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ABSTRACT

Few-shot classification with vision–language models remains challenging, par-
ticularly when relying on multi-modal encoders such as CLIP that are restricted
to paired image–text data. We introduce FSF, a framework that leverages arbi-
trary uni-modal encoders—including vision or text models that were pretrained on
broad or domain-specific corpora—and aligns them for cross-modal classification.
FSF first applies a closed-form orthogonal Procrustes map to align image and text
embeddings while preserving their geometry, and then trains a lightweight flow-
matching prior that regularizes adaptation in the few-shot regime. At inference,
images are classified by cosine similarity in the aligned feature space between
query embeddings and mapped class prototypes. Experiments on standard bench-
marks, ImageNet variants, and VinDr-CXR, a large-scale chest X-ray benchmark,
show that FSF is able to leverage stronger or specialized encoders, achieving com-
petitive or superior accuracy compared to recent adaptation methods.

1 INTRODUCTION

Few-shot image classification (FSC) has become an important benchmark for evaluating how well
models can adapt to new tasks with minimal supervision. Unlike standard classification, FSC
stresses the ability to generalize from only one or a handful of labeled examples per class, often
in settings that are out-of-distribution with respect to the pretraining data.

The availability of large multi-modal (jointly trained) vision–language encoders, most prominently
CLIP (Radford et al., 2021), has reshaped this landscape: images and class names are embedded
into a shared representation space, so classification reduces to comparing image features against
text-prompt prototypes. This simple mechanism has proven so effective that CLIP-based methods
have largely displaced traditional vision encoders as the backbone for FSC.

On top of multi-modal embedding spaces such as CLIP, a wide range of adapters has been pro-
posed to push FSC further. Prompt-tuning methods (Zhou et al., 2022) optimize class descriptions,
cache-based calibration (Zhang et al., 2022) reuses support examples, and feature- or logit-level
adapters (Gao et al., 2021; Zhang et al., 2023) introduce small modules to adjust the embedding
space. These methods achieve strong results because they exploit the geometry already embedded
by joint pretraining. Yet this reliance is limiting: performance depends on the quality of the orig-
inal multi-modal training and the use of uni-modal encoders that may provide stronger or more
domain-specialized representations is prevented.

A different line of work instead focuses on leveraging uni-modal (separately trained) encoders,
connecting independent vision and text models by learning projectors between their latent spaces.
This demonstrates that frozen uni-modal encoders can be bridged in a post-training manner, but
existing methods (Zhai et al., 2022; Li et al., 2023a; Alayrac et al., 2022) are aimed at general
multi-modal tasks—zero-shot recognition, VQA, or cross-modal retrieval and generation—rather
than FSC. They typically require large paired datasets and heavy adapter training, making them
poorly suited to the few-shot setting.

Another approach is to align vision and language embeddings with linear maps. Some methods
learn these maps from data (Mikolov et al., 2013; Frome et al., 2013), while others fit them di-
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rectly (Merullo et al., 2023). This line of work shows that direct and meaningful cross-modal cor-
respondence can emerge from such mappings. This simplicity makes linear alignment appealing,
particularly since in some cases it can be fitted without training. However, purely-linear mappings
cannot capture the non-linear dependencies between modalities that become important for robust
adaptation (Sung et al., 2022; Chen et al., 2023; Li et al., 2023c).

More recently, continuous-time generative models such as diffusion (Ho et al., 2020) and rectified
flow (Liu et al., 2023; Lipman et al., 2023) have shown how non-linear dependencies can be modeled
through smooth transformations. While much of this work has focused on pixel-level generation,
subsequent advances (Wu et al., 2024; Zhang et al., 2025b;c) demonstrated that such flows can also
operate in vision–language latent spaces. This suggests a way to capture richer cross-modal structure
beyond what linear mappings allow, motivating their adaptation to FSC where supervision is scarce.

Our approach builds on two complementary components. The first is an Orthogonal Procrustes lin-
ear alignment (Schönemann, 1966), which serves as a preprocessing step that harmonizes indepen-
dently trained embeddings, potentially of different feature dimensionalities, into a shared coordinate
system. The second is a lightweight flow-matching prior (Lipman et al., 2023; Liu et al., 2023)
that we apply directly in this aligned latent space. By modeling cross-modal transport as a time-
continuous process, the flow introduces the expressive capacity needed for moving beyond linear
mappings while being efficient enough for the few-shot regime.

The resulting framework, FSF (Few-Shot-Flow), combines these two components, as can be seen
in the workflow presented in Fig. 1. Orthogonal Procrustes provides a stable initialization, over
which the flow operates to learn velocity fields along simple paths—linear or geodesic on the unit
sphere—between text prototypes and image features. At inference time, bidirectional flows are used
to integrate text and image latents toward intermediate representations, enabling similarity-based
matching between images and classes. This combination maintains the efficiency of closed-form
linear alignment while adding the flexibility of latent flows.

