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Abstract

Despite recent efforts, neural networks still strug-
gle to learn in non-stationary environments, and
our understanding of catastrophic forgetting (CF)
is far from complete. In this work, we perform a
systematic study on the impact of model scale and
the degree of feature learning in continual learn-
ing. We reconcile existing contradictory observa-
tions on scale in the literature, by differentiating
between lazy and rich training regimes through a
variable parameterization of the architecture. We
show that increasing model width is only benefi-
cial when it reduces the amount of feature learn-
ing, yielding more laziness. Using the framework
of dynamical mean field theory, we then study the
infinite width dynamics of the model in the feature
learning regime and characterize CF, extending
prior theoretical results limited to the lazy regime.
We study the intricate relationship between fea-
ture learning, task non-stationarity, and forgetting,
finding that high feature learning is only bene-
ficial with highly similar tasks. We identify a
transition modulated by task similarity where the
model exits an effectively lazy regime with low
forgetting to enter a rich regime with significant
forgetting. Finally, our findings reveal that neural
networks achieve optimal performance at a crit-
ical level of feature learning, which depends on
task non-stationarity and transfers across model
scales. This work provides a unified perspective
on the role of scale and feature learning in contin-
ual learning.
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1. Introduction
Modern neural networks (NNs) have achieved impressive re-
sults on many hard benchmarks, recently beating all expecta-
tions with the introduction of large autoregressive language
models (OpenAI, 2023). However, the learning algorithms
in use are only applicable to stationary data distributions. In
particular, these algorithms fail to retain knowledge when
learning new skills, a phenomenon termed Catastrophic
Forgetting (CF) (McCloskey & Cohen, 1989) in the litera-
ture. Arguably, the design of algorithms which can adapt
to changes in the environment is a crucial step towards the
development of more widely applicable, trustworthy, and
scalable AI systems (Wang et al., 2024). Continual learning
(CL) (e.g. Ring, 1994; Thrun & Mitchell, 1995; Silver et al.,
2013; Parisi et al., 2019; Hadsell et al., 2020; Lesort et al.,
2020) directly aims at devising algorithms which allow the
model to learn under distribution shifts. This entails two
requirements: knowledge adaptation – also called plasticity
– and knowledge retention – stability. For NNs these ob-
jectives are inherently conflicting, creating an unavoidable
tradeoff, often called the stability-plasticity dilemma. Vari-
ous studies have investigated the causes of CF in artificial
neural networks. However, theoretical models of CF have
only been established in simplified settings, e.g., by assum-
ing fixed features during training (Bennani et al., 2020; Doan
et al., 2021; Evron et al., 2022; Goldfarb & Hand, 2023;
Lin et al., 2023; Goldfarb et al., 2024). At the same time,
empirical studies have significantly contributed to the under-
standing of CF in modern deep networks used in practice
(Mirzadeh et al., 2020; 2021; 2022a; Ramasesh et al., 2020;
2022). Among these, multiple recent works have focused
on the role of scale and overparameterization in continual
learning, producing different if not contradictory answers
(Ramasesh et al., 2022; Mirzadeh et al., 2022a;b; Goldfarb
& Hand, 2023; Lin et al., 2023; Wenger et al., 2023) – as
elaborated below in Section 2. In particular, the question
of whether scaling alone can ameliorate forgetting is still
open.

A separate thread of literature has studied the so-called
scaling limits of neural networks, where the network di-
mensions (i.e., width and depth) are taken to infinity (Neal,
1996). Depending on the parameterization used – see formal
definition in Sec. 3 – the network exhibits fundamentally
different training dynamics. More specifically, in one ex-
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Figure 1. (a) Test error of stationary training (joint CIFAR10). (b) Final average error and (c) Catastrophic Forgetting rate (CFr) of
non-stationary sequential training (Split-CIFAR10). The factor γ0 interpolates between lazy (γ0 → 0) and rich (γ0 = 1) regimes. (a) In
stationary training, more feature learning and width scaling are strictly beneficial. (b) In non-stationary training the optimal performance
is achieved at a critical level of feature learning γ⋆

0 ≈ 0.1 above which (c) forgetting explodes worsening the final performance, and the
increased scale of the network is wasted without any benefits. The region of γ0 at which forgetting transitions from low to high defines
a change of training regime of the network from being effectively lazy to having rich dynamics. All figures report the average over 5
random seeds.

treme – the Neural Tangent Parameterization (NTP) – the
dynamics are lazy (Chizat et al., 2019), meaning that the
network activations (a.k.a features) evolve with vanishingly
small magnitude during training, effectively keeping the
network close to its initialization (Jacot et al., 2018; Arora
et al., 2019; Lee et al., 2019); while in the other extreme –
the Maximal Update Parameterization (µP) – the dynamics
are rich, and feature learning is maintained at any scale
(Yang & Hu, 2020; Bordelon & Pehlevan, 2022).

Harnessing the power of exactly characterizing the network
training dynamics, in this work we study the scaling limits
of catastrophic forgetting, aiming at a comprehensive un-
derstanding of the role of scale in continual learning. In
particular, we interpolate between the lazy and rich training
regimes, varying a parameter γ0 of the network parameteri-
zation that measures the degree of feature learning. In the
analysis of scale, γ0 reveals to be the key to explaining the
aforementioned inconsistencies in the literature.

We find that in non-stationary training the effect of scal-
ing is essentially modulated by the degree of feature learn-
ing of the model, finding that past a certain degree of
feature learning scaling the network does not benefit per-
formance (Fig. 1b, center). Curiously, we find that the
optimal plasticity-stability tradeoff is achieved at a fixed
data-dependent degree of feature learning γ⋆

0 < 1, which
transfers across widths. Thus, in practice, scaling the net-
work beyond this threshold effectively wastes the network
capacity. In order to appreciate the subtlety of our results,
it is important to consider the standard setting of stationary
training: increasing the degree of feature learning or the
model scale (in particular width) decreases the error (see
Fig. 1a, left). On the other hand, an optimal γ⋆

0 < 1 in the
non-stationary case underlies the destructive nature of high
feature learning on knowledge retention. We find that a large
γ0 sharply increases catastrophic forgetting (Fig. 1c, right),
reflecting a transition of the network dynamics from being

effectively lazy to being rich and uncover its intertwined
nature with the non-stationarity of data.

Contributions and Paper Structure

• In Section 4, we demonstrate that the effect of width
scaling on catastrophic forgetting depends on the net-
work parameterization: while NTP leads to reduced
forgetting with scale, µP does not. This indicates
the entangled relationship between scale and training
regime. We then extend the Mean Field formalism to
task-sequential training, modeling infinite-width rich
training dynamics. This model aligns with finite-size
network predictions, making it a useful framework for
studying NNs under task non-stationarities.

• In Section 5, we find that there is a non-linear rela-
tionship between the degree of feature learning γ0 and
forgetting characterized by a sharp low-to-high for-
getting transition. We also characterize the γ⋆

0 that
optimizes the stability-plasticity tradeoff, showing that
it transfers across model scales.

• In Section 6 we study the role of the degree of non-
stationarity by controlling the task similarity in both
synthetic and natural tasks. We show that lower task
similarity causes a shift of the low-to-high forgetting
transition towards larger values of γ0, which translates
to a larger γ⋆

0 . This suggests that laziness is key in
highly non-stationary scenarios.

2. Related Work
Catastrophic Forgetting and the Question of Scaling
Catastrophic Forgetting is a known phenomenon in the deep
learning literature since the early nineties (McCloskey &
Cohen, 1989; French, 1999), and to date it has been con-
sistently observed in distinct benchmarks and network ar-
chitectures (Wang et al., 2024; Mai et al., 2022; De Lange
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et al., 2021; Ke & Liu, 2022; Khetarpal et al., 2022). Even
large language models (LLM) are vulnerable to CF when
trained on highly non-stationary data streams (Luo et al.,
2023; Wu et al., 2024).

Goldfarb & Hand (2023); Lin et al. (2023) study the effect
of overparameterization in linear regression models, proving
that in this setting scaling reduces CF. For neural networks
used in practice, the existing empirical evidence depicts a
more nuanced picture, and – due to the complexity of the
question – there is currently no theory on it. Ramasesh et al.
(2022) find that scaling benefits CL only for pretrained mod-
els, and not for models trained from scratch. By contrast,
Mirzadeh et al. (2022a;b) observe that increasing the width
of a network – but not the depth – reduces CF even when
training from scratch. In response, Wenger et al. (2023)
show that the observation of Mirzadeh et al. (2022a) is de-
pendent on the training time: increasing the training time
eliminates the positive effect of scaling on CF. Our work
contributes to this line of research, offering a solid hypothe-
sis – based on theoretical and empirical grounds – as to why
and when scaling helps CF.

Scaling Limits and Continual Learning The research on
scaling limits aims at theoretically characterizing the behav-
ior of neural networks in the limit of infinite width and/or
depth. Early works describe the network function at initial-
ization (Lee et al., 2017; Yang, 2020; Hayou et al., 2021;
Noci et al., 2021), which has been useful to prescribe opti-
mal initialization conditions for stable training (Schoenholz
et al., 2016; Hanin, 2018; Hanin & Rolnick, 2018; Martens
et al., 2021). Later, the field advanced to study the network
while training, either in the so-called rich or lazy regime
(Yang & Hu, 2020; Bordelon & Pehlevan, 2022). Although
rich regimes are often credited as superior in performance
(Fort et al., 2020), this premise has been partially reconsid-
ered: Petrini et al. (2022) demonstrate that rich mean-field
training can drive fully connected networks to overfit to
sparse features, reducing generalization. These results have
been derived under the assumption of a stationary input
distribution. In this work, we extend the theory on scaling
limits to the multi-task setting.

We are not the first to apply scaling limits to the study of
continual learning. Doan et al. (2021); Bennani et al. (2020)
provide a theory of catastrophic forgetting in the lazy regime.
Crucially, their results do not extend to the rich feature learn-
ing regime. Our results show that the presence of feature
learning is a key factor in the behavior of CF with scale,
marking the relevance of our contribution to the existing lit-
erature. Also, recent work has applied tools from statistical
mechanics to continual learning (Ingrosso et al., 2024; Mori
et al., 2024; Shan et al., 2024). In Shan et al. (2024), the
authors study the large data, width asymptotics of continual
learning by analyzing the posterior Gibbs ensemble. Com-

pared to their work, here we focus on the gradient descent
training dynamics in the fixed data, large width limit.

3. Methodology
Let us introduce the notation for residual networks of
fixed width N and with L residual layers (i.e. the depth),
where the ℓ-th layer’s parameters are initialized as W ℓ

ij ∼
N (0, σ2

ℓ ). For an input x ∈ RD, the preactivations of
the first block are defined as h1(x) = β0W

0x. The N -
dimensional preactivations of the ℓ-th block have a residual
branch scaled by βℓ, and the outputs f(x) ∈ R are addition-
ally inversely scaled by γ:

hℓ+1(x) = αhℓ(x) + βℓW
ℓϕ(hℓ(x)),

f(x) =
βL

γ
wL · ϕ(hL(x))︸ ︷︷ ︸

hL+1

,
(1)

where we use the scalar α ∈ {0, 1} to turn on and off skip
connections. The choice of how to scale the factors βℓ and
γ, the weights initialization variance σ2

ℓ , and the (possibly
time-varying) learning rate η(t) as the width increases, dif-
ferentiates between the two parameterizations considered in
this work: the Neural Tangent Parameterization (NTP) and
the Maximal Update Parameterization (µP). We summarize
the scaling of these parameters in Tab. 1. Importantly, by
varying the γ0 parameter it is possible to smoothly interpo-
late between lazy (γ0 → 0) and rich (γ0 = 1) regimes. To

Table 1. Branch and output scales, learning rate, and weight vari-
ance in the three parameterizations: NTP (PyTorch default) (Yang
& Hu, 2020) and Mean Field / µP (Bordelon & Pehlevan, 2022).

NTP Mean Field / µP

Branch Scale βℓ

{
N−1/2, ℓ > 0

D−1/2, ℓ = 0

{
N−1/2, ℓ > 0

D−1/2, ℓ = 0

Output Scale γ 1 γ0N
1/2

LR Schedule η(t) η0(t) η0(t)γ
2
0N

Weight Variance σ2
ℓ 1 1

have comparable starting points of the scaling behavior, we
normalize the parameterizations of the µP to be equivalent
to the NTP at a base width of N = 64. Further details are
in App. A.3.

3.1. Experimental Setup

In most of our experiments, we utilize a ResNet architec-
ture (with base width N = 64 and depth L = 6), trained
with Stochastic Gradient Descent (SGD) and evaluated on
MNIST, CIFAR10, and TinyImagenet and their suitable
adaptions to the continual learning setting. We also evalu-
ate a Convolutional Neural Network (by setting α = 0 in
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Eq. 1) in App. B.7 finding no significant deviations from
the ResNet case. For the experiments involving the infinite-
width simulations of the network dynamics, instead, we
will use a simpler non-linear two-layer perceptron (MLP
henceforth), on a small subset of MNIST with 30 samples,
suitably modified as a 2-tasks CL benchmark. The choice of
this simplified setting is imposed by the numerical complex-
ity (cubic in both the number of samples and the number of
tasks) of the infinite-width simulations. Further details on
the experimental setup are reported in App. A.4.

