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ABSTRACT

Recent work indicates that Deep Clustering (DC) methods are a viable option for
unsupervised representations learning of visual features. By combining represen-
tation learning and clustering, traditional approaches have been shown to build
latent representations that capture essential features of the data while preserving
topological characteristics. In this sense, models based on Self-Organizing Maps
models with relevance learning (SOMRL) were considered as they perform well
in clustering besides being able to create a map that learns the relevance of each
input dimension for each cluster, preserving the original relations and topology of
the data. We hypothesize that this type of model can produce a more intuitive and
disentangled representation in the latent space by promoting smoother transitions
between cluster points over time. This work proposes a representation learning
framework that combines a new gradient-based SOMRL model and autoencoders.
The SOMRL learns the relevance weights for each input dimension of each clus-
ter. It creates a tendency to separate the information into subspaces. To achieve
this, we designed a new loss function term that weighs these learned relevances
and provides an estimated unsupervised error to be used in combination with a
reconstruction loss. The model is evaluated in terms of clustering performance
and quality of the learned representations and then compared with start-of-the-art
models, showing competitive results.

1 INTRODUCTION

Previous research has shown the potential that Deep Neural Networks (DNN) have in building
representations with good generalization power. For instance, Nanni et al. (2017) showed that
representations built by Convolutional Neural Networks (CNN) are better than the state-of-art
handcrafted features used for object classification. Medeiros et al. (2019), also showed that the
representations learned by GoogleLeNet (Szegedy et al., 2015) can be used for the task of clustering
objects in images for visual object recognition, achieving about 75-90% of agreement with human
assigned labels in an unseen dataset. So, these learned representations have proved to be adequate for
unsupervised tasks, especially when both tasks are optimized jointly somehow (Zhang et al., 2017;
Nutakki et al., 2019).

Analogously, humans have the extraordinary ability to learn many different concepts and apply such
knowledge in a variety of different tasks in a lifelong setting, as it is possible to see in infants that learn
how to interact with objects in their environment from correlated visual input, with minimal external
supervision or with no clear specification, sequentially, and many times, without any forgetting
behavior (Rao et al., 2019).

Clustering is one of the most natural ways of summarizing and organizing data. In particular, the
main objective of clustering is to separate data into groups of similar data points. Although there
exist multiple successful approaches for clustering data with high-level features, clustering high-
dimensional unstructured data such as images, text, and sound is a hard task. Techniques based on
Deep Learning (DL) have been very successful in yielding good high-level representations for such
type of data (Bengio et al., 2013; Aljalbout et al., 2018).

Some of the most successful approaches for producing representations from unlabeled data are
Autoencoders (AE), Variational Autoencoders (VAE), and Generative Adversarial Networks (GAN).
Moreover, these techniques can be applied in different ways, such as with self-labeling (Asano et al.,
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2019), Deep Clustering (DC) (Nutakki et al., 2019), or contrastive learning (Caron et al., 2020). This
work focuses on DC, differing from conventional approaches in terms of the algorithmic structure,
network architecture, loss function, and optimization method used for training.

Current DC approaches treat representation learning and clustering as a joint task and focus on
learning representations that are clustering-friendly, i.e., that preserve the prior knowledge of cluster
structure. It is typically performed by optimizing a loss function (Lc), which can be seen as a
clustering loss combined with a regular neural network loss (Ln), such as the reconstruction loss of
an AE (Ji et al., 2017), or the evidence lower bound (ELBO) loss of a VAE (Jiang et al., 2016).

In this work, we particularly focus on a family of clustering algorithms called Self-Organizing Map
(SOM) (Kohonen, 1990). SOM-based models have proven to be suitable for clustering high-level
features, such as in Braga & Bassani (2018). In this sense, our main contributions are:

• A novel gradient-based Self-Organizing Map with Relevance Learning (SOMRL) and
time-varying structure.

• A novel framework that combines Self-Organizing Map with Relevance Learning (SOMRL)
with AEs to learn, shape, and cluster good latent representations.

• A thorough empirical assessment of our propositions, in both quantitative and qualitative
terms on benchmark image datasets.

• Results that showed to be comparable in terms of clustering performance with its competitors,
and brought novel forms of interpretation of the latent space structure, concerning its
relations and transitions.

2 RELATED WORK

The k-means is one of the most popular clustering algorithms. Despite being proposed over 50 years
ago, it is still widely used in a diverse range of applications (Jain, 2010; Yang et al., 2017; Nutakki
et al., 2019). In particular, it includes the task of clustering latent space representations of models
based on AE, VAE (Aljalbout et al., 2018), fast spectral clustering with AE (Nutakki et al., 2019),
and many more.

However, over the last years, models based on SOM have shown to be superior in clustering than
k-means (Bassani & Araujo, 2015; Medeiros et al., 2019), while also providing an interpretable
topological structure of the data that k-means can not offer. SOM (Kohonen, 1990) is a biologically
inspired unsupervised learning model that maps data from a higher-dimensional input space to a
lower-dimensional output space while preserving the similarities and the topological relations found
between points in the input space. It creates nodes (cluster prototypes) that can be seen as abstractions
of the data and a simplified way of exhibiting information.

