
SALSA: Single-pass Autoregressive LLM Structured Classification

Anonymous ACL submission

Abstract001

We propose SALSA (Single-pass Autoregres-002
sive LLM Structured Classification), a method003
that harnesses the transferred knowledge of004
open-ended generative Large Language Models005
(LLMs) for text classification. By structuring006
task prompts and response formats while ana-007
lyzing only the relevant target logits, SALSA008
enables computationally efficient classifica-009
tion with the generation of a single token010
only. We demonstrate that fine-tuning LLMs011
using Low-Rank Adaptation (LoRA) using012
SALSA’s approach, achieves state-of-the-art013
results on selected classification benchmarks.014
Not only does SALSA improve results, but it015
also achieves top-rated results faster than exist-016
ing methods.017

1 Introduction018

Text classification is a fundamental task in natu-019

ral language processing (NLP). Its applications in-020

clude spam detection, sentiment analysis, dialogue021

safety, and content moderation. Traditional meth-022

ods relied on rule-based systems and early machine023

learning models using hand-crafted features, which024

were limited by labor-intensive processes and scal-025

ability issues. The emergence of deep learning026

transformed the field by enabling automated fea-027

ture extraction through models such as word2vec028

(Mikolov et al., 2013), ELMo (Peters et al., 2018),029

and transformer-based architectures such as BERT030

(Devlin et al., 2019) and GPT (Brown et al., 2020),031

which deliver exceptional performance.032

With the advent of Large Language Models033

(LLMs), particularly open-ended generative mod-034

els, the capabilities of NLP systems have expanded035

significantly. These models, pre-trained on exten-036

sive corpora, encapsulate a wealth of transferable037

knowledge that can be leveraged for diverse down-038

stream tasks, including text classification. Despite039

this, the effective adaptation of open-ended genera-040

tive LLMs for classification still poses challenges,041

requiring efficient input representation and fine- 042

tuning strategies. 043

In this paper, we present SALSA (Single-pass 044

Autoregressive LLM Structured Classification), a 045

novel approach to harness the potential of open- 046

ended generative LLMs for text classification tasks. 047

SALSA leverages structured prompts and tailored 048

response formats, combined with targeted logits 049

analysis, to fully exploit the generative capacities 050

of these models. SALSA can be applied to any 051

model that provides logit outputs. Given such 052

model, we employ Low-Rank Adaptation (Hu et al., 053

2021) to fine-tune the models with a focus on opti- 054

mizing the cross-entropy loss over relevant logits, 055

from the classification-related tokens only. This 056

approach results in state-of-the-art performance on 057

benchmark datasets faster than existing methods, 058

requiring fewer training steps. Thanks to SALSA’s 059

design, tuning begins with zero-shot performance, 060

giving it an advantageous position on the optimiza- 061

tion surface. To the best of our knowledge, this 062

is the first work to show that generative decoder- 063

only LLMs outperform conventional methods for 064

classification tasks. 065

2 Background 066

Text classification is a core NLP task, categoriz- 067

ing text into predefined labels. It includes (1) 068

multi-class classification, assigning one label per 069

instance; (2) multi-label classification, allowing 070

multiple labels per instance; and (3) multi-task 071

classification, where models handle multiple tasks 072

simultaneously. 073

Early NLP approaches used handcrafted features, 074

deep learning then introduced RNNs and CNNs, 075

improving classification (Kim, 2014). Transformer- 076

based models, introduced by Vaswani et al. 077

(Vaswani et al., 2017), revolutionized NLP by uti- 078

lizing self-attention mechanisms for contextualized 079

embeddings. Models like BERT (Devlin et al., 080
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Figure 1: SALSA single-token classification pipeline: each category is mapped to a distinct token, and the LLM’s
logits determine the predicted label in one forward pass.

