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ABSTRACT

Markov Chain Monte Carlo (MCMC) methods sample from unnormalized prob-
ability distributions and offer guarantees of exact sampling. However, in the con-
tinuous case, unfavorable geometry of the target distribution can greatly limit the
efficiency of MCMC methods. Augmenting samplers with neural networks can
potentially improve their efficiency. Previous neural network based samplers were
trained with objectives that either did not explicitly encourage exploration, or used
a L2 jump objective which could only be applied to well structured distributions.
Thus it seems promising to instead maximize the proposal entropy for adapting
the proposal to distributions of any shape. To allow direct optimization of the pro-
posal entropy, we propose a neural network MCMC sampler that has a flexible and
tractable proposal distribution. Specifically, our network architecture utilizes the
gradient of the target distribution for generating proposals. Our model achieves
significantly higher efficiency than previous neural network MCMC techniques
in a variety of sampling tasks. Further, the sampler is applied on training of a
convergent energy-based model of natural images. The learned sampler achieves
significantly higher proposal entropy and sample quality compared to Langevin
dynamics sampler.

1 INTRODUCTION

Sampling from unnormalized distributions is important for many applications, including statistics,
simulations of physical systems, and machine learning. However, the inefficiency of state-of-the-art
sampling methods remains a main bottleneck for many challenging applications, such as protein
folding (Noé et al., 2019), energy-based model training (Nijkamp et al., 2019), etc.

A prominent strategy for sampling is the Markov Chain Monte Carlo (MCMC) method (Neal, 1993).
In MCMC, one chooses a transition kernel that leaves the target distribution invariant and constructs
a Markov Chain by applying the kernel repeatedly. The MCMC method relies only on the ergodic-
ity assumption, other than that it is general. If enough computation is performed, the Markov chain
generates correct samples from any target distribution, no matter how complex the distribution is.
However, the performance of MCMC depends critically on how well the chosen transition kernel ex-
plores the state space of the problem. If exploration is ineffective, samples will be highly correlated
and of very limited use for downstream applications. Despite some favorable theoretical argument
on the effectiveness of some MCMC algorithms, practical implementation of them may still suffer
from inefficiencies.

Take, for example, the Hamiltonian Monte Carlo (HMC)(Neal et al., 2011) algorithm, a type of
MCMC technique. HMC is regarded state-of-the-art for sampling in continuous spaces Radivojević
& Akhmatskaya (2020). It uses a set of auxiliary momentum variables and generates new samples
by simulating a Hamiltonian dynamics starting from the previous sample. This allows the sam-
ple to travel in state space much further than possible with other techniques, most of whom have
more pronounced random walk behavior. Theoretical analysis shows that the cost of traversing a
d-dimensional state space and generating an uncorrelated proposal is O(d

1
4 ) for HMC, which is

lower than O(d
1
3 ) for Langevine Monte Carlo, and O(d) for random walk. However, unfavorable

geometry of a target distribution may still cause HMC to be ineffective because the Hamiltonian
dynamics has to be simulated numerically. Numerical errors in the simulation are commonly cor-
rected by a Metropolis-Hastings (MH) accept-reject step for a proposed sample. If the the target

1



Under review as a conference paper at ICLR 2021

Sampler stay close to an identity 
function if training objective does 
not encourage exploration

Proposal learned by Entropy-based 
exploration speed objective covers 
target distribution well. 

A less desirable proposal distribu-
tion with higher L2 expected jump.

Figure 1: Illustration of learning to explore a state space. Larger yellow dot in top left is the ini-
tial point x, blue and black dots are accepted and rejected samples from the proposal distribution
q(x′|x). Solution obtained from optimizing entropy objective is close to the target distribution p(x).
However, we can easily construct a less desirable solution with higher L2 jump.

distribution has unfavorable geometric properties, for example, very different variances along dif-
ferent directions, the numerical integrator in HMC will have high error, leading to a very low accept
probability (Betancourt et al., 2017). For simple distributions this inefficiency can be mitigated by
an adaptive re-scaling matrix (Neal et al., 2011). For analytically tractable distributions, one can
also use the Riemann manifold HMC method (Girolami & Calderhead, 2011). But in most other
cases, the Hessian required in Riemann manifold HMC algorithm is often intractable or expensive
to compute, preventing its application.

