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ABSTRACT

This paper investigates theoretical and methodological foundations for stochastic
optimal control (SOC) in discrete time. We start formulating the control prob-
lem in a general dynamic programming framework, introducing the mathematical
structure needed for a detailed convergence analysis. The associate value function
is estimated through a sequence of approximations combining nonparametric re-
gression methods and Monte Carlo subsampling. The regression step is performed
within reproducing kernel Hilbert spaces (RKHSs), exploiting the classical KRR
algorithm, while Monte Carlo sampling methods are introduced to estimate the
continuation value. To assess the accuracy of our value function estimator, we
propose a natural error decomposition and rigorously control the resulting error
terms at each time step. We then analyze how this error propagates backward
in time-from maturity to the initial stage-a relatively underexplored aspect of the
SOC literature. Finally, we illustrate how our analysis naturally applies to a key
financial application: the pricing of American options.

1 INTRODUCTION AND RELATED WORK

Stochastic optimal control (SOC) provides a principled framework for sequential decision-making
under uncertainty. It plays a foundational role in a wide range of scientific and engineering do-
mains, including economics and finance (Fleming & Stein, 2004; Pham, 2009; Åström, 2012),
robotics (Gorodetsky et al., 2018; Theodorou et al., 2011), molecular dynamics (Hartmann &
Schütte, 2012; Hartmann et al., 2013; Zhang et al., 2014; Holdijk et al., 2023), and stochastic filter-
ing and data assimilation (Mitter, 2002; Reich, 2019). More recently, SOC has inspired advances in
machine learning, particularly in tasks such as sampling from unnormalized distributions (Zhang &
Chen, 2021; Berner et al., 2022; Richter & Berner, 2023; Vargas et al., 2023), nonconvex optimiza-
tion (Chaudhari et al., 2018), optimal transport (Villani et al., 2008), and the numerical solution of
backward stochastic differential equations (BSDEs) (Carmona, 2016).

Despite the extensive literature on continuous-time SOC (Bertsekas, 2012), its discrete-time coun-
terpart remains highly relevant in practice, as it naturally arises in computational and data-driven
settings where decisions are made at fixed time intervals (Bertsekas & Shreve, 1996; Hernández-
Lerma & Lasserre, 2012; Puterman, 2014). At the same time, discrete-time SOC poses distinct
challenges, largely because many of the analytical tools available in continuous time are no longer
applicable. Nevertheless, it still offers opportunities for the development of scalable numerical meth-
ods, particularly through dynamic programming and function approximation. Discrete-time SOC is
central to modern applications in operations research, financial engineering or reinforcement learn-
ing (RL) (Sutton et al., 1998). At its core lies a dynamic programming (DP) recursion, where the
value function is computed backward in time via the Bellman operator (Bellman, 1966). In high-
dimensional settings, solving this recursion exactly is often infeasible, inspiring a large body of
research focused on developing scalable and efficient approximations. These approaches typically
estimate value functions from data using simulation or function approximation. In recent years,
deep learning has greatly expanded the scalability of these methods, enabling their application to
high-dimensional control problems (Han et al., 2016; Domingo i Enrich et al., 2024).

Despite this empirical progress, the theoretical understanding of learning-based SOC remains lim-
ited. A key challenge lies in quantifying how local errors deriving from function approximation,
sampling noise, or optimization inaccuracies, propagate through the Bellman recursion over time.
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Studying this requires a rigorous and principled mathematical framework in which to analyze error
accumulation in high-dimensional value function approximations. In this work, we propose such a
framework based on reproducing kernel Hilbert spaces (RKHS), which enables us to derive explicit
error bounds and control error propagation in approximate dynamic programming.

A classical application of discrete-time SOC is the pricing of American-style options, also known
as Bermudan options when exercise opportunities are discrete. This problem can be formulated
as a finite-horizon optimal stopping problem under stochastic dynamics. While such problems
can, in principle, be solved exactly (Peskir & Shiryaev, 2006; Lamberton & Lapeyre, 2011), well-
established numerical methods, such as tree-based approaches or PDE solvers, struggle with the
curse of dimensionality as complexity increases (Broadie & Glasserman, 1997; Bally et al., 2003;
Jain & Oosterlee, 2012). Monte Carlo–based methods have become widespread in high-dimensional
applications. Notable examples include regression-based techniques (Tsitsiklis & Van Roy, 1999;
Longstaff & Schwartz, 2001), dual and hybrid primal-dual formulations (Rogers, 2002; Haugh &
Kogan, 2004; Andersen & Broadie, 2004; Belomestny et al., 2013; Lelong, 2018), and Malliavin cal-
culus methods for estimating conditional expectations (Lions & Regnier, 2001; Bouchard & Touzi,
2004; Bally et al., 2005; Abbas-Turki & Lapeyre, 2012). More recently, machine learning (Williams
& Rasmussen, 2006) and deep learning approaches (Kohler et al., 2010; Nielsen, 2015; Becker et al.,
2019; Goudenege et al., 2020) have shown strong empirical performance in this domain. However,
these methods often lack rigorous theoretical guarantees on accuracy and generalization.

Our work aims to bridge this gap by developing kernel-based algorithms for discrete-time SOC that
come with provable convergence guarantees and theoretical error bounds, while keeping an eye on
computational efficiency and scalability for big data applications.

Contribution In summary, our contributions are as follows. First, we propose a general RKHS-
based formulation of approximate dynamic programming through backward induction. Second, we
provide a rigorous and transparent decomposition of the total approximation error into three distinct
components: regression error, Monte-Carlo sampling error, and propagation error. Third, we derive
explicit convergence rates under model misspecification by leveraging source conditions. Finally, we
show how this framework can be applied to various problems, especially in finance. We demonstrate
the practical effectiveness of our algorithm through the well-known problem of American option
pricing and preliminarily test its performance against some of the standard benchmark methods in
the field.

Organization The paper is organized as follows. In Section 2 we introduce the problem and
setting, with key definitions and notations used throughout the paper, and formalizing the problem
in a precise mathematical framework. In Section 3 we introduce the Monte Carlo approximation
and the regression step in the RHKS environment. In Section 4 we study the error back-propagation,
upper bounding the various approximation terms and finally showing the final error guarantees in
Theorem 1. In Section 5 we finally present some numerical results.

2 SETTING AND STOCHASTIC CONTROL MODEL

Consider a discrete time horizon t = {0, 1, . . . , T}. We define a stochastic process Z := (Zt)
T
t=0 on

a filtered probability space (Ω,F , (FZ
t )Tt=0,P), where (FZ

t )Tt=0 is the natural filtration generated by
Z. The random variables Zt are mutually independent (but not necessarily identically distributed)
and take values in measurable spaces Zt. We denote by P(dz) =

∏T
t=0 Pt(dzt) the distribution

of Z on the path space Z = Z0 × · · · × ZT , which we identify with Ω without loss of generality.
Any square-integrable adapted process, such as an asset price process, can be written in the form
Xt = Xt(Z0, . . . , Zt), for some function Xt ∈ L2

P0×···×Pt
.