2019) represented a major leap forward by intro-081

ducing bidirectional context understanding through082

unsupervised pretraining on large-scale corpora.083

Autoregressive transformer models like XLNet084

(Yang et al., 2019) demonstrated the benefits of au-085

toregressive pretraining, outperforming traditional086

methods in classification tasks.087

Recent years have witnessed significant ad-088

vances in the development of decoder-based LLMs,089

generating text autoregressively. They perform090

classification via zero-shot and few-shot learn-091

ing, enabling generalization with minimal data092

and in context learning. Breakthrough models093

like LLaMA (Touvron et al., 2023; Grattafiori094

et al., 2024), Gemma (Team et al., 2024), and095

GPT (Brown et al., 2020) have redefined text-based096

tasks. Their exceptional capabilities, as highlighted097

in (Brown et al., 2020), enable high performance098

across diverse tasks, including text classification.099

Another leap in the field came from new and100

enhanced training methods for LLMs: Instruction101

aware training has been shown to transform lan-102

guage models into robust zero-shot learners (Wei103

et al., 2021). Parameter-efficient methods like Bit-104

Fit (Ben Zaken et al., 2022) and LoRA (Hu et al.,105

2021) further limit overfitting by reducing the num-106

ber of trainable parameters, ensuring stable fine-107

tuning especially in low-data scenarios. They also108

enable cost-effective deployment across tasks, re-109

quiring only minimal parameter swaps while leav-110

ing the base model intact.111

A common method for autoregressive LLM-112

based classification is prompting the model to gen-113

erate a label, which introduces variability unsuited114

for categorical tasks. Techniques like Chain-of-115

Thought (CoT) prompting (Wei et al., 2022) en-116

hance performance by structuring reasoning steps117

but require generating many tokens for each classi- 118

fication query, making it expensive and inefficient. 119

When comparing results, finetuned encoder- 120

based large language models have achieved state- 121

of-the-art (SOTA) performance in classification 122

tasks, such as those in the GLUE benchmark (Wang 123

et al., 2018). Surprisingly, the much bigger gen- 124

erative decoder-only LLMs, which often outper- 125

forms encoder-based LLMs in several tasks, gener- 126

ally fail to achieve competitive classification results 127

(Bucher and Martini, 2024). 128

Our work aims to bridge the gap between the 129

potential of generative decoder-only LLMs and the 130

performance for classification tasks, both in terms 131

of quality and efficiency. 132

3 Method 133

SALSA (Single-pass Autoregressive LLM Struc- 134

tured Classification) is a novel approach for ad- 135

dressing classification tasks with large language 136

models (LLMs). It leverages the internal knowl- 137

edge of LLMs by using their output logits to per- 138

form classification in a single forward pass per 139

query. Our method employs LoRA for efficient pa- 140

rameter updates and knowledge exposure, allowing 141

SALSA to deliver competitive performance. 142

Prompt Construction. We design a structured 143

instruction prompt that encapsulates the task. The 144

prompt first provides a clear task description, then 145

maps each class to a unique single-token represen- 146

tation, and finally specifies the expected answer for- 147

mat, including fixed prefix and suffix elements. A 148

structured response containing a placeholder token 149

is appended to complete the prompt. This process 150

is illustrated in Figure 1. 151

Forward Pass, Filtering, and Classification. 152

We perform a single forward pass through the 153
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LLM to extract the logits for the placeholder token,154