Recently, approaches have been proposed that possess the exact sampling property of the MCMC
method, while potentially mitigating the described issues with unfavorable geometry. Such ap-
proaches include MCMC samplers augmented with neural networks (Song et al., 2017; Levy et al.,
2018; Gu et al., 2019), and neural transport MCMC techniques (Hoffman et al., 2019; Nijkamp
et al., 2020). A disadvantage of these recent techniques is that their objectives optimize the quality
of proposed samples, but do not explicitly encourage exploration speed of the sampler. One notable
exception is L2HMC (Levy et al., 2018), a method whose objective includes the size of the expected
L2 jump, thereby encouraging exploration. But the L2 expected jump objective is not very general,
it only works for simple distributions (see Figure 1, and below).

Another recent work (Titsias & Dellaportas, 2019) proposed a quite general objective to encourage
exploration speed by maximizing the entropy of the proposal distribution. In continuous space, the
entropy of a distribution is essentially the logarithm of its volume in state space. Thus, the entropy
objective naturally encourages the proposal distribution to “fill up” the target state space as well
as possible, independent of the geometry of the target distribution. The authors demonstrated the
effectiveness of this objective on samplers with simple linear adaptive parameters.

Here we employ the entropy-based objective in a neural network MCMC sampler for optimizing
exploration speed. To build the model, we design a flexible proposal distribution for which the
optimization of the entropy objective is tractable. Inspired by the HMC algorithm, the proposed
sampler uses special architecture that utilizes the gradient of the target distribution to aid sampling.
For a 2-D distribution the behavior of the proposed model is illustrated in Figure 1. The sampler,
trained with the entropy-based objective, generates samples that explore the target distribution quite
well, while it is simple to construct a proposal with higher L2 expected jump (right panel). Later we
show the newly proposed method achieves significant improvement in sampling efficiency compared
to previous techniques, we then apply the method to the training of an energy-based image model.

2 PRELIMINARY: MCMC METHODS, FROM VANILLA TO LEARNED

Consider the problem of sampling from a target distribution p(x) = e−U(x)/Z defined by the energy
function U(x) in a continuous state space. MCMC methods solve the problem by constructing and
running a Markov Chain, with transition probability p(x′|x), that leaves p(x) invariant. The most
general invariance condition is: p(x′) =

∫
p(x′|x)p(x)dx for all x′, which is typically enforced by

the simpler but more stringent condition ofdetailed balance: p(x)p(x′|x) = p(x′)p(x|x′).
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For a general distribution p(x) it is difficult to directly construct p(x′|x) that satisfies detailed
balance, but one can easily1 make any transition probability satisfy it by including an additional
Metropolis-Hastings accept-reject step (Hastings, 1970). When we sample x′ at step t from an
arbitrary proposal distribution q(x′|xt), the M-H accept-reject process accepts the new sample
xt+1 = x′ with probability A(x′, x) = min

(
1, p(x

′)q(xt|x′)
p(xt)q(x′|xt)

)
. If x′ is rejected, the new sample

is set to the previous state xt+1 = xt. This transition kernel p(x′|x) constructed from q(x′|x) and
A(x′, x) leaves any target distribution p(x) invariant.

