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ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) has become a practical approach for
adapting large vision models with limited data and computational resources. How-
ever, existing PEFT methods primarily focus on where to inject trainable pa-
rameters, providing little guidance on how internal representations evolve dur-
ing adaptation. This often results in a passive fine-tuning process that lacks ex-
plicit alignment with the target task’s structure, especially in settings with limited
data or diverse tasks. We propose Behavior-Aligned Fine-Tuning (BAFT), a sim-
ple, parameter-free and teacher-free method that introduces behavioral constraints
during fine-tuning without changing the model architecture. BAFT extracts the
relational structure of model predictions, capturing how samples relate in the out-
put space, and aligns it with intermediate feature representations by minimizing
the distance between their cosine similarity matrices. This alignment acts as a
lightweight, task-aware regularizer that guides internal representations to better
reflect the decision structure of the target task. BAFT requires no additional
trainable parameters, adds minimal overhead, and integrates seamlessly with a
wide range of PEFT methods including LoRA, AdaptFormer, Bi-LoRA, and Bi-
AdaptFormer. On VTAB-1k and few-shot fine-grained classification benchmarks,
BAFT consistently improves performance compared to strong PEFT baselines.
Analyses of gradient behavior, spectral alignment, and attention dynamics further
demonstrate how BAFT promotes more structured and task-aligned representa-
tions. By transforming output-space behavior into actionable training signals,
BAFT reframes fine-tuning as an active and guided process. This work offers a
novel and principled direction for advancing parameter-efficient model adaptation.

1 INTRODUCTION

Large-scale vision models, particularly Vision Transformers (ViTs), have become a cornerstone of
modern computer vision, achieving strong performance across a wide range of tasks (Dosovitskiy
et al., 2020; Kirillov et al., 2023; Liu et al., 2021; Zhu et al., 2024; Ding & Wang, 2024; 2025). How-
ever, adapting these pretrained models to new downstream tasks typically requires significant com-
putational resources and fine-tuning effort. To mitigate these costs, Parameter-Efficient Fine-Tuning
(PEFT) methods have emerged as a practical alternative (Houlsby et al., 2019). These techniques
adapt large models by inserting additional learnable parameters (Jia et al., 2022), lightweight task-
specific modules, such as adapters (Chen et al., 2022; Jie et al., 2024; Jie & Deng, 2023; Karimi Ma-
habadi et al., 2021; Jie et al., 2023) or attention decomposition (LoRA) (Hu et al., 2022), while
keeping most of the backbone frozen. By dramatically reducing the number of trainable parameters,
PEFT methods have become widely adopted in low-resource and rapid adaptation scenarios.

Despite their success, current PEFT methods focus mainly on the mechanics of parameter injec-
tion, where and how to insert new modules, while paying little attention to the model’s behavioral
dynamics during adaptation. In most cases, fine-tuning is treated as a passive process: learnable
components are trained to improve task performance, but the evolving internal representations are
not explicitly guided to reflect the target task’s decision patterns. This lack of behavioral oversight
means that adaptation may proceed in arbitrary or inefficient directions, especially in low-data or
task-diverse conditions (Wang et al., 2024b). As a result, fine-tuning remains a largely unstructured
and opaque process, with no mechanism to ensure that the model’s internal learning trajectory aligns
with what the task actually requires.
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Image Without BAFT With BAFT
Block 3 Block 6 Block 11 Block 3 Block 6 Block 11

Figure 1: Grad-CAM (Selvaraju et al., 2016) visualizations of the 3rd, 6th and final block of Bi-
AdaptFormer fine-tuned with and without BAFT on two VTAB-1k datasets. Top row: OxfordFlow-
ers; bottom row: Caltech101. BAFT leads to sharper, more task-relevant attention focus.

In this work, we introduce Behavior-Aligned Fine-Tuning (BAFT), a simple method that brings
structure and task awareness into the fine-tuning process. Our key insight is that the prediction
scores generated during training already contain rich relational information about how the model
perceives sample similarities and decision boundaries. For example, if two inputs yield similar
softmax distributions, they are likely close in the model’s output space. We use this observation by
dynamically extracting batch-level prediction structures and encouraging the model’s intermediate
feature representations (e.g., class token embeddings in ViTs) to reflect those same relationships.
This forms a lightweight, training-time constraint that gently steers the model’s internal adaptation
to mirror its evolving task-specific behavior.

BAFT introduces no additional parameters, and can be plugged into any PEFT method. Rather than
modifying the model’s architecture, BAFT shapes its learning behavior by turning existing training
signals into a form of behavioral guidance, effectively transforming fine-tuning from a parameter-
centric procedure into a behavior-aware process. We evaluate BAFT on the VTAB-1k (Zhai et al.,
2019) benchmark, which spans 19 diverse vision tasks, as well as in few-shot learning settings
that challenge the model’s ability to adapt under limited supervision. We apply BAFT to a range
of strong PEFT baselines, including LoRA (Hu et al., 2022), AdaptFormer (Chen et al., 2022), Bi-
LoRA (Jie et al., 2023), and Bi-AdaptFormer (Jie et al., 2023), and consistently observe performance
improvements across the board. As shown in Fig. 1, models trained with BAFT consistently produce
more focused and semantically meaningful activation maps. For example, in the OxfordFlowers
image, BAFT sharpens attention around the flower’s petals, whereas the baseline shows diffuse or
misaligned focus. In the Caltech101 image, BAFT shows strong, focused attention on key areas
(eyes, nose and mouth). These results show BAFT’s effectiveness across diverse visual tasks.

To our knowledge, this is the first work to introduce a parameter-free, behavior-guided mechanism
that aligns intermediate representations with task-specific prediction patterns during fine-tuning. By
turning the model’s own output structure into training-time behavioral guidance, BAFT makes fine-
tuning not only efficient, but also targeted, adaptive, and aligned with the model’s decision-making
behavior. Our contributions are summarized as follows:

i. We identify a key limitation in existing PEFT methods: the lack of task-aware guidance over
how internal representations evolve during fine-tuning.

ii. We propose Behavior-Aligned Fine-Tuning (BAFT), a parameter-free, plug-and-play method
that uses prediction-space relationships to guide internal feature adaptation dynamically.

iii. We show the effectiveness of BAFT across VTAB-1k and multiple few-shot scenarios, consis-
tently improving performance over state-of-the-art PEFT techniques with no additional param-
eters or architectural changes.

