of
research focused on developing scalable and efficient approximations. These approaches typically
estimate value functions from data using simulation or function approximation. In recent years,
deep learning has greatly expanded the scalability of these methods, enabling their application to
high-dimensional control problems |Han et al.|(2016);|Domingo 1 Enrich et al.|(2024).

Despite this empirical progress, the theoretical understanding of learning-based SOC remains lim-
ited. A key challenge lies in quantifying how local errors deriving from function approximation,
sampling noise, or optimization inaccuracies, propagate through the Bellman recursion over time.



Under review as a conference paper at ICLR 2026

Studying this requires a rigorous and principled mathematical framework where to analyze the error
accumulation in high-dimensional value function approximations. In this work, we propose such a
framework based on reproducing kernel Hilbert spaces (RKHS), which enables us to derive explicit
error bounds and control error propagation in approximate dynamic programming.

A classical application of discrete-time SOC is the pricing of American-style options, also known
as Bermudan options when exercise opportunities are discrete. This problem can be formulated as
a finite-horizon optimal stopping problem under stochastic dynamics. While such problems can,
in principle, be solved exactly [Peskir & Shiryaev| (2006); [Lamberton & Lapeyre| (2011), well-
established numerical methods, such as tree-based approaches or PDE solvers, struggle with the
curse of dimensionality as complexity increases Broadie & Glasserman|(1997); Bally et al.| (2003);
Jain & Oosterlee (2012). To overcome this problem, Monte Carlo-based methods have spread in
high dimensions applications. Notable examples include regression-based techniques [Tsitsiklis &
Van Roy| (1999)); [Longstaff & Schwartz| (2001)), dual and hybrid primal-dual formulations Rogers
(2002); [Haugh & Kogan| (2004); /Andersen & Broadie| (2004); Belomestny et al.| (2013)); |[Lelong
(2018), and Malliavin calculus methods for estimating conditional expectations |[Lions & Regnier
(2001)); Bouchard & Touzi| (2004); Bally et al. (2005); |Abbas-Turki & Lapeyre (2012)). More re-
cently, machine learning |Williams & Rasmussen| (2006)) and deep learning approaches |[Kohler et al.
(2010); Nielsen| (2015); Becker et al.| (2019); Goudenege et al.| (2020) have shown strong empirical
performance in this domain. However, these methods often lack rigorous theoretical guarantees on
accuracy and generalization.

Our work aims to bridge this gap by developing kernel-based algorithms for discrete-time SOC that
come with provable convergence guarantees and theoretical error bounds, while keeping an eye on
computational efficiency and scalability for big data applications.

Contribution In summary, our contributions are as follows. First, we propose a general RKHS-
based formulation of approximate dynamic programming through backward induction. Second, we
provide a rigorous decomposition of the total approximation error into three distinct components:
regression error, Monte-Carlo sampling error, and propagation error. Third, we derive explicit con-
vergence rates under model misspecification by leveraging source conditions. Finally, we show how
this framework can be applied to various problems, especially in finance. We demonstrate the prac-
tical effectiveness of our algorithm through the well-known problem of American option pricing and
preliminarily test its performance against some of the standard benchmark methods in the field.

Organization The paper is organized as follows. In Section [2| we introduce the problem and
setting, with key definitions and notations used throughout the paper, and formalizing the problem
in a precise mathematical framework. In Section [3] we introduce the Monte Carlo approximation
and the regression step in the RHKS environment. In Sectiond] we study the error back-propagation,
upper bounding the various approximation terms and finally showing the final error guarantees in
Theorem [I] In Section [5] we finally present some numerical results.

2 SETTING AND STOCHASTIC CONTROL MODEL

Consider a discrete time horizon ¢ = {0,1, ..., T}. We define a stochastic process Z = (Z;)_, on
a filtered probability space (2, F, (FZ)L,, P), where (F#)L_, is the natural filtration generated by
Z. The random variables Z; are mutually independent (but not necessarily identically distributed)
and take values in measurable spaces Z;. We denote by P(dz) = Htho P.(dz;) the distribution
of Z on the path space Z = Zy X - -+ x Zp, which we identify with {2 without loss of generality.
Any square-integrable adapted process, such as an asset price process, can be written in the form
X = Xi(Zy, ..., 2Z), for some function X; € L%mep .

t

Controlled Markov process X, ..., X taking values in state spaces Xy, ..., X7 is defined by
X§ = po(Zo),
Xy = m (X ue(XE), Zia), te€{0,...,T -1},

where pg : Z¢p — A} is the initial state distribution, 7y : Xy XUy X 2411 — X4 is a Markov transi-
tion function encoding how the system transitions from one state to the next, and w = (u;)i—' € U
is a stochastic control law, where each u; : X; — U; is F;-measurable.

(D
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Remark 1. Note that this setup remains very general despite the Markovian assumption. For rea-
sons related to dimensionality, it is typically assumed that X{* summarizes the full history Zy.1, uo.+
in a compressed form, so that the control at time t depends only on X}, i.e., uy = uy(X}*). This does
not entail a loss of generality, as many important problems are naturally Markovian. Moreover, any
optimal stopping problem can be cast in Markovian form by including all relevant past information
in the current state, at the cost of increasing dimensionality.