The most popular MCMC techniques use the described M-H accept-reject step to enforce detailed
balance, for example, Random Walk Metropolis (RWM), Metropolis-Adjusted Langevin Algorithm
(MALA) and Hamiltonian Monte Carlo (HMC). For brevity, we will focus on MCMC methods
that use the M-H step, although some alternatives do exist (Sohl-Dickstein et al., 2014). All these
methods share the requirement that the accept probability in the M-H step must be tractable to
compute. For two of the mentioned MCMC methods this is indeed the case. In the Gaussian
random-walk sampler, the proposal distribution is a Gaussian around the current position: x′ =
x+ ε∗N (0, I), which has the form x′ = x+z. Thus, forward and reverse proposal probabilities are
given by q(x′|x) = pN [(x′ − x)/ε] and q(x|x′) = pN [−(x′ − x)/ε], where pN denote the density
function of Gaussian. The probability ratio q(xt|x′)

q(x′|xt) used in the M-H step is therefore equal to 1. In
MALA the proposal distribution is a single step of Langevin dynamics with step size ε: x′ = x+ z

with z = − ε
2

2 ∂xU(x) + εN(0, I). We then have q(x′|x) = pN
[
(x′ − x)/ε+ ε

2∂xU(x)
]

and
q(x|x′) = pN

[
−(x′ − x)/ε+ ε

2∂x′U(x′)
]
. Both, the forward and reverse proposal probability are

tractable since they are the density of Gaussians evaluated at a known location.

Next we show how the HMC sampler can also be formulated as a M-H sampler. Basic HMC in-
volves a Gaussian auxiliary variable v of the same dimension as x, which plays the role of the
momentum in Physics. HMC sampling consists of two steps: 1. The momentum is sampled from
a normal distribution N (v; 0, I). 2. The Hamiltonian dynamics is simulated for a certain duration
with initial condition x and v, typically by running a few steps of the leapfrog integrator. Then, a
M-H accept-reject process with accept probability A(x′, v′, x, v) = min

(
1, p(x

′,v′)q(x,v|x′,v′)
p(x,v)q(x′,v′|x,v)

)
=

min
(
1, p(x

′)pN (v′)
p(x)pN (v)

)
is performed to correct for error in the integration process. We have

q(x,v|x′,v′)
q(x′,v′|x,v) = 1 since the Hamiltonian transition is volume-preserving over (x, v). Both HMC
steps leave the joint distribution p(x, v) invariant, therefore HMC samples from the correct dis-
tribution p(x) after marginalizing over v. To express basic HMC in the standard M-H scheme, step
1 and 2 can be aggregated into a single proposal distribution on x with the proposal probability:
q(x′|x) = pN (v) and q(x|x′) = pN (v

′). Note, although the probability q(x′|x) can be calculated
after the Hamiltonian dynamics is simulated, this term is intractable for general x and x′. The rea-
son is that it is difficult to solve for the v at x to make the transition to x′ using the Hamiltonian
dynamics. This issue is absent in RWM and MALA, where q(x′|x) is tractable for any x and x′.

Previous work on augmenting MCMC sampler with neural networks also relied on the M-H proce-
dure to ensure asymptotic correctness of the sampling process, for example (Song et al., 2017) and
(Levy et al., 2018). They used HMC style accept-reject probabilities that lead to intractable q(x′|x).
Here, we strive for a flexible sampler for which q(x′|x) is tractable. This maintains the tractable
M-H step while allowing us to train this sampler to explores the state space by directly optimizing
the proposal entropy objective, which is a function of q(x′|x).

3 GRADIENT BASED SAMPLER WITH TRACTABLE PROPOSAL PROBABILITY

We “abuse” the power of neural networks to design a sampler that is flexible and has tractable
proposal probability q(x′|x) between any two points. However, without some extra help of the
gradient of the target distribution, the sampler would be modeling a conditional distribution q(x′|x)
with brute force, which might be possible but requires a large model capacity. Thus, our method
uses the gradient of the target distribution. We use an architecture similar to L2HMC (Levy et al.,
2018), which itself was inspired by the HMC algorithm and RealNVP Dinh et al. (2016). To quantify

1Up to ergodic and aperiodic assumptions
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the benefit of using the target distribution gradient, we provide ablation studies of our model in the
Appendix A.1.