Extensive experiments demonstrate the value of FSF for flexible alignment of uni-modal encoders.
First, across independently trained image–text combinations, FSF consistently outperforms equiv-
alent baselines, showing clear benefits from aligning different pairs of uni-modal encoders. On
ImageNet distribution-shift benchmarks, FSF is competitive in the multi-modal setting, and with
CLIP text + DINO vision it achieves excellent results—surpassing comparable multi-modal vari-
ants and even a DINO linear probe on the target sets. In the medical domain, on the VinDr-CXR
chest X-ray benchmark (Nguyen et al., 2020), generic CLIP and DINO models perform poorly,
whereas FSF leverages the RAD-DINO vision encoder (Pérez-Garcı́a et al., 2024) with either large
or domain-specific text models to achieve strong results, surpassing RAD-DINO linear probing with
only 128 shots per class. Finally, across 11 few-shot benchmarks, FSF is competitive with the stan-
dard CLIP-RN50 backbone and delivers consistent gains when substituting the CLIP vision encoder
with a DinoV2-S encoder.

2 RELATED WORK

2.1 FEW-SHOT ADAPTERS FOR JOINT (MULTI-MODAL) VISION–LANGUAGE MODELS

A major line of work adapts joint vision–language models, most prominently CLIP Radford et al.
(2021), to downstream tasks using few-shot supervision. These approaches assume a co-trained
image–text embedding space and introduce parameter-efficient modules while keeping the back-
bones frozen. Training-free and cache-based methods such as TIP-Adapter Zhang et al. (2022)
and SuS-X Udandarao et al. (2023) avoid gradient updates by constructing a support-set cache and
combining retrieval-based similarity with the original CLIP logits. Prompt-learning approaches, ex-
emplified by CoOp Zhou et al. (2022), optimize learnable text prompts or biases, thereby reshaping
the textual prototypes used for classification.

Another prominent direction adapts models by modifying either their intermediate representations
or their decision scores. In the feature space, methods such as CLIP-Adapter Gao et al. (2021),
CaFo Zhang et al. (2023), APE Zhu et al. (2023), DMN Zhang et al. (2024), and CLAP Silva-
Rodrı́guez et al. (2024) attach lightweight, parameter-efficient modules that adjust embeddings un-
der few-shot supervision. In the logit space, approaches such as AWT Zhu et al. (2024) refine the
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Figure 1: FSF workflow. Training (left): Support images and class labels are passed through frozen
image and text encoders, producing unit-normalized features that are not well aligned. Orthogonal
Procrustes (OP) alignment (Sec. 3.2) applies a closed-form linear map to the text features, preserving
their relative geometry and providing initialization for flow-based alignment. A lightweight MLP
flow-matching (FM) module (Sec. 3.3) is then trained to map text latents to image latents along
rectified linear or geodesic paths on the unit sphere. Inference (right): Query images are processed
by the same FSF modules. Image and text latents are integrated along forward and reverse flows to
intermediate points, shown here as circles. Distances (dashed lines) between these points serve as
similarities for argmax-style class prediction. See Fig. 2 for further details.

class scores through calibration or bias. Structure-aware extensions such as GraphAdapter Li et al.
(2023d) further enrich this family with relational perspectives.

Together, these methods illustrate the spectrum of parameter-efficient fine-tuning strategies for co-
trained VLMs. In contrast, FSF does not rely on a jointly pretrained multi-modal space: it accepts
independently trained encoders and aligns them through a closed-form orthogonal Procrustes map,
before stabilizing few-shot adaptation with a lightweight, parameter-efficient flow-matching prior.

2.2 ALIGNMENT OF INDEPENDENT (UNI-MODAL) ENCODERS

Another line of work explores bridging independently pretrained image and text encoders. LiT Zhai
et al. (2022), for instance, learns a text projection on top of a frozen vision model using paired
image–text data, while BLIP-2 Li et al. (2023a) introduces a Q-Former to connect vision features
with a large language model. Freeze-Align Zhang et al. (2025a) follows a similar philosophy, train-
ing a projector on external paired corpora to flexibly align frozen uni-modal encoders, but requires
medium-scale training resources. Although effective, these approaches depend on large paired cor-
pora and substantial optimization.

Closer to our setting are methods that pursue linear alignment. LiMBeR Merullo et al. (2023) learns
a linear projection from image embeddings into a language model’s space, trained on external data
and evaluated in zero-shot generation tasks such as captioning or VQA. LFA Wu et al. (2023) is
parameter-free, applying an orthogonal Procrustes solution to align embeddings across modalities,
and thus demonstrates that simple closed-form mappings can already be competitive.

FSF adopts a similar orthogonal Procrustes alignment as a baseline step, but its main contribution
lies in introducing a lightweight, parameter-efficient flow-matching prior that regularizes the aligned
space. This additional component yields consistent improvements in few-shot adaptation, enabling
FSF to leverage arbitrary uni-modal encoders without requiring external paired data.