Aljalbout et al. (2018) have shown that combining clustering algorithms working in the latent space
of AE can obtain a good clustering performance. Moreover, Aljalbout et al. (2018) and Nutakki
et al. (2019) provided evidence that the most successful methods for clustering with deep neural
networks follow the same principle of using the representations learned by a DNN as input for a
specific clustering method. They also propose a taxonomy, in which our work is mostly related to the
so-called joint training. We combine an AE with a gradient-based SOM with relevance learning.

To the best of our knowledge, only two models combine AE or generative models with SOM to
learn interpretable and shape latent space representations. First, the Self Organizing Map Variational
Autoencoder (SOM-VAE) (Fortuin et al., 2018) combines SOM, VAE, and probabilistic model.
SOM-VAE is closely related to Vector Quantised-Variational Autoencoder (VQ-VAE) (Oord et al.,
2017), which can be seen as a special case of its framework, and differ in certain implementation
aspects, as for instance in parts of the loss function that are set to zero. Second, Deep Embedded
Self-Organizing Map (DE-SOM) (Forest et al., 2019) combines an AE with traditional SOM from
Kohonen (1990) with a Gaussian neighborhood function with exponential decay.

Moreover, it is important to highlight that both methods use a classical bidimensional SOM grid with
fixed topology. Fixed topology maps are very useful for data visualization. However, in complex input
spaces, a 2D grid can not represent the topology adequately, especially if clusters live in different
subspaces or share the same characteristics in few input dimensions. This issue has been addressed
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by SOM-based models that present a time-varying structure (Araujo & Rego, 2013). These models
learn a topology that best shapes the input data during the training process by trying to determine an
optimal arrangement at the end. This approach relies on an incremental learning process, in which
not only the number of clusters is found, but also the connections between cluster prototypes must be
learned.

The time-varying model proposed in this work is based on Bassani & Araujo (2015) and is presented
in the next section. Afterwards, we explain how SOMRL can combined with AEs to achieve a good
clustering performance as well as to extract useful information about the learned representation.

3 SELF-ORGANIZING MAP WITH RELEVANCE LEARNING (SOMRL)

SOMRL is a SOM based on Local Adaptive Receptive Field Dimension Selective Self-organizing
Map (LARFDSSOM) (Bassani & Araujo, 2015). The model introduces new strategies to improve
clustering quality and to allow easy integration as a layer in DNN architectures. It works as a
gradient-based model that deals with batches of samples and can be used to build more intuitive
latent representations and discover patterns in the latent space as well as neighborhood relations
between them. To achieve this, SOMRL introduces: 1) a new node update rule to prevent the map
from collapsing to trivial solutions; 2) a node removal scheme (also suitable for online learning);
3) a dynamic way of discovering neighborhood relations; and 4) an implementation focused on
parallelism, that avoids sequential operations that are usually performed by SOM-based methods.
Moreover, the model inherits from its predecessor a time-varying structure, a local receptive field
adapted for each node as a function of its local variance, and the ability to learn different relevances
for each input dimension.

3.1 NODES STRUCTURE

Basically, as in LARFDSSOM, each node j in the map assumes the role of a cluster prototype and
is associated with three m-dimensional vectors, where m is the number of input dimensions. Center
Vector: cj = {cji, i = 1, · · ·,m} represents the prototype of each cluster j.

Relevance Vector: ωj = {ωji, i = 1, · · ·,m}, in which each component is a weighting factor within
[0, 1], that represents the relevance that the node j applies to the i-th input dimension.

Distance Vector: δj = {δji, i = 1, · · ·,m} stores a moving average of the observed absolute distance
between the input patterns and the center vector. It is used only to update the relevance vector.

3.2 COMPETITION

In SOMRL the nodes in the map compete to cluster the input patterns. Whenever a batch of samples is
presented to the map, the activation, ac(Dω(x, cj),ωj), of each node j to each sample x is computed
as a radial basis function of a weighted distance Dω(x, cj) with the receptive field adjusted as a
function of ωj (equation 1). The winner node for each sample is the most active, where Dω(x, cj) is
a learned distance metric, weighted by the relevance vector ωj equation 2.

ac(Dω(x, cj),ωj) =

m∑
i=1

ωji

m∑
i=1

ωji +Dω(x, cj) + ε
. (1)

Dω(x, cj) =

m∑
i=1

ωji(xi − wji)
2. (2)

SOMRL finds the winner node and the activation intensities of each node in the map. These
intensities also play an important role in the definition and update of the neighbors.