2 RELATED WORKS

Parameter-efficient fine-tuning (PEFT). PEFT methods aim to adapt large pretrained models to
downstream tasks by updating only a small subset of parameters, thereby drastically reducing the
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memory footprint and computational cost compared to full fine-tuning. To reduce the number of
fine-tuned parameters, BitFit (Zaken et al., 2021) fine-tunes the bias terms and freezes most of the
network. Visual Prompt Tuning(VPT) and its variants (Han et al., 2023; Zeng et al., 2024; Chen
et al., 2025; Raj et al., 2025) also introduces learnable prompts to each layer of ViT (Jia et al.,
2022). However, because the computational cost of self-attention scales quadratically with input
length, prompt-based methods tend to be less efficient than the original network in terms of compu-
tation. As such prominent approaches such as adapter-based methods (Chen et al., 2022; Luo et al.,
2023; Karimi Mahabadi et al., 2021; He et al., 2023) including AdaptFormer (Chen et al., 2022)
inject lightweight trainable modules at various depths of the network, and low-rank update methods
such as LoRA (Hu et al., 2022), which optimize low-rank decompositions of weight matrices. Other
methods have also explored automatically combining multiple methods (Chavan et al., 2023; Zhang
et al., 2024). Recently, other methods have also explored several techniques towards extreme pa-
rameter efficiency and memory efficiency (Jie & Deng, 2023; Jie et al., 2023; Fu et al., 2024; Zhang
et al., 2020). For instance, FACT (Jie & Deng, 2023) employs a tensor-decomposition framework
to store changes in the model’s weights, whiles Bi-AdaptFormer (Jie et al., 2023) proposes a low-
bit adapter to reduce precision redundancy.While these methods differ in architectural design and
parameter injection strategies, they primarily view adaptation as a structural optimization problem,
focusing on where and how to insert tunable modules. Crucially, they offer limited insight or con-
trol over the behavioral dynamics of model adaptation, that is, how internal representations should
evolve during fine-tuning to reflect task-specific decision boundaries. Our method addresses this
critical gap by introducing a behavioral-level constraint that dynamically aligns intermediate rep-
resentations with the evolving task structure, without requiring architectural changes or additional
parameters. This makes it a natural complement to all existing PEFT frameworks, enhancing their
effectiveness through principled behavioral guidance.

Regularization and behavioral constraints in fine-tuning. Regularization techniques have long
been used to stabilize fine-tuning, particularly under low-data regimes. Approaches like L2-SP
(Xuhong et al., 2018) and Elastic Weight Consolidation (Kirkpatrick et al., 2017) penalize large
deviations from pretrained weights to prevent catastrophic forgetting. Other works encourage sim-
ilarity between source and target domain features (Liu et al., 2020; Jiang et al., 2022) by imposing
losses on intermediate layers or feature distributions, promoting better transferability. However,
most existing regularization methods are static and global: they apply uniform constraints through-
out training and lack adaptation to the specific structure of the target task or the dynamics within
each training batch. Moreover, these techniques were generally developed for full fine-tuning sce-
narios and may not translate well to PEFT, where only a small fraction of parameters are updated.
In contrast, our method introduces a lightweight, dynamic, and batch-level regularization strategy
that exploits the model’s own prediction scores to capture a soft relational structure among samples
within each mini-batch. By explicitly aligning internal features with this evolving prediction-based
structure, we impose an adaptive, task-aware behavioral constraint that shapes the model’s learn-
ing trajectory in real time. This approach complements traditional weight-based regularizers by
focusing on guiding the representational dynamics through prediction-driven feedback, rather than
constraining parameter shifts.

Output-feature alignment and structural supervision. Prior work in related areas has explored
aligning output distributions with internal representations, often in contexts like knowledge distilla-
tion (Hinton et al., 2015) or self-supervised learning (Chen et al., 2020; Wang et al., 2024a). Such
methods typically rely on a fixed teacher model providing soft targets, or use contrastive objectives
to align features across multiple views or modalities. Our approach differs fundamentally in that
it requires no external teacher or multi-view data. Instead, it uses on-the-fly relational structures
derived purely from the model’s own batch-level prediction scores. We then guide the alignment of
internal features, such as class token embeddings in ViTs, with this dynamically computed structure.
This batch-level relational alignment serves as a novel, self-supervised form of structural regulariza-
tion that naturally integrates with PEFT, since it does not require additional supervision, architectural
modifications, or learnable parameters. To our knowledge, this is the first method to use batch-level
prediction relationships to guide representation alignment in PEFT. By introducing this new per-
spective on behavioral guidance, our work opens a promising direction for making fine-tuning not
only parameter-efficient but also behaviorally and task-wise aligned.

3 METHOD

3
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Figure 2: Overview of Behavior-Aligned Fine-
Tuning (BAFT) (dashed red) integrated into a
PEFT-based transformer. The model uses a
standard Transformer with frozen MHSA and
MLP layers and trainable low-rank adapters.
BAFT computes similarity matrices from pre-
dictions (Sp) and features (Sz) at selected lay-
ers, then aligns them using a lightweight behav-
ioral loss. This steers feature representations
to reflect the model’s evolving prediction struc-
ture, without adding any learnable parameters.

We propose a parameter-free behavioral align-
ment mechanism that dynamically guides fine-
tuning by aligning the model’s internal feature
geometry with semantic structure expressed in
its predictions. Crucially, our method introduces
no architectural modifications or additional su-
pervision: it operates entirely by reusing the
model’s own prediction structure as a dynamic
training signal. This promotes a representa-
tion space that is task-aware, behaviorally consis-
tent, and semantically organized, while preserv-
ing the parameter-efficiency of the underlying
fine-tuning algorithm. Fig. 2 shows the integra-
tion of Behavior-Aligned Fine-Tuning (BAFT)
into a PEFT-based transformer.

Problem setup. Let fθ : X → RC be a neural
network with parameters θ, adapted to a target
classification task via a PEFT strategy. For an in-
put image xi ∈ X , the model yields softmax-
normalized predictions pi = softmax(fθ(xi)) ∈
RC and intermediate feature representations zi ∈
Rd (e.g., from the class token in ViT). We denote a training mini-batch as {(xi, yi)}Bi=1 with predic-
tions P ∈ RB×C and features Z ∈ RB×d. The central hypothesis of this work is that the relational
structure encoded in the prediction space, how confidently and distinctly the model separates dif-
ferent instances, can be repurposed to guide the geometry of the internal representations during
fine-tuning, even under PEFT constraints. This alignment serves as a weak form of supervision that
constrains the evolution of the feature space in accordance with task semantics.

3.1 BEHAVIOR-ALIGNED GUIDANCE

To promote behaviorally aligned, task-aware adaptation during fine-tuning, we introduce a
lightweight mechanism that aligns the relational structure of model predictions with intermediate
representations. The softmax outputs produced during training inherently encode rich behavioral
cues, reflecting how the model perceives similarities between samples in the output space. BAFT
uses this emergent signal to guide internal feature evolution, encouraging consistency between pre-
diction behavior and learned representations.