3.1 MODEL SETUP AND HOW TO USE GRADIENT INFORMATION

We restrict our sampler to the simple general form x′ = x + z. As discussed in Section 2, the
sampler will have tractable proposal probability if one can calculate the probability of any given
z. To fulfill this requirement, we model vector z by a flow model2: z = f(z0;x, U), with inverse
z0 = f−1(z;x, U). Here z0 is sampled from a fixed Gaussian base distribution. The flow model f
is a flexible and trainable invertible function of z conditioned on x, U , and it has tractable Jacobian
determinant w.r.t. z. The flow model f can be viewed as a change of variable from the Gaussian
base distribution z0 to z. The proposed sampler then has tractable forward and reverse proposal
probability: q(x′|x) = pZ(x

′ − x;x), q(x|x′) = pZ(x− x′;x′), where pZ(z;x) = pN (z0)| ∂z∂z0 |
−1

is the density defined by the flow model f . Note, this sampler is ergodic and aperiodic, since
q(x′|x) 6= 0 for and x and x′, which follows from the invertibility of f . Thus, combined with the
M-H step, the sampling process will be asymptotically correct. The sampling process first consists
of drawing from pN (z0) and then evaluating z = f(z0;x, U) and q(x′|x). Next, the reverse z′0 =
f−1(−z;x + z, U) is evaluated at x′ = x + z to obtain the reverse proposal probability q(x|x′).
Finally, the sample is accepted with the standard M-H rule.

For the flow model f , we use an architecture similar to a non-volume preserving coupling-based flow
RealNVP (Dinh et al., 2016). In the coupling flow, half of the components of the state vector are kept
fixed and are used to update the other half through an affine transform parameterized by a neural
network. The gradient of the target distribution enters our model in those affine transformations.
To motivate the particular form we choose, we take a closer look at the HMC algorithm. Basic
HMC starts with drawing a random initial momentum v0, followed by several steps of leapfrog
integration. Let xn be the momentum variable after n updates by vn and position. In a leapfrog step,
the integrator first updates v with a half step of the gradient: vn′ = vn−1− ε

2∂xU(xn−1), followed by
a full step of x update: xn = xn−1+εvn′, and another half step of v update: vn = vn′− ε

2∂xU(xn).
After several steps, the overall update of x can be written as: xn = x0 +

∑n
i=0 v

i′, which has the
form x′ = x + z with z =

∑n
i v

i′ = −nv0 − nε
2

[
∂xU(x0)

]
− ε

[∑n
i=1(n− i)∂xU(xi)

]
. The

equation for generating z through affine transformations, describes how the gradient of the target
distribution, evaluated at some intermediate point of x, should be included.

3.2 MODEL FORMULATION

To formulate our model (Equation 1, 2), we use a mask m and its complement m to update half of
z’s dimensions at a time. As discussed above, we include the gradient term with a negative sign in
the shift term. We also use an element-wise scaling on the gradient term as in (Levy et al., 2018).
However, two issues remain. First, as required by the coupling-based architecture, the gradient term
can only depend on the masked version of vector z. Second, it is unclear where the gradient should
be evaluated to sample effectively. As discussed above, the sampler should evaluate the gradient at
points far away from x, similar as in HMC, to travel long distances in the state space. To handle
these issues, we use another neural network R which depends takes x and the masked z as input,
and evaluate gradient at x + R. During training, R learns where the gradient should be evaluated
based on the masked z.

We denote the input to network R by ζnm = (x,m � zn) and the input to the other networks by
ξnm = (x,m� zn, ∂U(x+R(ζnm))), where � is the Hadamard product (element wise multiply).
Further, we denote the neural network outputs that parameterize the affine transform by S(ξnm),
Q(ξnm) and T (ξnm). For notational clarity we omit dependencies of the mask m and all neural
network terms on the step number n.