which represent the model’s predictions. These log-155

its are then filtered based on the prompt’s mapping156

and normalized via softmax to yield an estimated157

probability distribution over the classes. The final158

prediction corresponds to the class with the highest159

probability.160

Training. We optimize our model using a161

backpropagation-based procedure (see Algorithm 1162

in the Appendix). In particular, we employ LoRA163

in conjunction with a cross-entropy loss function.164

The loss is defined as follows:165

L = − 1

N

N∑
i=1

C∑
c=1

yi,c log(P̂i,c) (1)166

where N is the number of samples, C is the number167

of classes, yi,c represents the ground truth labels,168

and P̂i,c denotes the predicted probabilities. See169

A.1 for more details.170

4 Experiments and Results171

4.1 Datasets172

We evaluated SALSA on multiple text classification173

datasets, including a subset of GLUE (Wang et al.,174

2018), covering SST-2 (Socher et al., 2013), MRPC175

(Dolan and Brockett, 2005), QQP (Iyer et al., 2017),176

MNLI (Bowman et al., 2015), QNLI (Rajpurkar177

et al., 2016), and RTE (Dagan et al., 2005). Addi-178

tional datasets included AG’s News (Zhang et al.,179

2015) for topic classification, IMDb (Maas et al.,180

2011) for binary sentiment analysis, and Yelp-5181

(Zhang et al., 2015) for multi-class sentiment anal-182

ysis. For more details see section A.2.183

4.2 Analysis184

In this section, we delve into a comprehensive anal-185

ysis of SALSA by examining performance met-186

rics, convergence efficiency, and other key aspects187

across various benchmarks.188

State-of-the-Art Results. SALSA demonstrates189

state-of-the-art performance across multiple text190

classification benchmarks, as outlined in Table 1191

(and Table 2).192

The method consistently outperforms existing193

models, including T5-11B (Raffel et al., 2020), XL-194

Net (Yang et al., 2019), RoBERTaLARGE (Liu et al.,195

2019), and ALBERT (Lan et al., 2019). Further-196

more, we compared SALSA against the top three197

performers on the GLUE benchmark, Turing ULR198

v6 (Team, 2022), Vega v1 (Zhong et al., 2023),199

and Turing ULR v5 (Tiwary and Zhou, 2021), and 200

SALSA outperforms them all in 3 of 7 tasks. 201

For each validation set experiment, we train 202

the model five times with different random seeds 203

and report the average performance on the valida- 204

tion set. For test set experiments, we evaluate the 205

model that achieves the highest results on the vali- 206

dation set using the GLUE test set evaluation server. 207

These findings validate the efficiency and robust- 208

ness of SALSA in leveraging generative LLMs for 209

classification tasks. 210

Zero-Shot and Few-Shot Classification. To fur- 211

ther assess SALSA, we compared it with zero- 212

shot and few-shot classification experiments using 213

Meta’s Instruct LLama 3.3 70B model. 214

In the zero-shot setting, we used structured 215

prompts without any labeled examples. The model 216

generated open-ended responses that we parsed to 217

determine the predicted classes. 218

For a few-shot classification, we randomly se- 219

lected ten balanced examples to include in the 220

prompt as contextual cues for the model. As in 221

zero-shot classification, we parsed the model out- 222

put to identify the classes. 223

Efficient Optimization and Convergence. To 224

assess SALSA, we implemented traditional 225

(Vanilla) fine-tuning by passing input text through 226

the same base LLM and adding a linear layer 227

to the final token’s output, matching the number 228

of classes. Fine-tuning used identical LoRA pa- 229

rameters to minimize cross-entropy loss. Figure 230

2 compares SALSA’s convergence to traditional 231

fine-tuning (Vanilla). SALSA demonstrates con- 232

sistently higher training and validation accuracy 233

across training steps, achieving faster convergence 234

and superior performance. This efficiency high- 235

lights SALSA’s effectiveness in structured classifi- 236

cation tasks, reducing training time while enhanc- 237

ing generalization, making it highly practical for 238

resource-constrained scenarios. 239

Controlling the Precision–Recall Trade-off. 240

Adjusting decision threshold values offers precise 241

control over the trade-off between precision and re- 242

call. This flexibility allows the model to be tailored 243

to specific application needs, enabling dynamic tun- 244

ing to optimize performance based on the desired 245

balance. 246

Efficient Single-Pass Inference. SALSA elimi- 247

nates autoregressive overhead by computing all log- 248

its in a single forward pass, reducing latency and 249

resource use. Mapping classification to a single- 250

token output ensures only valid class tokens are 251
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QQP SST-2 RTE MRPC QNLI MNLIM MNLIMM

(V) Zero Shot 81.4 94.9 86.3 77.0 90.7 81.9 80.9
(V) Few Shot 81.5 96.1 85.2 77.2 91.4 80.1 80.2
(V) RoBERTaLARGE 92.2 96.4 86.6 90.9 94.7 90.2 90.2
(V) ALBERT 92.2 96.9 89.2 90.9 95.3 90.8 90.8
(V) XLNet 92.3 97.0 85.9 90.8 94.9 90.8 90.8
(V) SALSA 92.4±0.2 97.1±0.2 94.2±0.4 91.7±0.5 96.7±0.2 92.8±0.3 92.6±0.2
(T) BERTLARGE 89.3 94.9 70.1 85.4 92.7 86.7 85.9
(T) T5-11B 90.6 97.5 92.8 90.4 96.9 92.2 91.9
(T) Turing ULR v6 90.9 97.5 93.6 92.3 96.7 92.5 92.1
(T) Vega v1 91.1 97.9 92.4 92.6 96.7 92.2 91.9
(T) Turing ULR v5 91.1 97.6 94.1 91.7 97.9 92.6 92.4
(T) SALSA 90.7 97.9 94.8 91.2 97.1 92.7 92.0

Table 1: Performance metrics of SALSA compared to baseline models across multiple GLUE Benchmark datasets.
Results are reported separately for the validation (V) and test (T) sets, with accuracy as the key evaluation metric.
SALSA achieves state-of-the-art performance on all validation tasks and outperforms competitors on 3 out of 7 test
tasks. Test set results are benchmarked against the top 3 GLUE leaderboard models as of January 27, 2025.

AG News IMDb Yelp-5
Zero Shot 88.8 95.2 62.7
XLNet 95.5 96.8 72.9
SALSA 95.9±0.1 97.6±0.1 74.2 ±0.2

Table 2: Accuracy of SALSA, XLNet, and Zero-Shot
on AGNews, IMDb, and Yelp-5 test datasets.

Figure 2: Convergence comparison between SALSA
and Vanilla fine-tuning on RTE (Dagan et al., 2005).
SALSA achieves faster convergence with higher accu-
racy on both training and validation sets, indicating
better generalization and training efficiency.