3.1.1. METRICS

For a benchmark with T tasks, we define the test accuracy on
the task Ti after training on Tj , with i, j ∈ {1, ..., T}, as aj,i.
The learning accuracy (LA) is a measure of plasticity, and it
is defined simply as the average ⟨ai,i⟩i over the task index i
(Mirzadeh et al., 2022a). We will also consider the learning
error (LE), namely the complement of the LA (1 − LA).
The average accuracy (AA) measures the plasticity-stability
tradeoff, and is the average ⟨aT,i⟩i. We will also use its
complement – the average error (AE), (1− AA).

Catastrophic Forgetting rate (CFr) To evaluate the mod-
els’ capacity to retain the knowledge of the past tasks, prior
work (e.g. Mirzadeh et al. (2022a)) defines catastrophic for-
getting (CF) (Def. A.3), as the average drop in accuracy after
training on all later tasks. However, it implicitly depends on
the raw learning accuracy, making it challenging to fairly
compare models with different performance levels—such
as in this work—and has led to misleading conclusions in
the literature (as argued by Wenger et al. (2023)). For this
reason, we introduce a novel metric – the Catastrophic For-
getting rate (CFr) – as the average relative drop in accuracy
after training on all other tasks (Def. A.4).

All experiments involving the MLP and the infinite-width
limit are evaluated in terms of training loss performance
since the proposed theory (introduced in Sec. 4.1) will pre-
dict those dynamics. Concretely, if we define the training
loss on the task Ti after training on Tj , with i, j ∈ {1, ..., T},
as Lj,i, then we can substitute a with L in the definitions
of the LE, AE and CFr above, obtaining the Learning Loss,
Average Loss, and CFr (loss). Formal definitions of these
metrics are found in App. A.1.

4. The Effect of Width Scaling Depends on the
Parameterization

We begin our investigation of the role of width scaling
in non-stationary training on the CL benchmark Split-
CIFAR10 and with a ResNet model (more details in App. A).
We reckon that this setup is similar to previous work on the
role of width scaling in CL. However – crucially – in con-
trast to previous studies (Mirzadeh et al., 2022a; Wenger

et al., 2023), we consider two different parameterizations of
the architecture when scaling: NTP and µP.

In Fig. 2 we show the CFr for varying width and param-
eterization. We identify two separate behaviors in width,
depending on the parameterization. Thus the parameteriza-
tion shapes the relationship between width and forgetting,
where only NTP endows a diminishing forgetting with scale.
When the network is parameterized following the µP, width
does not offer reductions in forgetting. Moreover, the for-
getting curves of wider µP models almost coincide, a width
consistency reminiscent of the observations of Vyas et al.
(2024) in the stationary online setting.
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Figure 2. The effect of width scaling on forgetting with models
parameterized with the NTP and muP (γ0 = 1). (a) Split-CIFAR10
with ResNet model; (b) Permuted-MNIST with MLP and infinite-
width asymptotic behavior.

Width Scaling Dilemma Our finding provides a new
key to interpret the observations of (Mirzadeh et al., 2022a;
2020; Wenger et al., 2023; Ramasesh et al., 2020) regarding
the effect of scale on CF. In particular, we postulate that
the conclusion that width-scaling reduces CF depends on
lazy training dynamics (recall that the SP is equivalent to
our NTP). On the other hand, Wenger et al. (2023)’s longer
training time implicitly induces rich training dynamics. To
confirm this, we revisit Wenger et al. (2023)’s experiment in
App. B.1. We show that longer training time and reasonably
large learning rates induce more evolution of the NTK and
thus more deviations from the lazy regime (as shown in
(Fort et al., 2020)).

In summary, this first result highlights at least two new
observations. First, scaling per se is neither positive nor
negative, as its effect is intrinsically modulated by the net-
work parameterization. Second, the difference between rich
and lazy training regimes, i.e. feature learning, is a crucial
factor in CF. To further study the large-width behavior of
forgetting, we proceed to characterize the infinite-width dy-
namics of a model trained under non-stationarities in the
feature learning regime.
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4.1. Infinite Width Dynamics in Non-Stationary
Training

We derive the dynamics under mean field scaling (see Tab. 1)
of a continually learned two-layer non-linear network in
the infinite-width limit using the framework of dynamical
mean field theory (DMFT) of Bordelon & Pehlevan (2022).
DMFT has been successfully employed to describe the net-
work dynamics in both infinite-width (Bordelon & Pehlevan,
2022; Bordelon et al., 2024) and -depth limits (Bordelon
et al., 2023), but never in the non-stationary setting. Due
to space limitations, we defer more details, including the
proofs, to Appendix C.

We are interested in tracking the evolution of the model dy-
namics in function space under gradient descent and Mean
Squared Error (MSE) loss. As it will be clearer later, an im-
portant quantity that governs the dynamics and catastrophic
forgetting is the Neural Tangent Kernel (NTK) across tasks,
defined as:

Kαiβj
(t) =

L∑
ℓ=1

〈
∇Wℓ

hL+1(xαi
, t),∇Wℓ

hL+1(xβj
, t)
〉
,

(2)
where αi ∈ Ti and βj ∈ Tj and ⟨·, ·⟩ is the standard inner
product in Euclidean space. In the presence of training
with multiple tasks T1, . . . , TT , the equations governing the
dynamics at task Ti are:

d

dt
f(xµi

) =

T∑
j=1

Ũj(t)
∑

αj∈Tj

Kµiαj
(t)∆αj

(t). (3)

We have introduced Ũj(t) = U(t− tj−1)U(tj − t), where
U(t−tj−1) = 1t>tj−1

is the Heaviside step function, which
we use to model the transitions from the (j − 1)-th to the
j-th task. ∆αj = yαj − f(xα

j ) is the negative residual and
Kµiαj

(t) is the NTK across tasks. We also introduce gra-
dient neurons gα(t) ∈ RN , defined as gℓ

α(t) =
√
N ∂hL+1

∂hℓ ,
as well as the forward and backward kernels (also called
feature and gradient kernels):

Φℓ
αiβj

(t) =
1

N

〈
ϕ(hℓ

αi
(t)), ϕ(hℓ

βj
(t))
〉

(4)

Gℓ
αiβj

(t) =
1

N

〈
gℓ
αi
(t),gℓ

βj
(t))
〉
. (5)

Intuitively, the feature (resp. gradient) kernel controls the
effect of the weights on the geometry of the feature space in
the forward (resp. backward) pass. Often, it will be more
convenient to manipulate the pre-gradient variables zℓµi

=
1
NWℓ⊤gℓ+1

µi
. Then we have that gℓ

µi
(t) = ϕ̇(hℓ

µi
) ⊙ zℓµi

.
These quantities allow us to re-write the NTK across tasks
as:

Kαiβj
(t) =

L∑
ℓ=1

Φℓ−1
αiβj

(t)Gℓ
αiβj

(t), (6)

which indicates that the NTK is fully determined by the
kernels Φℓ

αiβj
(t), Gℓ

αiβj
(t). This results in the following

finite width dynamics, where the scaling factor γ and its
dependency to γ0 and N crucially differentiates NTP from
µP:

h1
µi
(t) = χ1

µi
(t)

+
γ√
N

∫ t

0

T∑
j=1

Ũj(t)
∑
αj

∆αj (s)g
1
αj
(s)Kx

µiαj

z1(t) = ξ1(t)

+
γ√
N

∫ t

0

T∑
j=1

Ũj(s)
∑
αj

∆αj
(s)ϕ(h1

αj
(s))

(7)

In Proposition 4.1, we show that in the infinite width limit
for µP there exists a set of variables including {h1

αi
, g1αi

}i,α,
{Φℓ

αi
, Gℓ

αi
}i,α that forms a close system of self-consistent

(i.e. implicit) equations that fully describe the output f in
the large N limit:

Proposition 4.1 (Informal). Let f be the output of a neural
network with a single hidden layer in Eq. 1 with α = 0 (i.e.
without skip connections) trained for T tasks T1, . . . , TT for
a finite number of steps on each task, and for µP. As N →
∞, the pre-activations and gradient variables {h1

µi
}µ,i, g1

can be described as i.i.d. draws from marginal distributions
described by the following stochastic processes:

h1
µi
(t) = χ1

µi

+ γ0

∫ t

0

T∑
j=1

Ũj(s)
∑
αj

∆αj
(s)g1αj

(s)Kx
µiαj

ds

z1(t) = ξ1

+ γ0

∫ t

0

T∑
j=1

Ũj(s)
∑
αj

∆αj
(s)ϕ(h1

αj
(s))ds

(8)

where [χµi , χβj ] ∼ N (0, [Kx
µiβj

]) and ξ ∼ N (0, I) are
the Gaussian Processes characterizing the initialization.
Furthermore, the dynamics of the output f , as well as the
kernels Φ1, G1 concentrate around their expectation:

lim
N→∞

Φ1
αiβj

(t) = E
[
ϕ(h1

αi
(t))ϕ(h1

βj
(t))
]

(9)

lim
N→∞

G1
αiβj

(t) = E
[
g1αi

(t)g1βj
(t)
]
. (10)

where the expectation is taken over the marginals for
{h1

µi
}µ,i, g1.

Remarks. Notice that the preactivations are one-
dimensional variables, and not vectors, as every unit can
be seen as an i.i.d. draw from this marginal, which corre-
sponds to the single site process in the infinite width limit.
Finally, the term in γ0 in Equation (8) is the feature learn-
ing correction characterizing the time evolution from the
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initial process. If γ0 → 0, we recover the lazy regime (Jacot
et al., 2018; Chizat et al., 2019), where it is clear from the
equations that there is no time evolution of the hidden layer.

Proposition 4.1 provides an exact description of the network
dynamics at infinite width. The self-consistent system of
equations can be simulated to reproduce the features and
function evolution during training. Here, we apply this
result to characterize the dynamics of CF. For simplicity,
take the definition of CF to be the following1:

CF (t) :=
∑
α1

1

2
∆2

α1
(t)− 1

2
∆2

α1
(t1) (11)

where t > t1 and {xα1
, yα1

}α1
is the data of the first task.

In the case of two tasks, it can be shown that the dynamics
of forgetting are determined by the errors ∆ and the NTK
across tasks:

d

dt
CF (t) = −

∑
µ1α2

∆µ1
(t)Kµ1α2

(t)∆α2
(t) (12)

This equation is very general, and it is valid for all degrees
of feature learning γ0 and all input distributions. In Ap-
pendix E, we use perturbation theory to isolate the effect of
small γ0 corrections to the lazy limit, up to second order.

In Fig. 2b, we report the asymptotic behavior of catastrophic
forgetting on the loss under µP and NTP, at both finite and
infinite-widths. For the infinite-width limit, we use the dy-
namics of Proposition 4.1 with γ0 = 1 for µP and γ0 = 0
for NTP. As expected, as the width is increased the CFr at
finite sizes approaches the theoretical limit. More impor-
tantly, we again observe two separate behaviors depending
on the parameterization, substantiating the claim that the
effect of scaling on CF depends on the training regime.

5. Feature Learning and Catastrophic
Forgetting in Non-Stationary Training

We now investigate the relationship between feature learn-
ing (in particular its presence or absence) and catastrophic
forgetting. In particular, we ask whether the presence of
feature learning during training is conducive to CF.

5.1. Lazy-Rich and Low-High Forgetting Transitions

We leverage the γ0 parameter in the µP to smoothly interpo-
late between the two lazy (γ0 → 0) and rich (γ0 = 1) train-
ing regimes. This methodology has already been employed
to study phenomena tied to network training dynamics (Ku-
mar et al., 2024; Atanasov et al., 2024).

We first measure the amount by which the features evolve
during training by monitoring the internal representation

1This quantity is also known as backward transfer.
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Figure 3. Entanglement between γ0, feature evolution, and forget-
ting. (a) Non-linear relationship between γ0 and feature evolution
(1−CKA) in ResNet model (N = 4096, Split-CIFAR10); a transi-
tion happens at γ0 ≈ γLRT

0 . (b) γ0 and CFr (ResNet, N = 4096).
(c) γ0 and CFr at the infinite-width limit (MLP, permuted-MNIST).
(d) The amount of feature evolution correlates with forgetting
across various widths and values of γ0 (ResNet, Split-CIFAR10).

of a task’s data. More specifically, after training on a task,
we look at the activation vectors at every residual block of
the model of the same data while training on the remaining
tasks. We compare activations in a permutation-invariant
manner by measuring the cosine-alignment of the respective
kernels, a measure known as Centered Kernel Alignment
(CKA) (Kornblith et al., 2019). We plot the average over
training and all tasks.