Controlled Markov process Xu
0 , . . . , X

u
T taking values in state spaces X0, . . . ,XT is defined by®

Xu
0 = p0(Z0),

Xu
t+1 = πt

(
Xu

t , ut(X
u
t ), Zt+1

)
, t ∈ {0, . . . , T − 1}, (1)

where p0 : Z0 → X0 is the initial state distribution, πt : Xt×Ut×Zt+1 → Xt+1 is a Markov transi-
tion function encoding how the system transitions from one state to the next, and u = (ut)

T−1
t=0 ∈ U

is a stochastic control law, where each ut : Xt → Ut is Ft-measurable.
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Remark 1. Note that this setup remains very general despite the Markovian assumption. For rea-
sons related to dimensionality, it is typically assumed that Xu

t summarizes the full history Z0:t, u0:t

in a compressed form, so that the control at time t depends only on Xu
t , i.e., ut = ut(X

u
t ). This does

not entail a loss of generality, as many important problems are naturally Markovian. Moreover, any
optimal stopping problem can be cast in Markovian form by including all relevant past information
in the current state, at the cost of increasing dimensionality.

A control law u is said to be admissible if the maps (x, z) 7→ πt(x, ut(x), z) satisfy suitable regu-
larity conditions. In particular, we assume that the operator

Pu
t f(x) := E

[
f(Xu

t+1) | Xu
t = x

]
= E

[
f
(
πt(x, u, Zt+1)

)]
=

∫
Zt+1

f
(
πt(x, u, z)

)
Pt+1(dz),

(2)

defines a Markov transition kernel from Xt to Xt+1, for all u ∈ Ut. With a slight abuse of notation,
we will sometimes use the alternative, also common definition in kernel form

Pu
t (x,A) := P

[
Xu

t+1 ∈ A | Xu
t = x

]
=

∫
Zt+1

1A(πt(x, u, z))Pt+1(dz) (3)

with A ∈ B(Xt+1), i.e. the Borel σ-algebra on the space Xt+1. In the following, it will be clear
which one of the two representations we are using. The connection between the two is simply

Pu
t f(x) =

∫
Xt+1

f(x′)Pu
t (x,dx

′). (4)

The objective of stochastic optimal control is to maximize a gain function over all admissible control
laws. In the discrete-time setting, this is given by the sum of the partial rewards Ft : Xt × Ut → R
for t = 0, . . . , T − 1, and the terminal reward Φ = FT : XT → R. Then, we define the optimal
value function Vt : Xt → R at time t as

Vt := sup
u∈U

E

[
T−1∑
s=t

Fs (X
u
s , us(X

u
s )) + Φ (Xu

T ) | Xu
t

]
. (5)

We now introduce the Bellman operator at time t as

Ttf(x) := ess sup
u∈Ut

Ft(x, u) + Pu
t f(x). (6)

Bellman’s principle (Bellman, 1966) implies that the optimal value function solves the dynamic
programming equation (Bertsekas & Shreve, 1996; Kallsen, 2016)®

VT (x) = Φ(x),

Vt(x) = TtVt+1(x), t ∈ {0, . . . , T − 1}. (7)

We now want to represent Eq. 7 as a functional dynamic programming equation in some appropriate
L2 spaces. To this end, we fix an auxiliary admissible control law ū, often called the behavior
policy in the RL literature (Sutton et al., 1998), and let µt denote the distribution of Xū

t on Xt.
We introduce the following assumption to ensure that, if Φ ∈ L2

µT
, then the optimal value function

satisfying the dynamic system 7 belongs to L2
µt

for all t ∈ {0, . . . , T}.
Assumption 1 (Square integrability). There exist constants cF > 0 and cP > 0 such that, for all
t ∈ {0, . . . , T}:∥∥∥∥ess sup

u∈Ut

|Ft(·, u)|
∥∥∥∥
L2

µt

⩽ cF ,

∥∥∥∥ess sup
u∈Ut

|Pu
t g|

∥∥∥∥
L2

µt

⩽ c
1/2
P ∥g∥L2

µt+1

, (8)

for all g ∈ L2
µt+1

. We further assume Φ ∈ L2
µT

.

Under these conditions, Tt : L2
µt+1

→ L2
µt

, see Lemma 2 in Appendix A for the complete proof.
Then Vt ∈ L2

µt
for all t = {0, . . . , T}, and the dynamic programming problem 7 holds in each

corresponding L2
µt

space. Further details on this assumption are discussed in Appendix D.

The main goal in the following will be to find a good estimate of the optimal value function at the
initial time t = 0, i.e. V0, by leveraging the recursive formulation in 7.

3
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Example 1 (American Options). An American option is a financial contract that gives the holder
the right, but not the obligation, to buy or sell an underlying asset at a specified strike price at any
time up to the expiration date.
Let X be an exogenous Markov process, i.e., it is not influenced by any control variable or decision.
Let Qt = Qt(x, dx

′) denote its Markov transition kernel from Xt to Xt+1, which specifies the con-
ditional distribution of the next state Xt+1 given the current state Xt = x. Suppose the underlying
asset has a price at time t given by a function St(Xt). An American (call) option with strike K pays

Ct(Xt) = (St(Xt)−K)
+ (9)

if exercised at time t. In practice, the dimension of the state space can be very high. For instance,
St(Xt) could represent the maximum price in a basket of assets at time t, as in a so-called American
max-call option.
The holder of the American option aims to maximize the expected payoff E[Cτ (Xτ )] over all exercise
strategies, i.e., over all stopping times τ . We now cast this problem as a stochastic optimal control
problem 7. To this end, we introduce a cemetery state ∆† /∈ Xt and define the augmented state space
X∆†

t := Xt ∪ {∆†}. Any measurable function f on Xt is extended to X∆†
t by setting f(∆†) := 0.

This is a standard technique in the theory of Markov processes, see Revuz & Yor (2013).
Define now the control space as Ut := {0, 1}, where u = 0 represents exercising the option and
u = 1 holding it. The controlled Markov transition kernel Pu

t is given by:

Pu
t (x,A) =

®
Qt(x,A ∩ Xt+1) if u = 1, x ∈ Xt,

δ∆†(A) otherwise,

for A ∈ B(X∆
t+1), meaning that the controlled process Xu

t follows the exogenous dynamics until the
option is exercised, after which it is absorbed in the state ∆†. Define also:

Ft(·, 1) = 0, Ft(·, 0) = Ct, Φ = CT . (10)

An admissible control law u then consists of measurable functions ut : X∆†
t → {0, 1}, with the

convention ut(∆†) = 0. The associated exercise strategy is defined by:

τ := inf{t | ut = 0} ∧ T, (11)

i.e., the first time t ∈ {0, . . . , T − 1} such that ut = 0, or T if no such time exists (with inf ∅ =∞).
The dynamic programming problem 7 then becomes:®

VT (x) = CT (x),

Vt(x) = max {Ct(x), e
−rQtVt+1(x)} ,

(12)

which selects the maximum between the immediate exercise value and the (discounted) continuation
value. Here, r denotes the risk-free interest rate.