Additionally, we introduce a scale parameter ε, which modifies the x update to x′ = x + ε ∗ z. We
also define ε′ = ε/(2N), with N the total number of z update steps. This parameterization makes
our sampler equivalent to the MALA algorithm with step size ε at initialization, where the neural

2For more details on flow models, see (Kobyzev et al., 2019; Papamakarios et al., 2019).
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network outputs are zero. The resulting update rule is:

zn′= m� zn−1+m�
(
zn−1� exp[S(ξn−1

m )]− ε′{∂U [x+R(ζn−1
m )]� exp[Q(ξn−1

m )] + T (ξn−1
m )}

)
(1)

zn = m� zn′ +m�
(
zn′� exp[S(ξn′m )]− ε′{∂U

[
x+R(ζn′m )

]
� exp[Q(ξn′m )] + T (ξn′m )}

)
(2)

The log determinant of N steps of transformation is:

log

∣∣∣∣∂zN∂z0
∣∣∣∣ = ε 1 ∗ 1+

N∑
n=1

1 ∗
[
m� S(ξn−1m

)
] + 1 ∗

[
m� S(ξn

′

m )
]

(3)

where 1 is the vector of 1-entries with the same dimension as z.

3.3 OPTIMIZING THE PROPOSAL ENTROPY OBJECTIVE

The proposal entropy can be expressed as:

H (X ′|X = x)=−
∫
dx′q (x′|x) log [q (x′|x)]=−

∫
dz0pN

(
z0
) [

log
(
pN
(
z0
))
−log

∣∣∣∣∂zN∂z0
∣∣∣∣] (4)

For each x, we aim to optimize S(x) = exp [βH(X ′|X = x)] × a(x), where a(x) =∫
A(x′, x)q(x′|x)dx′ is the average accept probability of the proposal distribution at x. Following

(Titsias & Dellaportas, 2019), we transform this objective into log space and use Jensen’s inequality
to obtain a lower bound:

logS(x) = log

∫
A(x′, x)q(x′|x)dx′ + βH(X ′|X = x)

≥
∫

log [A(x′x)]q(x′|x)dx′ + βH(X ′|X = x) = L(x)

The distribution q(x′|x) is reparameterizable, therefore the expectation over q(x′|x) can be ex-
pressed as expectation over pN (z0). Expanding the lower bound L(x) and ignoring the entropy of
the base distribution pN (z0), we arrive at:

L(x) =

∫
dz0pN (z

0)

[
min

(
0, log

p(x′)

p(x)
+ log

q(x|x′)
q(x′|x)

)
− β log

∣∣∣∣∂zN∂z0
∣∣∣∣] (5)

During training we maximize L(x) with x sampled from the target distribution p(x) if it is available,
or with x obtained from the bootstrapping process (Song et al., 2017) which maintains a buffer of
samples and updates them continuously. Typically, only one sample of z0 is used for each x.

A curious feature of our model is that during training one has to back-propagate over the gradient
of the target distribution multiple times to optimize R. In (Titsias & Dellaportas, 2019) the authors
avoid multiple back-propagation by stopping the derivative calculation at the density gradient term.
In our experiment we do not use this trick and perform full back-propagation without encountering
any issue. We found that stopping the derivative computation instead harms performance.

The entropy-based exploration objective contains a parameter β that controls the balance between
acceptance rate and proposal entropy. As in (Titsias & Dellaportas, 2019), We use a simple adaptive
scheme to adjust β to maintain a constant accept rate close to a target accept rate. The target accept
rate is chosen empirically. As expected, we find that the target accept rate needs to be lower for
more complicated distributions.

4 RELATED WORKS: NEURAL NETWORK MCMC SAMPLERS INSPIRED BY
HMC

Here we discuss other neural network MCMC samplers and how they differ from our method. Meth-
ods we compare ours to in the Results are marked with bold font.

A-NICE-MC (Song et al., 2017), which was generalized in (Spanbauer et al., 2020), used the same
accept probability as HMC, but replaced the Hamiltonian dynamics by a flexible volume-preserving
flow (Dinh et al., 2014). A-NICE-MC matches samples from q(x′|x) directly to samples from p(x),
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using adversarial loss. This permits training the sampler on empirical distributions, i.e., in cases
where only samples but not the density function is available. The problem with this method is that
samples from the resulting sampler can be highly correlated because the adversarial objective only
optimizes for the quality of the proposed sample. If the sampler produces a high quality sample
x, the learning objective does not encourage the next sample x′ to be substantially different from
x. The authors used a pairwise discriminator that empirically mitigated this issue but the benefit in
exploration speed is limited.