Behavioral alignment loss. Given a training batch of size B, we define two similarity matrices:
one in the prediction space and one in the feature space. Let pi denote the softmax output of the
i-th sample, and zi its corresponding intermediate feature (e.g., the class token in ViT). We compute
pairwise cosine similarities across all samples to obtain Sp ∈ RB×B and Sz ∈ RB×B :

Sp(i, j) = cos(pi,pj), Sz(i, j) = cos(zi, zj). (1)

Cosine similarity is chosen because it reflects angular proximity while being invariant to vector mag-
nitudes, which is particularly important for comparing softmax distributions (bounded and proba-
bilistic) and ℓ2-normalized feature embeddings. This choice ensures that alignment is based on se-
mantic directionality rather than scale, which can vary across layers or during optimization without
necessarily indicating a meaningful change in relational structure.

Unless stated otherwise, BAFT terms are computed across all model blocks. For each block, inter-
mediate features are extracted to construct a feature similarity matrix. The per-layer BAFT losses are
then averaged. By minimizing the distance between feature and output similarity matrices, BAFT
encourages the feature space to reflect the evolving structure of the output space:

LBAFT =
1

L

L∑
l=1

∥S(l)
z − Sp∥2F , (2)

where ∥ · ∥F is the Frobenius norm and L is the number of layers. This alignment serves as a
behavioral signal, guiding the representation geometry to reflect the model’s evolving task-specific
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similarity. The complete training objective becomes:

L = LSup + λLBAFT, (3)

where LSup is the standard supervised loss (e.g., cross-entropy), and λ is a tunable scalar that gov-
erns the strength of alignment. Importantly, BAFT introduces no additional learnable parameters,
no architectural modifications. It can be seamlessly integrated into any existing PEFT method. By
dynamically extracting the prediction-space structure and aligning it with internal representations,
BAFT provides a parameter-free, task-aware behavioral signal that gently guides model adaptation.
Rather than treating fine-tuning as a parameter-centric procedure, BAFT reinterprets it as a behavior-
aware process, enhancing both interpretability and effectiveness without sacrificing efficiency.

3.2 BEHAVIORAL DYNAMICS VIA GRADIENT ANALYSIS

We now formally analyze how the behavioral alignment loss LBAFT influences representation learn-
ing during fine-tuning. Specifically, we derive its gradient with respect to the intermediate feature
vectors and show how it induces structured updates that reflect the task-relevant relational geometry
embedded in the model’s own prediction space.

For clarity, we assume all vectors are ℓ2-normalized (i.e., ∥zi∥= ∥pi∥=1), such that cosine simi-
larity reduces to a dot product. Let Z ∈ RB×d and P ∈ RB×C denote the intermediate feature and
prediction matrices, respectively, with each row representing a feature vector zi or prediction vector
pi. We define the discrepancy δij := z⊤

i zj − p⊤
i pj , allowing us to express the loss as:

LBAFT=∥ZZ⊤−PP⊤∥2F =
∑
i,j

(
z⊤
i zj−p⊤

i pj

)2
=
∑
i,j

δ2ij . (4)

We compute the gradient of LBAFT with respect to an arbitrary feature vector zk:

∂LBAFT

∂zk
=

∑
i,j

∂δ2ij
∂zk

= 2
∑
i,j

δij ·
∂(z⊤

i zj)

∂zk
. (5)

Noting that the derivative of z⊤
i zj w.r.t. zk is non-zero only when k = i or k = j, we obtain:

∂LBAFT

∂zk
= 2

B∑
j=1

(δkjzj + δjkzj) = 4

B∑
j=1

δkjzj = 4

B∑
j=1

(
z⊤
k zj − p⊤

k pj

)
zj . (6)

Here, we use the fact that δkj = δjk due to symmetry.

This gradient shows how each feature vector zk is iteratively updated based on its relationship
to all other vectors in the batch. The term z⊤

k zj − p⊤
k pj quantifies the discrepancy between

the actual similarity in feature space and the expected similarity as implied by the prediction
space. When the feature similarity underestimates the behavioral similarity, i.e., z⊤

k zj < p⊤
k pj ,

the vector zk is pulled toward zj to better align the feature space with the behavioral signal.
Conversely, when feature similarity overestimates the behavioral similarity, zk is pushed away
from zj . Over time, this dynamic promotes the emergence of a feature space in which examples
with similar predicted behavior are encoded with more similar representations. The alignment
objective reduces disagreement between feature-space and output-space relational structures.