A control law w is said to be admissible if the maps (z, z) — m(x, u(x), z) satisfy suitable regu-
larity conditions. In particular, we assume that the operator

Plf(z):=E [f(Xtu+1) | Xy = 50] =E [f(wt(x,u,ZtH))] = /z f(ﬁt(xauaz))PH-l(dz)v
2

defines a Markov transition kernel from &; to Xy, 1, for all u € U;. With a slight abuse of notation,
we will sometimes use the alternative, also common definition in kernel form

Pz, A) =P [X}, € A| X' =z] = /Z La(me(z, u, 2))Pig1(dz) 3)
t41

with A € B(X;11), i.e. the Borel o-algebra on the space X;y;. In the following, it will be clear
which one of the two representations we are using. The connection between the two is simply

P f(x) = (') P (x,dz’). 4)

Xiy1

The objective of stochastic optimal control is to maximize a gain function over all admissible control
laws. In the discrete-time setting, this is given by the sum of the partial rewards F} : Xy x Uy — R
fort = 0,...,T — 1, and the terminal reward ® = Fp : Xpr — R. Then, we define the optimal
value function V; : X; — R at time ¢ as

T—1
V, = suBE D F (X u (X)) + (X5 | X (5)
uc s=t

We now introduce the Bellman operator at time ¢ as

Tif (z) = esssup Fy(z,u) + P f(2). (6)
u€EUy
Bellman’s principle Bellman| (1966) implies that the optimal value function solves the dynamic
programming equation Bertsekas & Shreve| (1996); Kallsen| (2016)

{VT@:) = (), -
Vi(x) = Te Vg (), te{0,...,T—1}.

We now want to represent Eq. [7]as a functional dynamic programming equation in some appropriate
L? spaces. To this end, we fix an auxiliary admissible control law , often called the behavior policy
in the RL literature Sutton et al.|(1998), and let 1+ denote the distribution of X}* on X;. We introduce
the following assumption to ensure that, if & € LQT, then the optimal value function satisfying the
dynamic systembelongs to Lit forallt € {0,...,T}.

Assumption 1 (Square integrability). There exist constants cp > 0 and cp > 0 such that, for all
te{0,...,T}:

esssup | P,'g]|
uelU;

esssup | Fy (-, u)|
ueU,

g CFr,
Ly

1/2
<ol 8)
L2 Ptt1

Mt

2 2
forallg € L, . We further assume ® € L;, .

Under these conditions, 7 : LitH — Liu see Lemma in Appendix [Alfor the complete proof.
Then V; € Lfm forall t = {0,...,T}, and the dynamic programming Eq. [7|holds in each corre-
sponding leu, space. Further details on this assumption are discussed in Appendix @

The main goal in the following will be to find a good estimate of the optimal value function at the
initial time ¢ = 0, i.e. Vj, by leveraging the recursive formulation in Eq.
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Example 1 (American Options). An American option is a financial contract that gives the holder
the right, but not the obligation, to buy or sell an underlying asset at a specified strike price at any
time up to the expiration date.

Let X be an exogenous Markov process, i.e., it is not influenced by any control variable or decision.
Let Q; = Qq(x, dz’) denote its Markov transition kernel from X to X;y1, which specifies the con-
ditional distribution of the next state X, given the current state X, = x. Suppose the underlying
asset has a price at time t given by a function Sy(X;). An American (call) option with strike K pays

Co(Xy) = (Se(Xy) — K)© 9

if exercised at time t. In practice, the dimension of the state space can be very high. For instance,
St(X¢) could represent the maximum price in a basket of assets at time t, as in a so-called American
max-call option.

The holder of the American option aims to maximize the expected payoff E[C- (X, )] over all exercise
strategies, i.e., over all stopping times 7. We now cast this problem as a stochastic optimal control
problem[?] To this end, we introduce a cemetery state A+ ¢ X, and deﬁne the augmented state space
XAT = Xy U{A+}. Any measurable function f on X, is extended to X, A1 by setting f(Ay) ==

Thls is a standard technique in the theory of Markov processes, see Revuz & Yor (2013)).

Define now the control space as Uy := {0,1}, where u = 0 represents exercising the option and
u = 1 holding it. The controlled Markov transition kernel P{ is given by:

U, A) = Qi(z, AN Xig1) ifu=1, z € XA,
B oa; (A) otherwise,

for A € B(X{ +1) meaning that the controlled process X' follows the exogenous dynamics until the
option is exercised, after which it is absorbed in the state Ay. Define also:

Ft(',l) :O7 Ft(,O) :Ct, (I):CT (10)

. . . A .
An admissible control law u then consists of measurable functions uy : X, — {0,1}, with the
convention ui(A+) = 0. The associated exercise strategy is defined by:

= inf{t | u = 0} AT, (11)

i.e., the first time t € {0,...,T — 1} such that uy = 0, or T if no such time exists (with inf ) = co).
The dynamic programming problem|[7|then becomes:

Vr(z) = Cr(z),
{Vtu) = max {Cy(x), " QuVis1 (1)} (12)

which selects the maximum between the immediate exercise value and the (discounted) continuation
value. Here, r denotes the risk-free interest rate.

3 SAMPLE-BASED VALUE FUNCTION APPROXIMATION

The stochastic dynamic control problem in[/|is not directly solvable in practice, primarily because
we do not have access to the true expectation in P*. A standard way to address this issue is to

approximate the expectation via Monte Carlo simulation. Let {z(tH)}
from the distribution of the stochastic driver Z;;. We then define

~ P} bei.id. samples

P“f —Zf(mxu th))), ﬁf(x) —esssup{thu +P“f( )}7 (13)

uEU,

the empirical approximation of P and the associated empirical Bellman operator, respectively.
By the Law of Large Numbers and the Continuous Mapping Theorem, we obtain:

Prf(x) L2 Prf(x),  Tif(x) L5 Tof(z),  for M, — occ. (14)

However, a naive application of this approximation—by recursively replacing P with f’t“ in the dy-
namic programming equation—fails in practice, resulting in a nested Monte Carlo procedure whose
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computational cost grows exponentially with 7', making it infeasible for large time horizons.