We uncover a surprisingly non-linear relationship between
γ0 and the evolution of features (Fig. 3a). In particular,
we identify a critical Lazy-Rich Transition (LRT) region
γ0 ≈ γLRT

0 that non-linearly separates two different behav-
iors: for γ0 < γLRT

0 the relationship is mostly flat and the
features change by very small amounts, signifying that the
network is in an effectively lazy regime. Conversely, for
γ0 > γLRT

0 , the features’ evolution sharply increases with
γ0, thus the network is in a rich regime. We hypothesize that
this transition could be related to our choice of LR scaling
(Tab. 1, the LR scales quadratically with γ0). Indeed, the
concurrent work of Atanasov et al. (2024) observes that this
scaling is optimal for the lazy regime, but not for the rich
and ultra-rich regimes (their Fig. 1b), where instead sub-
quadratic LR scaling is optimal. Hence, as we increase γ0,
our LR shifts from the optimal LR towards a larger-than-
optimal LR, potentially triggering the sharp rise we observe.
We leave for future study the exploration of this interesting
hypothesis.
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The relationship between γ0 and CFr is strikingly similar
(Fig 3b): for γ0 < γLRT

0 CFr is very low regardless of
γ0 , while it grows significantly for γ0 > γLRT

0 . This
result is confirmed consistently across different finite widths
(Fig. 1b), as well as at the infinite-width limit (Fig. 3c).
By analyzing the relationship between features evolution
and CFr across scales and γ0, we recover consistently that
feature learning negatively impacts CF (Fig. 3d), with a
strong (p-value < 10−30) positive correlation between the
amount of evolution in the features and CF. Taken together,
these results convincingly point to the fact that the presence
of feature learning is indeed conducive to CF, and higher
degrees of feature learning lead to higher levels of forgetting
in non-stationary learning.

Remark on the Lazy-Rich Transition Curiously this
transition also appears to mark a shift in the behavior of
width-scaling in forgetting. As visible in Fig. 1b, whereby
for γ0 < γLRT

0 width scaling improves CFr, while for γ0 >
γLRT
0 it does not. This appears to happen not only on

Split-CIFAR10 and the ResNet, but also on the MLP setting
of the infinite-width simulations (Fig. 11). Nevertheless,
this inversion is not observed in the feature evolution but
only in forgetting (cf. Fig. 13a). Our last remark hints at
a fundamental shift in the interaction between width, γ0,
and training dynamics happening at the lazy-rich transition.
This is a topic that deserves further investigation and it lies
beyond the scope of this work. However, in Appendix B.5
we present preliminary results, looking at the changes in the
loss landscape geometry as we vary γ0 and width jointly.

5.2. Intermediate Feature Learning Optimizes the
Stability-Plasticity Tradeoff

When considering the overall final performance, a trade-off
between LA and CF naturally arises, commonly referred to
as the plasticity-stability dilemma. Consolidated evidence in
Deep Learning proves that higher degrees of feature learning
help fit a task better (Fig. 1a), thus lifting the LA. However,
our results so far have shown that increased feature learning
also causes increased forgetting. Therefore we ask, which
degree of feature learning achieves the optimal trade-off
between plasticity and stability?

In Figures 1b and 4a we plot the average performance as a
function of γ0 in our Split-CIFAR (ResNet) and Permuted-
MNIST (MLP with finite and infinite widths) experiments,
respectively. The optimal performance is achieved at inter-
mediate and relatively low γ0-values: γ⋆

0 ≈ 0.1 for both
benchmarks. Surprisingly, γ⋆

0 transfers across widths, which
means that one can determine γ⋆

0 by tuning at low widths to
then scale up without additional costs. A similar transfer of
other hyperparameters has been observed in the scaling lim-
its literature (Yang et al., 2022a; 2023; Bordelon et al., 2023;
Noci et al., 2024). The infinite-width simulation confirms

our empirical findings with striking precision. Furthermore,
we notice also that for γ0 > γ⋆

0 the increased scale of the
network is wasted as the larger width does not bring any
benefits in performance.
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Figure 4. (a) Average Loss for varying γ0 at finite and infinite
widths (MLP, permuted-MNIST, 30 samples). The optimal γ⋆

0

transfers to all finite and infinite widths. (b) The plasticity-stability
tradeoff is controlled by the amount of feature learning (ResNet,
Split-CIFAR10).

Finally, we disentangle the effect of plasticity and stability
from the compound metric of the average performance, by
measuring them through the Learning Error and CFr, respec-
tively. In Fig. 4b we observe that varying γ0 allows us to
navigate the stability-plasticity tradeoff, which generates a
Pareto front. In particular, we see that at small γ0 we have
a low CFr, but also a high LE. Increasing γ0, the LE first
undergoes a rapid decrease without significantly impacting
the CFr, striking the optimal tradeoff for γ⋆

0 ≈ 0.1. If we
further increase γ0, the CFr starts to sharply increase in
return for a diminishing benefit of LE. We reproduce this
tradeoff also with the MLP and the infinite-width simulation
in Fig. 12. All in all, this experiment recovers the stability-
plasticity dilemma and highlights that neither scaling nor
feature learning allow the circumvention of the fundamental
constraints imposed by this tradeoff.

5.3. Discussion on Depth Scaling

Mirzadeh et al. (2022a;b) show experimentally that depth,
unlike width, worsens the performance of the model in CL.
We can interpret this result in light of our findings on the
relationship of feature learning and CF. In fact, Bordelon
& Pehlevan (2022) proved that in NTP and µP depth scal-
ing induces evolution of the NTK, therefore increasing the
amount of feature learning. According to the results pre-
sented in this Section, increased feature learning comes at
the cost of higher forgetting. Bordelon et al. (2023) and
Yang et al. (2023) recently introduced a modified µP specif-
ically for depth scaling, which allows scaling the network
depth boundlessly while maintaining a depth-independent
level of feature learning. In App. B.2, we perform scaling
experiments in depth with this modified parameterization.
Our evidence, although of a preliminary nature, indicates
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that once again scaling in this rich regime does not reduce
(nor increase) CF. Nevertheless, we leave a thorough char-
acterization of this aspect for future study.

10−2 100

γ0

0.00

0.05

0.10

0.15

F
ea

tu
re

s
E

vo
lu

ti
on

(1
−
C
K
A

)

(a)

10−2 100

γ0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

C
F

r

(b)

10−2 100

γ0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

A
ve

ra
ge

E
rr

or

0.0

0.2

0.4

0.6

0.8

1.0
T

as
k

S
im

ila
ri

ty

(c)

Figure 5. Results on the synthetic dataset Permuted-MNIST with
varying levels of task similarity; a ResNet with a width of 4096 is
used. (a) The evolution of features is modulated by the task simi-
larity for fixed γ0; γLRT

0 shifts towards 1 for higher task similarity.
(b) Following the shift of the lazy-rich transition, forgetting sharply
increases at a later γ0 for higher task similarity levels. (c) The
higher the task similarity, the more the optimal γ⋆

0 shifts towards
1.

6. Interpolating Between Stationary and
Non-Stationary Data

In the previous sections, we have shown that what holds true
for the stationary setting (that feature learning is beneficial
for performance) does not hold true for the non-stationary
setting. In this section we consider these two separate set-
tings as two extremes of a continuous spectrum, directly
linking our findings with consolidated knowledge. In par-
ticular, we interpolate between stationary and (fully) non-
stationary scenarios by manipulating the data distribution.

6.1. Task Similarity, Lazy-Rich Transition and γ⋆
0

First, we control the non-stationarity in Permuted MNIST
by varying the permutation size (see App. A.4). We measure
the task similarity ρ ∈ [0, 1] as a proxy for stationarity: the
lower ρ the greater the non-stationarity.

Analyzing the levels of features’ evolution for varying de-
grees of task similarity (Fig. 5a) we observe that the amount
of non-stationarity directly impacts the amount of feature
evolution: higher task similarity induces lower feature evo-

lution across all γ0 values 2. In other words, the lazy-rich
transition happens at a higher γ0 for more stationary data
streams, and thus the degree of feature learning γ⋆

0 which
trades off optimally LA and CF moves closer to 1 (Fig. 5c).
Thus in the stationary limit, the maximal performance is
reached for γ⋆

0 = 1.
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Figure 6. Results on Split-TinyImagenet with varying number of
tasks and classes per task (e.g. 5/2 signifies 5 tasks of 2 classes
each); a ResNet with a width of 1024 is used. (a) The task similar-
ity shifts the lazy-rich transition. (b) CFr for varying γ0; for many
classes per task (5/40, 20/10), the CFr follows a non-monotonic
relationship with γ0. (c) The optimal level of feature learning γ⋆

0

shifts towards 1 with the task similarity, controlled by the num-
ber of classes per task. (d) Features evolution during the first,
and later tasks with varying number of classes per task, on the
Split-TinyImagenet dataset. When the tasks have many classes,
the evolution of features on later tasks is constant in γ0 suggesting
features reuse and a pretraining effect.

6.2. The Pretraining Effect

Secondly, we control the non-stationarity in the TinyIma-
genet dataset by varying the number of classes per task (and
the number of tasks) in the benchmark. We use the notation
t/c for a setting with t tasks of c classes each. Intuitively,
increasing the number of classes per task enhances data di-
versity within each task, leading to greater overlap between
task distributions and thus higher similarity between tasks.

Consistently with the evidence from Permuted MNIST, we
observe higher feature evolution when the number of classes
per task is low – and so is the task similarity (Fig. 6a). This
confirms that varying the number of classes per task controls

2As a consequence, the assumption of lazy training dynamics
in CL does not hold equally for all datasets and benchmarks.
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the amount of non-stationarity, validating our methodology.
Similarly to before, the increased task similarity allows a
γ⋆
0 ≈ 1 to be optimal.

Intriguingly, in this setting alone we observe a non-
monotonic relationship between the degree of feature learn-
ing and CF at the higher end of the range of non-stationarity
tested (Fig. 6b). In fact, for these high-similarity tasks, in-
creasing feature learning beyond a certain threshold appears
to decrease the CFr. We hypothesize that this effect occurs
when the features learned on the first task are useful for
later tasks as well, thereby attenuating the amount of feature
evolution in later tasks. We call this effect the pretraining
effect, implying that the first task training acts similarly to
pretraining, by finding features that transfer to later tasks.

To verify this hypothesis we compare the evolution of fea-
tures before and after training on a certain task (with cosine
similarity). We differentiate the evolution during the first
task, from that of later tasks (Fig. 6d). We observe that
the feature trajectories overlap at lower values of γ0 for the
different combinations of classes per task. However, they
separate for higher values of γ0: in the 5/2 curve the evolu-
tion during the first task is proportional to that of later tasks,
whereas at the other extreme of the task similarity, the later
tasks exhibit no further feature learning beyond a certain γ0.
In other words, the network switches to an effectively lazy
regime after the first task. Additionally, we note that width
is strictly beneficial both in terms of forgetting and final
performance when there is the pretraining effect (App. B.6),
reproducing the results of Ramasesh et al. (2022) on the
entangled relationship between scale and pretraining.

7. Conclusions
Our work takes a decisive step towards understanding the
roles of feature learning and scale in continual learning, as
well as their interplay with task similarity. We show that
there is no intrinsic benefit of scale and that the degree of
feature learning is ultimately responsible for forgetting. We
observe a non-linear transition in the relationship between
feature learning and the parameterization factor γ0. We
extend DMFT in infinitely wide NNs to the treatment of
multiple tasks. Our theoretical simulations confirm that
the phenomena observed at finite widths are still valid at
infinite widths. Finally, our findings add to the evolving
perspective on feature learning in modern NNs, challenging
the common ”more feature learning is better” narrative, and
underscoring the importance of modeling non-stationarity.

We foresee that our findings could be of practical guidance:
the optimal degree of feature learning γ⋆

0 can be tuned only
for small models and then transferred to large scales. In
this context, our results can be inserted in the recent line
of work of zero-shot hyperparameter transfer (Yang et al.,

2022a; 2023; Bordelon et al., 2023; Lingle, 2024; Bjorck
et al., 2024). Future work might also investigate mitigation
methods (like experience replay (Chaudhry et al., 2019) and
EWC (Kirkpatrick et al., 2017a)) and their scaling proper-
ties. In this setting, devising parameterizations that achieve
a well-defined feature learning limit can lead to NNs that
better navigate the plasticity-stability frontier, with the end
goal of achieving maximal feature learning without forget-
ting at scale.
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A. Experimental Details
A.1. Evaluation Metrics

We report here the formal definitions of the evaluation metrics introduced in Sec. 3.1.1.

For a benchmark with T tasks, we define the test accuracy on the task Ti after training on Tj , with i, j ∈ {1, ..., T}, as aj,i.
We use the Learning Accuracy as measure of plasticity.

Definition A.1 (Learning Accuracy (LA)). The Learning Accuracy (LA) is the average over all tasks of the accuracy on the
task it has just been trained on:

LA =
1

T

T∑
i=1

ai,i. (13)

Similarly, the complement of the LA is the Learning Error.

Definition A.2 (Learning Error (LE)). The Learning Error (LE) is the complement of the LA:

LE = 1− LA (14)

Forgetting is traditionally measured as the average drop in accuracy.

Definition A.3 (Catastrophic Forgetting (CF)). The Catastrophic Forgetting is the average drop in accuracy after training on
all other tasks:

CF =
1

T − 1

T−1∑
i=1

max
t∈{i,...,T−1}

(at,i)− aT,i. (15)

The limitations of the CF are more easily comprehended with a simple toy example. Let us consider two models trained on a
benchmark with only two tasks: the first model reaches 100% accuracy on the first task, and after training on the second
task it drops to 80%, i.e. it has a CF of 20%. The second model, instead, reaches 40% accuracy on the first task, and after
training on the second task it drops to 30%, i.e. it has a CF of 10%. Looking only at the CF, the second model would be
favored but, in reality, the relative drop in accuracy is higher for the second model. Therefore, we introduce a novel metric
that measures the Catastrophic Forgetting rate.