considered, enhancing efficiency and correctness.252

Possible Extensions. SALSA’s framework can253

be naturally extended to more complex scenarios.254

For multi-label classification, one can replace the255

softmax layer with a sigmoid function and apply a256

probability threshold to select all relevant classes.257

For multi-task classification, a prompt with place-258

holders for each task enables the extraction of sep-259

arate logits distributions, allowing simultaneous260

classification across multiple tasks (see Figure 3 in 261

the Appendix). 262

5 Discussion 263

SALSA demonstrates that structured prompts and 264

targeted logit extraction can effectively harness 265

the generative capacity of large language models 266

for text classification. By condensing classifica- 267

tion into a single forward pass, SALSA achieves 268

stronger performance than baselines on diverse 269

benchmarks while also converging more rapidly. 270

This efficiency is particularly valuable in resource- 271

constrained scenarios, where fine-tuning large mod- 272

els can be computationally demanding. Further- 273

more, SALSA’s design readily extends to multi- 274

label and multi-task settings, indicating its poten- 275

tial as a flexible framework for real-world NLP 276

pipelines. 277

However, prompt engineering remains partly em- 278

pirical, highlighting the need for systematic strate- 279

gies to optimize prompt formats. Future work 280

could investigate adaptive thresholding for multi- 281

label tasks and comprehensive evaluations across 282

multi-task and multi-label datasets. In general, 283

SALSA offers a practical and extensible frame- 284

work that uses pre-trained generative models for 285

robust text classification. 286

6 Limitations 287

One key limitation of SALSA is its reliance on 288

accessing the internal logit distribution of large 289

language models (LLMs), which restricts its use 290

to models or third-party services that expose such 291

information. Additionally, the structured prompt 292
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design used to map classes to single tokens may293

not be applicable in all scenarios, particularly in294

tasks with more complex or nuanced label represen-295

tations. Another concern is model contamination.296

Since we have no control over the data used to train297

the underlying LLM there is the possibility that298

some test examples may have been inadvertently299

incorporated during unsupervised training. Finally,300

SALSA inherits the biases and ethical concerns of301

its underlying LLM. As these models are trained302

on large-scale web corpora, they may encode and303

propagate societal biases, necessitating responsible304

use in real-world applications.305

References306

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel.307
2022. BitFit: Simple parameter-efficient fine-tuning308
for transformer-based masked language-models. In309
Proceedings of the 60th Annual Meeting of the As-310
sociation for Computational Linguistics (Volume 2:311
Short Papers), pages 1–9, Dublin, Ireland. Associa-312
tion for Computational Linguistics.313

Samuel R. Bowman, Gabor Angeli, Christopher Potts,314
and Christopher D. Manning. 2015. A large anno-315
tated corpus for learning natural language inference.316
In Proceedings of the 2015 Conference on Empiri-317
cal Methods in Natural Language Processing, pages318
632–642, Lisbon, Portugal. Association for Compu-319
tational Linguistics.320

Tom Brown, Benjamin Mann, Nick Ryder, Melanie321
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind322
Neelakantan, Pranav Shyam, Girish Sastry, Amanda323
Askell, Sandhini Agarwal, Ariel Herbert-Voss,324
Gretchen Krueger, Tom Henighan, Rewon Child,325
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens326
Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-327
teusz Litwin, Scott Gray, Benjamin Chess, Jack328
Clark, Christopher Berner, Sam McCandlish, Alec329
Radford, Ilya Sutskever, and Dario Amodei. 2020.330
Language models are few-shot learners. In Ad-331
vances in Neural Information Processing Systems,332
volume 33, pages 1877–1901. Curran Associates,333
Inc.334

Martin Juan José Bucher and Marco Martini. 2024.335
Fine-tuned ’small’ llms (still) significantly outper-336
form zero-shot generative ai models in text classifica-337
tion. arXiv preprint arXiv:2406.08660.338

Ido Dagan, Oren Glickman, and Bernardo Magnini.339
2005. The pascal recognising textual entailment chal-340
lenge. In Machine Learning Challenges Workshop,341
pages 177–190. Springer.342

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and343
Kristina Toutanova. 2019. BERT: Pre-training of344
deep bidirectional transformers for language under-345
standing. In Proceedings of the 2019 Conference of346

the North American Chapter of the Association for 347
Computational Linguistics: Human Language Tech- 348
nologies, Volume 1 (Long and Short Papers), pages 349
4171–4186, Minneapolis, Minnesota. Association for 350
Computational Linguistics. 351

William B Dolan and Chris Brockett. 2005. Automati- 352
cally constructing a corpus of sentential paraphrases. 353
In Proceedings of the Third International Workshop 354
on Paraphrasing (IWP2005). 355

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 356
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 357
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 358
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 359
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 360
tra, Archie Sravankumar, Artem Korenev, Arthur 361
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro- 362
driguez, Austen Gregerson, Ava Spataru, Baptiste 363
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, 364
Charlotte Caucheteux, Chaya Nayak, Chloe Bi, 365
Chris Marra, Chris McConnell, Christian Keller, 366
Christophe Touret, Chunyang Wu, Corinne Wong, 367
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al- 368
lonsius, Daniel Song, Danielle Pintz, Danny Livshits, 369
Danny Wyatt, David Esiobu, Dhruv Choudhary, 370
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, 371
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, 372
Elina Lobanova, Emily Dinan, Eric Michael Smith, 373
Filip Radenovic, Francisco Guzmán, Frank Zhang, 374
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An- 375
derson, Govind Thattai, Graeme Nail, Gregoire Mi- 376
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen, 377
Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan 378
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is- 379
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet, 380
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, 381
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, 382
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, 383
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, 384
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, 385
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun- 386
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad, 387
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth 388
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, 389
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal 390
Lakhotia, Lauren Rantala-Yeary, Laurens van der 391
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, 392
Louis Martin, Lovish Madaan, Lubo Malo, Lukas 393
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline 394
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar 395
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew 396
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam- 397
badur, Mike Lewis, Min Si, Mitesh Kumar Singh, 398
Mona Hassan, Naman Goyal, Narjes Torabi, Niko- 399
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, 400
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick 401
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va- 402
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, 403
Praveen Krishnan, Punit Singh Koura, Puxin Xu, 404
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj 405
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, 406
Robert Stojnic, Roberta Raileanu, Rohan Maheswari, 407
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron- 408