To mitigate this, we adopt a more efficient approach: we proceed backward in time and use regres-
sion to construct a sequence of function approximators for each V;. At each stage, we generate
samples and solve a supervised learning problem, leveraging the approximation of V;,; obtained in
the previous step (with the terminal condition V- = ® known a priori). Specifically, assume we have

already computed an approximation of Vi1, denoted by Wt’\jfl (this ~ notation will be explained
below in Eq.[18). We then generate training data {(z;, ;) };*,, where ; ~ p; and

yi = TWNT (20). (15)

We now solve the corresponding regression problem using a suitable supervised learning method.
A classical choice is regularized empirical risk minimization (ERM) with Tikhonov regularization.
Combined with kernel methods, and with the natural choice of the square loss as the loss function,
this yields the well-known Kernel Ridge Regression (KRR).

Assumption 2 (Reproducing Kernel Hilbert Space). Let Hy be a separable reproducing kernel
Hilbert space (RKHS) of real-valued functions on X, with inner product (-,-)y, and associated
norm || - ||x,. Let k : X x X — R be the reproducing kernel of H}, and assume it is bounded, i.e.,
there exists . > 0 such that sup,¢ v k(z,r) < k2.

Remark 2. Although we use standard well-spread Monte Carlo sampling in this step, this is not
the only viable choice. Any quadrature rule (e.g., monomial rules) can be used in place of Eq.[I3]
to approximate the operator P{. This flexibility can be especially valuable in high-dimensional
settings or when Monte Carlo sampling error is non-negligible, as some quadrature methods may
achieve much higher precision using fewer points.

KRR estimator. For a regularization parameter A; > 0, the KRR estimator at time ¢ is defiend as

¢

—~ 1 ,
”rkt = argmin — P — X A 2 (16)

Note that at maturity, the value function V7 is known and equals ®, so no approximation is needed
at the final step. Also note that, given Eq. 7}Wt)f1’1 is the regression target function, i.e.,

~ e~ ~ 2
Wy = TWt = srgmin € (v — f(x))°] = argmin € (W) -r0)] an
€Ly, €Ly,

since %W{}Hl € L7 under Assumption In general, W;* ¢ H, i.e. the model is misspecified.
We will mention this further in the next section when introducing the well-known source condition.

Before turning to the statistical analysis, we introduce a refinement of our estimator, which also
justifies the notation™ used above. This step will be important to control approximation errors in the
next section. We recall the following definitions, see (Steinwart & Christmann, 2008a, Chapter 6).
Given a threshold parameter B > 0, we define the clipped version of a € R as:

a = min{max{a, —B}, B}. (18)

We say that a loss function £ is clippable at level B > O if forally € Yanda € R, £(y,a) < £(y,a).
It is easy to verify that many loss functions are clippable. In particular, the square loss (which
we use) can be clipped at B when the output y € [—B, B]. Note that if Y is generated as in
Eq.|15] a sufficient condition for boundedness is sup,,.c x, wey |Ft(7, u)| < B. In practice, Fy(z,u)
is often unbounded (e.g., option payoffs), but boundedness can be enforced without loss of rigor
by restricting the dynamics to a compact subset of the state space. In financial applications, for
instance, p, is typically induced by a discretized geometric Brownian motion, hence log-normal
with exponentially decaying tails. Consequently, large deviations of X; are extremely rare, and
truncation introduces only negligible error while allowing the use of the clipped estimator W)‘t, as
required in [Steinwart & Christmann| (2008b)).

The resulting method-that for simplicity we will indicate as KRR-DP (Kernel Ridge Regression-
Dynamic Programming) in the following—is summarized in Algorithm T}

Example 2 (American Options (cont.)). We now return to the American options application in-
troduced in Example |I| and continue adapting our model to this setting. Here, the state vector
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Xi= (X} ..., XHT e R‘i represents the prices of d underlying assets at time t. A common model
for their evolution is geometric Brownian motion (GBM), whose dynamics are given by
dX} = rX!dt + 0, X} (p*/?dB,)’, (19)

fori = 1,...,d, with v € R the risk-free rate, o; > 0 the volatility of asset i, p € R the
correlation matrix and By = (B}, ..., B)T a d-dimensional Brownian motion with independent
components. We consider discrete timest = 0, ..., T and approximate the dynamics with

Xion=Xi-exp ((r—307) + 0 (0'*2)i) . (20)
where z = (21,...,24)" ~ N(0,1,) is a vector of independent standard Gaussian variables.

As an example, we define a max-call option with strike price K > 0, for which S¢(X;) =
max{X}, ..., X}, and the payoff at time t is given by

Ci(Xy) = (Si(Xy) — K)" = <max Xi - K)+. (21)

1<i<d

The transition function Ty : Ri x Uy x R — Ri is defined as

A ifu=0,
m(, u, 2) = T © exp ((r — %02> +o00© (P1/22)> otherwise,

witho = (01,...,04)", ® the elementwise multiplication.