Relation to contrastive learning. While this mechanism bears resemblance to contrastive learn-
ing, it departs in a key way: it does not require explicit positives or negatives. Instead, the model
constructs a soft, evolving similarity graph over the batch using its own predictions. The alignment
loss smooths the internal representations over this graph, imposing a relational inductive bias that
adapts at each training step. This form of dynamic, task-aware supervision is more flexible and
less brittle than conventional contrastive objectives. It also naturally complements PEFT methods,
where architectural constraints limit the space of parameter updates. In such settings, our behavioral
alignment loss acts as a high-level guide, shaping representation geometry even when the underlying
parameter space is restricted.
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Table 1: Comparison of state-of-the-art PEFT methods on VTAB-1k, grouped by Natural, Spe-
cialized, and Structured datasets. “Average” reports mean accuracy across all groups. * indicates
reproduced baselines using original configurations. Bold marks our best variant; underline shows
the top existing method per dataset. BAFT consistently improves performance without introducing
additional parameters, demonstrating its effectiveness and generality.
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Traditional Fine-Tuning
Full 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 68.9
Linear 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 57.6
PETL Methods
BitFit (Zaken et al., 2021) 0.10 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 65.2
VPT-Deep (Jia et al., 2022) 0.53 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 72.0
LoRA (Hu et al., 2022) 0.29 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 74.5
AdaptFormer (Chen et al., 2022) 0.16 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 74.7
E2VPT (Han et al., 2023) 0.25 78.6 89.4 67.8 98.2 88.5 85.3 52.3 82.5 96.8 84.8 73.6 71.7 61.2 47.9 75.8 80.8 48.1 31.7 41.9 73.9
RepAdapter (Luo et al., 2023) 0.22 69.0 92.6 75.1 99.4 91.8 90.2 52.9 87.4 95.9 87.4 75.5 75.9 62.3 53.3 80.6 77.3 54.9 29.5 37.9 76.1
Bi-LoRA (Jie et al., 2023) 1.18 72.1 91.7 71.2 99.1 91.4 90.2 55.8 87.0 95.4 85.5 75.5 83.1 64.1 52.2 81.2 86.4 53.5 36.7 44.4 76.7
Bi-AdaptFormer (Jie et al., 2023) 0.59 74.1 92.4 72.1 99.3 91.6 89.0 56.3 88.2 95.2 86.0 76.2 83.9 63.9 53.0 81.4 86.2 54.8 35.2 41.3 77.0
NOAH (Zhang et al., 2024) 0.36 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 75.5
RLRR (Dong et al., 2024b) 0.33 75.6 92.4 72.9 99.3 91.5 89.8 57.0 86.8 95.2 85.3 75.9 79.7 64.2 53.9 82.1 83.9 53.7 33.4 43.6 76.7
HTA (Dong et al., 2024a) 0.22 79.0 92.8 77.6 99.6 92.4 89.4 55.1 88.2 96.1 89.7 76.4 84.2 61.7 53.6 82.0 85.1 53.7 33.9 47.9 75.7
DMLoRA (Fang et al., 2024) 0.29 74.0 90.7 73.9 99.3 92.2 91.1 56.4 85.6 96.5 87.0 76.1 83.5 69.9 52.0 81.6 80.2 50.2 36.1 43.1 77.0
AdaptFormer* (Chen et al., 2022) 0.16 74.2 93.0 73.1 99.3 91.7 88.8 56.4 88.3 95.6 84.8 75.1 84.2 64.1 53.0 81.7 85.5 55.4 35.1 40.1 76.9
Ours: AdaptFormer* + BAFT 0.16 74.3 93.0 73.1 99.4 91.9 89.0 56.5 88.5 95.7 85.0 75.7 84.6 64.3 53.1 82.3 85.8 55.5 35.3 44.1 77.3
LoRA* (Hu et al., 2022) 0.29 72.8 92.3 72.2 99.2 91.3 89.7 56.0 86.3 95.2 83.8 75.0 83.2 64.7 52.3 79.9 85.6 53.1 36.7 43.0 76.4
Ours: LoRA* + BAFT 0.29 73.2 92.5 72.3 99.3 91.4 90.0 56.3 86.7 95.4 84.0 75.2 83.3 64.9 52.8 82.1 85.7 53.7 37.2 43.9 76.8
Bi-LoRA* (Jie et al., 2023) 1.18 73.5 92.4 71.5 99.3 91.1 89.9 56.0 86.9 95.2 84.8 74.3 83.6 64.7 53.1 80.2 85.9 53.9 39.0 43.2 76.7
Ours: Bi-LoRA* + BAFT 1.18 73.6 92.3 71.7 99.5 91.4 90.1 56.4 87.6 95.7 85.1 75.2 83.7 64.5 53.2 80.5 86.3 54.4 39.2 43.4 77.1
Bi-AdaptFormer* (Jie et al., 2023) 0.59 74.6 92.7 72.6 99.4 91.5 90.1 56.4 87.3 95.6 85.1 74.4 84.9 64.1 53.6 82.1 87.2 55.2 35.8 40.5 77.0
Ours: Bi-AdaptFormer* + BAFT 0.59 75.0 92.8 72.7 99.5 91.6 90.6 56.8 88.7 95.7 85.4 76.1 85.1 64.3 53.8 82.3 87.6 55.6 36.2 40.7 77.5

3.3 THEORETICAL INSIGHT: BEHAVIORAL SPECTRAL ALIGNMENT

To understand how the behavioral alignment loss LBAFT shapes the representation geometry, we
analyze it through the lens of spectral theory. Specifically, we show that minimizing LBAFT encour-
ages the internal feature similarity kernel to approximate the task-induced relational structure in the
prediction space, thereby aligning their eigenspaces.

Theorem 1. Let Z ∈ RB×d and P ∈ RB×C be matrices whose rows are ℓ2-normalized features
and prediction logits, respectively. Then the behavioral alignment loss defined in Eq. 4 is minimized
if and only if the Gram matrices ZZ⊤ and PP⊤ are identical. In particular, LBAFT promotes
alignment of the top eigenvectors of ZZ⊤ and PP⊤.

See Appendix A.4 for the proof.

This result formalizes LBAFT as a spectral kernel alignment objective. It encourages the internal
similarity matrix KZ to mirror the relational structure encoded in the model’s predictions KP .
The alignment is not merely pointwise but structural: the dominant eigenvectors of KZ , which
define principal directions in feature space, are shaped to match those of KP , encoding semantic
relations in the output space. Importantly, this process operates at the batch level and is inher-
ently relational. Rather than enforcing hard labels or margin-based constraints, the alignment loss
encourages smooth, soft pairwise consistency among features, reflecting the evolving behavior
of the model. In doing so, it transfers inductive bias from the output space back into the feature
space, refining internal geometry in a way that is both data- and task-dependent.

Relation to multi-view learning. This spectral alignment is analogous to co-regularization in multi-
view learning, where similarity kernels from different modalities are aligned. Here, prediction vec-
tors pi and feature vectors zi act as two views from the same model. The alignment loss ensures they
co-evolve coherently, reinforcing semantic consistency without extra supervision. This provides an
effective mechanism for guiding representation learning in constrained settings like PEFT, where
capacity is limited and efficient structure transfer is crucial.

4 EXPERIMENT

We validate our method by applying it to four leading PEFT techniques: AdaptFormer (Chen et al.,
2022), LoRA (Hu et al., 2022), Bi-AdaptFormer (Jie et al., 2023) and Bi-LoRA (Jie et al., 2023),
demonstrating broad compatibility and consistent gains.
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Figure 3: Few-shot learning results on five FGVC datasets across varying shot settings (1, 2, 4, 8,
16). Models with BAFT consistently outperform their baselines, highlighting its effectiveness in
low-data regimes. Horizontal axis: number of shots; vertical axis: classification accuracy.

Image Without BAFT With BAFT
Block 3 Block 6 Block 11 Block 3 Block 6 Block 11

Figure 4: Grad-CAM (Selvaraju et al., 2016) visualizations of AdaptFormer, Bi-AdaptFormer,
LoRA, and Bi-LoRA with and without BAFT. BAFT guides fine-tuning using output-space sig-
nals, consistently producing sharper attention on petals and stamens.

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the effectiveness and robustness of our method, we conduct experiments on
two challenging benchmarks: VTAB-1k and few-shot fine-grained visual classification (FGVC).
VTAB-1k comprises 19 diverse datasets across Natural (7), Specialized (4), and Structured (8) cat-
egories, each with 1,000 labeled examples. Following (Jia et al., 2022; Jie et al., 2023), we use the
standard 800/200 split for hyperparameter selection, train on the full set, and report average accu-
racy over three trials, testing generalization across varied visual domains. Few-shot FGVC evaluates
adaptability in low-data regimes. We consider five fine-grained datasets: FGVC-Aircraft (Maji et al.,
2013), Food-101 (Bossard et al., 2014), Oxford Flowers (Nilsback & Zisserman, 2006), Oxford Pets
(Parkhi et al., 2012), and Stanford Cars (Krause et al., 2013), using 1, 2, 4, 8, and 16 shots per
class. Models are trained on the provided training sets, hyperparameters tuned on validation sets,
and average test accuracy is reported over three trials.