3.3 NODE INSERTION AND UPDATE

In SOMRL, the samples (assumed to be in [0, 1] interval) are processed in batches of arbitrary sizes.
After the competition, the samples of the batch associated with each winner node are grouped, and
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the average position of the group is computed. This average is then used as an input pattern x to
update the map as follows:

First. For samples that the most active node presents an activation below a certain threshold parameter
at, the model creates a new node j with its center cj initialized as x, the relevance vectorωj initialized
with ones, and the distance vector δj with zeros.

Second. Winner nodes and neighbors with activation above at are updated towards x, as per
equation 3.

cj(n+ 1) = cj(n) + lr[(x− cj(n))− ρ repel(c(n)− cj(n))], (3)

where lr is the learning rate which is maximum for the winner and smaller for the neighbors (see
Section 3.5), c is the geometric center (average) of the nodes in the map, and ρ ∈ [0, 1] is an update
rate that controls how the node will be repelled from c, according to a repel function equation 4. This
term prevents the map from collapsing to a trivial solution without limiting too much the exploration
capabilities since, after a certain distance, this factor is zero. Note that equation 4 behaves like an
inverted ReLu, and max is applied to each dimension.

repel(d) = max (1− 2 ∗ d, 0). (4)

Third. In order to update the relevance vector δj , first, the average distance of each node to the input
patterns it clusters is estimated. This is done by computing a moving average of the observed distance
between the input pattern and the current center vector:

δj(n+ 1) = (1− β ∗ lr)δj(n) + (β ∗ lr)|x− cj(n+ 1)|, (5)

where lr is the learning rate used in equation 3, β ∈]0, 1] controls the rate of change of the moving
average, and the operator | · | denotes the absolute value applied to the components of the vector.

Fourth. Each component ωji of the relevance vector is calculated by an inverse logistic function of
the distances δji, as per equation 6.

ωji =


1

1 + exp

(
δ̂jimean−δ̂ji

s(δ̂jimax−δ̂jimin)

) if δ̂jimin 6= δ̂jimax

1 otherwise,
(6)

where s > 0 controls the slope of the logistic function. The relevances go to zero for dimensions with
distances close to the maximum δjimax, whereas in the other dimensions, they are set within [0, 1].

3.4 NODE REMOVAL

In SOMRL, a concept of life is introduced to each node. They begin at 100% and lose their vitality
by a parameter factor ld ∈ [0%, 100%] every time they do not win a competition, i.e., present an
activation that is not the highest. Therefore, whenever a node achieves a life value of 0, it is removed
from the map. Alternatively, the life of a node is restored to 100% when it wins a competition.

3.5 NEIGHBORHOOD

The neighborhood of SOMRL is not fixed but defined dynamically at each update step as a function
of the nodes activation rank, from the highest to the lowest. Therefore the neighbors of the winner
node are also updated towards the input pattern, but with smaller learning rates since it decays
exponentially as a function of the position of the neighbor in the rank, as h(r) = exp(− r

γ ), where r
is the rank, and γ a parameter that controls the decay rate.

Before updating the nodes, the final learning rate is computed by lr ∗ h(r). Notice that the most
active node will be fully updated according to lr since h(r) is 1 for rank 0 and decays as the rank
increases and activation decreases. Therefore, as the neighborhood of SOMRL is not related to the
nodes themselves but to the input patterns presented to the model, a sample-driven approach.

3.6 CONNECTING THE PIECES: SOMRL ALGORITHM

The SOMRL training procedure is described in Algorithm 1. Note that the variable n is used to
control the current number of nodes in the map, and nmax defines its limit. It is used solely for
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implementation purposes, once we have to define a fixed shape for the matrices and vectors to avoid
concatenation operations, that leads to a loss of performance. The operations to control the active
nodes is performed by using logical masks. We refer to it in Appendix B.

At the end of the training, we compute the activations among the remaining nodes to define connection
and relations between them, and, thus, the final topology of the map. The nodes that are mutually
activated, above at threshold, are connected.

Algorithm 1: SOMRL Forward Pass
Input :Batch of Input Patterns x
Require :Initialize parameters at, lr, ρ, ld, β, s, nmax

1 Function SOMRL(x):
2 if map is empty then
3 Initialize the map with one node with cj initialized at x, ωj ← 1, δj ← 0, lifej ← 1; Set the

number of nodes n← 1;
4 else
5 Compute the activations A of all nodes for each xi ∈ x equation 1;
6 Find the winners si with the highest activation for each xi ∈ x;
7 forall si ∈ s | Ai,si < at and n < nmax do
8 Create a new node j and set: cj ← xsi , ωj ← 1, δj ← 0, lifej ← 1;
9 Set n← n+ 1;

10 forall si ∈ s | Ai,si ≥ at do
11 Compute the learning rates lrn of the neighbors by ranking Ai (Section 3.5);
12 Update the winner nodes and its neighbors towards xsi with lr and lrn, respectively:
13 - Update the distance vectors δsi and δn equation 5;
14 - Update the relevance vectors ωsi and ωn equation 6;
15 - Update the center vectors csi and cn equation 3;
16 Decrement the life of all nodes j 6∈ s to lifej ← lifej − ld;