Algorithm 1: KRR-DP for American Option Pricing (backward induction with MC + KRR)
Inputs: T'; 7; {Ch, ps 7¢, iy, Mt}fz_ol; KRR hyperparameters {@t}fz_ol (kernel, )\, etc.).
Qutput: Estimator W(;\O : R?— R of the value of the option V.

// MC estimate of discounted continuation under ‘‘hold’’ (u=1)
Function Cont inuationvalue (z, M;, 7, Wt)ﬁrl ):
Sample (1), ..., 2(M) " p, // e.g., z~N(0,I)
forj=1,...,M;do
‘ Zj + m(z, u=l, z(J));
end
return e "2 ﬁt Zj\/[:*l Wt’\if (75);

// Generate supervised data ()/(\t, U:) at stage t

Function DataGeneration (ng, My, ug, m, Cy, Wtﬁff )
Sample E(\t = [w1,...,2,,]", with x; i hts
parallel for i = 1,...,n, do
q; + ContinuationValue (x;, My, my, Wfﬁrl ) // MC continuation
Yi <—max(C’t(xi), qi); // Bellman: exercise vs. continue
end

return (jf\u Ue=1[y1,-yn] ")

// Main backward pass

Function OptionPricing ({(ng, My, pt, 7, Ct, @f,)}tho) :

WZ{‘T «— Cr=®; // terminal value is known
fort=T-1,...,0do

(5(\25, Ui) < DataGeneration (ng, My, uy, m, Cy, VAVt)ITl) ;

Wf‘f < Regression ((E(\t,@}), ©:); // KRR/FALKON on ()A(t,ﬂt)

end
return TV
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4 ERROR ANALYSIS AND BACKWARD PROPAGATION

In this section, our primary goal is to provide theoretical guarantees for our estimator VT/{\‘ and to
study how the error propagates backward in time from 7" to 0. In particular, we are interested in

analyzing the rate of convergence of W,f‘f to the target value function V; in some norm, as a function
of the sample sizes n; and M;. A natural choice is to bound

€= W = Vi, - (22)

4.1 ERROR DECOMPOSITION

To do so, we split the total error into three components:

£ 5 I T3y + I TG, + I — Ty - @9

Term I: Regression Error. The first term is the standard machine learning error due to the fact

that our estimator minimizes the empirical risk in Eq. based on a finite sample {(z;,y;)}iy.
Our target is the regression function W} = ﬁWtﬁfl , as defined in Eq. Term I then corresponds
to the so-called excess risk of Wt/\t:

2
2
L#t’

R(WM) = R(W) =E [(Y = W (X)) = (Y = W7 (X))?] = [[W) — w7 (24)

(see|Caponnetto & De Vito|(2007)), where R(Wt)‘t) is the risk of Wt)‘t and R(Wy) = R(ﬁﬁ?ﬁ” ).
It represents the expected error of our estimator on new data compared to the regression function.

We introduce the following regularity assumption, commonly referred to as the source condition.

Assumption 3 (Source Condition). There exists B; € (0,1] such that W} € Lft/ 2(Lit), where

Ly : LIQM — Lit is the integral operator associated with the kernel k.

Assumption [3] and equivalent formulations (e.g., Assumption 4 in [Rudi et al.| (2015a)) are standard
in the literature (Smale & Zhoul 2007} [Caponnetto & De Vito, 2007). The parameter [3; quantifies
the smoothness of the target function W and how well it can be approximated by elements in Hy.
When §; = 1, we are in the well-specified setting, i.e., W} € Hj. Our main focus, however, is on
the misspecified setting with 8, < 1, where W;* ¢ Hy.

Under the square loss, Assumption [3|is directly related to the approximation error, as shown in
Smale & Zhou|(2003); [Steinwart et al.| (2009). Using a result from (Steinwart et al., 2009, Corollary
6), we obtain the following upper bound in terms of n;. With high probability,

2 ~ 5
2 S ™ (25)
t

e T
We refer to Appendix [B] for further details. Note that the above rate can be made faster by assuming
some polynomial (or even exponential) decay of the spectrum of the integral operator Lj. This is
deeply connected to the well-known capacity assumption, which for simplicity is not assumed here
in the main text. Further details and the resulting faster rate can be found in Appendix

Term II: Monte Carlo Error. The second term accounts for the Monte Carlo error introduced
when approximating the unknown expectation in 7, as discussed in Section

&
Using the definitions of 7; and 7; from Eqgs. EI and|[13] together with Lemm in Appendix |Al and
denoting F7 = {z — Wt)ﬂ’l (me(x,u,2)) : w € Uz }, we obtain that, with high probability,

1 ok ’ N -
M;ﬂzj)—E[f(Ztﬂ)]) < |eRFo) + \/;t

2
L“t M

2
T T A1 T A t+1 }
||7;Wt+1 - TWia < || sup
feFy

I
2
LIJ't

where the last inequality follows from the boundedness of Wt)jjl and an application of |Boucheron
et al.|(2005, Theorem 3.2), while R(F}") denotes the well-known empirical Rademacher complexity
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of F (see definition in Appendix [B.2). Bounding such complexities is a classical problem in
statistical learning theory (Bartlett & Mendelson, 2002). In our setting, we focus on two relevant
cases: (i) finite classes, as in American options where the control set is binary ({4, = {0,1}), and
(ii) Lipschitz transitions m;, which are typical in financial models once the state space is a compact
set (see the discussion about truncation in previous section). Using results from Massart| (2000);
Bartlett & Mendelson|(2002)) (see Appendix , we obtain for both cases

ER(FF) < \/1/M,. (26)