(a) CIFAR-100. (b) Camelyon.
Figure 5: λ sensitivity on CIFAR-100 and Camelyon (VTAB-1k). Optimal λ varies by dataset, bal-
ancing task supervision and structural alignment; overly strong regularization impairs performance.
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Setups. All experiments use a ViT-B/16 (Dosovitskiy et al., 2020) backbone pre-trained on super-
vised ImageNet-21K (Deng et al., 2009). Following (Jia et al., 2022; Jie et al., 2023), we adopt the
Adam optimizer with a cosine learning rate schedule and 10-epoch linear warm-up. For VTAB-1k,
images are resized to 224×224; for few-shot FGVC, images are resized to 256×256 then center-
cropped. Models are fine-tuned for 300 epochs on VTAB-1k and 100 epochs on FGVC, using a
batch size of 64. To ensure fair comparisons, we retrain all PEFT baselines using their original
hyperparameters. For LoRA and AdaptFormer, the hidden size is set to 8. We then perform a grid
search over λ, following established tuning protocols (Zhai et al., 2019; Jia et al., 2022; Jie et al.,
2023), ensuring a robust evaluation of our method’s added value. See Appendix for more details.

4.2 COMPARISON WITH THE STATE-OF-THE-ART

Table 2: Results on VTAB-1k using ViT-Large pre-
trained on ImageNet-21k as the backbone.

Method Natural Specialized Structured Mean #Params(M)
AdaptFormer 83.8 86.0 61.0 76.9 0.42
+ BAFT 83.9 86.4 61.6 77.3 0.42
LoRA 83.7 85.7 61.6 77.0 0.81
+ BAFT 83.8 86.2 62.0 77.3 0.81
Bi-AdaptFormer 84.0 86.2 61.4 77.2 1.60
+ BAFT 84.2 86.5 62.2 77.6 1.60
Bi-LoRA 83.2 85.0 61.7 76.6 3.17
+ BAFT 83.4 85.4 62.1 77.0 3.17

Behaviour-aligned insights. Fig. 4 vi-
sualizes Grad-CAM activations for Adapt-
Former, Bi-AdaptFormer, LoRA, and Bi-
LoRA with and without BAFT. Incorpo-
rating BAFT uses output-space signals to
guide fine-tuning, consistently producing
sharper, more focused attention on dis-
criminative features such as petals and sta-
mens. This demonstrates that BAFT trans-
forms fine-tuning into a guided process,
aligning feature learning with the task-
relevant output behavior throughout the
network (see also Fig. 1).

Figure 6: Training efficiency with/without BAFT on
NVIDIA A4000 (batch size 64). x: GPU memory
(GB); y: step time (ms). BAFT adds minor overhead.

Results on VTAB-1k. We evaluate our
method against a wide range of baselines,
including full fine-tuning, linear probing,
and leading PEFT approaches such as
LoRA, AdaptFormer, Bi-LoRA, and Bi-
AdaptFormer. Table 1 presents the full re-
sults. Across all dataset categories, inte-
grating BAFT consistently improves each
PEFT method. Notably, our strongest
model, Bi-AdaptFormer + BAFT, achieves
an average accuracy of 77.5% across 19
diverse tasks, outperforming all baselines,
including full fine-tuning, which reaches
only 68.9% while using 145× more train-
able parameters (85.8M vs. 0.59M). Other
PEFT methods also benefit from BAFT:
AdaptFormer improves from 76.9% to
77.3%, LoRA from 76.4% to 76.8%, and
Bi-LoRA from 76.7% to 77.1%. These
consistent gains, achieved without adding trainable parameters, highlight the effectiveness and com-
patibility of our behavior-guided approach. Performance gains are particularly notable in the Struc-
tured category, which includes tasks requiring spatial and relational reasoning (e.g., Clevr-Count,
KITTI-Dist, and sNORB-Ele). For instance, Bi-AdaptFormer + BAFT improves accuracy on Clevr-
Count from 84.9% to 85.1%, KITTI-Dist from 82.1% to 82.3%, and sNORB-Ele from 40.5% to
40.7%. While some improvements appear modest, their consistency across all datasets underscores
BAFT’s generality, robustness, and task-awareness.

Results on larger-scale ViT backbone. Beyond ViT-B, we also evaluate our method on the larger
ViT-L backbone, which features a deeper block structure, to test scalability. As shown in Table 2,
our method consistently outperforms all selected baselines while maintaining a reasonable parameter
budget. These results demonstrate that our approach effectively adapts to models of varying scales.

Results on few-shot learning. Figure 3 illustrates few-shot performance across five FGVC datasets,
comparing AdaptFormer, AdaptFormer + BAFT, LoRA, and LoRA + BAFT under varying shot

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

counts. Across all settings, integrating BAFT consistently improves or matches baseline perfor-
mance. Notably, AdaptFormer + BAFT achieves the highest accuracies on FGVC-Aircraft and
Oxford-Pets in higher-shot regimes, while LoRA + BAFT delivers substantial gains in low-shot
scenarios, particularly on Food101 and FGVC-Aircraft. The averaged trends show a consistent im-
provement with BAFT, highlighting its ability to enhance generalization under limited supervision
and reinforce task-relevant feature alignment in few-shot adaptation.

Computational efficiency. Fig. 6 compares training efficiency across baselines and our method.
The x-axis shows peak GPU memory usage (GB), and the y-axis reports average training time per
step (ms). Among baselines, AdaptFormer and Bi-AdaptFormer are more efficient, requiring less
memory and runtime than LoRA and Bi-LoRA. Adding BAFT introduces a modest overhead in both
memory and runtime, reflecting the cost of the additional regularization. Importantly, this overhead
is small, about 0.02 to 0.05 GB in memory and 10 to 15 ms in runtime, demonstrating that BAFT
can be integrated into existing PEFT methods with minimal computational cost.

Additional results, evaluations, and visualizations are provided in the Appendix.

4.3 ABLATION STUDY

Table 3: Impact of BAFT placement in Bi-
AdaptFormer. Early placement refers to the first
three layers, and late placement to the last three
layers. Applying BAFT across all layers achieves
the highest accuracy, surpassing both early-only
and late-only placements.

Natural Specialized Structured Avg. (%)
Early 82.5 86.2 63.0 77.2
Late 82.5 86.2 63.1 77.3
All 82.7 86.5 63.2 77.5

Impact of λ. We evaluate the effect of the
λ hyperparameter through a sensitivity analy-
sis on CIFAR-100 and Camelyon (VTAB-1k),
varying λ across several orders of magnitude.
As shown in Figure 5, both datasets demon-
strate strong robustness to a wide range of small
λ values. CIFAR-100 achieves peak accuracy
near λ = 0.002 and remains stable from 1e−8 to
0.1. Similarly, Camelyon maintains high accu-
racy (∼88%) across small to moderate λ, peak-
ing around 0.1. However, performance sharply
declines when λ > 1.0, indicating that exces-
sive regularization impairs learning. This is es-
pecially pronounced in CIFAR-100, where accuracy drops from 74% to below 45% as λ increases
from 1.0 to 10.0. Camelyon shows a similar but milder trend, likely due to its simpler structure and
higher class separability.