3 SAMPLE-BASED VALUE FUNCTION APPROXIMATION

Stochastic dynamic control problem 7 is not directly solvable in practice, primarily because we do
not have access to the true expectation in Pu

t . A standard way to address this issue is to approximate
the expectation via Monte Carlo simulation. Let {z(t+1)

i }Mt
i=1 ∼ PMt

t+1 be i.i.d. samples from the
distribution of the stochastic driver Zt+1. We then define‹Pu

t f(x) :=
1

Mt

Mt∑
i=1

f
Ä
πt(x, u, z

(t+1)
i )

ä
, ‹Ttf(x) := ess sup

u∈Ut

¶
Ft(x, u) + ‹Pu

t f(x)
©
, (13)

the empirical approximation of Pu
t and the associated empirical Bellman operator, respectively.

By the Law of Large Numbers and the Continuous Mapping Theorem, we obtain:‹Pu
t f(x)

a.s.−−→ Pu
t f(x), ‹Ttf(x) a.s.−−→ Ttf(x), for Mt →∞. (14)

However, a naive application of this approximation—by recursively replacing Pu
t with ‹Pu

t in the dy-
namic programming equation—fails in practice, resulting in a nested Monte Carlo procedure whose

4
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computational cost grows exponentially with T , making it infeasible for large time horizons.
To mitigate this, we adopt a more efficient approach: we proceed backward in time and use regres-
sion to construct a sequence of function approximators for each Vt. At each stage, we generate
samples and solve a supervised learning problem, leveraging the approximation of Vt+1 obtained in
the previous step (with the terminal condition VT = Φ known a priori). Specifically, assume we have
already computed an approximation of Vt+1, denoted by ıWλt+1

t+1 (this Û· notation will be explained
below in Eq. 18). We then generate training data {(xi, yi)}nt

i=1, where xi ∼ µt and

yi = ‹TtıWλt+1

t+1 (xi). (15)

We now solve the corresponding regression problem using a suitable supervised learning method.
A classical choice is regularized empirical risk minimization (ERM) with Tikhonov regularization.
Combined with kernel methods, and with the natural choice of the square loss as the loss function,
this yields the well-known Kernel Ridge Regression (KRR).
Assumption 2 (Reproducing Kernel Hilbert Space). Let Hk be a separable reproducing kernel
Hilbert space (RKHS) of real-valued functions on X , with inner product ⟨·, ·⟩Hk

and associated
norm ∥ · ∥Hk

. Let k : X × X → R be the reproducing kernel of Hk and assume it is bounded, i.e.,
there exists κ > 0 such that supx∈X k(x, x) ⩽ κ2.

Remark 2. Although we use standard well-spread Monte Carlo sampling in this step, this is not
the only viable choice. Any quadrature rule (e.g., monomial rules) can be used in place of Eq. 13
to approximate the operator Pu

t . This flexibility can be especially valuable in high-dimensional
settings or when Monte Carlo sampling error is non-negligible, as some quadrature methods may
achieve much higher precision using fewer points.

KRR estimator. For a regularization parameter λt > 0, the KRR estimator at time t is defined as

Ŵλt
t : = argmin

f∈Hk

1

nt

nt∑
i=1

(yi − f(xi))
2
+ λt∥f∥2Hk

(16)

Note that at maturity, the value function VT is known and equals Φ, so no approximation is needed
at the final step. Also note that, given Eq. 15, ‹TtıWλt+1

t+1 is the regression target function, i.e.,

W ∗
t := ‹TtıWλt+1

t+1 = argmin
f∈L2

µt

E
î
(Y − f(X))

2
ó
= argmin

f∈L2
µt

E
[Ä‹TtıWλt+1

t+1 (X)− f(X)
ä2]

(17)

since ‹TtıWλt+1

t+1 ∈ L2
µt

under Assumption 1. In general, W ∗
t /∈ Hk, i.e. the model is misspecified.

We will mention this further in the next section when introducing the well-known source condition.

Before turning to the statistical analysis, we introduce a refinement of our estimator, which also
justifies the notation Û· used above. This step will be important to control approximation errors
in the next section. We recall the following definitions, see Chapter 6 in Steinwart & Christmann
(2008a). Given a threshold parameter B > 0, we define the clipped version of a ∈ R as:Ûa := min{max{a,−B}, B}. (18)

We say that a loss function ℓ is clippable at level B > 0 if for all y ∈ Y and a ∈ R, ℓ(y,Ûa) ⩽ ℓ(y, a).
It is easy to verify that many loss functions are clippable. In particular, the square loss (which
we use) can be clipped at B when the output y ∈ [−B,B]. Note that if Y is generated as in
Eq. 15, a sufficient condition for boundedness is supx∈Xt, u∈Ut

|Ft(x, u)| < B. In practice, Ft(x, u)
is often unbounded (e.g., option payoffs), but boundedness can be enforced without loss of rigor
by restricting the dynamics to a compact subset of the state space. In financial applications, for
instance, µt is typically induced by a discretized geometric Brownian motion, hence log-normal
with exponentially decaying tails. Consequently, large deviations of Xt are extremely rare, and
truncation introduces only negligible error while allowing the use of the clipped estimator ıWλt

t , as
required in Steinwart & Christmann (2008b).
The resulting method–that for simplicity we will indicate as KRR-DP (Kernel Ridge Regression-
Dynamic Programming) in the following–is summarized in Algorithm 1.
Example 2 (American Options (cont.)). We now return to the American options application in-
troduced in Example 1, and continue adapting our model to this setting. Here, the state vector

5
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Xt = (X1
t , . . . , X

d
t )

⊤ ∈ Rd
+ represents the prices of d underlying assets at time t. A common model

for their evolution is geometric Brownian motion (GBM), whose dynamics are given by

dXi
t = rXi

t dt+ σiX
i
t (ρ

1/2 dBt)
i, (19)

for i = 1, . . . , d, with r ∈ R the risk-free rate, σi > 0 the volatility of asset i, ρ ∈ Rd×d the
correlation matrix and Bt = (B1

t , . . . , B
d
t )

⊤ a d-dimensional Brownian motion with independent
components. We consider discrete times t = 0, . . . , T and approximate the dynamics with

Xi
t+1 = Xi

t · exp
Ä(
r − 1

2σ
2
i

)
+ σi (ρ

1/2z)i
ä
, (20)

where z = (z1, . . . , zd)
⊤ ∼ N (0, Id) is a vector of independent standard Gaussian variables.

As an example, we define a max-call option with strike price K > 0, for which St(Xt) =
max{X1

t , . . . , X
d
t }, and the payoff at time t is given by

Ct(Xt) = (St(Xt)−K)
+
=

Å
max
1⩽i⩽d

Xi
t −K

ã+
. (21)

The transition function πt : Rd
+ × Ut × Rd → Rd

+ is defined as

πt(x, u, z) :=

{
∆† if u = 0,

x⊙ exp
((

r − 1
2σ

2
)
+ σ ⊙ (ρ1/2z)

)
otherwise,

with σ = (σ1, . . . , σd)
⊤, ⊙ the elementwise multiplication.

Algorithm 1: KRR-DP for American Option Pricing (backward induction with MC + KRR)

Inputs: T ; r; {Ct, µt πt, nt,Mt}T−1
t=0 ; KRR hyperparameters {Θt}T−1

t=0 (kernel, λt, etc.).
Output: EstimatorıWλ0

0 : Rd→R of the value of the option V0.