2.3 LATENT CONTINUOUS-TIME MODELS FOR CROSS-MODAL GENERATION

Modern cross-modal generation systems encode the source input (e.g., text) into a latent space, then
transform it into the latent space of the target domain, and finally decode the result back into the
output modality (e.g., image).

Most approaches implement this transformation using continuous-time generative models, either
diffusion or rectified flow, formulated as conditional processes from a noise prior to target latents
guided by the source representation. DALL·E v2 Ramesh et al. (2022) encodes text with CLIP
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and conditions a denoising diffusion process that maps noise to image latents, which are decoded
with an autoencoder. Stable Diffusion v2 Rombach et al. (2022) follows the same paradigm in
the latent space of a pretrained VAE, where diffusion proceeds from noise to image latents under
text conditioning. Wu et al. (2024) replaces diffusion with rectified flow but retains the conditional
formulation, training a transformer denoiser on Gaussian-to-image-latent flows with text guidance.
Cross-Flow Zhang et al. (2025b) similarly flows from a Normal prior to image latents, while jointly
optimizing a text encoder with a contrastive loss. In contrast, OmniFlow Zhang et al. (2025c) departs
from this conditional pattern by directly learning flows between modality-specific latent spaces,
supporting any-to-any (e.g. audio↔video) transfers.

While FSF is inspired by the way these methods perform continuous-time matching between multi-
modal latent spaces, it addresses a different setting: non-generative few-shot adaptation. In this case,
the transformation is a lightweight prior applied directly in feature space, without reliance on paired
encoders–decoders or large-scale generative training.

3 METHOD

The proposed FSF is a modular adaptation framework for few-shot image classification, whose
workflow is presented in Fig. 1. FSF (i) decouples the choice of image and text encoders (multi- or
uni-modal); (ii) aligns them via a training-free closed-form Orthogonal Procrustes (OP) mapping;
(iii) learns a lightweight yet expressive flow-matching prior in embedding space; and (iv) enables
efficient inference. The OP map preserves within-modality structure while enabling cross-modal
comparison, and the flow objective learns an ODE velocity field between image and text embed-
dings, yielding a regularized adaptation from very few shots. Training and inference procedures are
summarized in Algorithms 1 and 2 (Appendix A.1).

3.1 PROBLEM SETUP AND NOTATIONS

In the few-shot classification setting, we are given a support set Ω = (S,L) that consists of N
images S = {si}Ni=1, with corresponding labels L = {li}Ni=1 that belong to one of C classes,
with K examples (shots) per class. A model can be trained on this supervised data and is tested at
inference on a set test set of query images that belong to the same set of classes.

Let fimg and ftxt denote a pair of pretrained image and text encoders, with frozen parameters, that
produce outputs of dimension Dimg and Dtxt, respectively. In this work, we consider both the case
of multi-modal encoders, which are jointly trained (with CLIP Radford et al. (2021) being the most
common example), and uni-modal encoders, which are pretrained independently on domain-specific
data (e.g., DINO Oquab et al. (2024) for vision and BERT Devlin et al. (2019) for language).

Each labeled sample (s, l) is mapped into both image and text feature spaces. The resulting embed-
dings are normalized onto their respective unit spheres by

x =
fimg(s)

∥fimg(s)∥
and y =

ftxt(l̂)

∥ftxt(l̂)∥
(1)

where l̂ denotes either the raw class label l (used as a prototype) or a fixed template sentence con-
taining it.

3.2 TRAINING-FREE ALIGNMENT VIA ORTHOGONAL PROCRUSTES

We align the two embedding spaces with a semi-orthogonal linear map W , which is estimated from
paired image–text data (which may be the support set or any other external source of paired data).
The linear map is obtained with a closed-form solution of an Orthogonal Procrustes (OP) problem, at
the cost of computing an SVD of a Dtxt×Dimg matrix. Being (semi-)orthogonal, the transformation
preserves inner products in the source subspace and thus conserves within-modality relations of the
source domain, which is desirable for achieving good alignment.

Given n paired embeddings {(xi,yi)}ni=1 with xi ∈ RDimg and yi ∈ RDtxt , we first stack them into
matrices

X = [x1, . . . ,xn]
⊤ ∈ Rn×Dimg , T = [y1, . . . ,yn]

⊤ ∈ Rn×Dtxt .
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To align the text and image feature spaces, we then solve an Orthogonal Procrustes (OP) problem

W⋆ = argmin
W∈RDimg×Dtxt

∥∥TW⊤ −X
∥∥2
F

s.t. WW⊤ = IDimg . (2)

Let M = X⊤T denote the cross-covariance matrix, and take its truncated SVD given by M =
VΣU⊤ with U ∈ RDtxt×r, V ∈ RDimg×r, where r = rank(M).