17 Remove all nodes j with lifej < 0; Decrement n according to number of removed nodes;

4 DEEP CLUSTERING SOMRL (DC-SOMRL): COMPLETE FRAMEWORK

Our proposed framework1, combines AE with our new gradient-based SOM with relevance learning
and time-varying structure, SOMRL. A schematic overview of this arrangement is presented in
figure 1. It not otherwise noted, the AE is architecture is based on Xie et al. (2016).
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Figure 1: Combined Architecture Proposed

Lets denote the encoder and decoder parameters as θe and θd, respectively. An input x ∈ Rd is
mapped to a latent space encoding ze ∈ Rm. Bassani & Araujo (2015) have shown that it is easier to
adjust the parameters of SOM when the input dimensions are scaled to the [0, 1] interval. To maintain
this behavior, ze is computed by ze = sigmoid(fθe(x)). The encoding is then fed as input to a
forward pass of SOMRL and a decoder pass of the AE architecture. At this point, a reconstruction x̂
of the input can be computed as x̂ = gθd(ze). This component is used to calculate the reconstruction

1Complete source code provided as supplementary material. It will be made public after acceptance.
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loss Lr(x, x̂) = ‖x− x̂‖2. It is well-know that AE can minimize the reconstruction error ensuring
that hidden units capture the most relevant aspects of the data (Murphy, 2012).

In SOMRL, a competition establhishes the winner node as the most active for the latent representation
in ze, when it is fed as input, as per equation 1. Then, the winner and its neighbors move towards the
input by updating the center vectors, and the new relevance vectors are estimated. Notice that when
there is no node sufficiently activated, according to a threshold parameter, SOMRL will create and
insert a new node into the map at the position of the input pattern. At the end of this process, the
winner prototype for ze, cz is used to compute the clustering loss, defined as Lc(ze) = Dω(ze, cz),
that is the distance weighted by the relevances found by SOMRL equation 2. It is expected that Lc
creates a tendency to approximate encodings to prototypes. Due to the latent space constraints (all
dimensions between [0, 1]), and the fast convergence characteristics of SOMRL, even with a small
number of samples, Lc will frequently converge to small values in few epochs.

To achieve the main challenge of optimizing our complete framework, but more precisely the
representations (prototypes) learned by our SOMRL, the AE is learned jointly with the SOMRL. To
do so, we add the Lc, weighted by an α, to the Lr in order to add the gradient information about ze
with respect to the SOMRL state. The complete loss function to be minimized is given as follows:

L(x, x̂, ze) = Lr(x, x̂) + αLc(ze). (7)

5 EXPERIMENTS

We conducted experiments on MNIST handwritten digits (LeCun et al., 1998) and Fashion-MNIST
article images (Xiao et al., 2017). For all experiments, the same architecture was used, and the results
were evaluated from both quantitative and qualitative perspectives. For implementation details and
further information, we refer to Appendix B. We present an extensive methodology to illustrate how
we achieved our results and to allow a better picture of our final remarks.

5.1 ADJUSTING THE HYPERPARAMETERS OF THE MODEL

We begin by analyzing how our method behaves and how each of its hyperparameters impacts
the outcome. To do so, we conducted an experiment varying the values within a defined range
and sampling them according to a Latin Hypercube Sampling (LHS) (Helton et al., 2005). It is a
statistical method for generating a random sample of values from a multidimensional distribution. In
this sense, we gathered 30 different parameter settings, i.e., the range of each parameter was divided
into 30 intervals of equal probability, resulting in a random selection of a single value from each
interval. LHS ensures that each component is represented in a fully stratified manner, no matter the
importance that it might have. The ranges used for our method can be found in Appendix A.1.

The results of the experiment in terms of Purity and Normalized Mutual Information (NMI) were
used to define the best parameter set over these 30 runs for both datasets (we refer to Appendix A.1
for detailed information). Then, it is fixed for the rest of the experiments. We quantitatively compare
our model against k-means (Lloyd, 1982), SOM-VAE (Fortuin et al., 2018), and DE-SOM (Forest
et al., 2019). Similar approaches were conducted to the other models to control their parameters.

5.2 CLUSTERING PERFORMANCE

After adjusting the parameters of the model, we run a comparison with the other models on the
standard MNIST and Fashion-MNIST test sets. The results are shown in Table 1. We found that
our method achieves competitive results concerning its competitors. It is important to mention
that we do not aim at outperforming other models in terms of metric value, instead build robust
representations with meaningful properties, which will be further explored qualitatively. We highlight
that all compared models used the same number of clusters. However, due to the time-varying feature
of our SOMRL, we can not specify any number of clusters. Note that the parameter nmax is only
used for implementation purposes, as argued in Appendix B.