5

https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/2022.acl-short.1
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423


nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan409
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-410
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-411
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-412
ran Narang, Sharath Raparthy, Sheng Shen, Shengye413
Wan, Shruti Bhosale, Shun Zhang, Simon Van-414
denhende, Soumya Batra, Spencer Whitman, Sten415
Sootla, Stephane Collot, Suchin Gururangan, Syd-416
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek417
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias418
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal419
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh420
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-421
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-422
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-423
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-424
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-425
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-426
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,427
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,428
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing429
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-430
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,431
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,432
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei433
Baevski, Allie Feinstein, Amanda Kallet, Amit San-434
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-435
dres Alvarado, Andrew Caples, Andrew Gu, Andrew436
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-437
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-438
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,439
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-440
dan, Beau James, Ben Maurer, Benjamin Leonhardi,441
Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi442
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han-443
cock, Bram Wasti, Brandon Spence, Brani Stojkovic,444
Brian Gamido, Britt Montalvo, Carl Parker, Carly445
Burton, Catalina Mejia, Ce Liu, Changhan Wang,446
Changkyu Kim, Chao Zhou, Chester Hu, Ching-447
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe-448
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty,449
Daniel Kreymer, Daniel Li, David Adkins, David450
Xu, Davide Testuggine, Delia David, Devi Parikh,451
Diana Liskovich, Didem Foss, Dingkang Wang, Duc452
Le, Dustin Holland, Edward Dowling, Eissa Jamil,453
Elaine Montgomery, Eleonora Presani, Emily Hahn,454
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este-455
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun,456
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat457
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank458
Seide, Gabriela Medina Florez, Gabriella Schwarz,459
Gada Badeer, Georgia Swee, Gil Halpern, Grant460
Herman, Grigory Sizov, Guangyi, Zhang, Guna461
Lakshminarayanan, Hakan Inan, Hamid Shojanaz-462
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun463
Habeeb, Harrison Rudolph, Helen Suk, Henry As-464
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim465
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis,466
Irina-Elena Veliche, Itai Gat, Jake Weissman, James467
Geboski, James Kohli, Janice Lam, Japhet Asher,468
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen-469
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy470
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe471
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc-472

Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang, 473
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan- 474
delwal, Katayoun Zand, Kathy Matosich, Kaushik 475
Veeraraghavan, Kelly Michelena, Keqian Li, Ki- 476
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle 477
Huang, Lailin Chen, Lakshya Garg, Lavender A, 478
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng 479
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst- 480
edt, Madian Khabsa, Manav Avalani, Manish Bhatt, 481
Martynas Mankus, Matan Hasson, Matthew Lennie, 482
Matthias Reso, Maxim Groshev, Maxim Naumov, 483
Maya Lathi, Meghan Keneally, Miao Liu, Michael L. 484
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa- 485
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, 486
Mike Macey, Mike Wang, Miquel Jubert Hermoso, 487
Mo Metanat, Mohammad Rastegari, Munish Bansal, 488
Nandhini Santhanam, Natascha Parks, Natasha 489
White, Navyata Bawa, Nayan Singhal, Nick Egebo, 490
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich 491
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, 492
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin 493
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe- 494
dro Rittner, Philip Bontrager, Pierre Roux, Piotr 495
Dollar, Polina Zvyagina, Prashant Ratanchandani, 496
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel 497
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu 498
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, 499
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky 500
Wang, Russ Howes, Ruty Rinott, Sachin Mehta, 501
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara 502
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, 503
Satadru Pan, Saurabh Mahajan, Saurabh Verma, 504
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind- 505
say, Shaun Lindsay, Sheng Feng, Shenghao Lin, 506
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, 507
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang, 508
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, 509
Stephanie Max, Stephen Chen, Steve Kehoe, Steve 510
Satterfield, Sudarshan Govindaprasad, Sumit Gupta, 511
Summer Deng, Sungmin Cho, Sunny Virk, Suraj 512
Subramanian, Sy Choudhury, Sydney Goldman, Tal 513
Remez, Tamar Glaser, Tamara Best, Thilo Koehler, 514
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim 515
Matthews, Timothy Chou, Tzook Shaked, Varun 516
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai 517
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad 518
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, 519
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen- 520
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng 521
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo 522
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, 523
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, 524
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, 525
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary 526
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, 527
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd 528
of models. Preprint, arXiv:2407.21783. 529