The closed-form OP solution yields a Dimg × Dtxt mapping that is orthogonal when Dimg = Dtxt
(and otherwise row-orthonormal via the thin SVD), given by

W⋆ = VU⊤. (3)

Finally, text embeddings are mapped into image feature space while image embeddings stay fixed:
xi←xi ∈ RDimg , yi←W⋆yi ∈ RDimg . (4)

Regarding the paired data that the mapping is fitted to, we consider two different options, which we
denote by ’local OP’ and ’global OP’. In the local setting, following LFA Wu et al. (2023), we use
the entire training set of the few-shot task (e.g. 808 pairs for 8-shot classification on Caltech101),
while in the global setting, we use 1M randomly sampled text-image pairs from the CC3M Sharma
et al. (2018) dataset. There is a clear tradeoff between the two. The ’local’ approach is better tailored
to the particular domain, but may be inferior, in the low-shot regime. We compare these variants in
the experiments.

3.3 FLOW-MATCHING PRIOR IN THE ALIGNED SPACE

We next learn a continuous-time velocity field that transports image embeddings toward their cor-
responding OP-aligned class text prototypes. For a sample pair (s, l), let (x,y) be the feature
embeddings (Eq. 1) that have gone through OP-alignment (Eq. 4) - both residing in the common
image-space of dimension RDimg . For simplifying the presentation, we abuse notation and write
(x,y) ∼ Ω, to denote a pair of embedded features taken from the Support set.

We now consider a continuous path γ(t) = γ(t;x,y), with time parameter t ∈ [0, 1], that provides
a direct interpolation between x and y at a time varying velocity u(t) = u(t;x,y). Two useful
instantiations of such a path are:

- linear (Euclidean): γ(t) = (1− t)x+ ty, with ground-truth velocity u(t) = γ̇(t) = y − x.
- geodesic (on sphere): γ(t) = slerp(x, y; t) with analytic tangent velocity u(t) = γ̇(t). 1

The geodesic choice (Chen & Lipman, 2023) respects spherical geometry and we found that it
performs consistently better, as we show in Sec. of the appendix.

Following common practice in flow matching Lipman et al. (2023); Liu et al. (2023), we parame-
terize a time-conditioned velocity field vθ : [0, 1] × RDimg → RDimg and train it to match the target
velocity along the path. Sampling t ∼ U(0, 1) and setting xt = γ(t;x,y), the flow-matching loss
(in the image→text direction) is

L→(θ) = E(x,y)∼Ω, t∼U [0,1]

[
∥vθ(t,xt) − u(t;x,y)∥22

]
. (5)

Our approach uses bi-directional flow in order to obtain better classification performance. Since we
are using rectified flows (or ones that follow geodesic lines), one possibility is to model a single
velocity field and integrate along it in the reverse direction for text to image mapping. However, we
tested with training an identical additional model vθ′ (with an independent parameter set), using the
equivalent loss L← that switches the roles of x and y:

L←(θ′) = E(x,y)∼Ω, t∼U [0,1]

[
∥vθ′(t,yt) − u(t;y,x)∥22

]
. (6)

In practice, we found the option of using two independent flow fields to work slightly (but consis-
tently) better than using a single model and its reverse velocity. We attribute this to the regularization
effect of model ensembeling, given by the independent initialization and time sampling of the flow
netowrks.

1slerp(x,y; t) = sin((1−t)θ)
sin θ

x+ sin(tθ)
sin θ

y, γ̇(t) = − cos((1−t)θ) θ
sin θ

x+ cos(tθ) θ
sin θ

y, for θ = arccos(x⊤y).
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Figure 2: Detail on flow-based inference. At training, geodesic paths (grey solid lines) between
class prototypes (stars) and corresponding support features (semi-transparent squares) are used to
train forward and reverse flow fields in the joint latent space. At inference, unlabeled query images
and class prototypes are integrated up to an intermediate timestep τ ∈ [0, 1] (here τ ≈ 0.5). The
resulting intermediate points are shown as circles, with bold circles marking prototypes’ locations.
Classification uses a weighted combination of flow similarity (fine dashed curves) and base similar-
ity (coarse dashed curves), with the predicted class given by the argmax of the resulting scores.

3.4 INFERENCE (CLASSIFICATION)

At test time, for any given unlabeled sample s, we compute its unit-normalized image feature x and
compute the OP-projected class prototypes yc ←W ⋆yc for each class c ∈ C.

Inference is done in the joint latent space, on the unit-sphere of the image space RDimg . Please follow
the illustration in Fig. 2 for a detailed visualization of the inference process on the sphere.

We proceed by using the ODE defined by the learned flow field vθ

dz

dt
= vθ(t, z), z(0) = x, (7)

to propagate the image feature x to a predetermined intermediate time τ ∈ [0, 1] (which we treat as
a hyper-parameter). This is done by integration, using an adaptive solver (e.g., dopri5), and we
denote the resulting feature point, which we unit-normalize, by z(τ).