As discussed in Appendix C, NMI is a more balanced measure for clustering performance than purity
due to the penalty term for the number of clusters. Purity may lead to a scenario in which results

2The authors did not provide standard deviation and the public source code was not possible to be ran
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Table 1: Clustering performance of SOMRL and some baselines on MNIST and Fashion-MNIST in
terms of Purity and NMI. The values are the means of 10 runs ± the respective standard deviations.
Each method used 64 embeddings/clusters, except SOMRL, due to its time-varying structure.

Method MNIST Fashion-MNIST

Purity NMI Purity NMI

k-means 0.791 ± 0.005 0.537 ± 0.001 0.703 ± 0.002 0.492 ± 0.001
SOM-VAE 0.868 ± 0.003 0.595 ± 0.002 0.739 ± 0.002 0.520 ± 0.002
DE-SOM2 0.939 0.657 0.752 0.538
SOMRL 0.884 ± 0.014 0.521 ± 0.007 0.679 ± 0.009 0.404 ± 0.005

that present a high number of clusters are rewarded in detriment of more meaningful representations.
Moreover, other models are originally trained over 10,000 epochs. However, DC-SOMRL is
consistently able to achieve the reported results in less than 30 epochs (Appendix A.2).

5.3 LATENT REPRESENTATIONS

In order to assess whether our model can learn interpretable representations, we analyse the relevances
learned by the model. Note that SOMRL is able to find samples that may belong to more than one
cluster. It is a consequence of taking into account different subsets of the input dimensions, according
to their relevances for what the prototype is trying to represent. A good interpretable behavior
happens when the prototype does not represent the raw class itself, but specific characteristics. So,
their composition may form the respective class. We expect that in these situations, the relevances of
the important features may become high, whereas the irrelevant ones become low. In this case, we
hypothesize that changes to these irrelevant features will not degrade the main characteristics of the
prototype when it is decoded. Analogously, when an important feature is changed, we expect that the
prototype loses its properties, and a mischaracterization occurs.

5.3.1 LEARNED RELEVANCES

In an effort towards understanding the relevances learned by the model, we analyse the distribution of
relevance values found among all prototypes. figure 2 presents this information. Note that in this
particular case, the model considered 35% of the dimensions as highly important (figure 2(a), values
close to 1.0). Fashion-MNIST (figure 2(b)) presented 30% of highly important dimensions, and 30%
of moderately important dimensions.

(a) MNIST (b) Fashion-MNIST

Figure 2: Histograms of relevances (relevance values on the x-axes) for MNIST and Fashion-MNIST.

5.3.2 EFFECT OF THE RELEVANCES

In order to demonstrate the importance of the relevant and irrelevant dimension to the reconstructions,
we start from an example prototype (figure 3(a)) and disturb the dimensions with low relevance
values, such as <0.3. In this case, we expect that changes in these dimensions of the latent space will
not cause a strong impact on the reconstructed images. figure 3(b) shows that the prototype retains
its main characteristics. If we expand the perturbation to more relevant dimensions, such as <0.4
(figure 3(c)), we start seeing an impact on the reconstruction. If we push this threshold to dimensions
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with relevance <0.5 (figure 3(d)), the effect is evident. It degrades, as we expected to see, though it
still is recognizable as the digit 4. In opposition, if we disturb the most relevant dimensions for this
particular node (>0.6) the degradation takes place in a sense the node loses its original characteristic
(figure 3(e)). So, the relevance values found by the model are indeed meaningful. Intuitively, the
contrary statement also showed to be true. Low values of relevance means, in fact, unimportant
dimensions for the prototype at hand.

(a) Prototype (b) < 0.3 (c) < 0.4 (d) < 0.5 (e) > 0.6

Figure 3: The decoded prototype on the left (a). Perturbation in dimensions with relevances values
less then 0.3 (b), 0.4 (c), and 0.5(d) is inserted. For small values, the prototype does not lose its
characteristics. However, when the relevance value increases, the prototype starts to degrade. When
only relevant dimensions are changed (e), the node loses its original characteristic.

If we further explore the highest relevances, it is possible to highlight some interesting behaviors.
figure 4 shows the pictures generated by decoding the prototype after varying a specific relevant
dimension on the latent space. In this particular case, the learned factors relate to an important
characteristic that differentiate the numbers 0 and 8, which is the constraint in the middle. If we
decrease, it becomes a zero, if we increase, it becomes an eight, in between it is similar to a 3. The
proximity between these categories can also be observed in figure 5(a). So, the model succeeds in
representing specific characteristics of images on its relevant dimensions.

Figure 4: Latent factors learned on MNIST: Transition from 0 to 3, and to 8 obtained by changing
only relevant features in the latent space.

We also discussed in Appendix A.3 some compositionality characteristics of our model. Some
clusters combine their characteristics to define certain classes. We fully explored those behaviors of
the union of clusters to assess what they form when posed together. We also analyzed the intersection
between clusters. For instance, what is the intersection between an zero and an eight? Our model was
able to find these relations in a very comprehensive manner.