Term III: Propagation Error. This term captures the error inherited from the previous step ¢ + 1.
By Lemma[2]in Appendix [A] we have:

1 t 2 E7%4 t 2
ITWEL = TVl <epllWEE = Viralle = cpéin.
Final Bound. Putting everything together, we obtain the following result.
Theorem 1 (Error Backpropagation). Under Assumptions [I| 2} B} and provided that condition [26]
1 B

holds, with the choice My ~ nt_ P and My ~ nftﬁ , we have with high probability:
_Bt

— 15
&= Wi - Vt”iﬁt < (n*) " +cp&ita, (27)
Sfort €{0,...,T — 1}. Furthermore,
— ) -1 1\ Aok
=T —villy, £ e ()™ @

t=

Note that, as desirable, the error vanishes as n; — oo for all £. In the non-asymptotic regime, the
convergence rate depends on the smoothness parameters {3; }+, which reflect the level of misspeci-

fication of the problem. Although the expectation operator P;* may act as a smoothing operator, the
supremum in the Bellman operator prevents us from guaranteeing a smoothing effect through time.
As a result, the problem generally remains misspecified throughout the backward recursion. Note
also that the constant c¢p in Assumption [I]plays a key role in controlling the resulting error propaga-
tion. When cp < 1, as in our option pricing setting (see Example 3] below), the recursion becomes
contractive, so errors are damped rather than amplified, making convergence faster and more stable.
Example 3 (American Options (cont.)). Returning to our application to American option pricing
in Example[Z] we now adapt Theorem [Z] to this setting. Note that W5 = Vp = U is typically non-
smooth for common payoff functions, see Eq.[9 or Fig. [I}2] in Appendix[C). As mentioned above,
this places us in the misspecified case, where the smoothness parameters {5; }+ can be small, while
it is not clear if the specification eventually improves throughout the recursion. From Eq.[I2] the
Bellman operator T, : L? = — Lit takes the form:

Ht41
T;g = max (Ct, e_’"th) . (29)
We now verify that the assumptions required by Theorem [I| are satisfied. First condition in
Eq. @ in Assumption 1| is straightforward since Uy = {0,1} and F; is defined as in Eq. '
essSup,cqo1} [F2(u)| = Fi(-,0) = Ci. We let cr be the squared L2, -norm of Ci, which is
assumed to be finite. Moreover, since Q; is a Markov transition kernel, it defines a non-expansive
operator:

2
1Qugl2. = / ( / g(x')@(x,dmv) djie < / o) / Q. de' Y < g% .
H X Xt Xiy1 Xy e

where we used Jensen’s inequality and Fubini’s theorem. Therefore, condition[8|in Assumption|[I]is
also satisfied. We can now bound the Bellman operator T;:

ITeglls = [[max (Cr, e Qug)|| . <crtelglly =cr+edlgl - (G0)
wt ht Kt Higl

Note that cp < 1 in the common case of a strictly positive risk-free interest rate r.

Corollary 1 (American Option Pricing). From Theorem|[I} in the setting described in Example(l] 2]
and 3} and following Algorithm[l} we have with high probability:

Wae - vall; <TZ_16‘” (1>Bﬂ (31)
’ Fio ™ t=0 T



Under review as a conference paper at ICLR 2026

Table 1: Results for a Geometric basket Put option, see (Goudenege et al., 2020, Table 1).

KRR-DP GPR-Tree GPR-EI GPR-MC Ekvall Benchmark
Price 95% CI Time Price Time  Price Time Price Price Price
4.63 [4.58, 4.68] 2s 4.61 22s 4.57 26s 4.57 4.62 4.62
3.46 [3.42,3.50] 3s 3.44 23s 3.41 27s 3.41 3.44 3.45
2.98 [2.94, 3.03] 4s 2.93 60s 2.93 30s 2.90 / 2.97
2770 [2.68,2.72] 11s 2.72  49609s 2.63 29s 2.70 / 2.70

Table 2: Results for a Max-Call option, see (Goudenege et al., 2020, Table 3).
KRR-DP GPR-Tree GPR-EI GPR-MC Ekvall

Price 95% CI Time Price Time Price Time Price Price

2 1693 [16.86,17.00 S5s 16.93 20s 16.82  28s 16.86 16.86
27.16  [26.98,27.33 Ss 27.19 26s 2695 27s 27.20 27.20

10 35.14 [34.94,35.35 6s 35.08 106s  34.84  29s 35.17 /

20 42.62 [42.30,42.93 7s  43.00 51090s 42.62 35s 42.76 /

e —

5 SIMULATIONS

In this section, we present a basic implementation of KRR-DP Algorithm [T] and conduct an initial
evaluation of the effectiveness of the proposed method. More comprehensive experiments and opti-
mized implementations will be the subject of future work.

We primarily compare our results with the numerical benchmarks reported in (Goudenege et al.
(2020). Specifically, we replicate the results in their Table 1 and Table 3, which correspond to
pricing a geometric basket put option and a max-call option, respectively. Note that no theoretical
benchmark exists for max-call options. The parameters are set as follows: 7' = 9, X} = 100 for
1<i<d, K =100,7=0.05,0;, =0.2for1 <i<d andp;; =0.2forl <i+#j<d.