Symmetrically, we transport each of text prototypes in the opposite direction, from the initial po-
sition of zc(0) = yc to a resulting point at the matching intermediate time 1 − τ , which we unit
normalize and denote by z

(1−τ)
c .

Class association, per query image, is taken to be the one which minimizes the cosine similarity
between the flow-transported latents over all possible classes c ∈ C

sflow
c =

〈
z(τ), z(1−τ)

c

〉
. (8)

Following prior works (Gao et al., 2021; Zhang et al., 2023) we mix between the flow-transported
scores sflow

c and the respective base (pre-flow) similarly scores sbase
c =

〈
x, zc

〉
, using a single scalar

hyper-parameter α ∈ [0, 1]:
sc = (1− α) sflow + α sbase. (9)

In practice, as we demonstrate in an ablation study (Sec. A.3.2) we pick the intermediate time param-
eter τ and mixing parameter α using the task-respective metric (accuracy for few-shot classification
or macro-AUPRC in the multi-label setting) on a small subset of the task validation set.

Discussion. OP is used once to harmonize spaces while preserving modality-internal structure. It
does not by itself “boost” accuracy but provides a stable geometric substrate for the learned flow.
The flow objective then learns smooth, deterministic transport, consistent with OP geometry, that
exploits non-linear relationships between strong, pre-trained encoders. Furthermore, we observed
that uniform sampling of t regularizes training by exposing the model to the entire interpolation
path, reducing overfitting even over long schedules.
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Table 1: Encoder usage flexibility on 16-shot ImageNet Classification. The left panel presents
performance of different methods, using multi-modal CLIP encoders (either RN50 or the larger
ViT-B/16). These methods, except for LFA and FSF, are constrained to working with jointly trained
models, like CLIP. In contrast, shown in the right panel, LFA and FSF have the flexibly to align
a variety of independently pretrained encoders. FSF is shown to be consistently superior to LFA,
in performing these adaptations. The bottom examples (below the dashed line) show how the use
of strong/general uni-modal text (Qwen/GTE/ARL) and vision (DINOv2-B) encoders, can be ex-
tremely beneficial over using multi-modal CLIP at matched ViT-B scale (right column of left pane).

method CLIP-RN50 CLIP-ViT-B/16
ZS-CLIP 60.33 68.73
Tip-Adapter 61.43 70.25
CoOp 62.95 71.92
CLIP-Adapter 63.59 71.13
ProKeR 64.45 73.25
Tip-Adapter-F 65.51 73.69
LFA 63.65 72.61
FSF-noOP 64.07 73.27

text encoder vision encoder LFA FSF-LOP
CLIP-RN50 MAE-B 27.76 39.75
CLIP-RN50 BAM-B 66.43 68.97
CLIP-RN50 DINOv2-B 75.03 76.80
CLIP-ViT-B DINOv2-B 74.07 76.70
GTE-B DINOv2-B 73.57 75.77
GTE-L DINOv2-B 73.27 75.90
ARL DINOv2-B 73.27 75.93
Qwen-8B DINOv2-B 74.84 76.37

4 EXPERIMENTS

IMPLEMENTATION DETAILS

We evaluate three variants: FSF-LOP (local OP) and FSF-GOP (global OP) for uni-modal encoders,
and FSF (no-OP) for CLIP-based multi-modal settings. In CLIP setups we omit OP because joint
pretraining sufficiently aligns image–text latents. The velocity field vθ(t, z) follows Li et al. (2023b):
a residual MLP with SiLU activations and per-layer time conditioning. We use 4 layers with hidden
width 1536 (input/output match encoder dimensions) and ablate other options in Sec. A.3.3. Train-
ing uses AdamW (lr = 1e−4, weight decay = 1e−3) with a cosine schedule. Encoders and the
OP/GOP map are frozen. For inference, we transport query embeddings and class prototypes with
an adaptive ODE solver (dopri5). Experiments were executed on a single NVIDIA A100. Metrics
are top-1 accuracy (few-shot), OOD accuracy (ImageNet variants), and macro-AUPRC (medical),
reported as the mean over three random seeds. Baseline methods include CoOp Zhou et al. (2022),
CLIP-Adapter Gao et al. (2021), TIP-Adapter/(f) Zhang et al. (2022), CLAP Silva-Rodrı́guez et al.
(2024), TaskRes(e) Yu et al. (2023), ProKeR Bendou et al. (2025), and LFA Wu et al. (2023).

4.1 MULTI- VS. UNI-MODAL ENCODER USAGE ON IMAGENET FEW-SHOT CLASSIFICATION

In this initial experiment, we demonstrate the flexibility and potential advantages in FSF’s ability
adapt independently trained (uni-modal) text and vision encoders to a few-shot classification task.
We focus here on 16-shot ImageNet classification and report similar results on 11 datasets, at a
variety of shots, in Sec. A.2 of the appendix. The results are presented in Table 1.