Definition A.4 (Catastrophic Forgetting Rate (CFr)). The Catastrophic Forgetting Rate is the average relative drop in
accuracy after training on all other tasks:

CFr =
1

T − 1

T−1∑
i=1

maxt∈{i,...,T−1}(at,i)− aT,i

maxt∈{i,...,T−1}(at,i)
. (16)

If we consider the CFr for the two models in the example above, we would see that the first model has a CFr of 20%, while
the second model has a CFr of 25%, rightly favoring the first model.

Definition A.5 (Average Accuracy (AA)). The Average Accuracy is the average accuracy on all tasks after all of them have
been trained sequentially:

AA =
1

T

T−1∑
i=0

aT−1,i. (17)

Definition A.6 (Average Error (AE)). The Average Error is the complement of the AA.

AE = 1− AA (18)

We define also the same metrics in terms of the training loss, needed for the experiments with the infinite-width simulations.
Concretely, for a benchmark with T tasks, we define the training loss on the task Ti after training on Tj , with i, j ∈ {1, ..., T},
as Lj,i.
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Definition A.7 (Learning Loss (LL)). The Learning Loss (LL) is the average over all tasks of the loss on the task it has just
been trained on:

LL =
1

T

T∑
i=1

Li,i. (19)

Definition A.8 (Catastrophic Forgetting (CF) (loss)). The Catastrophic Forgetting in terms of loss is the average drop in
loss after training on all other tasks:

CF (loss) =
1

T − 1

T−1∑
i=1

max
t∈{i,...,T−1}

(Lt,i)− LT,i. (20)

Definition A.9 (Catastrophic Forgetting Rate (CFr) (loss)). The Catastrophic Forgetting Rate in terms of loss is the average
relative drop in loss after training on all other tasks:

CFr (loss) =
1

T − 1

T−1∑
i=1

maxt∈{i,...,T−1}(Lt,i)− LT,i

maxt∈{i,...,T−1}(Lt,i)
. (21)

Definition A.10 (Average Loss (AL)). The Average Loss is the average loss on all tasks after all of them have been trained
sequentially:

AL =
1

T

T−1∑
i=0

LT−1,i. (22)

A.2. Model Architecture

We use an architecture of the ResNet family (He et al., 2016). In particular, we first apply a convolutional layer with kernel
size 7x7 and N filters with stride 2, followed by Batch Normalization (BN), ReLU, and max pooling. Then, we repeat 3
times the following configuration: L/3 residual blocks (each with 1 convolutional layer with N channels, BN, and ReLU),
with the first block having a stride of 2. Finally, we apply a global average pooling, flatten the output, and apply a linear
layer. We will simply call N the width, and L the depth of the model. The base configuration uses N = 64 and L = 6. For
some of the CL datasets considered, a separate classification head is used for each task (see Sec. A.4).

Experiments involving the infinite-width simulation are executed on a 2-layer non-linear (ReLU) perceptron.

A.3. Parameterization Details

Note that many equivalent parameterizations can achieve the same functional behavior (Yang & Hu, 2020; Bordelon &
Pehlevan, 2022; Yang et al., 2023; Bordelon et al., 2023). In Tab. 1 we report the notation of (Bordelon et al., 2023,
Tab. 1), but with the NTP from (Yang & Hu, 2020, Tab. 1) for implementational simplicity. Also, note that the standard
parameterization (SP) of PyTorch (i.e. the SP column in (Bordelon et al., 2023, Tab. 1)) is equivalent to the NTP used here.

A.4. Datasets and Training Details

ResNet Experiments In all experiments – if not otherwise specified – we use Stochastic Gradient Descent (SGD)
optimization without momentum nor weight decay. To find the learning rate η0(0), we do a hyperparameter search on the
model at base width and depth (i.e. where all parameterizations are equivalent) on the full (i.e. non-CL) dataset taking the
optimal test accuracy as a metric. We use a cosine learning rate schedule without a warmup, restarting the learning rate at
the beginning of each task. For all datasets, we use a batch size of 128.

Infinite-Width Experiments on 2-layer non-linear MLP In the infinite width limit simulations and finite-width compar-
isons, due to limited computational resources, was used a small set of 30 samples of the MNIST dataset (see below), three
per class. This is because simulations involving the theoretical limit scale with P 2T 2 in terms of memory and of P 3T 3

in terms of time (Bordelon & Pehlevan, 2022), since kernels are of order P 2T 2 and undergo a matrix-vector product in
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dimension P and an integration over T time steps. The simulations rely on drawing the random initial conditions of the
kernels, namely the random initial fields, from a sampled distribution of size S = 3000 of the relative Gaussian Process
describing their infinite width limit. From those, we implemented an Euler-based, discrete-time ODE solver to obtain the
dynamics of all the fundamental quantities describing the network, including kernels and residuals. The MLP is optimized
with full batch Gradient Descent on MSE loss with a LR tuned with a grid search on the real network on the non-CL data.
To avoid the explosion of the initialization output at low values of γ0, we initialize the last layer of the MLP to 0 to have a
well-defined output of 0 at t = 0. This practice is advised in (Yang et al., 2022b, App. D.2).

All training runs and experiments are executed either on a single NVIDIA GeForce RTX 4090 or on an NVIDIA RTX
A6000.

A.4.1. SPLIT-CIFAR10

The Split-CIFAR10 (Zenke et al., 2017) (TIL type of benchmark) dataset has 5 tasks of 2 classes each (i.e. the 10 classes
of CIFAR10 are split into 5 tasks with non-overlapping classes), and as common for TIL benchmarks, the model uses a
separate head for each task. We train for 5 epochs on each task with a learning rate of η0(0) = 30.0. Note that the LR is
larger than usual values; this is due to the particular choice of parameterization. If not otherwise specified, all experiments
on Split-CIFAR10 are repeated 5 times with different random seeds, and the average is reported.

A.4.2. PERMUTED MNIST

Inspired by previous works (Goldfarb et al., 2024; Kirkpatrick et al., 2017b), we use the permuted input MNIST dataset with
5 tasks to investigate the impact of task similarity on CF. Specifically, each task of this benchmark consists of the MNIST
dataset with a random but fixed permutation of the pixels.

In particular, we consider task similarity as the fraction of pixels that are not permuted between tasks, and the inner square
of the image is permuted first. As an example, a task similarity of 1.0 corresponds to the original MNIST dataset; a
task similarity of 0.0 corresponds to a dataset where each task permutes all pixels of the images; a task similarity of 0.5
corresponds to tasks where the middle square containing 50% of the pixels is permuted. These tasks are synthetic, and
except for the untouched pixels, the tasks are not related to each other: this allows us to artificially cause CF by design.

ResNet Experiments Each task is trained for 5 epochs with η0(0) = 2.0. We do a slight modification of the architecture
presented above, by omitting batch normalization layers (following the observation of Mirzadeh et al. (2022b)). This is a
DIL type of benchmark, where the model uses a single head for all tasks.

Infinite-Width Experiments on 2-layer non-linear MLP For this simplified setup, instead, we use a fixed task similarity
of ρ = 0 (all pixels permuted) and 2 tasks. We optimize utilizing a small subset of training data comprising 30 samples (3
samples per label). Each task is optimized for 1000 epochs and a fixed LR of η0 = 0.25.

A.4.3. SPLIT-TINYIMAGENET

Similar to Split-CIFAR10, the classes of TinyImagenet are split into tasks with non-overlapping classes (Gong et al., 2022)
(i.e. it is a TIL benchmark and we use separate classification heads for each task). Throughout the experiments, we consider
varying the number of tasks and classes-per-task: 5 tasks of 2 classes each (we denote it 5/2), 5/10, 5/40, as well as 20 tasks
of 2 classes each (20/2), and 20/10. We optimize each task for 10 epochs with η0(0) = 15.0.
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B. Additional Experiments
B.1. Duration of Training and Feature Learning

Motivated by the observations of Wenger et al. (2023), in Fig. 7 we investigate the effect of the training duration on feature
evolution, forgetting, and performance. As shown by (Fort et al., 2020), we observe that longer training time increases the
deviation from the lazy regime as features evolve more (Fig. 7a). As thoroughly presented above, more feature evolution
reflects also on increased forgetting (Fig. 7b). As observed in Wenger et al. (2023), the benefit of width-scaling and
thereof-induced laziness is reduced for longer training when the deviations from the NTK regime are significant. As done by
γ0 in the µP, the training duration also impacts the balance between plasticity and stability (Fig. 7c), inducing a critical and
width-dependent training-duration that optimizes the Average Error (Fig. 7d).
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Figure 7. The effect of width and training duration with the NTP on Split-CIFAR10. The longer the training, the higher the feature
evolution (a). Consequently, forgetting increases (b). Due to the plasticity-stability tradeoff (c), the Average Error shows a width-dependent
optimal training duration (c).

B.2. Depth Scaling

The role of depth was analyzed in (Mirzadeh et al., 2022a;b), where it was found that – in their setting – depth would not
provide any benefit in terms of CF. With the precepts of scaling limits, and the observations done so far, we can interpret the
reasons for this result: if not suitably parameterized, the depth augments feature learning by stimulating the evolution of the
NTK (Bordelon & Pehlevan, 2022).

This effect of depth has been recently and concurrently addressed by Bordelon et al. (2023) and Yang et al. (2023); for
notational simplicity, we will hereby consider the µP+1/

√
L parameterization introduced in (Bordelon et al., 2023). This

parameterization guarantees that the feature learning magnitude is decoupled from both width and depth. We have therefore
a tool to disentangle CFr and the impact of depth, namely without the confounding effect of varying degrees of feature
learning and laziness. Concretely, and following the notation in Tab. 1, µP+1/

√
L differs from µP in the branch scale βl,

which depends not only on the width N , but also on the depth L as follows:
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βl =


N−1/2, l = L

(LN)−1/2, 0 < l < L

D−1/2, l = 0

. (23)

We empirically verify this hypothesis, fixing the width at 64 and varying the depth of the model in the three parameterizations.
Here we use γ0 = 1.0 for µP and µP+1/

√
L. Firstly we can see in Fig. 8 that the µP and NTP are equivalent since they

are at base-width and share the same depth-scaling properties. We observe that initially the CFr increases, and then the
stability of the network decays, with the learning error increasing until random performance. This yields an average error
that significantly degrades with depth in the µP and NTP. Instead, the behavior of µP+1/

√
L is different: the CFr is stable

with depth (similarly as width for the µP), and the learning error is constant at a good performance. This yields an average
error that is stable across depths.
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Figure 8. Performance of the three parameterizations with varying depth and a fixed width of 64. The µP and NTP are equivalent since
the experiment is at base-width and they share the same parameterization w.r.t. the depth; γ0 = 1. (a) CFr; (b) learning error; (c) average
error.

Finally, we repeat the experiment varying the degree of feature learning at different depths; we fix the width at 512 and vary
the depth of the model for various γ0 values. Firstly, we notice that feature learning negatively impacts CFr for all depths in
both µP and µP+1/

√
L (Fig. 9 and Fig. 10, respectively). Furthermore, the curves for µP highly vary for different depths,

namely we find a depth-dependent γ⋆
0 (Fig. 9). The curves for µP+1/

√
L, instead, are extremely stable for all depths, and in

particular, the γ⋆
0 is constant across depths (Fig. 10): the optimal γ⋆

0 = 0.1 transfers not only across widths (as found in
Sec. 5) but – for µP+1/

√
L – also across depths (as shown by previous works for non-CL hyperparameters (Yang et al.,

2023; Bordelon et al., 2023)).

Curiously, on the Split-CIFAR10 considered here, depth does not provide any plasticity improvement (i.e. learning error).
We hypothesize that this is due to the simplicity of the CIFAR10 dataset, where the model can easily learn the task at hand
with a shallow architecture, and where the additional depth does not provide any benefits. Evaluations on more challenging
datasets might provide further insights. However, a thorough investigation of the role of depth is out of the scope of this
work, and we leave further experiments to future work.
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Figure 9. Depth scaling of the µP, with a fixed width of 512 and various degrees of feature learning. (a) CFr; (b) learning error; (c) average
error.
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Figure 10. Depth scaling of the µP+1/
√
L, with a fixed width of 512 and various degrees of feature learning. (a) CFr; (b) learning error;

(c) average error.
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B.3. Additional Experiments with the Infinite-Width Limit

Here we report additional experiments on the MLP with the infinite-width limit simulation.

In Fig. 11 we report the curves of CFr with varying γ0 for finite and infinite width. We recover also with this setup, the
characteristic relationship observed in Fig. 1c and analyzed in Sec. 5.1. Furthermore, we note that in this case too, the
lazy-rich transition seems to differentiate two different width-scaling regimes, where for γ0 < γLRT

0 the infinite-width limit
is approached from above and thus width scaling reduces forgetting (Fig. 11b), while for γ0 > γLRT

0 the infinite-width
limit is approached from below and thus width scaling increases forgetting (Fig. 11c). We leave the characterization of the
finite-width convergence to the infinite limit for future work.
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Figure 11. (a) Finite and infinite-widths relationship between γ0 and CFr (loss). Zoomed in versions for (b) low γ0 and (c) high γ0.

In Fig. 12 we recover even for the MLP and infinite-width simulation the plasticity-stability tradeoff (Fig. 4b). This further
suggests that even at the infinite-width limit NNs (trained with SGD) suffer from the plasticity-stability tradeoff.

B.4. Features Evolution at finite widths

In Fig. 13 we report the counterpart of Fig 3a for varying finite widths.