Another related sampling approach is Neural Transport MCMC (Marzouk et al., 2016; Hoffman
et al., 2019; Nijkamp et al., 2020) , which fits a distribution defined by a flow model pg(x) to the
target distribution using KL[pg(x)||p(x)]. Sampling is then performed with HMC in the latent
space of the flow model. Due to the invariance of the KL-divergence with respect to a change of
variables, the “transported distribution” in z space pg−1(z) will be fitted to resemble the Gaussian
prior pN (z). Samples of x can then be obtained by passing z through the transport map. Neural
transport MCMC improves sampling efficiency compared to sampling in the original space because
a distribution closer to a Gaussian is easier to sample. However, the sampling cost is not a monotonic
function of the KL-divergence used to optimize the transport map. (Langmore et al., 2019).

Another line of work connects the MCMC method to Variational Inference (Salimans et al., 2015;
Zhang et al., 2018). Simply put, they improve the variational approximation by running several steps
of MCMC transitions initialized from a variational distribution. The MCMC steps are optimized
by minimizing the KL-divergence between the resulting distribution and the true posterior. This
amounts to optimizing a “burn in” process in MCMC. In our setup however, the exact sampling
is guaranteed by the M-H process, thus the KL divergence loss is no longer applicable. Like in
variational inference, the Normalizing flow Langevin MC (NFLMC) (Gu et al., 2019) also used a
KL divergence loss. Strictly speaking, this model is a normalizing flow but not a MCMC method.
We compare our method to it, because the model architecture, like ours, uses the gradient of the
target distribution.

Another related technique is (Neklyudov et al., 2018), where the authors trained an independent M-
H sampler by minimizing KL [p(x)q(x′|x)||p(x′)q(x|x′)]. This objective can be viewed as a lower
bound of the M-H accept rate. However, as discussed in (Titsias & Dellaportas, 2019), this type of
objective is not applicable for samplers that condition on the previous state.

All the mentioned techniques have in common that their objective does not encourage exploration
speed. In contrast, L2HMC (Levy et al., 2018; Thin et al., 2020) does encourage fast exploration of
the state space by employing a variant of the expected square jump objective (Pasarica & Gelman,
2010): L(x) =

∫
dx′q(x′|x)A(x′, x)||x′ − x||2. This objective provides a learning signal even

when x is drawn from the exact target distribution p(x). L2HMC generalized the Hamiltonian
dynamics with a flexible non-volume-preserving transformation (Dinh et al., 2016). The architecture
of L2HMC is very flexible and uses gradient of target distribution. However, the L2 expected jump
objective in L2HMC improves exploration speed only in well-structured distributions (see Figure
1).

The shortcomings of the discussed methods led us to consider the use of an entropy-based objec-
tive. However, L2HMC does not have tractable proposal probability p(x′|x), preventing the direct
application of the entropy-based objective. In principle, the proposal entropy objective could be
optimized for the L2HMC sampler with variational inference (Poole et al., 2019; Song & Ermon,
2019), but our preliminary experiments using this idea were not promising. Therefore, we designed
our sampler that possess tractable proposal probability and investigated tractable optimization of the
proposal entropy objective.

5 EXPERIMENTAL RESULT

5.1 SYNTHETIC DATASET AND BAYESIAN LOGISTIC REGRESSION

First we demonstrate that our technique accelerates sampling of the funnel distribution, a particularly
pathological example from (Neal, 2003). We then compare our model with A-NICE-MC (Song
et al., 2017), L2HMC (Levy et al., 2018), Normalizing flow Langevin MC (NFLMC) (Gu et al.,
2019) as well as NeuTra (Hoffman et al., 2019) on several other synthetic datasets and a Bayesian
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a) b)

mean: 0.16  std:  2.52  ESS: 0.0079/MH mean: -0.076  std:  2.86  ESS: 0.256/MH

Figure 2: Comparison with HMC on the 20d
Funnel-3 distribution. a) Chain and samples of
x0 (from neck to base direction) for HMC. b)
Same as a) but for our learned sampler. Note,
samples in a) look significantly more correlated
than those in b), although they are plotted over a
longer time scale.