// MC estimate of discounted continuation under ‘‘hold’’ (u = 1)

1 Function ContinuationValue(x, Mt, πt,ıWλt+1

t+1 ):
2 Sample z(1), . . . , z(Mt) i.i.d.∼ Pt+1; // e.g., z ∼ N (0, I)
3 for j = 1, . . . ,Mt do
4 x̃j ← πt(x, u=1, z(j));
5 end
6 return e−r∆t 1

Mt

∑Mt

j=1
ıWλt+1

t+1 (x̃j);

// Generate supervised data (“Xt, ŷt) at stage t

7 Function DataGeneration(nt, Mt, µt, πt, Ct,ıWλt+1

t+1 ):
8 Sample “Xt = [x1, . . . , xnt

]⊤, with xi
i.i.d.∼ µt;

9 parallel for i = 1, . . . , nt do
10 qi ← ContinuationValue(xi, Mt, πt,ıWλt+1

t+1 ); // MC continuation
11 yi ← max

(
Ct(xi), qi

)
; // Bellman: exercise vs. continue

12 end
13 return (“Xt, ŷt = [y1, . . . , ynt

]⊤)

// Main backward pass
14 Function OptionPricing({(nt,Mt, µt, πt, Ct,Θt)}Tt=0):
15 ıWλT

T ← CT ≡ Φ; // terminal value is known
16 for t = T−1, . . . , 0 do
17 (“Xt, ŷt)← DataGeneration(nt,Mt, µt, πt, Ct,ıWλt+1

t+1 );
18 ıWλt

t ← Regression((“Xt, ŷt), Θt); // KRR/FALKON on (“Xt, ŷt)
19 end
20 returnıWλ0

0

6
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4 ERROR ANALYSIS AND BACKWARD PROPAGATION

In this section, our primary goal is to provide theoretical guarantees for our estimator ıWλt
t and to

study how the error propagates backward in time from T to 0. In particular, we are interested in
analyzing the rate of convergence ofıWλt

t to the target value function Vt in some norm, as a function
of the sample sizes nt and Mt. A natural choice is to bound

Et =
∥∥ıWλt

t − Vt

∥∥2
L2

µt

. (22)

4.1 ERROR DECOMPOSITION

To do so, we split the total error into three components:

Et ≲
∥∥ıWλt

t − ‹TtıWλt+1

t+1

∥∥2
L2

µt

+
∥∥‹TtıWλt+1

t+1 − TtıWλt+1

t+1

∥∥2
L2

µt

+
∥∥TtıWλt+1

t+1 − TtVt+1

∥∥2
L2

µt

. (23)

Notice that the rigorous mathematical formulation established above ensures the well-definedness
of all terms, allowing us to meaningfully leverage this structure to decompose the total error. The
resulting splitting is a key advantage of our framework: the error separates into three distinct com-
ponents, each associated with a different approximation step. Because the bound is fully modular,
each term can be improved independently without affecting the rest of the analysis.
Term I depends only on the regression method—while we use kernel ridge regression for its clear
statistical guarantees, other function approximators (e.g., neural networks) could be substituted.
Term II isolates the sampling error, so Monte Carlo can be replaced by more refined schemes such
as quadrature or variance-reduced estimators. Term III captures the intrinsic propagation induced
by the dynamics and is unaffected by choices in the first two terms. This flexible structure allows us
to work on each component independently while preserving the overall analysis.

Term I: Regression Error. The first term is the standard machine learning error due to the fact
that our estimator minimizes the empirical risk in Eq. 16, based only on a finite sample {(xi, yi)}nt

i=1.
Our target is the regression function W ∗

t = ‹TtıWλt+1

t+1 , as defined in Eq. 17. Term I then corresponds
to the so-called excess risk ofıWλt

t :

R(ıWλt
t )−R(W ∗

t ) := E
î
(Y −ıWλt

t (X))2 − (Y −W ∗
t (X))2

ó
=

∥∥ıWλt
t −W ∗

t

∥∥2
L2

µt

, (24)

(see Caponnetto & De Vito (2007)), whereR(ıWλt
t ) is the risk ofıWλt

t andR(W ∗
t ) = R(‹TtıWλt+1

t+1 ).
It represents the expected error of our estimator on new data compared to the regression function.

We introduce the following regularity assumption, commonly referred to as the source condition.

Assumption 3 (Source Condition). There exists βt ∈ (0, 1] such that W ∗
t ∈ L

βt/2
k (L2

µt
), where

Lk : L2
µt
→ L2

µt
is the integral operator associated with the kernel k.

Assumption 3 and equivalent formulations (e.g., Assumption 4 in Rudi et al. (2015a)) are standard
in the literature (Smale & Zhou, 2007; Caponnetto & De Vito, 2007). The parameter βt quantifies
the smoothness of the target function W ∗

t and how well it can be approximated by elements in Hk.
When βt = 1, we are in the well-specified setting, i.e., W ∗

t ∈ Hk. Our main focus, however, is on
the misspecified setting with βt < 1, where W ∗

t /∈ Hk.
Under the square loss, Assumption 3 is directly related to the approximation error, as shown in Smale
& Zhou (2003); Steinwart et al. (2009). Using a result from Corollary 6 in Steinwart et al. (2009)

(see Appendix B.1), we obtain the following upper bound in terms of nt: choosing λt ∼ n
− 1

βt+1

t ,
with high probability, ∥∥ıWλt

t − ‹TtıWλt+1

t+1

∥∥2
L2

µt

≲ n
− βt

βt+1

t . (25)

We refer to Appendix B.1 for further details. Note that the above rate can be made faster by assuming
some polynomial (or even exponential) decay of the spectrum of the integral operator Lk. This is
deeply connected to the well-known capacity assumption, which for simplicity is not assumed here
in the main text. Further details and the resulting faster rate can be found in Appendix B.1.
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Term II: Monte Carlo Error. The second term accounts for the Monte Carlo error introduced
when approximating the unknown expectation in Tt, as discussed in Section 3.
Using the definitions of Tt and ‹Tt from Eqs. 6 and 13, together with Lemma 1 in Appendix A, and
denoting Fx

t = {z 7→ ıWλt+1

t+1 (πt(x, u, z)) : u ∈ Ut}, we obtain that, with high probability,

∥∥‹TtıWλt+1

t+1 − TtıWλt+1

t+1

∥∥2
L2

µt

⩽

∥∥∥∥∥∥ sup
f∈Fx

t

∣∣∣ 1

Mt

Mt∑
j=1

f(zj)− E[f(Zt+1)]
∣∣∣
∥∥∥∥∥∥
2

L2
µt

≲

∥∥∥∥∥E“R(Fx
t ) +

 
1

Mt

∥∥∥∥∥
2

L2
µt

where the last inequality follows from the boundedness of ıWλt+1

t+1 and an application of Boucheron
et al. (2005, Theorem 3.2), while “R(Fx

t ) denotes the well-known empirical Rademacher complexity
of Fx

t (see definition in Appendix B.2). Bounding such complexities is a classical problem in
statistical learning theory (Bartlett & Mendelson, 2002). In our setting, we focus on two relevant
cases: (i) finite classes, as in American options where the control set is binary (Ut = {0, 1}), and
(ii) Lipschitz transitions πt, which are typical in financial models once the state space is a compact
set (see the discussion about truncation in previous section). Using results from Massart (2000);
Bartlett & Mendelson (2002) (see Appendix B.2), we obtain for both cases

E“R(Fx
t ) ≲

»
1/Mt. (26)

Term III: Propagation Error. This term captures the error inherited from the previous step t+1.
By Lemma 2 in Appendix A, we have:∥∥TtıWλt+1

t+1 − TtVt+1

∥∥2
L2

µt

⩽ cP
∥∥ıWλt+1

t+1 − Vt+1

∥∥2
L2

µt

= cPEt+1.