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan 530
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, 531
and Weizhu Chen. 2021. Lora: Low-rank adap- 532
tation of large language models. arXiv preprint 533
arXiv:2106.09685. 534

6

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783


Shankar Iyer, Nikhil Dandekar, and Kornel Csernai.535
2017. First quora dataset release: Question pairs.536

Yoon Kim. 2014. Convolutional neural networks537
for sentence classification. In Proceedings of the538
2014 Conference on Empirical Methods in Natural539
Language Processing (EMNLP), pages 1746–1751,540
Doha, Qatar. Association for Computational Linguis-541
tics.542

Diederik P Kingma. 2014. Adam: A method for stochas-543
tic optimization. arXiv preprint arXiv:1412.6980.544

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,545
Kevin Gimpel, Piyush Sharma, and Radu Sori-546
cut. 2019. ALBERT: A lite BERT for self-547
supervised learning of language representations.548
CoRR, abs/1909.11942.549

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-550
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,551
Luke Zettlemoyer, and Veselin Stoyanov. 2019.552
RoBERTa: A robustly optimized BERT pretraining553
approach. arXiv preprint arXiv:1907.11692.554

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,555
Dan Huang, Andrew Y. Ng, and Christopher Potts.556
2011. Learning word vectors for sentiment analysis.557
In Proceedings of the 49th Annual Meeting of the558
Association for Computational Linguistics: Human559
Language Technologies, pages 142–150, Portland,560
Oregon, USA. Association for Computational Lin-561
guistics.562

Tomás Mikolov, Kai Chen, Greg Corrado, and Jeffrey563
Dean. 2013. Efficient estimation of word representa-564
tions in vector space. In 1st International Conference565
on Learning Representations, ICLR 2013, Scottsdale,566
Arizona, USA, May 2-4, 2013, Workshop Track Pro-567
ceedings.568

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt569
Gardner, Christopher Clark, Kenton Lee, and Luke570
Zettlemoyer. 2018. Deep contextualized word repre-571
sentations. In Proceedings of the 2018 Conference of572
the North American Chapter of the Association for573
Computational Linguistics: Human Language Tech-574
nologies, Volume 1 (Long Papers), pages 2227–2237,575
New Orleans, Louisiana. Association for Computa-576
tional Linguistics.577

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-578
ine Lee, Sharan Narang, Michael Matena, Yanqi579
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the580
limits of transfer learning with a unified text-to-text581
transformer. Journal of Machine Learning Research,582
21(1):1–67.583

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and584
Percy Liang. 2016. SQuAD: 100,000+ questions for585
machine comprehension of text. In Proceedings of586
the 2016 Conference on Empirical Methods in Natu-587
ral Language Processing, pages 2383–2392, Austin,588
Texas. Association for Computational Linguistics.589

Richard Socher, Alex Perelygin, Jean Wu, Jason 590
Chuang, Christopher D Manning, Andrew Ng, and 591
Christopher Potts. 2013. Recursive deep models for 592
semantic compositionality over a sentiment treebank. 593
In Proceedings of the 2013 conference on empiri- 594
cal methods in natural language processing, pages 595
1631–1642. 596

Gemma Team, Thomas Mesnard, Cassidy Hardin, 597
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak, 598
Laurent Sifre, Morgane Rivière, Mihir Sanjay 599
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot, 600
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam 601
Roberts, Aditya Barua, Alex Botev, Alex Castro- 602
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac- 603
chetti, Anna Bulanova, Antonia Paterson, Beth 604
Tsai, Bobak Shahriari, Charline Le Lan, Christo- 605
pher A. Choquette-Choo, Clément Crepy, Daniel Cer, 606
Daphne Ippolito, David Reid, Elena Buchatskaya, 607
Eric Ni, Eric Noland, Geng Yan, George Tucker, 608
George-Christian Muraru, Grigory Rozhdestvenskiy, 609
Henryk Michalewski, Ian Tenney, Ivan Grishchenko, 610
Jacob Austin, James Keeling, Jane Labanowski, 611
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren- 612
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin 613
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli- 614
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon, 615
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael 616
Sharman, Nikolai Chinaev, Nithum Thain, Olivier 617
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai- 618
ley, Paul Michel, Petko Yotov, Rahma Chaabouni, 619
Ramona Comanescu, Reena Jana, Rohan Anil, Ross 620
McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith, 621
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas, 622
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli- 623
menko, Tom Hennigan, Vlad Feinberg, Wojciech 624
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao 625
Gong, Tris Warkentin, Ludovic Peran, Minh Giang, 626
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray 627
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani, 628
Douglas Eck, Joelle Barral, Fernando Pereira, Eli 629
Collins, Armand Joulin, Noah Fiedel, Evan Senter, 630
Alek Andreev, and Kathleen Kenealy. 2024. Gemma: 631
Open models based on gemini research and technol- 632
ogy. Preprint, arXiv:2403.08295. 633