5.4 NEIGHBORHOOD AND TOPOLOGICAL RELATIONS

(a) MNIST Test Data (b) Fashion-MNIST Test Data

Figure 5: t-SNE for MNIST and Fashion-MNIST Test Data alongside decoded SOMRL Prototypes.
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To illustrate the topological structure in the latent space, we present the t-SNE projection (Maaten &
Hinton, 2008) of the encoded samples alongside the prototypes found by the model (figure 5). t-SNE
was chosen due to the fact that our map does not present a 2D disposal grid, as the related competitors.
The edges between prototypes represent topological neighborhood found, i.e. connected prototypes
are considered somehow similar by the model. Notice that the model was able to create at least
one cluster for each class, connecting more densely prototypes of a same class, and the connections
between nodes in regions of different classes usually make sense in a semantic perspective (e.g., the
number 9 shares similarities with 4 and 7, number 7 with 1, relations between Sandal and Sneaker,
Pullover and Coat, and so on). These interesting results allows to observe characteristics of prototypes
found and features shared by prototypes of different categories.

6 CONCLUSION

In this article, we present a model combining AE with a customized SOM (SOMRL). Our complete
framework shows a novel way of learning a time-varying structure map with relevance learning and
a dynamic topology that is more suitable for the problem of clustering features in evolving latent
spaces. Although in the quantitative analysis (Purity and NMI) it did not present the best results, it is
yet competitive with previous models and provides additional interesting characteristics.

The prototypes identified represent variations frequently observed in the input data. For instance,
the different ways of writing a digit. It can also bring insights about similarities between different
categories or feature representations and which dimensions of the latent space capture then in relation
to the prototypical representations found. Also, the learned neighborhood leads to smoother regions
of transition between categories in the latent space.

An analysis of the impact of the loss produced by the model to the obtained latent space is important
for future work as well as finding better ways to guide the latent space. We believe, though, that this
was an important step in this direction. Therefore, we consider the proposed framework as a useful
tool for promoting the formation of more meaningful representations as well as analyzing them.
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APPENDIX

A ADDITIONAL EXPERIMENTS

For all the experiments, the models were trained exclusively on the training set of MNIST and
Fashion-MNIST, and evaluated on the test set of each one.

Moreover, the MNIST dataset was normalized according to the mean and standard deviation of the
training set. After this pre-processing step, samples become centered in zero with a standard deviation
of one. For Fashion-MNIST, we employed the common normalization of using 0.5 for mean and
standard deviation.

A.1 PARAMETER ANALYSIS

First, it is important to start discussing the meaning of each parameter of the model. They are given
as follows:

Batch Size, Epochs, and SOM learning rate (lr), by intuition, do not need further explanation. For
fair comparisons with state of the art competitors, we fixed the batch size to 256. Moreover, the
number of epochs was defined at first hand to range from 10 to 1,000. Nonetheless, an extensive
empirical analysis showed that 30 epochs are more than enough for the model to stabilizes. For
instance, our competitors used 10.000 epochs on their experimental setup. We refer to Appendix A.2
for further discussion.

Clustering Loss weighting factor (α). It is the weighting factor that penalizes the clustering loss. It
is an empirical value that is used to control the influence (or contribution) of the clustering loss to the
final loss.

SOMRL input dimensions. It is the number of dimensions given as input to the model. It defines
the dimensionality of the latent space after the input is encoded.

Activation threshold (at). Activation threshold. During training, if the activation of the winner node
is below this level, a new node is inserted to define a new cluster.

Repel rate (ρ). Controls the negative push rate w.r.t. the geometric center of the map. It is employed
when updating the center vectors equation 3 and avoids the model from collapsing to a trivial solution.
Moreover, this term facilitates the nodes to be safely distant from each other.

Life decay (ld). It is the life decreasing rate that is applied when a node does not win a competition.
Whenever the life of a node reaches zero, the node is removed from the map.

Relevance rate (β). Rate of change of the moving average used to compute the relevance vector.
Higher values make the nodes to adapt faster to the relevant dimensions. Too high values provoke
instability. Lower values produce a smoother adaptation.

Neighborhood decay (γ). This parameter controls how strong will be the update of neighbors
towards the input pattern. The winners are fully updated according to the lr, but the neighbors are
updated with a lower factor, according to their activation. Distant nodes have a low activation and are
barely influenced.

Relevance smoothness (s). It represents the slope of the logistic function when calculating relevances.
Values close to zero, produce a sharp slope. As the value increases, the slope becomes less prominent
and all relevances tend to be similar. Values higher than 1.0 result in similar relevances values around
0.5 for all dimensions.

Max number of nodes (nmax). This value should be higher than the number of expected clusters in
the dataset to allow exploration of the search space. It also may be used to prevents trivial solutions,
suchlike one cluster for each data point, and to control memory usage. It is important to mention
that this parameter, when other parameters are set correctly it should not influence significantly the
outcome due to the time-varying topology of the model that inserts and removes nodes when it is
necessary during the self-organizing process.