B.5. Loss Landscape Analysis

Motivated by the theoretical and empirical verifications of Mirzadeh et al. (2020), uncovering the crucial role of the
geometrical properties of the landscape for forgetting, we investigate its peculiarities across parameterizations and scaling
the width. This approach has also proven to be an important tool to uncover networks’ behavior in multiple studies (Sagun
et al., 2017; Martens, 2020). In particular, Noci et al. (2024) has recently uncovered crucial differences in the loss landscape
of the NTP and µP.

The sharpness of the landscape, i.e. the maximum eigenvalue of the Hessian, is a crucial property of the loss landscape.
Recently, Cohen et al. (2021) have observed an intriguing mechanism when optimizing deep networks with (full-batch)
gradient descent: the models exhibit a rapid increase in sharpness towards a critical point. This increase is termed progressive

21



The Importance of Being Lazy: Scaling Limits of Continual Learning

10−1 100 101 102 103 104 105

CFr (loss)

0.0

0.5

1

1.5

2

2.5

3

L
ea

rn
in

g
L

os
s γ0 = 0.001

γ?0 = 0.2 γ0 = 1

N →∞

64

128

256

512

1024

2048

4096

W
id

th

(a)

Figure 12. Plasticity (Learning Loss) and stability (CFR (loss)) tradeoff with finite and infinite-width simulation.
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Figure 13. The lazy-rich transition: above a certain threshold of γ0 the evolution sharply increases consistently for all widths (ResNet
model on Split-CIFAR10).

22



The Importance of Being Lazy: Scaling Limits of Continual Learning

sharpening, and the critical point is the Edge of Stability (EoS). Interestingly, the dynamics of the model do not diverge even
beyond the EoS, thanks to a mechanism of Self-Stabilization (Damian et al., 2022). These observations partly apply also to
our case of mini-batch stochastic optimization (Cohen et al., 2021; Noci et al., 2024).

We define formally the sharpness as follows:
Definition B.1 (Sharpness). The sharpness of the loss landscape at a point W is defined as the maximum eigenvalue of the
Hessian of the loss function at W:

Sharpness(W) = λmax(∇2L(W)) = λmax(H(W)). (24)

We will abbreviate the sharpness as λmax.

The EoS threshold arises from the convergence requirement for the gradient descent optimization with learning rate η of a
quadratic function, namely that the sharpness of the Hessian should not exceed 2/η.

As in µP the learning rate η scales with the width, the standard sharpness of Def. B.1 is hardly representative of the
actual model behavior. In particular, as the LR increases – by the EoS – the sharpness of the landscape would decrease
proportionally. However, from a practical perspective and from the point of view of optimization, the lower sharpness and
the proportionally higher learning rate would compensate for each other. Intuitively and qualitatively, the valley of the
optimization becomes flatter, but the velocity of the optimization increases, yielding a constant effective sharpness. To
compensate for this effect, we introduce the effective sharpness as a scaled sharpness.
Definition B.2 (effective Sharpness). The effective sharpness for a model parameterized with the µP as in Tab. 1, is defined
as

effective Sharpness(W) = λmax(γ
2 ·H(W)). (25)

We will abbreviate the effective sharpness as λ̃max. For µP, we will often refer to the effective sharpness as the sharpness
for simplicity.

Crucially for our analysis, Noci et al. (2024) have shown that the NTP and µP have different (effective) sharpness properties
when scaling the width: µP exhibits consistent effective sharpness at all widths, while for the NTP the sharpness dynamics
are width-dependent, and are characterized by the inversely proportional relationship between sharpness and width (for short
enough training). With these resulting differences, we study the landscape in the context of CL for the two parameterizations.

The trace of the Hessian provides another meaningful perspective on the curvature of the loss landscape. However, comparing
the trace across models of varying dimensions (e.g., as we scale their widths) is inherently challenging, as it represents a sum
over an increasing number of terms. One possible approach is to normalize the trace by the number of model parameters.
However, this metric can become unreliable when the number of zero eigenvalues in the Hessian scales with the parameter
number, causing the normalized trace to decrease regardless of the behavior of the non-zero eigenvalues. To date, the
literature on experimental analysis of loss landscapes has not resolved these challenges, and our results should therefore be
considered preliminary.
Definition B.3 (Normalized Trace and effective Normalized Trace). For W ∈ R|W |, the normalized trace of the Hessian is
defined as

Normalized Trace(W) =
1

|W | · tr(∇
2L(W)) =

1

|W | · tr(H(W)). (26)

The effective normalized trace for a model in the µP (Tab. 1) is defined as

effective Normalized Trace(W) =
1

|W | · tr(γ
2 ·H(W)). (27)

We analyze multiple compound metrics of the landscape based on these fundamental quantities on Split-CIFAR10. Firstly,
we observe the average effective sharpness and normalized trace at convergence, i.e. the average of these quantities at the
end of training on each task and with the data of that same task. Lastly, we want to gain an insight into the multi-task loss
landscape, i.e. of the compound loss of all the tasks. To do so, we measure the average effective sharpness and trace at the
end of training on each task, but using data from all previous tasks.

The sharpness and normalized trace of the Hessian are calculated using one batch of training data with the PyHessian library
(Yao et al., 2020).
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B.5.1. γ0 MODULATES THE LANDSCAPE

Firstly, we observe that the average sharpness of the converged models is modulated by γ0 but, in contrast to the findings
of Noci et al. (2024), the width has a larger impact on the converged sharpness hinting at the complex influence that
learning a chain of tasks has on the optimization properties (Fig. 14a). A change of regime is clearly distinguishable at
γ0 ≈ 0.1. Similar behaviors are also observed for the average sharpness of the multi-task optimization (Fig. 14b), shedding
an important insight for our CF problem: a higher curvature of the landscape is observed for higher feature learning, meaning
that the multi-task performance is more sensitive to changes in the network parameters.
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Figure 14. Average effective sharpness in the µP for varying γ0 and width. (a) Converged; (b) multi-task.

A second insight is gained by analyzing the effective normalized trace of the Hessian, finding that it is modulated by both γ0
and width in a non-trivial fashion (Fig. 15) and with a clear phase transition at γ0 ≈ 0.1. This is particularly pronounced for
the multi-tasks trace: for low γ0 the trace is positive and small (signalizing a convex and wide valley), and at γ0 ≈ 0.2 a
breakdown occurs, with the trace becoming negative and large the wider the model. This means that the landscape becomes
non-convex and with high curvature, i.e. for the multi-task objective the optimization reaches a non-minimum point in the
landscape (a saddle point or even a maximum). This is yet another hint at the ill-conditioning of the landscape for higher
feature learning in CL and a potential cause for the increased forgetting observed for higher γ0. Furthermore, this seems to
indicate that higher widths worsen the bad conditioning of the landscape, possibly hinting at a reason for the negative effect
of width on CFr observed in Sec. 5.1 (Fig. 1c) for γ0 > γLRT
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Figure 15. Average effective normalized trace in the µP for varying γ0 and width. (a) Converged; (b) multi-task.

Lastly, we want to stress the notable consistency of the dependency between γ0 and the landscape properties across widths,
meaning that the landscape properties vary similarly with γ0 for all widths. Since this super-consistency is at the root of
the LR transfer properties of µP (Noci et al., 2024), we hypothesize that this might also be a reason for the transfer of
the optimal γ⋆

0 across widths and depths observed above. Nevertheless, we leave a thorough investigation of the transfer
properties of γ0 for future work.
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B.5.2. FORGETTING CORRELATES WITH THE LANDSCAPE SHARPNESS

Mirzadeh et al. (2020) has first hypothesized the crucial role of the curvature of the loss landscape for the CF problem.
Relying on a simple second-order Taylor expansion of the loss function at the minimum of the optimization, they derived a
bound on the CF proportional to the curvature of the loss landscape. Although this bound relies on assumptions on the well-
behavedness of the loss function, it was validated empirically in a variety of settings, showing a clear correlation between
the curvature of the loss landscape and CF. Furthermore, Mirzadeh et al. (2021) have further analyzed this correlation in the
context of linear mode connectivity, finding a causal relationship between the curvature of the loss landscape and the CF
within a region where the approximation holds. However, their bound is vacuous if there is arbitrary displacement of the
parameters, namely when the second-order local approximation is not valid. This is indeed the case for the µP, and thus it is
a priori unclear if their hypothesis regarding the curvature of the landscape holds for the µP. We empirically investigate
how the landscape curvature correlates with the CF in the µP and we find a clear correlation between landscape curvature
and forgetting (Fig. 16). We stress that it is noteworthy that we find this correlation even in the case of varying scales, and
training regimes, thus without any assumptions on the locality of the optimization or the linear connectivity of the landscape.
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Figure 16. Multi Task sharpness and its correlation with CFr for µPs.

B.6. Width Dependency on Split-TinyImagenet

In this section, we report the width-dependency of the Split-TinyImagenet results presented in Fig. 6. In particular, in Fig. 17
we observe the width dependency for the 5/2 (5 tasks of 2 classes each), finding similar results to the ones on Split-CIFAR10:
width does not mitigate forgetting, and the optimal γ⋆

0 for the AE is at an intermediate level which transfers across widths.
In Fig. 18, instead, we see the effect of width on the 5/40 case where the pretraining effect occurs (Sec. 6.2). In particular,
all widths exhibit the non-monotonic relationship of CFr with γ0 (characteristic of the pretraining effect), and an optimal
γ⋆
0 = 1 for the AE. Interestingly, we also find that the width is beneficial not only in terms of Average Error but also in

terms of forgetting. This recovers a property of pretraining already observed by Ramasesh et al. (2022).

B.7. CNN Model

Here, were report additional experiments executed without skip connections of the ResNet model, namely including a
simpler Convolutional Neural Network (CNN) Model. Comparing these results (Fig. 19) with those on the ResNet model
(Fig. 1) we observe that the results are on-par.
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Figure 17. The role of width and γ0 on Split-TinyImagenet with 5 tasks of 2 classes each. (a) CFr; (b) average error.
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Figure 18. The role of width and γ0 on Split-TinyImagenet with 5 tasks of 40 classes each. (a) CFr; (b) average error.
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Figure 19. Results on CNN model (i.e. architecture as in App. A.2 but without skip connections): (a) CFr, (b) AE.
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C. Network’s Function Evolution in Non-Stationary Learning Scenarios
C.1. Non-Stationary Learning Under µP: Fields and Dynamics

In order to simplify the notation and the theoretical derivations, consider two different tasks T1, T2 represented by the
datasets (X1, Y1), (X2, Y2), each with respectively P1, P2 number of samples of dimension D. In this scenario, we train
sequentially T1 first and T2 after. While training the latter, we have no access to the previous task. This can be easily scaled
up in terms of the number of tasks, training multiple tasks sequentially, and having access only to the one we are training on.
As discussed in the main paper, consider the following architecture, with weights represented by θ = Vec{W 0, . . . ,wL},
and forward pass defined as:

fµ =
1

γ
hL+1
µ , hL+1

µ =
1√
N

wL · ϕ(hL
µ)

hℓ+1
µ =

1√
N

W ℓϕ(hℓ
µ), h1

µ =
1√
D
W 0xµ

(28)

The loss is the Mean Squared Error (MSE) L =
∑

µi
ℓµi =

∑
µi

1
2 (yµi − fµi)

2. Key quantities worth tracking are the
model performances on tasks T1 when we train the task T2. This involves obtaining the dynamics of the network outputs
fµ1

, that are derived assuming gradient flow dynamics, i.e. dθ
dt = −η ∂L

∂θ . We write the evolution of the network’s output
on task T1, which can be considered as an inference step on that task after each step of the training process on the current
training task T2, as following:

∂fµ1

∂t
=

1

γ

∂hL+1
µ1

∂t

=
1

γ

∂hL+1
µ1

∂θ

∂θ

∂t

⊤

= −η

γ

∑
α2

∂hL+1
µ1

dθ

∂L
∂θ

⊤

= −η

γ

∑
α2

∂hL+1
µ1

dθ

∂fα2

∂θ

⊤ ∂L
∂fα2

=
η

γ2

∑
α2

∂hL+1
µ1

dθ

∂hL+1
α2

∂θ

⊤

∆α2

(29)

where we made use of the gradient flow dynamics on task T2 and then made explicit the dependence of the Loss on the
network output. In this way, calling ∆α2

= − ∂L
∂fα2

= (yα2
− fα2

), equation above can be written as:

∂fµ1

∂t
=

η

γ2

∑
α2

Kµ1α2
∆α2

, Kµ1α2
=

dhL+1
µ1

dθ

dhL+1
α2

dθ

⊤

=
dhL+1

µ1

dθ
· dh

L+1
α2

dθ
(30)

with Kµ1α2
the Neural Tangent Kernel across tasks T1 and T2. Since at initialization we have Kµ1α2

is of order O(1), we
choose the setting η = O(γ2) to have order O(1) evolution.
We express all quantities involved in terms of features hµ1

,hµ2
and gradients gµ1

, gµ2
defined as:

gℓ
µi

=
√
N

∂hL+1
µi

∂hℓ
µi

= ϕ̇
(
hℓ
µi

)
⊙ zℓ

µi
, zl

µi
=

1√
N

W ℓ⊤gℓ+1
µi

gL
µ = ϕ̇

(
hL
µ

)
⊙wL

(31)

where zµi are the pre-gradients of task Ti. This allows us to explicit the gradient updates to the parameters in the backward
pass as a function of the fields hµi , gµi