As regards the KRR solver, we employ the efficient FALKON algorithm Meanti et al.[(2020). This
choice is particularly relevant as a first step toward building a fast and practical implementation of
our algorithm for large-scale, high-dimensional applications. FALKON leverages random projection
techniques, such as the Nystrom method Williams & Seeger| (2000), to reduce computational costs
while maintaining optimal performance |[Rudi et al.| (2015b); [Della Vecchia et al.| (2021} [2024). A
description of the involved methods and further details on our simulations are given in Appendix [C|
The results show that our method performs competitively with existing algorithms, offering a favor-
able trade-off between accuracy and computational efficiency.

6 CONCLUSIONS AND FUTURE WORK

In this work, we addressed stochastic optimal control problems in discrete time and introduced a
kernel-based regression framework for their solution. Our approach combines backward recursion
via empirical Bellman operators with Monte Carlo simulation and regularized learning techniques to
construct data-driven approximations of the value function. The framework is supported by rigorous
theoretical guarantees, including explicit error bounds.

Several promising directions remain open for future work. First, we plan to extend the prelimi-
nary simulations presented above into a more comprehensive experimental study, incorporating real-
world datasets and more complex models. In particular, our framework can be naturally adapted to
other non-standard applications in economics, such as partial equilibrium and optimal consumption
problems, or goal-based investing. In parallel, we aim to improve computational efficiency, espe-
cially in high-dimensional settings, by exploiting random projection techniques such as sketching,
random features, or the Nystrom method, while preserving the statistical guarantees established in
this work. Another major bottleneck in our pipeline is the data generation step: reducing the number
M of generated samples is critical for accelerating the DATAGENERATION function in Algorithm [I]
A promising approach may be to replace standard Monte Carlo sampling with more sophisticated
quadrature schemes (e.g., monomial rules).
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A AUXILIARY LEMMAS

In this section, we prove a number of technical results that are instrumental for establishing the
theoretical properties of our Bellman recursion in L2 spaces. In particular, we aim to verify that
the Bellman operator 7; is well defined and LlpSChltZ continuous under mild assumptions. These
properties are essential for proving stability and convergence of our value function approximations.

We begin with a useful lemma on the behavior of essential suprema, which allows us to control
expressions of the form ess sup,,cy;, {F3(-, u) + P}'g} arising in the Bellman operator.

Lemma 1. Let {Y,}, .4 and {Z,},c 4 be two collections of random variables indexed by a pa-
rameter set A, such that esssup,¢ 4 |Ya| < 00 and esssup,c 4 |Z,| < oo almost surely. Then the
following inequalities hold almost surely:

esssup (Y, + Z,)| < ess sup |Y,| + ess sup |Za) s (32)
acA
esssup Y, — esssup Z,| < esssup |Y, — Z,|. (33)
acA acA acA

Proof. The first bound follows from the general inequality |esssup,c4 Ya| < esssup,eq [Yal-
For the second inequality, we exploit the invariance under translations: the statement holds
if we replace Y, and Z, by Y, + C and Z, + C, for any random variable C. Choosing
C = max{esssup,c,(—Y,), esssup,c4(—Z,)}, we can assume without loss of generality
that Y, Z, > 0. Then we obtain from Eq. 32| that esssup,c 4 Yo < esssup,cu|Ya — Za| +
€88 SUP,c 4 Za, and same for Y, and Z, exchanged, which proves Eq. [

With this result in hand, we now analyze the properties of the Bellman operator 7; as defined in
Eq.|6l The following lemma shows that, under suitable assumptions, 7; maps L? fiess 1O Lit in a
controlled way and satisfies a global Lipschitz bound.

Lemma 2. Under conditions[8]in Assumption[l| the Bellman operator T; defines a Lipschitz con-
tinuous map satisfying:

||7;9||Ll21, CF +C ||9||L2 W (34
ITeg = Teflzs, <epllg = flis, - (35)
forallg,f € L?> andt=0,...,T — 1.

Ht+41
Proof. We begin by bounding the operator norm:

ITegll 2, = [|esssup {Fi(-,w) + g}

u€Ut L2,
< ||lesssup |Fi(-, u)| + esssup | Pg|
ueUy ueUy L2
bt
< |lesssup |Fi(-, u) + ||esssup | P'g|
u€Us u€Us

2 2
LLLt Lﬂt

1/2
<ertey?lgles,
K1
where we used Lemma [T and Assumption|[I] For the Lipschitz property, we compute:

Teg — Tiflss, =

esssup {F,(-,u) + P'g} — esssup {Fi(-,u) + P f}
ueUy ueUy

Li
= |lesssup |P{*(g — )]
ueUy L2
Kt
/2
2olo = flza, -
again applying Lemma and that P is a hnear operator. [
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B TECHNICAL DETAILS ON SECTION [4]

B.1 TErRMI

In this section, we give further details about the analysis of our learning-based approximation
scheme in Section[dl

We start with the optimal learning rates established for regularized empirical risk minimization in
RKHS. The following theorem is taken from Steinwart et al.[(2009).

Theorem (Steinwart et al.| (2009, Theorem 1)). Let k be a bounded measurable kernel on X with
lk]|co = 1 and separable RKHS H. Let

Ay(N) AIFIS +R(f) = R™). (36)

= inf

feH
Moreover; let P be a distribution on X x [—B, B], where B > 0 is some constant. For v = Px
assume that the extended sequence of eigenvalues of the integral operator satisfies

pi (L) <ai™7, i>1, (37)

where a > 16 M* and p € (0,1). Assume further that there exist constants C > 1 and s € (0,1]
such that )

[flloo < CIF I - 11,y (38)

forall f € H. Then, for all ¢ > 1, there exists a constant c,, 4 depending only on p and q such that
forall X € (0,1], 7 > 0, and n > 1, with probability at least 1 — 3¢~

a”qB2q)423’+Pq | 1200232727 (Aq(x))zi | 351687

R <f)\> —R* S 9Aq()\) + Cp,q (W \

n n

(39)
with R* := R(f*) the risk of the Bayes function f* € L*(Px) and f the data dependent estimator
from ERM algorithm.