Final Bound. Putting everything together, we obtain the following result.
Theorem 1 (Error Backpropagation). Under Assumptions 1, 2, 3, and provided that condition 26

holds, with the choice λt ∼ n
− 1

βt+1

t and Mt ∼ n
βt

βt+1

t , we have with high probability:

Et =
∥∥ıWλt

t − Vt

∥∥2
L2

µt

≲
Å

1

nt

ã βt
βt+1

+ cPEt+1, (27)

for t ∈ {0, . . . , T − 1}. Furthermore,

E0 =
∥∥ıWλ0

0 − V0

∥∥2
L2

µ0

≲
T−1∑
t=0

ctP

Å
1

nt

ã βt
βt+1

. (28)

Note that, as desirable, the error vanishes as nt → ∞ for all t. In the non-asymptotic regime, the
convergence rate depends on the smoothness parameters {βt}t, which reflect the level of misspeci-
fication of the problem. Although the expectation operator ‹Pu

t may act as a smoothing operator, the
supremum in the Bellman operator prevents us from guaranteeing a smoothing effect through time.
As a result, the problem generally remains misspecified throughout the backward recursion. Note
also that the constant cP in Assumption 1 plays a key role in controlling the resulting error propaga-
tion. When cP < 1, as in our option pricing setting (see Example 3 below), the recursion becomes
contractive, so errors are damped rather than amplified, making convergence faster and more stable.
Example 3 (American Options (cont.)). Returning to our application to American option pricing
in Example 1, we now adapt Theorem 1 to this setting. Note that W ∗

T = VT = Ψ is typically non-
smooth for common payoff functions, see Eq. 9 or Fig. 1-2 in Appendix C). As mentioned above,
this places us in the misspecified case, where the smoothness parameters {βt}t can be small, while
it is not clear if the specification eventually improves throughout the recursion. From Eq. 12, the
Bellman operator Tt : L2

µt+1
→ L2

µt
takes the form:

Ttg = max
(
Ct, e

−rQtg
)
. (29)

We now verify that the assumptions required by Theorem 1 are satisfied. First condition in
Eq. 8 in Assumption 1 is straightforward since Ut = {0, 1} and Ft is defined as in Eq. 10:
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Table 1: Results for a Geometric basket Put option, see Table 1 in Goudenege et al. (2020).
KRR-DP GPR-Tree GPR-EI Ekvall Benchmark

d Price 95% CI Time Price Time Price Time Price Price

2 4.63 [4.58, 4.68] 2s 4.61 22s 4.57 26s 4.62 4.62
5 3.46 [3.42, 3.50] 3s 3.44 23s 3.41 27s 3.44 3.45

10 2.98 [2.94, 3.03] 4s 2.93 60s 2.93 30s 2.90 2.97
20 2.70 [2.68, 2.72] 21s 2.72 49609s 2.63 29s 2.70 2.70
40 2.55 [2.53, 2.57] 87s / / 2.53 38s 2.57 2.56

Table 2: Results for a Max-Call option, see Table 3 in Goudenege et al. (2020).
KRR-DP GPR-Tree GPR-EI GPR-MC Ekvall

d Price 95% CI Time Price Time Price Time Price Price

2 16.93 [16.86, 17.00] 5s 16.93 20s 16.82 28s 16.86 16.86
5 27.16 [26.98, 27.33] 5s 27.19 26s 26.95 27s 27.20 27.20
10 35.14 [34.94, 35.35] 6s 35.08 106s 34.84 29s 35.17 /
20 42.62 [42.30, 42.93] 27s 43.00 51090s 42.62 35s 42.76 /
40 50.44 [50.01, 50.87] 118s / / 49.53 41s 50.70 /

ess supu∈{0,1} |Ft(·, u)| = Ft(·, 0) = Ct. We let cF be the squared L2
µt

-norm of Ct, which is
assumed to be finite. Moreover, since Qt is a Markov transition kernel, it defines a non-expansive
operator:

∥Qtg∥2L2
µt

=

∫
Xt

Ç∫
Xt+1

g(x′)Q(x, dx′)

å2

dµt ⩽
∫
Xt+1

g(x′)2
∫
Xt

Q(x, dx′)dµt ⩽ ∥g∥2L2
µt+1

,

where we used Jensen’s inequality and Fubini’s theorem. Therefore, condition 8 in Assumption 1 is
also satisfied. We can now bound the Bellman operator Tt:

∥Ttg∥L2
µt

=
∥∥max

(
Ct, e

−rQtg
)∥∥

L2
µt

⩽ cF + e−r ∥g∥L2
µt+1

(30)

Then, Assumption 1 is satisfied with cP = e−2r. Note also that cP < 1 in the common case of a
strictly positive risk-free interest rate r.
Corollary 1 (American Option Pricing). From Theorem 1, in the setting described in Example 1, 2
and 3, and following Algorithm 1, we have with high probability:

∥∥ıWλ0
0 − V0

∥∥2
L2

µ0

≲
T−1∑
t=0

e−rt

Å
1

nt

ã βt
βt+1

. (31)

Notice that, in the common case of a positive interest rate e−rt < 1 (i.e. cP < 1), the Bellman oper-
ator is contractive in this setting. This contraction plays a crucial role in the corollary: it damps the
propagated errors across time steps, thereby facilitating convergence of the overall approximation.