:

∂hL+1
µi

∂W ℓ
=

N∑
n=1

∂hL+1
µi

∂hℓ+1
µi,n

∂hℓ+1
µi,n

∂W ℓ
=

1

N
gℓ+1
µi

ϕ
(
hℓ
µi

)⊤
(32)
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enabling us to write the NTK across tasks as:

Kµ1α2
=

∂hL+1
µ1

∂θ
· ∂h

L+1
α2

∂θ

=

L∑
ℓ=0

∂hL+1
µ1

∂W ℓ
· ∂h

L+1
α2

∂W ℓ

=
1

N
ϕ
(
hL
µ1

)
· ϕ
(
hL
α2

)
+

L−1∑
ℓ=1

(
gℓ+1
µ1

· gℓ+1
α2

N

)ϕ
(
hℓ
µ1

)
· ϕ
(
hℓ
α2

)
N

+
g1
µ1

· g1
α2

N
Kx

µ1α2

(33)

introducing the forward and backward across tasks kernels Φµ1α2
, Gµ1α2

, written as the inner product along the hidden
dimension:

Φℓ
µ1α2

=
1

N
ϕ
(
hℓ
µ1

)
ϕ
(
hℓ
α2

)⊤
=

1

N
ϕ
(
hℓ
µ1

)
· ϕ
(
hℓ
α2

)
Gℓ

µ1α2
=

1

N
gℓ
µ1
gℓ
µ2

⊤
=

1

N
gℓ
µ1

· gℓ
µ2

(34)

together with the input covariance matrix across tasks Kx
µ1α2

= 1√
D
xµ1x

⊤
α2

. We can express the weights dynamics, namely

W ℓ(t)∀ℓ ∈ [0, L],∀t > 0, in terms of the aforementioned forward and backward fields:

∂W ℓ(t)

∂t
= −

∑
µi

η
∂L
∂W ℓ

= γ
∑
µi

∆µi

∂hL+1
µi

∂W ℓ

W ℓ(t) = W ℓ(0) +
γ

N

∫ t

0

ds
∑
µi

∆µi
(s)gℓ+1

µi
(s)ϕ

(
hℓ
µi
(s)
)⊤

(35)

where Ti is the task we are training on. As a first step, we derive the evolutions of the forward and backward fields of the
training, making use of the recursive relation for hi and zi respectively in equations 28 and 31:

hℓ+1
µi

(t) = χℓ+1
µi

(t) +
γ√
N

∫ t

0

ds
∑
νi

∆νi
gℓ+1
νi

(s)Φℓ
νiµi

(s, t)

zℓ
µi
(t) = ξℓµi

(t) +
γ√
N

∫ t

0

ds
∑
νi

∆νi(s)ϕ
(
hℓ
νi
(s)
)
Gℓ+1

νiµi
(s, t)

(36)

where we have introduced the stochastic fields χℓ+1
µi

(t), ξℓµi
(t), arising from the randomness of initialisation conditions:

χℓ+1
µi

(t) =
1√
N

W ℓ(0)ϕ(hℓ(t))

ξℓµi
(t) =

1√
N

W ℓ(0)gℓ+1(t)

(37)

Let us now consider a non-stationary learning setting, with two tasks T1 and T2, trained sequentially on a single hidden layer
network (L=1) in this order. Once we have trained the first tasks, we are interested in tracking the evolution of features and
gradients, in order to compute the NTK across the two tasks. To obtain the fields evolution equation, we again utilize the
recursive relations definitions of h1 and g1, where this time the evolution of the weights is due to the training in tasks T2:

h1
µ1
(t) =

1√
N

W 0(t)xµ1
= χ1

µ1
+ γ0

∫ t

t1

∑
α2

∆α2
(s)g1

α2
(s)Kx

µ1α2
ds

z1(t) = w1(t) = ξ1 + γ0

∫ t

t1

∑
α2

∆α2(s)ϕ(h
1
α2
(s))ds

(38)
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with χ1
µ1

and ξ1 stochastic fields. In the general case of T tasks, these equations can be adapted, making use of the Heaviside
function U(t), to split the Gradient Descent evolution on the total set of tasks:

h1
µ1
(t) =

1√
N

W 0(t)xµ1 = χ1
µ1

+ γ0

∫ t

0

T∑
i=1

Ũi(s)
∑
α2

∆α2(s)g
1
α2
(s)Kx

µ1α2
ds

z1(t) = w1(t) = ξ1 + γ0

∫ t

0

T∑
i=1

Ũi(s)
∑
α2

∆α2(s)ϕ(h
1
α2
(s))ds

(39)

with Ũi(t) = U(t− ti−1)U(ti − t), splitting the integral in multiple ones with the correct time extrema, inside which task
Ti is under training. Once we have the fields {h1, g1} we can construct the primitive kernels Φ1

µ1α2
, G1

µ1α2
, and then the

NTK across tasks. The latter is then used to compute the residual evolution as:

∂

∂t
∆µ1

(t) = −[Φ1
µ1α2

(t) +G1
µ1α2

(t)Kx
µ1α2

]∆α2
(t) (40)

we thus can predict the evolution of residuals of different tasks with respect to the one we are training. Moreover, we have
the equations governing the internal representation evolution during other tasks.

C.2. DMFT for One Hidden Layer NN in CL Scenario (Proof of Proposition 4.1)

The derivation is carried out using the Martin-Siggia-Rose-Janssen-De Dominicis formalism (Martin et al., 1973), which
allows us to prove that at N → ∞ the kernels concentrate, making the evolution of residuals deterministic. Since kernels
depend on the stochastic fields χµ1

, χα2
, we are interested in characterizing the distributions of them at infinite width under

the non-stationary scenario. Specifically, we aim to obtain the expectation of the inner product ⟨χµ1
· χα2

⟩ (in this section
we write ⟨·⟩ as the expectation E[·]), since it represents the initial condition for the forward kernel Φ1

µ1α2
. Furthermore, we

want to prove that in the infinite limit the evolutions of residuals of tasks T1 while training task T2 are determinist, since
kernels Φ1

µ1α2
, G1

µ1α2
concentrate in the N → ∞ limit. To do that, we look at the Moment Generating Function (MGF) of

fields {χµ1
}µ1∈[P1],{χµ2

}µ2∈[P2] and ξ, defined as follows:

Z
[
{jµ1

}µ1∈[P1], {jµ1
}µ1∈[P1],v

]
=

〈
exp

(∑
µ1

jµ1
· χµ1

+
∑
µ2

jµ2
· χµ2

+ v · ξ
)〉

θ0

(41)

As a next step, we enforce the definition of the random fields through Dirac deltas, making explicit the source of randomness
(weights at initialization), introducing new integration variables, and thus enabling us to compute the average.

1 =

∫ ∫
dχµ1

dχ̂µ1

(2π)N
exp

(
iχ̂µ1

·
(
χµ1

− 1√
D
W (0)xµ1

))
1 =

∫ ∫
dχµ2

dχ̂µ2

(2π)N
exp

(
iχ̂µ2

·
(
χµ2

− 1√
D
W (0)xµ2

))
1 =

∫ ∫
dξdξ̂

(2π)N
exp

(
iξ̂ · (ξ −w(0))

) (42)

We then insert these definitions in the MGF:

Z
[
{jµ1

}µ1∈[P1], {jµ1
}µ1∈[P1],v

]
= ⟨
∫ ∏

µ1µ2

dχµ1χ̂µ1χµ2χ̂µ2dξdξ̂

(2π)N (2π)N (2π)N
exp(

∑
µ1

jµ1
· χµ1 +

∑
µ2

jµ2
· χµ2 + v · ξ

+iχ̂µ1
· (χµ1

− 1√
D
W (0)xµ1) + iχ̂µ2

· (χµ2
− 1√

D
W (0)xµ2))

+iξ̂ · (ξ −w(0))⟩θ0

(43)

Now we can compute the average over the random noise, namely θ0, since we know that Wij , wij ∼ N (0, 1). Having the
Gaussian terms plus a linear term deriving from the explicit definition of fields, the integral to be computed is essentially a
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Fourier transform of the original Gaussian, which leads to another Gaussian (inverse of the Hubbard-Stratonovich transform):

Z
[
{jµ1

}µ1∈[P1], {jµ1
}µ1∈[P1],v

]
=

∫ ∏
µ1µ2

dχµ1dχ̂µ1dχµ2dχ̂µ2dξdξ̂

(2π)N (2π)N (2π)N
exp

(∑
µ1

(jµ1
+ iχ̂µ1

) · χµ1+

∑
µ2

(jµ2
+ iχ̂µ2

) · χµ2 − 1

2
(
∑
µ1,α1

χ̂µ1
· χ̂α1

Kx
µ1α1

+
∑
µ1,α2

χ̂µ1
· χ̂α2

Kx
µ1α2

+
∑
µ2,α1

χ̂µ2
· χ̂α1

Kx
µ2α1

+
∑
µ2,α2

χ̂µ2
· χ̂α2

Kx
µ2α2

)− 1

2
|ξ̂|2 + (v + iξ̂) · ξ

) (44)

Now we introduce the definitions of the order parameters, namely kernels

Φµ1µ2
(t, s) =

1

N
ϕ(hµ1

(t)) · ϕ(hµ2
(s)), Gµ1µ2

(t, s) =
1

N
gµ1

(t) · gµ2
(s)

through Dirac delta definitions, as we did for the random initial fields:

1 =

∫
dGµ1µ2(t, s)dĜµ1µ2(t, s)

2πiN−1
exp

(
Ĝµ1µ2

(t, s)
(
NGµ1µ2

(t, s)− gµ1
(t) · gµ2

(s)
))

1 =

∫
dΦµ1µ2

(t, s)dΦ̂µ1µ2
(t, s)

2πiN−1
exp

(
Φ̂µ1µ2

(t, s) (NΦµ1µ2
(t, s)− ϕ(hµ1

(t)) · ϕ(hµ2
(s)))

) (45)

that put together in the above formula for Z lead to:

Z ∝
∫ ∏

µ1µ2ts

dΦµ1µ2
(t, s)dΦ̂µ1µ2

(t, s)dGµ1µ2
(t, s)dĜµ1µ2

(t, s) exp(NS[Φ, Φ̂, G, Ĝ]) (46)

where S is the action and is given by:

S[Φµ1µ2 , Φ̂µ1µ2 , Gµ1µ2 , Ĝµ1µ2 ] =
∑
µ1µ2

∫
dsdt[Φµ1µ2(t, s)Φ̂µ1µ2(t, s) +Gµ1µ2(t, s)Ĝµ1µ2(t, s)]

+
1

N

N∑
i=1

ln(Z[j1i , j2i , vi])

Z[j, v] =

∫ ∏
µ1µ2

dχµ1
dχ̂µ1

dχµ2
dχ̂µ2

dξdξ̂

(2π)N (2π)N (2π)N
exp

(∑
µ1

(jµ1
+ iχ̂µ1

) · χµ1
+
∑
µ2

(jµ2
+ iχ̂µ2

) · χµ2

−1

2
(
∑
µ1,α1

χ̂µ1
· χ̂α1

Kx
µ1α1

+
∑
µ1,α2

χ̂µ1
· χ̂α2

Kx
µ1α2

+
∑
µ2,α1

χ̂µ2
· χ̂α1

Kx
µ2α1

+
∑
µ2,α2

χ̂µ2
· χ̂α2

Kx
µ2α2

)

−1

2
ξ̂2 + (v + iξ̂) · ξ−Φ̂µ1µ2

(t, s)ϕ(hµ1
(t)) · ϕ(hµ2

(s))− Ĝµ1µ2
(t, s)gµ1

(t) · gµ2
(s)
)

(47)
We then take the saddle point solution for the integral defining Z, which essentially means finding the values of the order
parameters maximizing S. This leads to the following equations:

δS

δΦµ1µ2
(t, s)

= Φ̂µ1α(t, s) = 0,
δS

δΦ̂µ1µ2
(t, s)

= Φµ1µ2
(t, s)− 1

N

N∑
i=1

⟨ϕ (hµ1
(t))ϕ (hµ2

(s))⟩i = 0

δS

δGµ1µ2
(t, s)

= Ĝµ1µ2
(t, s) = 0,

δS

δĜµ1µ2
(t, s)

= Gµ1µ2
(t, s)− 1

N

N∑
i=1

⟨gµ1
(t)gµ2

(s)⟩i = 0

(48)

where the average ⟨⟩i is defined as:

⟨O(χ, χ̂, ξ, ξ̂)⟩i =
1

Z[j1i , j2i , vi]

∫ ∏
µ1µ2

dχµ1
dχ̂µ1

dχµ2
dχ̂µ2

dξdξ̂

exp
(
−H

[
{χµ1

, χ̂µ1
, χµ2

, χ̂µ2
} , ξ, ξ̂, j1i , j2i , vi

])
O(χ, χ̂, ξ, ξ̂)
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where H is the logarithm of the Z[j1i , j2i , vi]. Once we plug in the saddle point solutions we can rewrite the remaining
terms defining the matrix and vectors:

A =

[
Kx

µ1α1
Kx

µ1α2

Kx
µ2α1

Kx
µ2α2

]
, y =

[
χµ1

χµ2

]
, x =

[
χ̂µ1

χ̂µ2

]
, j =

[
jµ1

jµ2

]
, (49)

so that we can rewrite Z in the following way:

Z[j, v] =

∫
dxdydξdξ̂

(2π)N (2π)N (2π)N
exp(−1

2
xTAx+ jy + ixy − 1

2
ξ̂2 + (v + iξ̂) · ξ)

=

∫
dydξ

(2π)N (2π)N (2π)N
exp(−1

2
yTCy + jy − 1

2
ξ2 + vξ)

(50)

where we have defined the matrix C = A−1. At this point, we keep integrating and obtain:

Z[j, v] = exp(
1

2
jTAj +

1

2
v2) (51)

which is the MGF of the fields χµ1
, χµ2

, ξ. If we are interested in the value of ⟨χµ1
· χµ2

⟩, we can easily get it from Z by:

⟨χµ1
· χµ2

⟩ = ∂

∂jµ2
∂jTµ1

Z|j,v=0

=
∂

∂jµ2
∂jTµ1

exp(
1

2
(jTµ1

Kx
µ1µ1

jµ1
+ jTµ1

Kx
µ1µ2

jµ2
+ jTµ2

Kx
µ2µ1

jµ1
+ jTµ2

Kx
µ2µ2

jµ2
+ v2))|jµ1

,jµ2
,v=0

= Kx
µ1µ2

(52)
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D. Comparison of Infinite Width Simulations and Experimental Results
In order to verify the goodness of the theoretical framework developed for the non-stationary learning case, we compared the
results from a single hidden layer MLP of width 4096, ReLU activation function, µP parameterized, γ0 = 1 and learning
rate η0 = 0.25, with the predictions from the infinite width limit version. The dataset is the same used in the previous
experiments, namely the PermutedMNIST restricted to 30 samples, 3 per label. The number of epochs are 500 and the total
number of tasks is 4, each generated from a different complete permutation of the images pixels.
The interesting quantities to observe are the ones involving the internal representation of the samples, gradients and the
losses evolution, in order to test the accuracy of the theory from both low and high level observables. We show below the
distributions of the pre-activations {hi}i∈{1,2,3,4}, of gradients {gi}i∈{1,2,3,4} for all 30 samples:
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(a) Pre-activations distributions for all 30 samples of the different
tasks. The shaded lines are the distributions at t = 450, the full
lines are the distributions at t = 550.
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(b) Gradients distributions for all 30 samples of the different tasks.
The shaded lines are the distributions at t = 450, the full lines are
the distributions at t = 550.

Figure 20.

It is clear in above figure the effect of training on the pre-activations,and consequently gradients, distributions: there is a
shift from the initial Gaussian curves towards heavily tailed, non-Gaussian distributions. Having the pre-activations and
gradients we can easily obtain the primitive forward and backward kernels ΦTiTj

and GTiTj
. We show below the kernels

ΦT1T2
,GT1T2

,KT1T2
and ΦT3T4

,GT3T4
,KT3T4

at time steps t = 450 and t = 550, thus 50 epochs before and after the switch
from task T1 to task T2:
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Figure 21. All primitive kernels and NTK across tasks T1 and T2. The theoretical one are obtained through simulations of the infinite
width model, the experimental ones comes from the trained network aforementioned
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Figure 22. All primitive kernels and NTK across tasks T3 and T4. The theoretical one are obtained through simulations of the infinite
width model, the experimental ones comes from the trained network aforementioned

Last, from equation 30, we can compute the loss evolution of all tasks’ losses {LTi
}i∈{1,2,3,4} during all tasks’ training:
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Figure 23. Tasks’ losses in a four task scenario mentioned above. Vertical dot-dashed lines represent the epochs at which the shift between
tasks training happens.

In order to gain a deeper insight into the learning dynamics, a useful measure is the alignment of the last-layer forward
Kernel ({ΦL

TiTi
}i∈{1,2,3,4}) along the task-relevant subspace Y Y ⊤, as defined in (Atanasov et al., 2024, App. P) and termed

Kernel-Target Alignment (KTA). We denote the KTA as A(Φ, Y Y T ). This measure provides a qualitative picture of how
and when features develop structures able to cluster samples according to respective labels. As shown in Fig. 24 the KTA
increases only during training of the respective task, and the alignment decreases during other tasks’ training.

We can see that the infinite width model matches also this measure, serving as a further validation of the closely matching
characteristics of the experimental and theoretical setup.
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Figure 24. Theoretical and experimental tasks’ alignment A(Φ, Y Y T ) for all four tasks during all training processes. Vertical dot-dashed
lines represent the epochs at which the shift between tasks training happens.
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E. Catastrophic Forgetting Under Perturbation Theory in γ0

E.1. Effect of Feature Learning on CF in the Infinite Width Limit

The dependence on γ0 in Equation (12) is implicit and recursively applied over the training steps. To get a better sense of
the influence of feature learning on forgetting, we apply perturbation theory, which assumes the following expansion for
forgetting:

CF (t) = CF (0)(t) + γ0CF (1)(t) + γ2
0CF (2)(t) +O(γ3

0) (53)

The aim is to compute the coefficients CF (0)(t), CF (1), . . . , identifying the respective terms in front of the relative γ0
expansion deriving from the other set of variables composing the self consistent system of equations. Notice that here
superscripts index the coefficients and not powers (e.g. CF (2)(t) is the second order coefficient of the expansion). By
design, the expansion coefficients {CF (i)} do not depend on γ0. For a two-layer linear network, up to order γ2

0 , we find the
following:

Proposition E.1. Let f be the output of a neural network in Eq. 1 with identity activation function, a single hidden layer,
and α = 0 (i.e. without skip connections) trained for T = 2 tasks T1, T2 for a finite number of steps. Let t1 be the number
of training steps on T1 and t > t1. In the limit N → ∞, the catastrophic forgetting defined in Eq. 11 admits the expansion
of Eq. 53. The first three coefficients are:

CF (0)(t) = −
∫ t

t1

∆
(0)
T1

(s)K
(0)
T1T2

∆
(0)
T2

(s)ds

CF (1) = 0

CF (2)(t) = −
∫ t

t1

(
∆

(0)
T1

(s)K
(2)
T1T2

(s)∆
(0)
T2

(s)

+ ∆
(2)
T1

(s)K
(0)
T1T2

∆
(0)
T2

(s) + ∆
(0)
T1

(s)K
(0)
T1T2

∆
(2)
T2

(s)
)
ds,

where ∆(0),K(0),K(2),∆(2) are the perturbative coefficients for the residual ∆ and the NTK K. The full set of equations,
which includes the expansion of the kernels Φ and G, can be found in Appendix E.

Remarks. The zeroth order term corresponds to the catastrophic forgetting incurred in the NTK/lazy regime, where γ0 = 0.
This term was analyzed in (Doan et al., 2021; Bennani et al., 2020) for a slightly different definition of forgetting. Here, the
zero-order term of the NTK K0

T1T2
(which corresponds to the NTK in the lazy regime) is fixed to initialization, thus we

exclude the explicit time dependency. The first order term is zero, as found in Bordelon & Pehlevan (2022) for the features
and backward kernels. Compared to them, here we also compute leading order perturbations for ∆, as necessary for our
analysis. Also note that this characterization of forgetting is only valid for small values of γ0, where the higher order terms
O(γ3

0) can be ignored. Our theory characterizes the effect of increasing the degree of feature learning on CF, starting from
the lazy training setting – for which CF is already known. Perturbative methods have been applied in other contexts of deep
learning theory, particularly in computing finite size corrections to the infinite width limit (Roberts et al., 2022; Hanin &
Nica, 2019).

Our analysis offers a general blueprint for calculating the effect of small feature learning perturbations on CF. However, in
practice, the expansion coefficients can only be solved in closed form by considering specific learning instances.

E.1.1. DERIVATION

Following previous works by (Bordelon & Pehlevan, 2022), we inspected the expansion of the fundamental quantities
governing the evolution of residuals and the residuals themselves around γ0 = 0. This is done using a perturbation theory
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approach, thus expanding the fields and the residuals in power series of γ0, so that:

hµ1
(t) = χµ1

+

∞∑
n=1

γn
0 h

(n)
µ1

(t) (54)

zµ1(t) = ξ +

∞∑
n=1

γn
0 z

(n)
µ1

(t) (55)

∆µ1(t) =

∞∑
n=0

γn
0∆

(n)
µ1

(56)

In this study, we will stop the expansion at the second order term, due to practical reasons, but also because the parameter γ0
is typically in the range [0, 1] and the lazy-rich transition observed in experiments is typically of the order of 0.1. We begin
by considering the update equations for the fields and residuals, and plug on the left side of the equation the expansions in
γ0:

h(0)
µ1

+ γ0h
(1)
µ1

+ γ2
0h

(2)
µ1

+ . . . = χµ1 +

∫ t

t1

∑
α2

∆α2(s)g
1
α2
(s)Kx

µ1α2
ds (57)

z(0) + γ0z
(1) + γ2

0z
(2) + . . . = ξ + γ0

∫ t

t1

∑
α2

∆α2
ϕ(h1

α2
)ds (58)

∆(0)
µ1

(t) + γ0∆
(1)
µ1

(t) + γ2
0∆

(2)
µ1

(t) + . . . = Y +

∫ t

t1

Kµ1α2
(s)∆α2

(s)ds (59)

The next step is to identify on the right side of the equations above the corresponding terms in the left-hand side expansions,
which is long but trivial. We finally obtain:

h(0)
µ1

= χµ1 (60)

h(1)
µ1

=

∫ t1

0

∑
α2

∆(0)
α1

ξKx
α1µ1

ds+

∫ t

t1

∑
α2

∆(0)
α2

ξKx
α2µ1

ds (61)

h(2)
µ1

=

∫ t1

0

∑
α2

∆(0)
α2

z(1)α1
Kx

α1µ1
ds+

∫ t

t1

∑
α2

∆(0)
α2

z(1)α2
Kx

α2µ1
ds (62)

z(0) = ξ (63)

z(1) =

∫ t

0

∑
α2

∆(0)
α2

χµ1ds (64)

z(2) =

∫ t

0

∑
α2

∆(0)
α2

h(1)
α2

ds (65)

(66)
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while for the residuals we can identify differential equations involving the evolution of higher order terms in the γ0 expansion.
From the fields we can obtain the expansion of kernels Φµ1α2 , Gµ1α2 :

Φ(0)
µ1α2

= ⟨χµ1
χα2

⟩ (67)

Φ(1)
µ1α2

= 0 (68)

Φ(2)
µ1α2

=
∑
ν1β1

Kx
µ1ν1

Kx
α2β1

∫ t1

0

dt′∆ν1
(t′)

∫ t′

0

dt′′∆β1
(t′′) (69)

+
∑
ν2β2

Kx
µ1ν2

Kx
α2β2

∫ t

t1

dt′∆ν2
(t′)

∫ t′

t1

dt′′∆β2
(t′′) + sym (70)

+
∑
ν1β1

Kx
µ1ν1

Kx
α2β1

[∫ t

0

dt′∆ν1
(t′)

] [∫ s

0

ds′∆β1
(s′)

]
(71)

+
∑
ν2β2

Kx
µ1ν2

Kx
α2β2

[∫ t

0

dt′∆ν2
(t′)

] [∫ s

0

ds′∆β2
(s′)

]
(72)

G(0)
µ1α2

= ⟨ξξ⟩ (73)

G(2)
µ1α2

= 0 (74)

G(2)
µ1α2

=
∑
α1β1

Kx
α1β1

∫ t

0

dt′∆α1
(t′)

∫ t′

0

dt′′∆β1
(t′′) (75)

+
∑
α2β2

Kx
α2β2

∫ t

t1

dt′∆α2
(t′)

∫ t′

t1

dt′′∆β2
(t′′) (76)

+
∑
α1β1

Kx
µ1α1

[∫ t

0

dt′∆α1
(t′)

] [∫ s

0

ds′∆α1
(s′)

]
(77)

+
∑
α2β2

Kx
µ2α2

[∫ t

t1

dt′∆α2
(t′)

] [∫ s

t1

ds′∆α2
(s′)

]
(78)

(79)

and the residuals’ expansion reads as:

∂∆
(0)
µ1

∂t
= U(t1 − t)

∑
α1

Kx
µ1α1

∆(0)
α1

+ U(t− t1)
∑
α2

Kx
µ1α2

∆(0)
α2

(80)

∂∆
(1)
µ1

∂t
= U(t1 − t)

∑
α1

Kx
µ1α1

∆(1)
α1

+ U(t− t1)
∑
α2

Kx
µ1α2

∆(1)
α2

(81)

∂∆
(2)
µ1

∂t
= U(t1 − t)

(∑
α1

Kx
µ1α1

∆(2)
α1

+K(2)
µ1α1

∆(0)
α1

)
+ U(t− t1)

(∑
α2

Kx
µ1α2

∆(2)
α2

+K(2)
µ1α2

∆(0)
α2

)
(82)

(83)
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that with the initial condition ∆T1
(0) = ∆T2

(0) = Y we obtain ∆
(0)
T1

= ∆
(0)
T2

= Y and ∆
(i)
T1
(t) = ∆

(i)
T2
(t) = 0 ∀i ∈ [1,∞)

and for all times t. Giving these γ0 expansion coefficients, can compute the CF expansion through 11, obtaining:

dCF (t)

dt
= −

∑
µ1µ2

(∆(0)
µ1

+ γ2
0∆

(2)
µ1

+ ...)(K(0)
µ1µ2

+ γ2
0K

(2)
µ1µ2

)(∆(0)
µ2

+ γ2
0∆

(2)
µ2

+ ...) (84)

= −
∑
µ1µ2

∆(0)
µ1

K(0)
µ1µ2

∆(0)
µ2

− γ2
0

∑
µ1µ2

(
∆(0)

µ1
K(2)

µ1µ2
(s)∆(0)

µ2
(s) + ∆(2)

µ1
(s)K(0)

µ1µ2
∆(0)

µ2
(s) + ∆(0)

µ1
(s)K(0)

µ1µ2
∆(2)

µ2
(s)
)
+ . . .