Dataset (measure) L2HMC Ours

50d ICG (ESS/MH) 0.783 0.86
2d SCG (ESS/MH) 0.497 0.89
50d ICG (ESS/grad) 7.83× 10−2 2.15× 10−1

2d SCG (ESS/grad) 2.32× 10−2 2.2× 10−1

Dataset (measure) Neutra Ours

Funnel-1 x0 (ESS/grad) 8.9× 10−3 3.7× 10−2

Funnel-1 x1···99(ESS/grad) 4.9× 10−2 7.2× 10−2

Dataset (measure) gradMALA A-NICE-MC NFLMC Ours

German (ESS/5k) 702.05 926.49 1176.8 3150
Australian (ESS/5k) 871.5 1015.75 1586.4 2950

Heart (ESS/5k) 973.2 1251.16 2000 3600

Table 1: Performance Comparisons. SCG:
strongly correlated Gaussian, ICG: Ill-
conditioned Gaussian. German, Autralian,
Heart: Datasets for Bayesian Logistic regres-
sion. ESS: Effective Sample Size (a correlation
measure)

logistic regression task. We additionally compare to gradMALA (Titsias & Dellaportas, 2019) to
show the benefit of using neural network over linear adaptive sampler. For all experiments, we report
Effective Sample Size (Hoffman & Gelman, 2014) per M-H step (ESS/MH) and/or ESS per target
density gradient evaluation (ESS/grad). All results are given in minimum ESS over all dimensions
unless otherwise noted.

Here is a brief description of the datasets used in our experiments:

Ill Conditioned Gaussian: 50d ill-conditioned Gaussian task described in (Levy et al., 2018), a
Gaussian with diagonal covariance matrix with log-linearly distributed entries between [10−2, 102].

Strongly correlated Gaussian: 2d Gaussian with variance [102, 10−1] rotated by π
4 , same as in

(Levy et al., 2018).

Funnel distribution: The density function is pfunnel(x) = N (x0; 0, σ
2)N (x1:n; 0, I exp (−2x0)).

This is a challenging distribution because the spatial scale of x1:n varies drastically depending on
the value of x0. This geometry causes problems to adaptation algorithms that rely on a spatial scale.
An important detail is that earlier work, such as (Betancourt, 2013) used σ = 3, while some recent
works used σ = 1. We run experiments with σ = 1 for comparison with recent techniques and also
demonstrate our method on a 20 dimensional funnel distribution with σ = 3. We denote the two
variants by Funnel-1 versus Funnel-3.

Bayesian Logistic regression: We follow the setup in (Hoffman & Gelman, 2014) and used Ger-
man, Heart and Australian datasets from the UCI data registry.

In Figure 2, we compare our method with HMC on the 20d Funnel-3 distribution. As discussed in
Betancourt (2013), the stepsize of HMC needs to be manually tuned down to allow traveling into
the neck of the funnel, otherwise the sampling process will be biased. We thus tune the stepsize of
HMC to be the largest that still allows traveling into the neck. Each HMC proposal is set to use the
same number of gradient steps as each proposal of the trained sampler. As can be seen, the samples
proposed by our method travel significantly further than the HMC samples. Our method achieves
0.256 (ESS/MH), compared to 0.0079 (ESS/MH) with HMC.

As a demonstration we provide a visualization of the resulting chain of samples in Figure 2 and the
learned proposal distributions in Appendix A.2. The energy value for the neck of the funnel can
be very different than for the base, which makes it hard for methods such as HMC to mix between
them (Betancourt, 2013). In contrast, our model can produce very asymmetric q(x′|x) and q(x|x′),
making mixing between different energy levels possible.