5 SIMULATIONS

In this section, we present a basic implementation of KRR-DP Algorithm 1 and conduct an initial
evaluation of the effectiveness of the proposed method. More comprehensive experiments and opti-
mized implementations will be the subject of future work.
We primarily compare our results with the numerical benchmarks reported in Goudenege et al.
(2020). Specifically, we replicate the results in their Table 1 and Table 3, which correspond to
pricing a geometric basket put option and a max-call option, respectively. Note that a theoretical
benchmark exists for geometric basket put options. The parameters are set reproducing the ones
in Goudenege et al. (2020) and are the following: time horizon T = 9, initial state Xi

0 = 100 for
1 ⩽ i ⩽ d, strike price K = 100, free-risk interest rate r = 0.05, volatility σi = 0.2 for 1 ⩽ i ⩽ d,
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and correlation ρij = 0.2 for 1 ⩽ i ̸= j ⩽ d.
As regards the KRR solver, we employ the efficient FALKON algorithm (Meanti et al., 2020), which
uses Nyström-based random projections (Williams & Seeger, 2000) to achieve substantial compu-
tational savings while retaining optimal statistical performance (Rudi et al., 2015b; Della Vecchia
et al., 2021; 2024). Importantly, FALKON is fully compatible with our theoretical analysis: its
Nyström approximation enjoys provably optimal excess-risk guarantees (given a sufficient number
of centers), and thus can directly replace the full KRR estimator in Term I of our error decomposi-
tion (see Section 6 in Della Vecchia et al. (2024)). Thanks to the modular structure of our bounds,
this substitution preserves the convergence rate in Eq. (25), does not affect the other terms, and
leaves the overall propagation rate in Eq. (28) unchanged—while significantly reducing computa-
tional cost. This illustrates a key advantage of the neat and transparent structure of our framework:
each source of error can be improved independently (e.g., by refining Monte Carlo or replacing it
with more efficient quadrature) without altering the overall analysis. A description of the involved
methods and further details on our simulations are given in Appendix C.
These preliminary results suggest that our method performs competitively in this setting with the
considered benchmarks, offering a favorable trade-off between accuracy and computational effi-
ciency. As the dimension increases, however, the runtime grows noticeably, with the Monte Carlo
component (Term II) emerging as the main computational bottleneck. The study and incorporation
of alternatives to standard Monte Carlo capable of reducing the required number of samples M while
preserving statistical guarantees (such as the above-mentioned quadrature rules) will be the basis for
a competitive large-scale implementation, and constitute the natural direction for follow-up work.

6 CONCLUSIONS AND FUTURE WORK

In this work, we addressed stochastic optimal control problems in discrete time and introduced a
kernel-based regression framework for their solution. Our approach combines backward recursion
via empirical Bellman operators with Monte Carlo simulation and regularized learning techniques to
construct data-driven approximations of the value function. The framework is supported by rigorous
theoretical guarantees, including explicit error bounds.
Several promising directions remain open for future work. First, we plan to extend the prelim-
inary simulations presented above into a more comprehensive experimental study, incorporating
real-world datasets and more complex models. In particular, our framework can naturally be adapted
to other non-standard applications in economics, such as partial equilibrium, optimal consumption,
or goal-based investing.
In parallel, there is significant room to improve computational efficiency, especially in high-
dimensional settings, by developing a competitive implementation of the algorithm. While the
regression step can be accelerated, as in our simulations, using established scalability techniques
that preserve the statistical guarantees of KRR (e.g., sketching, random features, Nyström approx-
imations), the main bottleneck in our pipeline appears to be the Monte Carlo data-generation step.
Reducing the number M of simulated points is critical for speeding up the DATAGENERATION func-
tion in Algorithm 1. A possible approach is to replace standard Monte Carlo sampling with more
sophisticated quadrature schemes (e.g., monomial rules), which may significantly reduce computa-
tional cost while maintaining accuracy.
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Carsten Hartmann and Christof Schütte. Efficient rare event simulation by optimal nonequilibrium
forcing. Journal of Statistical Mechanics: Theory and Experiment, 2012(11):P11004, 2012.

Carsten Hartmann, Ralf Banisch, Marco Sarich, Tomasz Badowski, and Christof Schütte. Charac-
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cross-entropy method to importance sampling and optimal control of diffusions. SIAM Journal
on Scientific Computing, 36(6):A2654–A2672, 2014.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A AUXILIARY LEMMAS

In this section, we prove a number of technical results that are instrumental for establishing the
theoretical properties of our Bellman recursion in L2

µt
spaces. In particular, we aim to verify that

the Bellman operator Tt is well defined and Lipschitz continuous under mild assumptions. These
properties are essential for proving stability and convergence of our value function approximations.

We begin with a useful lemma on the behavior of essential suprema, which allows us to control
expressions of the form ess supu∈Ut

{Ft(·, u) + Pu
t g} arising in the Bellman operator.

Lemma 1. Let {Ya}a∈A and {Za}a∈A be two collections of random variables indexed by a pa-
rameter set A, such that ess supa∈A |Ya| < ∞ and ess supa∈A |Za| < ∞ almost surely. Then the
following inequalities hold almost surely:∣∣∣∣ess sup

a∈A
(Ya + Za)

∣∣∣∣ ⩽ ess sup
a∈A

|Ya|+ ess sup
a∈A

|Za| , (32)∣∣∣∣ess sup
a∈A

Ya − ess sup
a∈A

Za

∣∣∣∣ ⩽ ess sup
a∈A

|Ya − Za| . (33)

Proof. The first bound follows from the general inequality |ess supa∈A Ya| ⩽ ess supa∈A |Ya|.
For the second inequality, we exploit the invariance under translations: the statement holds
if we replace Ya and Za by Ya + C and Za + C, for any random variable C. Choosing
C = max {ess supa∈A(−Ya), ess supa∈A(−Za)}, we can assume without loss of generality
that Ya, Za ⩾ 0. Then we obtain from Eq. 32 that ess supa∈A Ya ⩽ ess supa∈A |Ya − Za| +
ess supa∈A Za, and same for Ya and Za exchanged, which proves Eq. 33.

With this result in hand, we now analyze the properties of the Bellman operator Tt as defined in
Eq. 6. The following lemma shows that, under suitable assumptions, Tt maps L2

µt+1
to L2

µt
in a

controlled way and satisfies a global Lipschitz bound.
Lemma 2. Under conditions 8 in Assumption 1, the Bellman operator Tt defines a Lipschitz con-
tinuous map satisfying:

∥Ttg∥L2
µt

⩽ cF + c
1/2
P ∥g∥L2

µt+1

, (34)

∥Ttg − Ttf∥2L2
µt

⩽ cP ∥g − f∥2L2
µt+1

, (35)

for all g, f ∈ L2
µt+1

and t = 0, . . . , T − 1.

Proof. We begin by bounding the operator norm:

∥Ttg∥L2
µt

=

∥∥∥∥ess sup
u∈Ut

{Ft(·, u) + Pu
t g}

∥∥∥∥
L2

µt

⩽

∥∥∥∥ess sup
u∈Ut

|Ft(·, u)|+ ess sup
u∈Ut

|Pu
t g|

∥∥∥∥
L2

µt

⩽

∥∥∥∥ess sup
u∈Ut

|Ft(·, u)|
∥∥∥∥
L2

µt

+

∥∥∥∥ess sup
u∈Ut

|Pu
t g|

∥∥∥∥
L2

µt

⩽ cF + c
1/2
P ∥g∥L2

µt+1

,

where we used Lemma 1 and Assumption 1. For the Lipschitz property, we compute:

∥Ttg − Ttf∥L2
µt

=

∥∥∥∥ess sup
u∈Ut

{Ft(·, u) + Pu
t g} − ess sup

u∈Ut

{Ft(·, u) + Pu
t f}

∥∥∥∥
L2

µt

⩽

∥∥∥∥ess sup
u∈Ut

|Pu
t (g − f)|

∥∥∥∥
L2

µt

⩽ c
1/2
P ∥g − f∥L2

µt+1

,

again applying Lemma 1 and that Pu
t is a linear operator.
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B TECHNICAL DETAILS ON SECTION 4

B.1 TERM I

In this section, we give further details about the analysis of our learning-based approximation
scheme in Section 4.