Note that Eq [37|is exactly the condition mentioned under Eq. We give here more details on
the connection with the capacity assumption. Before defining it, we define the so-called effective
dimension |Zhang| (2005); |Caponnetto & De Vito|(2007), for o > 0, as

do = Tr((Ly, + o) "' Ly) =
Zj: 0; +«

95

(40)

where (0;); are the strictly positive eigenvalues of Lj, with eigenvalues counted with respect to
their multiplicity and ordered in a non-increasing way, and (u;) is the corresponding family of
eigenvectors.

Assumption 4 (Capacity Assumption). There exist constants p > 1 and QQ > 0 such that, for all
a € (0,1]
doy < chl/ P,

This assumption, standard in statistical learning theory (see Caponnetto & De Vito, 2007; Smale
& Zhou, 2007), is often referred to as a capacity condition, as it quantifies the effective size of the
RKHS via the decay of the eigenvalues of the integral operator Ly, (see Proposition [I]and [2| below).
Note that the case p = 1 corresponds to no spectral assumption (i.e. the weakest possible capacity
control), which is the setting we adopt in the main text.

The following two results provide a tight bound on the effective dimension under the assumption
of a polynomial decay or an exponential decay of the eigenvalues o; of Lj. Since the covariance
operator X and the integral operator L, share the same eigenvalues, we equivalently report known
proofs for X in the following.

Proposition 1 (Polynomial eigenvalues decay (Caponnetto & De Vito (2007, Proposition 3)). If for
somey € Rt and 1 < p < 400

then
dy < y—L—a~1/P 41)
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Proof. Since the function o /(o 4 «) is increasing in o and using the spectral theorem ¥ = UDU*
combined with the fact that Tr(UDU*) = Tr(U(U*D)) = TrD

_ > g >
d =TS an ) =Y A<y I @
i=1 " -1 !

The function /(v + aP«) is positive and decreasing, so

dag/ G A
0o Y t+axPa

o0
zofl/p/ S —
o Y+TP

<y—Leai? (43)

p—1
since [ (y+77)" <p/(p—1). O

A similar result, leading to even faster rates, can be obtained assuming an exponential decay.
Proposition 2 (Exponential eigenvalues decay Della Vecchia et al| (2024} Proposition 3)). If for
some y,p € RTo; < ye P! then

£ < gl +7/a)

(44)
p
Proof.
— — 1 — 1 e 1
do = - <>y < 4 45
;01'-1-04 ;1—&-@/01» ;1—1—0/61” /0 1+ aers ™ (“4)
where o' = «/~. Using the change of variables ¢t = eP* we get
L[t 1 1 1 [ter1 o 1 +oo
- L LS R
() p/1 1+at t p/l t 1+a't P o8 og( +a)1
- 1[10 (L)rm - 1[10 (1/a/) + log(1 +o/)} (46)
p & 1+at/l1 p B B
So we finally obtain
1 log(1+ v/«
da < 3 [tog(3/) + log(1 +a/y)] = “ELZ2/0) @)
O

Specializing this result to ridge regression, and under an additional approximation condition on the
learning target, we obtain a more explicit convergence rate in terms of the sample size.

Corollary (Steinwart et al.| (2009, Corollary 6)). Assume s = p = 1, ¢ = 2, and suppose the
2-approximation error function satisfies
As(N) <eN, A>0 (48)

1
for some constants ¢ > 0 and 8 > 0. Define a sequence of regularization parameters \ == n~ 7+1,
Then there exists a constant K > 1 depending only on a, B, and c, such that for all = > 1 and
n>1,

R(J?A) —R(f") SKTTF% (49)
8
with probability at least 1 — 3¢~ """

This is the result reported in Theorem [I] given that source condition in Assumption [3]implies con-
dition in Eq[48]as shown in[Smale & Zhou| (2003).
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B.2 TERMII

We start by defining the empirical Rademacher complexity:

R(FY) =E, sup |— B (50)

with 01, ..., o)y, independent Rademacher variables, i.e. P(o; = 1) = P(0; = —1) = 1/2.

To control the empirical approximation error uniformly over a function class, we rely on the follow-
ing concentration inequality due to Boucheron et al.| (2005).

Lemma (Boucheron et al.| (2005, Theorem 3.2)). Let X1,..., X, be i.id. random variables in a
set X and let F be a class of functions X — [—1, 1]. Then, with probability at least 1 — 6,

~ 2log &

E - = < 2ER (F(XT . 51

f(X Z f(X (FXD)) +4) — == (51)

sup
fer

with

R( —Esupf

E 0;0;
acA T

where A C R™ and F(x%') is the class of vectors (f(a;l), ooy fxy)) for f € F.

2
Ef (X ——Zf R(F(XT)) + \/21"%. (53)

There are several well-studied cases in which the Rademacher complexity can be upper bounded.
We highlight two such cases that are particularly relevant for the financial applications of interest
here.

) (52)

We also have:

sup
fer

¢ Using Massart’s Lemma [Massart| (2000): if F}* is finite, i.e., F* = {f1,..., fx }, then

log K

S
ER(F) S\

(54)

This result is particularly relevant for our application to American options, as the control
set Uy = {0, 1} is finite at each time step ¢.