In the left panel we provide results from a variety of methods, in the multi-modal (jointly trained)
setting, represented by CLIP with two common possible backbones (RN50 and ViT-B/16), where
FSF can be seen to be competitive with leading CLIP adapters. This is consistent with Sec. A.2,
where FSF attains the best average accuracy at 16-shots over the entire 11-dataset benchmark, and
with Sec. 4.2, where FSF provides superior out-of-distribution accuracies in the multi-modal setting.

Importantly, out of these methods, only LFA and FSF are able to align uni-modal (independently
trained) models, with results presented in the right panel. On the text side we include general-
purpose encoders—GTE-B/L Li et al. (2023e), Qwen-8B Yang et al. (2025), and ARL Liu et al.
(2019)—which are not co-trained with images; on the vision side we use MAE-B He et al. (2021),
BAM-B Shalam & Korman (2024), and DINOv2-B Oquab et al. (2024).

When text and vision are decoupled, FSF consistently beats LFA across encoder pairs, with larger
gains for stronger encoders. CLIP text encoders usually excel on ImageNet, likely due to domain
match, but FSF makes other CLIP-free setups competitive: general text encoders (Qwen-8B, GTE-
B/L, ARL) with a strong uni-modal vision model (DINOv2-B) reach the same accuracy band as
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Table 2: Out-of-distribution (OOD) 16-shot results on ImageNet variants. The results are
grouped, in between horizontal dashed lines, according to the used encoders (whether multi- or
uni-modal). All methods were adapted to (in-distribution) ImageNet and then evaluated on the four
(OOD) target distributions. Last row shows, for reference, linear-probe using DinoV2-B on the
full ImageNet training set. FSF clearly pushes forward the OOD capabilities of prior works, over
the different encoder configurations, even surprisingly surpassing linear probing (in OOD) with an
equivalent Vit-B architecture.

method text encoder image encoder ImageNet -V2 -Sketch -A -R avg. OOD
Zero-Shot CLIP RN50 60.35 51.49 33.33 21.67 55.93 40.61
CLIP-A CLIP RN50 59.02 48.15 14.63 15.75 46.29 31.21
TIP-A CLIP RN50 57.81 50.32 33.59 21.88 56.98 40.69
TIP-A(f) CLIP RN50 62.27 53.99 33.75 20.47 57.22 41.36
TaskRes(e) CLIP RN50 60.85 56.47 32.80 21.28 57.93 41.29
CLAP CLIP RN50 65.02 56.09 34.55 21.52 59.48 42.91
LFA CLIP RN50 63.88 55.79 34.37 24.31 58.13 43.15
FSF-noOP CLIP RN50 64.07 55.94 35.97 23.80 60.60 44.08
FSF-GOP CLIP RN50 DinoV2 S 71.07 61.83 40.40 33.97 57.83 48.51
CLAP CLIP Vit-B/16 73.38 65.00 48.35 49.53 77.26 60.04
LFA CLIP Vit-B/16 72.65 64.72 48.01 51.50 76.09 60.08
FSF-noOP CLIP Vit-B/16 73.27 65.50 49.10 50.87 77.88 60.84
FSF-GOP CLIP Vit-B/16 DinoV2 B 76.70 68.60 52.21 58.30 70.82 62.48
Linear probe DinoV2 B 84.50 75.1 50.60 55.10 63.30 61.02

CLIP text. Importantly, by separating modalities, FSF enables replacing both image and text CLIP
encoders, clearly improving over CLIP-only results, even at matched ViT-B scale.

4.2 OUT OF DISTRIBUTION (OOD) ON IMAGENET VARIANTS

In addition to the in-distribution experiments (Sections 4.1 and A.2), we follow the standard OOD
evaluation in FSC, where models are trained on few-shot ImageNet and then evaluated (without
further tuning) on four of its variants: ImageNetV2 Recht et al. (2019), ImageNet–Sketch Wang
et al. (2019), ImageNet–A Hendrycks et al. (2021a), and ImageNet–R Hendrycks et al. (2021b).
Accuracy results appear in Table 2.

There are several important conclusions to be made. First, when comparing between multi-modal
methods (the first block of CLIP RN50 and third block of the larger CLIP Vit-B/16), FSA (recall
no OP for the multi-modal setting) is highly competitive. On the source Imagenet, it is second to
CLAP, but it significantly (and almost consistently) surpasses it in the OOD regime.