We start with the optimal learning rates established for regularized empirical risk minimization in
RKHS. The following theorem is taken from Steinwart et al. (2009).
Theorem (Steinwart et al. (2009, Theorem 1)). Let k be a bounded measurable kernel on X with
∥k∥∞ = 1 and separable RKHSH. Let

Aq(λ) := inf
f∈H

(λ∥f∥qH +R(f)−R∗) . (36)

Moreover, let P be a distribution on X × [−B,B], where B > 0 is some constant. For ν = PX

assume that the extended sequence of eigenvalues of the integral operator satisfies

µi (Lk) ⩽ ai−
1
p , i ⩾ 1, (37)

where a ⩾ 16M4 and p ∈ (0, 1). Assume further that there exist constants C ⩾ 1 and s ∈ (0, 1]
such that

∥f∥∞ ⩽ C∥f∥sH · ∥f∥1−s
L2(PX) (38)

for all f ∈ H. Then, for all q ⩾ 1, there exists a constant cp,q depending only on p and q such that
for all λ ∈ (0, 1], τ > 0, and n ⩾ 1, with probability at least 1− 3e−τ

R
Ä
f̂λ
ä
−R∗ ⩽ 9Aq(λ) + cp,q

Å
apqB2q

λ2pnq

ã 1
q−2p+pq

+
120C2B2−2sτ

n

Å
Aq(λ)

λ

ã 2s
q

+
3516B2τ

n
(39)

withR∗ := R(f∗) the risk of the Bayes function f∗ ∈ L2(PX) and f̂λ the data dependent estimator
from ERM algorithm.

Note that Eq 37 is exactly the condition mentioned under Eq. 25. We give here more details on
the connection with the capacity assumption. Before defining it, we define the so-called effective
dimension (Zhang, 2005; Caponnetto & De Vito, 2007), for α > 0, as

dα = Tr((Lk + αI)−1Lk) =
∑
j

σj

σj + α
(40)

where (σj)j are the strictly positive eigenvalues of Lk, with eigenvalues counted with respect to
their multiplicity and ordered in a non-increasing way, and (uj) is the corresponding family of
eigenvectors.
Assumption 4 (Capacity Assumption). There exist constants p ⩾ 1 and Q > 0 such that, for all
α ∈ (0, 1]

dα ⩽ Qα−1/p.

This assumption, standard in statistical learning theory (see Caponnetto & De Vito, 2007; Smale
& Zhou, 2007), is often referred to as a capacity condition, as it quantifies the effective size of the
RKHS via the decay of the eigenvalues of the integral operator Lk (see Proposition 1 and 2 below).
Note that the case p = 1 corresponds to no spectral assumption (i.e. the weakest possible capacity
control), which is the setting we adopt in the main text.

The following two results provide a tight bound on the effective dimension under the assumption
of a polynomial decay or an exponential decay of the eigenvalues σj of Lk. Since the covariance
operator Σ and the integral operator Lk share the same eigenvalues, we equivalently report known
proofs for Σ in the following.
Proposition 1 (Polynomial eigenvalues decay Caponnetto & De Vito (2007, Proposition 3)). If for
some γ ∈ R+ and 1 < p < +∞

σi ⩽ γi−p

then
dα ⩽ γ

p

p− 1
α−1/p (41)
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Proof. Since the function σ/(σ + α) is increasing in σ and using the spectral theorem Σ = UDU∗

combined with the fact that Tr(UDU∗) = Tr(U(U∗D)) = TrD

dα = Tr(Σ(Σ + αI)−1) =

∞∑
i=1

σi

σi + α
⩽

∞∑
i=1

γ

γ + ipα
(42)

The function γ/(γ + xpα) is positive and decreasing, so

dα ⩽
∫ ∞

0

γ

γ + xpα
dx

= α−1/p

∫ ∞

0

γ

γ + τp
dτ

⩽ γ
p

p− 1
α−1/p (43)

since
∫∞
0

(γ + τp)−1 ⩽ p/(p− 1).

A similar result, leading to even faster rates, can be obtained assuming an exponential decay.

Proposition 2 (Exponential eigenvalues decay Della Vecchia et al. (2024, Proposition 3)). If for
some γ, p ∈ R+σi ⩽ γe−pi then

dα ⩽
log(1 + γ/α)

p
(44)

Proof.

dα =

∞∑
i=1

σi

σi + α
=

∞∑
i=1

1

1 + α/σi
⩽

∞∑
i=1

1

1 + α′epi
⩽

∫ +∞

0

1

1 + α′epx
dx (45)

where α′ = α/γ. Using the change of variables t = epx we get

(45) =
1

p

∫ +∞

1

1

1 + α′t

1

t
dt =

1

p

∫ +∞

1

[1
t
− α′

1 + α′t

]
dt =

1

p

[
log t− log(1 + α′t)

]+∞

1

=
1

p

[
log

( t

1 + α′t

)]+∞

1
=

1

p

[
log(1/α′) + log(1 + α′)

]
(46)

So we finally obtain

dα ⩽
1

p

[
log(γ/α) + log(1 + α/γ)

]
=

log(1 + γ/α)

p
(47)

Specializing this result to ridge regression, and under an additional approximation condition on the
learning target, we obtain a more explicit convergence rate in terms of the sample size.

Corollary (Steinwart et al. (2009, Corollary 6)). Assume s = p = 1, q = 2, and suppose the
2-approximation error function satisfies

A2(λ) ⩽ cλβ , λ > 0 (48)

for some constants c > 0 and β > 0. Define a sequence of regularization parameters λ := n− 1
β+1 .

Then there exists a constant K ⩾ 1 depending only on a, B, and c, such that for all τ ⩾ 1 and
n ⩾ 1,

R
Ä
f̂λ
ä
−R(f∗) ⩽ Kτn− β

β+1 (49)

with probability at least 1− 3e−τn
β

β+1 .

This is the result reported in Theorem 1, given that source condition in Assumption 3 implies con-
dition in Eq.48 as shown in Smale & Zhou (2003).
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B.2 TERM II

We start by defining the empirical Rademacher complexity:“R(Fx
t ) := Eσ sup

f∈Fx
t

∣∣∣∣∣ 1

Mt

Mt∑
i=1

σif(zi)

∣∣∣∣∣ , (50)

with σ1, . . . , σMt
independent Rademacher variables, i.e. P(σi = 1) = P(σi = −1) = 1/2.

To control the empirical approximation error uniformly over a function class, we rely on the follow-
ing concentration inequality due to Boucheron et al. (2005).

Lemma (Boucheron et al. (2005, Theorem 3.2)). Let X1, . . . , Xn be i.i.d. random variables in a
set X and let F be a class of functions X → [−1, 1]. Then, with probability at least 1− δ,

sup
f∈F

∣∣∣∣∣Ef (X)− 1

n

n∑
i=1

f (Xi)

∣∣∣∣∣ ⩽ 2E“R (F(Xn
1 )) +

 
2 log 1

δ

n
, (51)

with “R(A) = E sup
a∈A

1

n

∣∣∣∣∣
n∑

i=1

σiai

∣∣∣∣∣ , (52)

where A ⊂ Rn and F(xn
1 ) is the class of vectors (f(x1), . . . , f(xn)) for f ∈ F .