Placement of BAFT. We investigate the optimal placement of the BAFT module within the Bi-
AdaptFormer architecture to assess whether its location influences performance. Specifically, we
apply BAFT at three different scopes: early layers, late layers, and all layers of the backbone. Table
3 summarizes the results. Applying BAFT only to the early layers yields a group-wise average
accuracy of 77.2%, while applying it to the late layers slightly improves performance to 77.3%. The
highest accuracy, 77.5%, is achieved when BAFT is applied across all layers. This trend suggests
that although both early and late layers benefit from behavioral alignment, a full-network application
provides the most comprehensive and synergistic guidance, leading to the best overall performance.

Further discussion on representation dynamics is provided in Appendix A.7.

5 CONCLUSION

We proposed a behaviorally guided strategy for PEFT that aligns intermediate representations with
the relational structure inherent in model predictions. This lightweight, parameter-free approach in-
tegrates seamlessly into existing PEFT pipelines. Through theoretical insights and empirical results,
we demonstrate that this alignment shapes internal representations in a task-aware and semantically
meaningful way, addressing a key limitation in current PEFT methods, which often overlook the
dynamics of adaptation. Our method consistently boosts performance across VTAB-1k and few-
shot transfer tasks. By turning prediction structure into actionable training signals, this work opens
a promising direction for fine-tuning: one that is efficient, behaviorally aligned, and well-suited to
data-scarce regimes. In future work, we plan to extend BAFT beyond classification to domains such
as detection and segmentation to evaluate the generality and scalability of the approach.
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A APPENDIX

Table 4: VTAB-1k datasets categorized into Natural, Specialized, and Structured groups. Training
set sizes are 800 or 1,000 depending on availability.

Category Dataset # Classes Train Val Test

Natural

CIFAR100 100 10,000
Caltech101 102 6,084
DTD 47 1,880
Oxford-Flowers102 102 800/1,000 200 6,149
Oxford-Pets 37 3,669
SVHN 10 26,032
Sun397 397 21,750

Specialized

Patch Camelyon 2 32,768
EuroSAT 10 5,400
Resisc45 45 800/1,000 200 6,300
Retinopathy 5 42,670

Structured

Clevr/count 8 15,000
Clevr/distance 6 15,000
DMLab 6 22,735
KITTI-Dist 4 800/1,000 200 711
dSprites/location 16 73,728
dSprites/orientation 16 73,728
SmallNORB/azimuth 18 12,150
SmallNORB/elevation 18 12,150

Table 5: Few-shot datasets used for evaluation. Training size varies (e.g., 1/2/4/8/16 per class), with
fixed validation and test sets.

Dataset # Classes Train Val Test

Food-101 101 20,200 30,300
Stanford Cars 196 1,635 8,041
Oxford-Flowers102 102 1/2/4/8/16 per class 1,633 2,463
FGVC-Aircraft 100 3,333 3,333
Oxford-Pets 37 736 3,669

A.1 LLM USAGE DECLARATION

We disclose the use of Large Language Models (LLMs) as general-purpose assistive tools during
the preparation of this manuscript. LLMs were used only for minor tasks such as grammar and
style improvement, code verification, and formatting suggestions. No scientific ideas, analyses,
experimental designs, or conclusions were generated by LLMs. All core research, methodology,
experiments, and results were performed and fully verified by the authors.

The authors take full responsibility for all content presented in this paper, including text or code
suggestions that were refined with the assistance of LLMs. No content generated by LLMs was
treated as original scientific work, and all references and claims have been independently verified.
LLMs did not contribute in a manner that would qualify them for authorship.

A.2 INTERACTION WITH PEFT

Unlike contrastive or distillation-based objectives that rely on fixed anchors or teacher networks, our
alignment mechanism uses the model’s own evolving predictions to derive a dynamic, task-aware
supervisory signal. This gives rise to a closed-loop interaction between output-space structure and
representation learning, which we formalize as follows.
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Let Z ∈ RB×d and P ∈ RB×C denote ℓ2-normalized intermediate feature and prediction matrices,
respectively. The alignment loss induces gradient signals of the form:

∂LBAFT

∂Z
= 4(ZZ⊤ − PP⊤)Z. (7)

This term reveals a rich structure: the update to Z depends not only on its current geometry, but on
how it diverges from the pairwise relational structure implied by P . Crucially, P itself is produced
by a forward pass through the model, so the alignment loss introduces an implicit coupling between
feature learning and prediction dynamics.

We can characterize the learning process as a form of self-consistent geometric shaping: as P
becomes more structured (e.g., grouping same-class examples), LBAFT encourages Z to mirror this
geometry, which in turn sharpens P through more discriminative features. Formally, this feedback
loop induces a time-dependent dynamical system:

dZ

dt
= −∇Z (LSup + λLBAFT) , (8)

where the trajectory of Z(t) is modulated not only by the supervised signal, but by a structure-aware
regularizer that tracks and reinforces the model’s own evolving belief space. This self-reinforcing
mechanism contrasts with static priors or handcrafted losses: it adapts per batch, per step, and per
model state. Importantly, it encourages the formation of semantically coherent and linearly separable
manifolds in feature space, a property known to benefit generalization and transfer, especially under
limited data or constrained optimization settings such as PEFT.

PEFT methods, such as LoRA and AdaptFormer, operate by restricting model updates to a low-
dimensional subspace of the full parameter space. Let θ = θ0 +∆ϕ, where θ0 is frozen and ϕ are
the tunable adapter parameters. Then the model output is:

fθ(x) = fθ0+∆ϕ
(x). (9)

The optimization is restricted to ϕ, limiting the expressiveness of updates. However, this restriction
does not preclude which directions in representation space are preferred, only how those directions
are reached.

Our alignment loss serves as a high-level, geometry-aware guide within this constrained space.
Even though ∆ϕ lies in a low-rank subspace, the gradient signal from LBAFT acts to bias those
updates toward directions that reduce inconsistency between internal and output-space structure.
This gives the optimization trajectory a relational inductive bias. In other words, PEFT defines
where the model can move (low-rank subspaces), but not why it should move in any particular
direction. Our method complements this by injecting semantic structure into the optimization, not
through external supervision, but through emergent internal consistency constraints. Moreover, this
interaction is synergistic: PEFT ensures training remains efficient, while alignment loss prevents
degenerate adaptation (e.g., memorization or collapse), especially in low-data regimes where task-
relevant geometry is hard to extract from labels alone.