Second, moving from the first block of multi-modal CLIP-RN50, by introducing the Dino-V2-S
image encoder, hence moving to a uni-modal setting, FSF brings consistent improvements. Like-
wise, but more significantly, When moving from CLIP Vit-B/16 to the equivalent architecture level
DINOv2-B (replacing CLIP’s vision tower with an equivalent complexity one), FSF brings further
consistent improvements, with accuracy of 76.7 on ImageNet and 62.48 on the OOD variants. We
compare these results, that were adapted to Imagenet with only 16, 000 labeled examples (16-shots
per class), to those of a standard DINOv2 B linear probe trained on the full ImageNet train split.
While FSF is still quite far behind the linear-probe on the source ImageNet, it surpasses it in OOD
(on average), which demonstrates how highly robust it is under distribution shift.4.3 MULTI-LABEL CLASSIFICATION ON MEDICAL DATA

Clinical chest X-rays differ materially from the few-shot vision benchmarks used elsewhere in this
paper. Images are grayscale with subtle, spatially diffuse cues; labels are multi-label (an exam
may exhibit several findings), heavily imbalanced (rare pathologies coexist with common ones), and
often weak/noisy because supervision is derived from reports. In this regime, threshold-free ranking
metrics are preferred: following standard practice for chest X-ray benchmarks, we report macro-
AUPRC on VinDr-CXR Nguyen et al. (2020), a seven-finding dataset widely used for evaluation.

Our goal is to test whether FSF can turn a strong uni-modal vision encoder into an effective multi-
modal classifier by aligning it to an independent text tower—i.e., without pretraining a CLIP-style
model on medical data. We therefore use RAD-DINO Pérez-Garcı́a et al. (2024) as the image back-
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Figure 3: Multi-label classification on VinDr-CXR (7 pathologies; macro-AUPRC). FSF adap-
tation results across an increasing support size of {16, 32, 64, 128} shots. We experiment with the
dedicated RAD-DINO vision encoder, over different text encoders. Results are contrasted with
RAD-DINO linear-probe that was trained on entire train set. As can be seen, the usage of CLIP text
encoders is inferior to using either the general large-scale Qwen-8B) encoder or the more tailored
fine-tuned BiomedCLIP.

bone (self-supervised on radiology images; not tuned on VinDr-CXR) and pair it with several text
encoders spanning medical-specific (BiomedCLIP) and general-purpose (Qwen-8B, CLIP) models.
To accommodate the multi-label setting, each training image’s label set is converted into a single
text target by averaging the normalized label prompts before OP alignment. At inference, we score
each class against its OP-aligned prototype.

The results, presented in Fig. 3, are instructive. With RAD-DINO features, FSF paired with the
general Qwen-8B text encoder tracks BiomedCLIP closely at all shot counts and slightly surpasses
it at 128-shot. Notably, both FSF+Qwen-8B and FSF+BiomedCLIP exceed a linear probe trained
on the full dataset, despite using only a fraction of the labels, suggesting that FSF’s geometry-
aware transport regularizes learning under label noise and class imbalance. When we replace RAD-
DINO with a generic DINO vision backbone, absolute numbers drop—as expected when leaving
the medical domain—but FSF still yields consistent improvements over linear probing across shots
(Complete results appear in Tables 6 and 7, Sec. A.4).

Taken together, these results show that FSF can “upgrade” a uni-modal, in-domain vision encoder
into a competitive multi-modal classifier by aligning to an independent text encoder. medical-
specific text pretraining is helpful but not essential once the visual backbone is in-domain and the
alignment/flow is learned. This aligns with our central theme: independently pretrained encoders,
connected by OP and refined by flows, can match or even surpass end-to-end multi-modal pretrain-
ing in challenging (e.g. OOD and multi-label) settings.

5 CONCLUSION

We introduced FSF, a simple and modular framework for few-shot classification that integrates Or-
thogonal Procrustes alignment with a flow-based alignment prior. This design enables flexible align-
ment of independently trained vision and text encoders, without requiring large paired corpora or
heavy optimization. Extensive experiments demonstrate the value of this capability: FSF consis-
tently improves over the multi-modal baselines across eleven few-shot benchmarks, achieves robust
performance under ImageNet distribution shifts, and adapts effectively to domain-specific data such
as the VinDr-CXR medical benchmark.

While FSF is effective across diverse settings, it also has limitations. Our method still relies on the
availability of strong uni-modal encoders, and the benefits of flow-based alignment may diminish if
either side lacks semantic quality. Moreover, although the flow prior is lightweight compared to full
model tuning, it still introduces an extra training component beyond closed-form alignment. Future
work may explore refined flow designs, scaling to stronger encoders, semi-supervised extensions, or
operating directly in token-level latent spaces of images and text.
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Table 3: Few-Shot Classification on 11 datasets. left: The standard multi-modal CLIP-RN50
setting. FSF is highly competitive with prior works, especially at the higher shot regime. right:
The multi-modal CLIP-RN50 DINOv2-S combination. Three first rows are training-free linear-map
alignments and the last two are the FSF with local/global OP alignment, showing the potential of up-
grading to a specialized (uni-modal) image encoder. Best/second-best results appear in bold/italics.