We also have:

sup
f∈F

∣∣∣∣∣Ef (X)− 1

n

n∑
i=1

f (Xi)

∣∣∣∣∣ ⩽ 2“R (F(Xn
1 )) +

 
2 log 2

δ

n
. (53)

There are several well-studied cases in which the Rademacher complexity can be upper bounded.
We highlight two such cases that are particularly relevant for the financial applications of interest
here.

• Using Massart’s Lemma (Massart, 2000): if Fx
t is finite, i.e., Fx

t = {f1, . . . , fK}, then

E“R(Fx
t ) ≲

 
logK

Mt
. (54)

This result is particularly relevant for our application to American options, as the control
set Ut = {0, 1} is finite at each time step t.

• Using Talagrand’s Contraction Lemma (Ledoux & Talagrand, 1991): if Fx
t is not finite,

Ŵ
λt+1

t+1 is LW -Lipschitz, and we define Πx
t := {z 7→ πt(x, u, z) : u ∈ Ut} , then the com-

position class Fx
t = Ŵ

λt+1

t+1 ◦Πx
t satisfies“R(Fx

t ) ⩽ LW · “R(Πx
t ). (55)

Assuming that πt(x, u, z) is Lπ-Lipschitz in u and applying standard covering number
arguments we obtain

E“R(Fx
t ) ≲

LW · Lπ√
Mt

. (56)

This can be useful in the continuous control case, e.g., Ut ⊂ [0, 1], as the class Πx
t is no

longer finite.

We report the two above mentioned results.

Lemma (Massart’s Lemma (Massart, 2000), (Shalev-Shwartz & Ben-David, 2014, Lemma 26.8)).
Let F = {f1, . . . , fK} be a finite class of functions satisfying ∥f∥∞ ⩽ b for all f ∈ F . Then,“R(F) ⩽ b

…
2 logK

n
. (57)
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Lemma (Contraction Inequality (Bartlett & Mendelson, 2002, Thm. 12), (Ledoux & Talagrand,
1991, Cor. 3.17)). Let F ⊂ RZ be a class of real-valued functions, and let ϕ1, . . . , ϕn : R → R be
L-Lipschitz functions. Let S = {z1, . . . , zn} ⊂ Z be a fixed sample. Then

Eσ

[
sup
f∈F

1

n

n∑
i=1

σiϕi(f(zi))

]
⩽ L · Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(zi)

]
, (58)

where σ1, . . . , σn are independent Rademacher random variables.

B.3 FINAL BOUND

Given the above upper bounds on the three terms in Eq. 23, and choosing λ ∼ n− 1
βt+1 , we have

with high probability

Et ≲
Å

1

nt

ã βt
βt+1

+
1

Mt
+ cPEt+1. (59)

Selecting Mt ∼ n
βt

βt+1

t gives the result in Theorem 1.

C NUMERICAL SIMULATIONS

Firstly, we briefly describe the benchmark methods used for comparison in Tables 1 and 2, follow-
ing Goudenege et al. (2020).

GPR-Tree. This method combines Gaussian Process Regression (GPR) with a tree-based exercise
strategy. At each time step, the continuation value is estimated using GPR, and a decision tree
determines whether to exercise or continue. The method is designed to reduce variance and improve
interpretability, particularly in low-dimensional settings. We report the results from (Goudenege
et al., 2020, Tables 1–3) using P = 1000 training points, which offers the highest reported accuracy
despite increased computational cost compared to P = 250 or P = 500.

GPR-EI. GPR with Expected Improvement (EI) follows a sequential design strategy inspired by
Bayesian optimization. It actively selects the most informative sample points by maximizing ex-
pected improvement in the value function, enabling a more data-efficient approximation of the con-
tinuation value. As with GPR-Tree, we report the results with P = 1000 training points.

GPR-MC. This variant uses GPR to estimate the continuation value within a standard Monte Carlo
regression framework. It replaces linear regression with nonparametric GPR to improve accuracy,
especially in high-dimensional problems.

Ekvall. This baseline method is based on the lattice-based regression approach proposed in Ekvall
(1996), which approximates the value function using basis functions and optimal stopping. It serves
as a classical benchmark for evaluating newer machine learning-based methods.

Benchmark. A closed-form analytical solution is available only for the Geometric Basket Put
option.

Our method. We kept a basic implementation, exploiting classic libraries. We report the av-
erage performance of our method over 10 repetitions, along with corresponding confidence inter-
vals. The regularization parameter is simply set to λ = 10−6, and the RBF kernel lengthscale
is selected from the grid {40, 80}. Sample sizes increase with dimensionality; for instance: for
d = 2, we use n = 200, M = 50; for d = 20, we use n = 800, M = 100. All experiments
were run on Google Colab using an NVIDIA T4 GPU (16 GB) with a single Intel Xeon CPU
and approximately 12 GB of RAM. The FALKON algorithm (Meanti et al., 2020) is taken from
https://github.com/FalkonML/falkon.
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Figure 1: Value function estimates for the Geometric Basket Put option (d = 2), see Table 1.
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Figure 2: Value function estimates for the Max-Call option (d = 2), see Table 2.

D SUFFICIENT CONDITIONS FOR WELL-POSEDNESS

We discuss here the minimal condition needed for our formulation to be well posed in relation to
Assumption 1. Given a function f ∈ L2

µt+1
, we study under which condition Pu

t f belongs to L2
µt

,
with

Pu
t f(x) =

∫
Xt+1

f(x′)Pu
t (x, dx

′). (60)

Using Jensen’s inequality:

∥Pu
t f∥2L2

µt
=

∫
Xt

Ç∫
Xt+1

f(x′)Pu
t (x, dx

′)

å2

µt(dx) ⩽
∫
Xt+1

f(x′)2
∫
Xt

Pu
t (x, dx

′)µt(dx)︸ ︷︷ ︸
=: qut (dx

′)

.

(61)
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If the pushforward measure qut is absolutely continuous with respect to µt+1 and admits a bounded
Radon–Nikodym derivative, i.e., ∥∥∥∥ dqut

dµt+1

∥∥∥∥
L∞

µt+1

⩽ cP <∞, (62)

then we obtain:
∥Pu

t f∥L2
µt

⩽ c
1/2
P ∥f∥L2

µt+1
, (63)

which is exactly the requirement in Assumption 1.

Although condition 63 may appear strong, it can often be verified in applications. Indeed, observe
that

∥f∥2L2
µt+1

=

∫
Xt

E
[
f(πt(x, ūt(x), Zt+1))

2
]
µt(dx). (64)

Therefore, a sufficient structural condition for 63 to hold is the pointwise inequality:

sup
u∈Ut

E [f(πt(x, u, Zt+1))]
2 ⩽ c2P,t E

[
f(πt(x, ūt(x), Zt+1))

2
]
, for µt-a.e. x ∈ Xt. (65)

This provides a more verifiable condition for establishing Assumption 1, especially in simulation-
based settings where the behavior distribution is known or controlled.
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