Sampling Parameters. Table 2 shows the range of parameters used for studies. The values were
sampled according to a LHS (Helton et al., 2005), as mentioned in Section 5.1. For initial ranges, the
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model was executed 30 times 30 different parameter settings. For adjusted ranges, the model was run
10 times with 10 different sets of parameters. Finally, for the final round of experiments, we fixed the
best values varying the seed over 10 runs to extract the mean and standard deviation.

Table 2: Parameter values starting from initial ranges, then an intermediate step of Adjusted Ranges,
and finally, the best values for each dataset.

Parameters Initial Ranges Adjusted Ranges Best Values

min max min max MNIST Fashion-MNIST

Batch Size 16 512 256 - 256 256
Epochs 10 1,000 30 - 30 30

Lc weighting factor (α) 0.01 1.00 0.01 0.15 0.1145 0.024
SOM input dimensions 10 50 20 30 22 22

Activation threshold (at) 0.95 0.999 0.99 0.999 0.99425 0.99885
SOM learning rate (lr) 0.001 0.3 0.05 0.15 0.1426 0.1383

Repel rate (ρ) 0.0 1.0 0.5 1.0 1.0 0.575
Life decay (ld) 0.01 0.6 0.1 0.5 0.36 0.46

Relevance rate (β) 0.01 0.5 01 0.15 0.067 0.0195
Neighborhood decay (γ) 0.17 7.0 2.0 6.0 1.382 4.916

Relevance smoothness (s) 0.01 0.7 0.4 0.7 0.426 0.658
Max number of nodes (nmax) 20 300 50 250 200 200

After the initial runs, a sensitivity analysis was performed, as in Iman & Helton (1988) and Saltelli
et al. (2000). They both show that given the probabilistic basis of LHS, it can provide direct estimates
for the Cumulative Distribution Function (CDF) and variance of models. It is done by pairing the
obtained results measure and the parameter values sampled from the LHS distribution used to obtain
each of the results. Also, it is possible to use this in combination with a linear regression model to get
intuitions about the trends of the obtained results as a function of the parameter value used. Such an
analysis can be done for each parameter in order to draw a better understanding of their impact and
influence on the models.

The sensitivity analysis showed that only at presented a high impact on the results. Remark that at is
an exponential parameter, in which even smaller changes outside the ranges can cause instability. It
depends on the dataset. All the other parameters presented marginal impacts on the outcome. figure 6
shows its behavior for both FashionMNIST and MNIST in terms of NMI. figure 6(a) and figure 6(c)
shows the intervals of at between 0.95 and 0.999, and between 0.98 and 0.999, respectively. It shows
a great trend to higher values. So, if we adjust the values to the proper ranges, i.e., from 0.99 to
0.99, the performance stabilizes. Note that for the second run, after the adjustments, DC-SOMRL
was executed only 10 times with 10 different parameters. Finally, it is possible to select the best
parameters as fixed values, as given by Table 2, to perform further comparisons with other models.
This behavior is exactly the same for the Purity metric. The model usually ends with a number of
nodes that vary from 60 up to 80.

A.2 FAST CONVERGENCE

DC-SOMRL showed to be capable of achieving good results very rapidly. In each DC-SOMRL
forward step, we analyzed the Purity and NMI metrics over validation data. It is composed of 10
samples of each class on the test set. The purpose is to analyze the performance of the model without
any compromise nor significant add of time to the execution of the models. It is not used during the
training. It also allows us to see convergence trends at the same time that gives some insights about
how we could adjust some parameters and provides a better picture of what is happening during the
learning process. In figure 7, the visualization of the mentioned metrics per each step of the model
is illustrated. Notice that good metrics values are reached at an early stage of training and do not
degrade afterwards.
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(a) at [0.98, 0.999]: Fashion-MNIST (b) at [0.99, 0.999]: Fashion-MNIST

(c) at [0.95, 0.999]: MNIST (d) at [0.99, 0.999]: MNIST

Figure 6: Scatter plots of the NMI obtained with SOMRL as a function of its parameter at for the
datasets on MNIST and Fashion-MNIST varying the range from [0.95, 0.999] to [0.99, 0.999], and
from [0.98, 0.999] to [0.99, 0.999], respectively

A.3 UNDESTANDING PROTOTYPES

To illustrate some interpretations that DC-SOMRL has learned w.r.t. input classes, we implemented
a function for the intersection of clusters. First, the prototypes in the latent space are decoded. Then,
a confusion matrix is computed to help us at identifying clusters that may represent the same classes.
After that, some of them are manually selected for the study. For instance, figure 8 and figure 9, show
the intersection of clusters representing the number 0 and the number 4, respectively. It is possible
to observe that our prototypes identify the number 0 basically by the style of rounded curves at the
top and bottom of the number. So, the model created abstractions of different styles of writing a 0 in
different prototypes. In figure 9, a similar behavior is shown. However, distinguished interpretations
of a number 4 are given by the style of the middle line. The importance of such an experiment
implies on the fact we can visualize what the model is learning and why sometimes it creates more
clusters than expected to represent the correspondent manifold of a class in the latent space. To
address this process of sub clustering or to analyze the power cluster, we could utilize a k-means as a
post-processing step to cluster similar prototypes, or add a pruning phase after the self-organization
step.