A.3 DETAILED DATASET STATISTICS

We provide detailed information about the datasets used in this paper, including the number of
classes and the sizes of the training, validation and test sets in Table 4 (VTAB-1k) and Table
5(Few-shot learning). The VTAB-1k datasets consists of three categories: Natural, Specialized
and Structured tasks. The Natural category includes datasets such as CIFAR-100, Caltech101,
DTD, Flowers102, Pets, SVHN, and Sun397; Specialized category includes datasets such as Patch
Camelyon, EuroSAT, Resisc45, and Diabetic-Retinopathy and the Structured category also in-
cludes datasets such as Clevr/count, Clevr/distance, DMLab, KITTI/distance, dSprites/location,
dSprites/orientation, SmallNORB/azimuth, and SmallNORB/elevation. For the the few-shot learn-
ing, the datasets consists of fine-grained visual classification(FGVC) including FGVC-Aircraft,
Food101, Oxford-Flowers102,Oxford-Pets and Stanford Cars.

A.4 PROOF OF THEOREM 1

Proof. Let KZ := ZZ⊤ ∈ RB×B and KP := PP⊤ ∈ RB×B denote the similarity kernels in
feature space and prediction space, respectively. Both matrices are symmetric positive semi-definite
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Table 6: Experiment configurations for VTAB-1k and few-shot learning experiments.

Dataset optimizer batch size learning rate weight decay # epochs lr decay # warm-up epochs

VTAB-1K AdamW 64 1e-3 1e-4 300 cosine 10
Few-shot learning AdamW 64 5e-3 1e-4 100 cosine 10

Table 7: Best λ for the VTAB-1k
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AdaptFormer + BAFT 0.01 2e-3 0.01 0.02 1e-8 0.01 2e-3 0.05 0.1 0.01 2e-3 0.01 0.5 0.01 0.01 0.1 2e-3 0.1 0.05

LoRA + BAFT 1e-3 1e-4 5e-3 1e-5 5e-3 0.01 1e-5 0.1 2e-3 1e-3 2e-3 0.01 1e-3 0.01 0.01 1e-3 0.5 0.01 0.1

Bi-AdaptFormer + BAFT 2e-3 2e-3 0.01 0.01 2e-3 0.1 1e-5 0.01 0.01 0.1 0.01 0.02 0.1 0.01 0.02 0.01 0.5 0.01 0.1

Bi-LoRA + BAFT 0.01 1e-8 0.01 1e-8 0.1 5e-3 1e-5 0.2 0.1 0.05 0.1 0.01 0.05 0.01 0.01 0.01 0.2 1e-3 0.01

(SPSD), with rank at most min(B, d) and min(B,C). The Frobenius alignment loss is given by:

LBAFT=∥KZ −KP ∥2F =Tr(K2
Z) + Tr(K2

P )− 2Tr(KZKP ). (10)

Since KZ and KP are SPSD, they admit spectral decompositions:

KZ = UΛU⊤, KP = V ΣV ⊤, (11)
where U ,V ∈ RB×B are orthonormal matrices and Λ,Σ are diagonal matrices of non-negative
eigenvalues. Using the cyclic trace identity, we have:

Tr(KZKP ) = Tr(UΛU⊤V ΣV ⊤) = Tr(ΛU⊤V ΣV ⊤U). (12)

Let Q = U⊤V be the orthogonal matrix capturing the relative orientation of the eigenspaces. Then:

Tr(KZKP )=Tr(ΛQΣQ⊤)=

B∑
i=1

B∑
j=1

λiσjQ
2
ij , (13)

which represents an inner product between the eigenspaces of KZ and KP , weighted by their
eigenvalues. By the von Neumann trace inequality (Von Neumann, 1937):

Tr(KZKP ) ≤
B∑
i=1

λiσi, (14)

with equality if and only if the eigenvectors of KZ and KP are aligned. Therefore, minimiz-
ing LBAFT is equivalent to maximizing Tr(KZKP ), under fixed Frobenius norms ∥KZ∥2F and
∥KP ∥2F . The loss reaches its minimum when KZ = KP , that is, when their eigenvalues match and
their eigenspaces are aligned.

A.5 IMPLEMENTATION DETAILS

In our experiments, we choose ViT-B/16 trained on ImageNet-21K as our backbone. For VTAB-
1k, we follow (Jia et al., 2022) to resize the images to 224 × 224. Different from VTAB-1k, we
follow (Zhang et al., 2024),using random augmentations during training, for validation/test samples,
we resize them to 256×256, crop them to 224×224 at the center, and then normalize them with
ImageNet’s mean and standard deviation. Table 6 shows our experiment configurations.

A.6 HYPERPARAMETER TUNING

For each dataset, we conduct a hyperparameter search on each dataset to find
the best λ to optimize performance. We follow the strategies from previ-
ous work (Jia et al., 2022; Zhai et al., 2019). We apply grid search on λ ∈
{1e−8, 1e−5, 2e−5, 1e−4, 1e−3, 2e−3, 5e−3, 0.01, 0.02, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}. Table
7 presents the best λ for the VTAB-1k dataset.
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(a) Average cosine similarity. (b) Mean attention entropy.

Figure 7: Representation dynamics with BAFT. Our method suppresses feature collapse and sharp-
ens attention, promoting task-aligned feature diversity and focused attention distributions.

A.7 DISCUSSION ON REPRESENTATION DYNAMICS

To better understand the representational impact of BAFT, we analyze how it shapes the internal
dynamics of the backbone. We focus on two phenomena common in transformer-based models:
feature collapse suppression and attention entropy reduction. The analysis is conducted using Bi-
AdaptFormer trained on CIFAR-100 from VTAB-1k.

Feature collapse suppression. Feature collapse occurs when token representations across different
samples become overly similar, which limits the model’s expressiveness and discriminative power.
This effect is especially pronounced in deeper layers due to oversmoothing, as discussed in prior
works (Gong et al., 2021; Diko et al., 2024; Wang et al., 2022). To quantify it, we compute the
average pairwise cosine similarity among N ℓ2-normalized token features x1, . . . ,xN :

AvgCosine =
2

N(N − 1)

∑
1≤i<j≤N

x⊤
i xj . (15)

As shown in Figure 7a, models trained without BAFT exhibit increasing similarity in deeper layers,
indicating a collapse in representation diversity. In contrast, BAFT maintains lower similarity across
layers. For example, in the final layer, the average similarity remains below 0.1 with BAFT, com-
pared to over 0.3 without it. These results suggest that BAFT promotes feature diversity by softly
discouraging semantic redundancy, thereby preventing collapse and enabling richer task-specific
representations.

Attention entropy reduction. Beyond feature geometry, we examine attention entropy (Zhai et al.,
2023) to evaluate how BAFT influences the model’s focus and selectivity. A lower entropy re-
flects more confident and concentrated attention, which is especially beneficial in low-data settings.
This sharpened focus helps reinforce informative patterns while suppressing noise, thereby reducing
overfitting.