Performances on other synthetic datasets and the Bayesian Logistic Regression are shown in Table
1. In all these datasets our method outperformed previous neural network based MCMC approaches
by significant margin. Our model also outperform gradMALA (Titsias & Dellaportas, 2019), which
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a) b)

c)

Figure 3: Training of convergent EBM with pixel space sampling. a) Samples from replay buffer
after training. b) Proposal entropy of trained sampler vs MALA early during training, learned sam-
pler has significantly higher entropy, and achieves better FID at convergence. c) Samples from 100k
sampling steps by the learned sampler, initialized at samples from replay buffer. Large transitions
like the one in the first row is rare, here its selected for display.

use the same objective but only use linear adaptive parameters. The experiments used various pa-
rameter settings, as detailed in Appendix A.2. Results of other models are adopted or converted
from numbers reported in the original papers. The Appendix provides further experimental results,
ablation studies, visualizations and details on the implementation of the model.

5.2 TRAINING A CONVERGENT DEEP ENERGY-BASED MODEL

A very challenging application of the MCMC method is training a deep energy-based model of
images (Xie et al., 2016; Nijkamp et al., 2019; Du & Mordatch, 2019). We demonstrate stable
training of a convergent EBM, and that the learned sampler achieves better proposal entropy early
during training, as well as better sample quality at convergence, compared to the MALA algorithm.
An added benefit is that, like in adaptive MALA, tuning the Langevin dynamics step size is no
longer needed, instead, one only need to specify a target accept rate. This contrast with unadjusted
Langevin dynamics used in previous works, where step size need to be carefully tuned(Nijkamp
et al., 2019).

Similar to (Nijkamp et al., 2019), we use the Oxford flowers dataset of 8189 28∗28 colored images.
We dequantize the images to 5bits by adding uniform noise and use logit transform (Dinh et al.,
2016). Sampling is performed in the logit space with variant 2 of the sampler that does not have
R network (See Appendix A.1). During training, we use Persistent Contrastive Divergence (PCD)
(Tieleman, 2008) with replay buffer size of 10000. We alternate between training the sampler and
updating samples for the EBM training. Each EBM training step uses 40 sampling steps, with a
target accept rate of 0.6.

Figure 3 depicts samples from the trained EBM replay buffer, as well as samples from a 100k
step sampling process –for demonstrating stability of the attractor basins. We also show that the
proposal entropy of the learned sampler is higher early during training than that of an adaptive
MALA algorithm with the same accept rate target. Later during training, the proposal entropy is
not significant different (See Figure A.3 a)). This is likely because the explorable volume around
samples becomes too small for the learned sampler to make a difference. Additionally, we show
the model trained with the learned sampler achieves better sample quality by calculating the FID
(Heusel et al., 2017) between the replay buffer for a late checkpoint and ground truth data. Model
trained with learned sampler achieves 38.1 FID, while model trained with MALA achieves 43.0 FID
(lower is better). We provide a plot that tracks the FID during training in Appendix Figure A.3.
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6 DISCUSSION

In this paper we propose a gradient based neural network MCMC sampler with tractable proposal
probability. The training is based on the entropy-based exploration speed objective. Thanks to
an objective that explicitly encouraging exploration, our method achieves better performance than
previous neural network based MCMC samplers on a variety of tasks. Compared to the manifold
HMC (Betancourt, 2013) methods, our model provides a more scalable alternative for mitigating
unfavorable geometry in the target distribution.

There are many potential applications of our method beyond what was demonstrated in this paper.
For example, training latent-variable models (Hoffman, 2017), latent sampling in GANs (Che et al.,
2020), and others applications outside machine learning, such as molecular dynamics simulation
(Noé et al., 2019). In the future, architectural improvement would also be interesting, use of auto-
regressive architecture or different masking strategy may improve the expressiveness of our model.
It will also be interesting to combine our technique with neural transport MCMC.
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