A.4 PROTOTYPES AND CLOSEST SAMPLES

We consider that a qualitative analysis of the similarities between the prototypes created during
training phase of DC-SOMRL, and the samples from the test dataset (never seen before) could also
instigate good interpretations. This experiment demonstrates the capacity of the model to create
prototypes close to the mean of the samples distribution. To this extent, the euclidean distances
between decoded prototypes and input patterns were computed and the 10 closest samples for
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(a) MNIST: Purity x DC-SOMRL (b) MNIST NMI x DC-SOMRL Forward step

(c) Fashion-MNIST: Purity x DC-SOMRL (d) Fashion-MNIST: NMI x DC-SOMRL

Figure 7: Plots of the Purity and the NMI obtained with the DC-SOMRL over each batch forward
step for the validation datasets on MNIST and Fashion-MNIST.

(a) Prototype 3 (b) Prototype 49 (c) Prototype 9 (d) Intersection

Figure 8: Reconstruction of prototypes representing the number 0 and their intersection.

(a) Prototype 36 (b) Prototype 44 (c) Prototype 51 (d) Intersection

Figure 9: Prototypes representing the number 4 and their intersection.

each prototype were selected. figure 10 illustrates the outcome. On the left column, four different
prototypes, two representations of the number 2, and two representations of the number 2 and two
representing the clusters of number 7. On the right, the ten closest samples of each corresponding
prototype.

Now, it is possible to expand this interpretation and see in figure 10 two different ways of writing the
numbers 2 and 7, respectively.
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Figure 10: On the left, a column with the prototypes. On the right, the top ten samples closest to the
prototypes.

B IMPLEMENTATION DETAILS

In addition to the considerations from Section 3.6 and Section A, the model was implemented in
PyTorch3 (Paszke et al., 2019), and the AE used in DC-SOMRL was optimized using Adam (Kingma
& Ba, 2014).

The implementation was focused entirely on optimization. Traditional implementations of SOM
performs sequential steps over loops. We avoided these situations by using logical masks of tensors
and matrix operations. The masks are also used to control the active nodes in the map and its related
parameters (PyTorch Tensors — vector and matrices) that we must operate at each forward pass. The
code became a bit harder to interpret but improved significantly in terms of performance. So, we
could take compelling advantages of Graphics Processing Units (GPU) in a completely new fashion
for a SOM model. We also extensively used Weights & Biases (Biewald, 2020) when executing our
experiments.

For external competitors, we used the hyperparameters and code from their respective publication,
when applicable. For those in which the code was not possible to be executed due to technical issues,
we referred to the results presented in the respective papers.

C PERFORMANCE MEASURES

Given the nature of our task, we need an evaluation measurement that reflects the real quality of
our model. For this extent, we decided to use two extensively used metrics in the literature: Purity
and NMI. It is important to emphasize that if any of these two metrics are used in isolation, it will
lack a real evaluation of performance. For instance, Purity has a very simple interpretation. It has
some shortcomings and may mislead a realistic evaluation. A high-value of Purity is not meaningful
information. If the models converge to a trivial solution by finding one cluster for each input pattern,
it will yield 1.0 of Purity, which is, indeed, not very informative. That is why we must use another
measure that applies a penalty to the number of clusters. The NMI is also chosen for this reason.

NMI captures information about class labels even if it is spread in more than one cluster. Its formula
is given by equation 8.

NMI(Y,C) =
I(Y,C)

1
2

[
H(Y ) +H(C)

] (8)

where Y is the class labels, C is the cluster labels, H(·) is the entropy, and I(Y, C) is the mutual
information between Y and C.

3The source code is available in the supplementary materials.
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For mathematical clarification, Purity is a homogeneity metric expressed by equation 9.

Purity =
1

N

k∑
i=1

maxj
∣∣ci ∩ tj∣∣ , (9)

where N is the number of samples, ci ∈ C is the cluster, and tj is the assigned cluster label.

17


	Introduction
	Related Work
	model-som
	Nodes Structure
	Competition
	Node Insertion and Update
	Node Removal
	Neighborhood
	Connecting the Pieces: SOMRL Algorithm

	model: Complete Framework
	Experiments
	Adjusting the Hyperparameters of the Model
	Clustering Performance
	Latent Representations
	Learned Relevances
	Effect of the Relevances

	Neighborhood and Topological Relations

	Conclusion
	Additional Experiments
	Parameter Analysis
	Fast Convergence
	Undestanding Prototypes
	Prototypes and Closest Samples

	Implementation Details
	Performance Measures