(85)

=
dCF (0)

dt
+ γ2

0

dCF (2)

dt
+O(γ3

0) (86)

(87)

The zeroth order term represents the NTK limit term and can be solved quite easily in the non-stationary case, keeping in
mind the equations above for the residuals’ evolutions, that follow exponential decays.

E.2. CF Perturbation in γ0 with Non-Stationarity ρ

E.2.1. MODELING SIMPLE NON-STATIONARITIES

Calling the input dimension D and the number of data points per task P , we adopted the following setup:

• The inputs covariance matrices across same tasks are identity matrices, Kx
TiTi

= I, with i ∈ {1, . . . , T}. This is
equivalent to having orthonormal samples.

• The inputs covariance matrices across different tasks are proportional to identity matrices, so Kx
TiTj

= ρI, with
i ̸= j i, j ∈ {1, . . . , T} and ρ ∈ [0, 1]. In this way, we can smoothly control the similarity across tasks, with the
totally orthogonal setting of ρ = 0 and the same task setting of ρ = 1. Different tasks’ samples correspond to rotations
of other tasks’ samples with a certain angle of which cosine is ρ. To clarify, imagine the samples’ matrix XT1 ∈ RD×P

as: 

1 0 . . . 0
0 1 0 0
...

...
. . .

...
0 0 0 1
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0


(88)

with P columns and D rows, and the identity matrix that lies in the upper part of it. The second task matrix XT2
can be

constructed as: 

ρ 0 . . . 0
0 ρ 0 0
...

...
. . .

...
0 0 0 ρ

aP+1 bP+1 . . . zP+1

...
...

. . .
...

aD bD . . . zD


(89)

The last step is building an orthonormal base in the lower part of the matrix, which is always possible if we have
enough degrees of freedom for the coefficients {{ai}i=P+1,...,D, . . . , {zi}i=P+1,...,D}, i.e. D − P ≥ P . Thus the
condition is the one mentioned in the main text of D ≥ 2P . This corresponds to a rotation in a D-dimensional space of
P orthogonal vectors.
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The data modeling process above can thus be summarized as:

Kx
αiβj

=


ρ α = β, i ̸= j

1 α = β, i = j

0 otherwise

E.2.2. INFINITE-TIME LIMIT OF A LINEAR MLP

In order to simplify the previous expansions, and with the goal of reaching a simple and interpretable formulation of
forgetting w.r.t. the parameter γ0, we embark on further exploration of the CF perturbation in γ0 for infinitely long training
(t → ∞) of a linear 1-hidden-layer MLP. To reach a final formulation of forgetting, we need to formulate the expansions of
∆µ1 and ∆µ2 at the end of training the second task. To get these expressions we first need to derive the expression of the
same quantities at the end of training the first task (for an infinitely long time).

We recall that we model the non-stationarity level as Kx
T1T1

,Kx
T2T2

= I and the across tasks kernel Kx
T1T2

= ρI.

First, we write down the backward and forward fields following perturbation theory up to the second order:

hµ1
(t) = χµ1

+ γ0

∫ t

0

ds
∑
α1

Kx
µ1α1

zα1
(s)∆α1

(s)

= χµ1 + γ0

∫ t

0

ds
∑
α1

Kx
µ1α1

(ξ + γ0z
(1)(s) + γ0z

(2)(s))(∆(0)
α1

(s) + γ0∆
(0)
α1

(s) + γ2
0∆

(2)
α1

(s))

= χµ1
+ γ0

∫ t

0

ds
∑
α1

Kx
µ1α1

ξ∆(0)
α1

(s) + γ2
0

∫ t

0

ds
∑
α1

Kx
µ1α1

z(0)∆(0)
α1

(s)

= χµ1
+ γ0

∫ t

0

ds
∑
α1

Kx
µ1α1

ξ∆(0)
α1

(s) + γ2
0

∫ t

0

ds
∑
α1

Kx
µ1α1

∆(0)
α1

(s)

∫ s

0

ds′χ1∆
(0)
α1

(s′)

z(t) = ξ + γ0

∫ t

0

ds
∑
α1

hα1∆α1(s)

= ξ + γ0

∫ t

0

ds
∑
α1

(χα1
+ γ0h

(1)
α1

(s) + γ2
0h

(2)
α1

(s))(∆(0)
α1

(s) + γ0∆
(1)
α1

(s) + γ2
0∆

(2)
α1

(s))

= ξ + γ0

∫ t

0

ds
∑
α1

∆(0)
α1

(s)χα1 + γ2
0

∫ t

0

ds
∑
α1

h(1)
α1

(s)∆(0)
α1

(s)

= ξ + γ0

∫ t

0

ds
∑
α1

∆(0)
α1

(s)χα1
+ γ2

0

∫ t

0

ds
∑
α1

ξ∆(0)
α1

(s)

∫ s

0

ds′Kx
α1α1

∆(0)
α1

(s′)
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This allows us to rewrite equations as:

hµ1(t) = χµ1 +
∑
α1

γ0K
x
µ1α1

ξAα1(t) +
∑
α1

γ2
0K

x
µ1α1

χµ1Bα1(t)

= χµ1
+
∑
α1

γ0ξAα1
(t) +

∑
α1

γ2
0χµ1

Bα1
(t)

z(t) = ξ +
∑
α1

γ0χµ1
Aα1

(t) +
∑
α1

γ2
0ξK

x
µ1α1

Bα1
(t)

= ξ +
∑
α1

γ0χµ1Aα1(t) +
∑
α1

γ2
0ξBα1(t)

hµ2
(t) = χµ2

+
∑
α1

γ0K
x
µ1α2

ξAα1
(t) +

∑
α1

γ2
0K

x
µ1α2

χµ1
Bα1

(t)

= χµ2
+
∑
α1

γ0ξρAα1
(t) +

∑
α1

γ2
0ρχµ1

Bα1
(t)

where we have defined the function Aµ1(t) =
∫ t

0
ds∆

(0)
µ1 (s) and Bµ1(t) =

∫ t

0
∆

(0)
µ1 (s)

∫ s

0
ds′∆

(0)
µ1 (s

′). Now, having all we
need to compute kernels, these latter are obtained through expectations of the inner product between fields, leading to:

Hα2µ1
(t) = ⟨hα2

(t)hµ1
(t)⊤⟩

= ρ+ γ2
0ρ
(
Aα1

(t)2 + 2Bα1
(t)
)

Hα1µ1
(t) = ⟨hα1

(t)hµ1
(t)⊤⟩

= 1 + γ2
0

(
Aα1

(t)2 + 2Bα1
(t)
)

G(t) = ⟨z(t)z(t)⊤⟩
= 1 + γ2

0

(
Aα1

(t)2 + 2Bα1
(t)
)

composing the NTK expansion in γ0:

Kα2µ1(t) = Hα2µ1(t) +G(t)Kx
α2µ1

= ρ + γ2
0ρ
(
Aα1(t)

2 + 2Bα1(t)
)
+ ρ
(
1 + γ2

0

(
Aα1(t)

2 + 2Bα1(t)
))

= 2ρ︸︷︷︸
K

(0)
α2µ1

+γ2
0 2ρ

(
Aα1(t)

2 + 2Bα1(t)
)

︸ ︷︷ ︸
K

(2)
α2µ1

Now we can expand also the residuals in powers of γ0, resulting in a set of differential equations:

∂t∆µ1 = −
∑
α1

Kµ1α1∆α1

∂t(∆
(0)
µ1

+ γ0∆
(1)
µ1

+ γ2
0∆

(2)
µ1

) = −
∑
α1

(K(0)
µ1α1

+ γ2
0K

(2)
µ1α1

)(∆(0)
α1

+ γ0∆
(1)
α1

+ γ2
0∆

(2)
α1

)
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that can be rearranged as: 
∂t∆

(0)
µ1 = −∑α1

K
(0)
µ1α1∆

(0)
α1 , ∆

(0)
α1 (0) = yα1

∂t∆
(1)
µ1 = −∑α1

K0
µ1α1

∆
(1)
α1 , ∆

(1)
α1 (0) = 0

∂t∆
(2)
µ1 = −∑α1

(K
(0)
µ1α1∆

(2)
α1 +K

(2)
µ1α1∆

(0)
1 ), ∆2

α1
(0) = 0


∂t∆

(0)
µ2 = −∑α1

K
(0)
µ2α1∆

(0)
α1 , ∆

(0)
α1 (0) = yα1

∂t∆
(1)
µ2 = −∑α1

K
(0)
µ2α1∆

(1)
α1 , ∆

(1)
α1 (0) = 0

∂t∆
(2)
µ2 = −∑α1

(K
(0)
µ2α1∆

(2)
α1 +K

(2)
µ2α1∆

(0)
1 ), ∆

(2)
α1 (0) = 0

that allows us to conclude that the first order term of both tasks’ residuals is 0, namely ∆
(1)
α1 (t) = ∆

(1)
α2 (t) = 0. We can,

then, solve the zeroth order differential equation and obtain the lazy regime solutions:

∆(0)
µ1

(t) = ye−2t

∆(0)
µ2

(t) = y(1− ρ)(1− e−2t)

and from these equations we can obtain the analytical form of Aα1(t) and Bα1(t), that allows us to compute the second
order differential equation, obtaining:

∆(2)
µ1

(t) = y3
(
e−2t(t− 3

4
) + e−4t − 1

4
e−6t

)
∆(2)

µ2
(t) = ρy3

(
e−2t(

4t− 3

4
) + e−4t − 1

4
e−6t

)
This allows us to inspect the infinite-time limit of task 2 residuals ∆µ2

(t) = ∆
(0)
µ2 (t) + γ2

0∆
2)
µ2(t) + ... after training on task

1, that gives us the following results:

lim
t→∞

∆(0)
µ2

(t) = y(1− ρ)

lim
t→∞

∆(2)
µ2

(t) = 0

lim
t→∞

∆µ2(t) = y(1− ρ)

so that the final loss value expansion till the second order reads as:

lim
t→∞

1

2
(∆µ2

(t))2 =
y2

2
(1− ρ)2 (90)

From this equation, we can conclude that the infinite-time limit of task 2 loss after infinitely long training on task 1, is
independent of γ0, and this is validated empirically in Fig. 25.
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Figure 25. Last value of the loss on Task T2 after (long) training on Task T1, on a single hidden layer NN, linear activation, and Gaussian
data in order to tune the task similarity and obtain the theoretical setup. Black crosses represent the theoretical values at different levels
of similarity, following equation 90. At low ρ the theoretical constraints on the setup become weaker due to the intrinsic noise level of
Gaussian data.
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Now, to reach the expression for forgetting, we would need to express the residuals after training on the second task.
However, such a lengthy formulation is out of scope for this work, and is thus left for future development. Nevertheless,
what we can easily achieve from the formulation so far, is the infinite-time limit expression for the lazy limit (γ0 = 0, i.e.
the expression for CF (0)).

In order to do so, we write down the dynamics for residuals of both tasks during first task training, which read as:

∆µ1
= ye−2t

∆µ2 = y(1− ρ)(1− e−2t)

that will converge to the following limiting behaviors:

lim
t→∞

∆µ1
= 0

lim
t→∞

∆µ2
= y(1− ρ)

This represents the ”new initial conditions” for the second task differential equations of the lazy regime, which are:

∂t∆
(0)
µ1

= −
∑
α2

K(0)
µ1α2

∆(0)
α2

∂t∆
(0)
µ2

= −
∑
α2

K(0)
µ2α2

∆(0)
α2

,

Solving the above ODE we obtain the following equations for residuals, where we simplify the notation by writing time
t− t1 as t, considering the effective training time from the beginning of the second task training. This allows us to eliminate
the factors that vanish when plugging in the assumption of an infinite training time for the first task (t1 → ∞). Thus we
obtain:

∆(0)
µ1

= yρ(1− ρ)(e−2t − 1)

∆(0)
µ2

= y(1− ρ)e−2t

and computing the limiting values of both losses is now straightforward since Lαi
= 1

2∆
2
αi

:

lim
t→∞

L(0)
µ1

(t) =
y2

2
ρ2(1− ρ)2

lim
t→∞

L(0)
µ2

(t) = 0

Since CF in terms of losses is defined as CF = L(t)− L(t1), under these simplified conditions, limt→∞ L(t1) = 0, the
infinite-time behavior of Catastrophic Forgetting is captured by:

lim
t→∞

CF (0)(t) =
y2

2
ρ2(1− ρ)2

with a quadratic dependence on similarity level ρ, maximized at exactly ρ = 0.5, as well known for linear models (Goldfarb
et al., 2024).
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