Microsoft Turing Team. 2022. Microsoft turing univer- 634
sal language representation model (t-ulrv6). 635

Saurabh Tiwary and Lidong Zhou. 2021. Microsoft 636
turing universal language representation model, t- 637
ulrv5, tops xtreme leaderboard and trains 100x faster. 638
Microsoft Research Blog. 639

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier 640
Martinet, Marie-Anne Lachaux, Timothée Lacroix, 641
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal 642
Azhar, Aurelien Rodriguez, Armand Joulin, Edouard 643
Grave, and Guillaume Lample. 2023. Llama: Open 644
and efficient foundation language models. Preprint, 645
arXiv:2302.13971. 646

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 647
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz 648
Kaiser, and Illia Polosukhin. 2017. Attention is all 649

7

https://data.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.3115/v1/D14-1181
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
https://arxiv.org/abs/1909.11942
http://www.aclweb.org/anthology/P11-1015
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1301.3781
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://blogs.bing.com/search-quality-insights/october-2022/Microsoft-Turing-Universal-Language-Representation-model%2C-T-ULRv6%2C-tops-both-XTREME-and-GLUE-leaderb
https://blogs.bing.com/search-quality-insights/october-2022/Microsoft-Turing-Universal-Language-Representation-model%2C-T-ULRv6%2C-tops-both-XTREME-and-GLUE-leaderb
https://blogs.bing.com/search-quality-insights/october-2022/Microsoft-Turing-Universal-Language-Representation-model%2C-T-ULRv6%2C-tops-both-XTREME-and-GLUE-leaderb
https://www.microsoft.com/en-us/research/blog/microsoft-turing-universal-language-representation-model-t-ulrv5-tops-xtreme-leaderboard-and-trains-100x-faster/
https://www.microsoft.com/en-us/research/blog/microsoft-turing-universal-language-representation-model-t-ulrv5-tops-xtreme-leaderboard-and-trains-100x-faster/
https://www.microsoft.com/en-us/research/blog/microsoft-turing-universal-language-representation-model-t-ulrv5-tops-xtreme-leaderboard-and-trains-100x-faster/
https://www.microsoft.com/en-us/research/blog/microsoft-turing-universal-language-representation-model-t-ulrv5-tops-xtreme-leaderboard-and-trains-100x-faster/
https://www.microsoft.com/en-us/research/blog/microsoft-turing-universal-language-representation-model-t-ulrv5-tops-xtreme-leaderboard-and-trains-100x-faster/
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


you need. In Advances in Neural Information Pro-650
cessing Systems, volume 30. Curran Associates, Inc.651

Alex Wang, Amanpreet Singh, Julian Michael, Felix652
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:653
A multi-task benchmark and analysis platform for nat-654
ural language understanding. In Proceedings of the655
2018 EMNLP Workshop BlackboxNLP: Analyzing656
and Interpreting Neural Networks for NLP, pages657
353–355, Brussels, Belgium. Association for Com-658
putational Linguistics.659

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin660
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-661
drew M Dai, and Quoc V Le. 2021. Finetuned lan-662
guage models are zero-shot learners. arXiv preprint663
arXiv:2109.01652.664

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten665
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,666
et al. 2022. Chain-of-thought prompting elicits rea-667
soning in large language models. Advances in neural668
information processing systems, 35:24824–24837.669

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-670
bonell, Ruslan Salakhutdinov, and Quoc V. Le. 2019.671
Xlnet: Generalized autoregressive pretraining for lan-672
guage understanding. In Proceedings of the 33rd673
International Conference on Neural Information Pro-674
cessing Systems (NeurIPS), Red Hook, NY, USA.675
Curran Associates Inc.676

Xiang Zhang, Junbo Zhao, and Yann LeCun. 2015.677
Character-level convolutional networks for text clas-678
sification. In Advances in Neural Information Pro-679
cessing Systems, volume 28. Curran Associates, Inc.680

Qihuang Zhong, Liang Ding, Keqin Peng, Juhua Liu,681
Bo Du, Li Shen, Yibing Zhan, and Dacheng Tao.682
2023. Bag of tricks for effective language model683
pretraining and downstream adaptation: A case study684
on glue. Preprint, arXiv:2302.09268.685

8

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://doi.org/10.18653/v1/W18-5446
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/250cf8b51c773f3f8dc8b4be867a9a02-Paper.pdf
https://arxiv.org/abs/2302.09268
https://arxiv.org/abs/2302.09268
https://arxiv.org/abs/2302.09268
https://arxiv.org/abs/2302.09268
https://arxiv.org/abs/2302.09268