Let A(l,h) ∈ RN×N be the attention matrix at layer l ∈ 1, . . . , L and head h ∈ 1, . . . , H , where
each row A

(l,h)
i represents a probability distribution over input tokens. The entropy for head (l, h)

is:

H(l,h) = − 1

N

N∑
i=1

N∑
j=1

A
(l,h)
i,j logA

(l,h)
i,j . (16)

We compute the mean attention entropy across all layers and heads as:

MeanEntropy =
1

L ·H

L∑
l=1

H∑
h=1

H(l,h). (17)

As shown in Figure 7b, models with BAFT exhibit noticeably lower entropy from layer 6 onward,
indicating more focused and selective attention. The largest reductions occur in the final layers, sug-
gesting that BAFT enhances attention sharpness and helps the model prioritize informative regions
during adaptation.
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Table 8: Results on VTAB-1k using Bi-AdaptFormer with different training epochs.

Epoch Method Natural Specialized Structured Average

100 Bi-AdaptFormer 82.2 85.2 62.6 76.7
100 + BAFT 82.4 86.2 62.4 77.0

200 Bi-AdaptFormer 82.4 85.9 62.7 77.0
200 + BAFT 82.5 86.1 62.8 77.1

300 Bi-AdaptFormer 82.5 85.6 62.9 77.0
300 + BAFT 82.7 86.5 63.2 77.5

Table 9: Results on VTAB-1k using Swin-Base pretrained on ImageNet-21k as the backbone.

Method Natural Specialized Structured Average

AdaptFormer 82.5 87.0 60.7 76.7
+ BAFT 82.6 87.1 60.8 76.8

LoRA 82.3 86.7 61.9 77.0
+ BAFT 82.5 87.0 62.2 77.2

Bi-AdaptFormer 82.3 87.2 61.1 76.9
+ BAFT 82.4 87.4 61.4 77.1

Bi-LoRA 82.1 87.2 61.5 76.9
+ BAFT 82.3 87.3 61.9 77.2

These analyses show that BAFT shapes both the geometry and attention dynamics of the network.
By encouraging behaviorally aligned similarity in feature space and promoting focused attention
distributions, BAFT produces more discriminative and robust representations. This is particu-
larly beneficial in low-data adaptation scenarios, where overfitting and feature degeneration are
common challenges.

A.8 ADDITIONAL EXPERIMENTS

In this section, we provide additional experiments of our baseline models with BAFT. Specifi-
cally, using the Bi-AdaptFormer model, we check the impact of different epochs with the VTAB-1k
dataset. Additionally, we also experiment with hierarchical ViT backbones(Swin-Transformer).

Experiments on VTAB-1k with different epochs. All main models were trained for 300 epochs
across the VTAB-1K tasks, ensuring consistency and fair comparison of performance across PEFT
methods such as Adaptformer, LoRA, Bi-Adaptformer, and Bi-LoRA. To further explore training
dynamics and sensitivity to epoch count, we conducted additional experiments varying the number
of epochs and reported these results separately in Table 8. This provides insight into model stability
and convergence behavior under different training durations.

Experiments on VTAB-1k with Swin Transformer. Table 9 displays the experimental results on
VTAB-1k using Swin-Base pretrained on ImageNet-21k as the backbone.

A.9 LIMITATIONS

While BAFT offers a lightweight, parameter-free approach for behaviorally guided adaptation, sev-
eral limitations should be noted. First, in our current implementation, the prediction vectors are
not detached from the computational graph, so the auxiliary BAFT loss can directly influence the
prediction logits. In practice, this did not destabilize training, but introducing a stop-gradient or an
EMA-teacher variant could provide a cleaner separation between feature alignment and prediction
dynamics, potentially improving stability and interpretability.

Second, our main experiments apply BAFT uniformly across all layers with equal weighting. This
simple approach may not fully leverage the differing semantic contributions of early versus late
layers. Future work could explore adaptive per-layer weighting schemes or dynamic strategies that
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(a) AdaptFormer (b) Bi-AdaptFormer

Figure 8: Impact of BAFT in terms of feature collapse suppression on CIFAR-100 (VTAB-1k).

(a) AdaptFormer (b) Bi-AdaptFormer

Figure 9: Impact of BAFT in terms of attention entropy reduction on CIFAR-100 (VTAB-1k).

emphasize layers most relevant for the task, which may further enhance feature alignment and task
performance.

Finally, while BAFT is parameter-free and efficient, its effectiveness may vary across architectures
or tasks with highly complex or heterogeneous output structures. Comprehensive evaluations on
diverse architectures and tasks would help clarify the generality and limitations of the method.

A.10 IMPACT OF BAFT

Feature collapse suppression. Figure 8 shows the impact of BAFT in terms of suppressing feature
collapse, measuring the average pairwise cosine similarity in depth. The figure plots the average
pairwise cosine similarity on the CIFAR-100 dataset. These results suggest that BAFT promotes
feature diversity by softly discouraging semantic redundancy, thereby preventing collapse and en-
abling richer task-specific representations.

Attention entropy reduction. Figure 9 shows the impact of BAFT in terms of reducing attention
entropy, by measuring the mean attention entropy in depth. The figure plots the mean attention
entropy on the CIFAR-100(VTAB-1k) dataset. Models with BAFT exhibit noticeably lower entropy
from layer 6 onward, indicating more focused and selective attention. The largest reductions occur
in the final layers, suggesting that BAFT enhances attention sharpness and helps the model prioritize
informative regions during adaptation.

A.11 MORE VISUALIZATIONS

Figs. 10, 11, 12, 13 show Grad-CAM visualizations of all of baseline models, comparing with and
without BAFT. These results show BAFT’s robustness and effectiveness across several datasets of
VTAB-1k.
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Image Without BAFT With BAFT
Block 3 Block 6 Block 11 Block 3 Block 6 Block 11

Figure 10: Grad-CAM (Selvaraju et al., 2016) visualizations of the 3rd, 6th and final block of
AdaptFormer fine-tuned with and without BAFT on VTAB-1k datasets.

Image Without BAFT With BAFT
Block 3 Block 6 Block 11 Block 3 Block 6 Block 11

Figure 11: Grad-CAM (Selvaraju et al., 2016) visualizations of the 3rd, 6th and final block of LoRA
fine-tuned with and without BAFT on VTAB-1k datasets.
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Image Without BAFT With BAFT
Block 3 Block 6 Block 11 Block 3 Block 6 Block 11

Figure 12: Grad-CAM (Selvaraju et al., 2016) visualizations of the 3rd, 6th and final block of Bi-
AdaptFormer fine-tuned with and without BAFT on VTAB-1k datasets.

Image Without BAFT With BAFT
Block 3 Block 6 Block 11 Block 3 Block 6 Block 11

Figure 13: Grad-CAM (Selvaraju et al., 2016) visualizations of the 3rd, 6th and final block of Bi-
LoRA fine-tuned with and without BAFT on VTAB-1k datasets.
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