» Using Talagrand’s Contraction Lemma [Ledoux & Talagrand| (1991): if F}° is not finite,
Wtﬁﬁfl is Ly -Lipschitz, and we define II¥ := {z — m(x,u, 2) : u € U;} , then the com-
position class Ff = Wt’\ﬁrl o I} satisfies

R(FF) < Ly - R(IY). (55)

Assuming that 7 (z,u, z) is L,-Lipschitz in u and applying standard covering number

arguments we obtain

Ly - L,
VM;

This can be useful in the continuous control case, e.g., Uy C [0, 1], as the class II7 is no

longer finite.

ER(FY) S (56)

We report the two above mentioned results.

Lemma (Massart’s Lemma [Massart| (2000), (Shalev-Shwartz & Ben-David, 2014, Lemma 26.8)).
Let F = {f1,..., fi} be a finite class of functions satisfying || f|lcc < bforall f € F. Then,

R(F) < by/ QIOSK . (57)
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Lemma (Contraction Inequality (Bartlett & Mendelson, 2002, Thm. 12), (Ledoux & Talagrand,
1991, Cor. 3.17)). Let F C RZ be a class of real-valued functions, and let ¢1,...,0, : R — R be
L-Lipschitz functions. Let S = {z1, ..., 2z, } C Z be a fixed sample. Then

1 n 1 n
E, |sup — o 0i (f (2 < L-E, |sup — oif(zi)], (58)
f;nZ (f(z)) LMZ if (1)
where o1, . .., o, are independent Rademacher random variables.

B.3 FINAL BOUND

Given the above upper bounds on the three terms in Eq. and choosing A ~ n_ﬁ, we have
with high probability

1\FT 1
& S (nj) + o, +cp&iy. (59)

Bt
Selecting M; ~ n*"" gives the result in Theorem

C NUMERICAL SIMULATIONS

Firstly, we briefly describe the benchmark methods used for comparison in Tables [T]and [2] follow-
ing Goudenege et al.| (2020).

GPR-Tree. This method combines Gaussian Process Regression (GPR) with a tree-based exercise
strategy. At each time step, the continuation value is estimated using GPR, and a decision tree
determines whether to exercise or continue. The method is designed to reduce variance and improve
interpretability, particularly in low-dimensional settings. We report the results from (Goudenege
et al., 2020, Tables 1-3) using P = 1000 training points, which offers the highest reported accuracy
despite increased computational cost compared to P = 250 or P = 500.

GPR-EI. GPR with Expected Improvement (EI) follows a sequential design strategy inspired by
Bayesian optimization. It actively selects the most informative sample points by maximizing ex-
pected improvement in the value function, enabling a more data-efficient approximation of the con-
tinuation value. As with GPR-Tree, we report the results with P = 1000 training points.

GPR-MC. This variant uses GPR to estimate the continuation value within a standard Monte Carlo
regression framework. It replaces linear regression with nonparametric GPR to improve accuracy,
especially in high-dimensional problems.

Ekvall. This baseline method is based on the lattice-based regression approach proposed in|Ekvall
(1996)), which approximates the value function using basis functions and optimal stopping. It serves
as a classical benchmark for evaluating newer machine learning-based methods.

Benchmark. A closed-form analytical solution is available only for the Geometric Basket Put
option.

Our method. We kept a basic implementation, exploiting classic libraries. We report the av-
erage performance of our method over 10 repetitions, along with corresponding confidence inter-
vals. The regularization parameter is simply set to A = 107°, and the RBF kernel lengthscale
is selected from the grid {40,80}. Sample sizes increase with dimensionality; for instance: for
d = 2, weuse n = 200, M = 50; for d = 20, we use n = 800, M = 100. All experiments
were run on Google Colab using an NVIDIA T4 GPU (16 GB) with a single Intel Xeon CPU
and approximately 12 GB of RAM. The FALKON algorithm Meanti et al.| (2020) is taken from
https://github.com/FalkonML/falkon.
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Figure 2: Value function estimates for the Max-Call option (d = 2), see Table@

D SUFFICIENT CONDITIONS FOR WELL-POSEDNESS

We discuss here the minimal condition needed for our formulation to be well posed in relation to
Assumption [I} Given a function f € Lﬁt +,» We study under which condition F;" f belongs to Lit,

with
Pl f(z) = («") P (x, dx’). (60)

Xt
Using Jensen’s inequality:
2
1271, = | @) P ds) ) o)< [ f6R [ Prada (o).
Kt X, Xiia Xiin X,

=:qp(dx’)

(61)
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If the pushforward measure g;' is absolutely continuous with respect to p+1 and admits a bounded
Radon—Nikodym derivative, i.e.,

< cp < 00, (62)

oo
Lﬂt+1

H dgy'
d/tt+1

then we obtain:

1P fllzz, < cil®lIF]ee (63)

PR

which is exactly the requirement in Assumption|[I}

Although condition [63| may appear strong, it can often be verified in applications. Indeed, observe
that

- / E [f(me(,y(2), Ze41))?] g d). (64)

2
1%, = /.

Therefore, a sufficient structural condition for[63]to hold is the pointwise inequality:

sup E[f(mi(2,u, Zes1))) < chy E [f(me(a, @(2), Zeg1))?],  for prae. x € X (65)
ueUy

1

This provides a more verifiable condition for establishing Assumption [T} especially in simulation-
based settings where the behavior distribution is known or controlled.
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