A Appendices686

A.1 Training Details687

The base model was Meta’s Instruct LLama 3.3688

70b (Meta’s license). It was tuned for a total of689

6 epochs, and gradient accumulation steps set to690

50 with batch size 1 to effectively handle large691

batch sizes in limited memory environment. To692

ensure reproducibility, a fixed random seed was693

used throughout the experiments.694

LoRA(Hu et al., 2021) was used for fine-tuning,695

the rank was set to 8, the alpha parameter to 16,696

and a dropout rate of 0.05.697

Optimization was carried out using the Adam698

optimizer (Kingma, 2014) with default parame-699

ter settings, where beta1=0.9, beta2=0.999, and700

epsilon=1E-8. A linear learning rate scheduler701

was employed, incorporating 100 warmup steps702

to progressively increase the learning rate at the703

beginning of training to 1E-4. After warmup the704

learning rate was reduced linearly to 0. For each705

experiment, the best-performing validation epoch706

was identified, and the experiment was repeated707

five times with different data shuffling seeds to708

ensure robustness of results.709

Empirical observations revealed that optimal val-710

idation performance was typically achieved within711

the first 2 to 3 epochs. Training beyond this point,712

particularly when each sample was seen more than713

three times, often resulted in overfitting for small714

size datasets. The hardware used for this work was715

the Nvidia DGX system with eight H100 80GB716

GPU blades, and each model training run lasted717

between 1 and 36 hours. In this work, no hyperpa-718

rameter optimization was conducted.719

A.2 Datasets720

We used multiple datasets to evaluate SALSA,721

focusing on text classification tasks.722

723

GLUE Benchmark. We evaluated SALSA on a724

subset of tasks from the GLUE benchmark (Wang725

et al., 2018) and report both the task details and726

evaluation metrics. Specifically, we tested on the727

following tasks: the Stanford Sentiment Treebank728

(SST-2; Socher et al. (2013)), the Microsoft729

Research Paraphrase Corpus (MRPC; Dolan730

and Brockett (2005)), the Quora Question Pairs731

(QQP; Iyer et al. (2017)), the Multi-Genre Natural732

Language Inference Corpus (MNLI; Bowman et al.733

(2015)), the Stanford Question Answering Dataset734

(QNLI; Rajpurkar et al. (2016)), and Recognizing735

Textual Entailment (RTE; Dagan et al. (2005)). 736

737

AG’s News. The AG’s News dataset (Zhang 738

et al., 2015) includes 120,000+ news articles 739

across four categories (World, Sports, Business, 740

Science/Technology), testing LLM robustness with 741

diverse topics and journalistic tones. 742

743

IMDb. The IMDb data set (Maas et al., 2011) 744

is a benchmark for binary sentiment analysis 745

with positive or negative movie reviews, testing 746

classification models on diverse styles of writing, 747

topics, and sentiment intensities. 748

749

Yelp-5. The Yelp-5 dataset (Zhang et al., 2015), 750

used for multi-class sentiment analysis, contains 751

customer reviews rated 1-5 stars, challenging 752

models with varied review lengths, tones, and 753

topics. 754

755

For the train:validation:test size split and the 756

number of samples in each dataset used for the 757

evaluation, see Table 3. 758

Dataset Train Size Val. Size Test Size
SST-2 67.3k 0.8k 1.8k
MRPC 3.6k 0.4k 1.7k
QQP 363.8k 40.4k 390.9k
MNLIm 392.7k 9.8k 9.8k
MNLImm 392.7k 9.8k 9.8k
QNLI 104.7k 5.4k 5.4k
RTE 2.4k 0.3k 3.0k
AG News 120.0k 7.6k –
IMDb 25.0k 25.0k –
Yelp-5 650.0k 50.0k –

Table 3: Dataset Sizes
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Figure 3: SALSA two-token classification pipeline: the LLM’s logits are used in a single pass to predict both the
article’s topic (1–4) and its source (AI=1 or Human=2).

Algorithm 1 SALSA’s Training and Inference for Single-Task, Single-Label, Multi-Class Classification

Require: instructions, answer template, answer’s start ▷ Input parameters
1: Definition: Let N be the vocabulary size.
2: for each s in samples-to-classify do
3: x← wrap in the method’s notation and tokenize(s, input_parameters)
4: logits← model’s forward_pass(x) ▷ logits’ size = |input| ×N
5: yplaceholder ← logits[placeholder] ▷ yplaceholder’s size = N
6: yrelevant ← yplaceholder[categories] ▷ yrelevant’s size =|categories|
7: yprob ← softmax(yrelevant)
8: ytrue ← one_hot(true_label, |categories|)
9: loss← cross_entropy(yprob, ytrue)

10: model.backward_pass(loss)
11: update_parameters()
12: report argmax(yprob)
13: end for

Note: The blue-colored lines correspond to training-specific steps.
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