Method 1-sh 2-sh 4-sh 8-sh 16-sh
Zero-Shot 57.71 57.71 57.71 57.71 57.71
CoOp 59.56 61.78 66.99 70.11 72.53
CLIP-A 58.43 62.46 66.18 69.87 73.35
TIP-A(f) 60.29 62.26 65.32 68.35 71.40
TaskRes(e) 61.44 65.26 68.35 71.66 74.42
CLAP 62.79 66.07 69.13 72.08 74.59
FSF-noOP 62.49 65.26 68.77 72.51 75.60

Method 1-sh 2-sh 4-sh 8-sh 16-sh
GOP 42.40 42.40 42.40 42.40 42.40
OP 52.81 59.24 64.11 67.12 69.05
LFA 50.53 60.28 67.80 73.59 78.03
FSF-LOP 54.87 62.65 70.40 76.35 80.44
FSF-GOP 59.29 65.50 70.89 75.84 79.77

A APPENDIX

A.1 ALGORITHMS

Algorithm 1 Training

Require: support set Ω = ({si}Ni=1, {li}Ni=1)

Require: frozen encoders fimg, ftxt

Require: initialized flow model vθ
1: compute image and text embeddings {xi}Ni=1 and {yi}Ni=1 (Eq. 1)
2: estimate (globally or locally) an OP linear map W ⋆ (Sec. 3.2)
3: align text to image using OP: yi ←W ⋆yi for i = 1, . . . , N

4: for minibatches (x,y) do
5: sample a batch of intermediate times t ∼ U [0, 1]
6: obtain intermediate path points xt = γ(t;x,y)

7: compute target velocities u(t;x,y) (linear or geodesic)
8: update θ by minimizing the loss L→(θ) (Eq. 5)
9: end for

Algorithm 2 Few-shot inference

Require: query s; class labels {lc}c∈C ; encoders fimg, ftxt; flow model vθ; map W ⋆; params τ , α;
1: compute embeddings x and {yc}c∈C (Eq. 1)
2: align text prototypes to image using OP: yc ←W ⋆yc for every c ∈ C

3: integrate ODE (Eq. 7) to obtain z(τ); symmetrically compute z
(1−τ)
c ;

4: compute class scores sc (Eq. 9)
5: predict class c = argmaxc∈C sc

A.2 FEW-SHOT CLASSIFICATION ON 11 DATASETS

We follow the widely adopted CoOp 11-dataset protocol Zhou et al. (2022) under K∈{1, 2, 4, 8, 16}
shots, providing a diverse testbed covering generic recognition, scenes, textures, remote sensing,
actions, and especially fine-grained categories that are particularly challenging for few-shot learning.
The benchmarks include ImageNet Deng et al. (2009), StandfordCars Krause et al. (2013), UCF101
Soomro et al. (2012), Caltech101 Fei-Fei et al. (2004), Flowers102 Nilsback & Zisserman (2008),
SUN397 Xiao et al. (2010), DTD Cimpoi et al. (2014), EuroSAT Helber et al. (2019), FGVCAircraft
Maji et al. (2013), OxfordPets Parkhi et al. (2012), and Food101 Bossard et al. (2014). The detailed
top-1 accuracies appear in Table 3.
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Table 4: FSF component ablation on ImageNet (16-shot). Avg is the mean over shots; green
deltas show the incremental gain vs. the previous row. Coupling GOP with the flow stabilizes the
low-shot regime.

OP flow 1-shot 2-shot 4-shot 8-shot 16-shot Avg.
global w/o 42.40 42.40 42.40 42.40 42.40 42.40
local w/o 52.81 59.24 64.11 67.12 69.05 62.47 ↑20.07

local linear 55.00 62.28 69.26 73.75 78.39 67.74 ↑5.27

local geodesic 54.87 62.65 70.40 76.35 80.44 68.94 ↑1.20

global geodesic 59.29 65.50 70.89 75.84 79.77 70.26 ↑1.32

The left panel reports results for the standard multi-modal CLIP-RN50 encoder. Recall that since
CLIP’s image–text space is already co-trained we do not apply OP in this setting. The trend
here is consistent with previous observations that learned priors benefit from richer supervision:
prompt/logit calibration can be slightly favored at 1–2 shots due to its tight inductive bias, while
FSF’s non-linear, geometry-aware transport yields consistently growing improvements as the num-
ber of shots increases.

The right panel reports results for the uni-modal combination of a CLIP-RN50 text encoder and
a DINOv2-S image encoder. When text and image encoders are trained independently, alignment
becomes the main challenge. A global OP, fitted once on 1M CC3M pairs, provides a very initial
baseline of 42.40, which is still inferior to the baseline Zero-Shot (but well aligned) CLIP, despite
using a stronger vision encoder. Computing local OP on the support set increasingly improves the
alignment as the number of shots grows. LFA, improves over the local OP, especially at the higher
shots, due to applying iterative updates on the linear map. However, FSF is able to significantly
boost these results, due to the flow-based non-linear alignment. Consistently throughout our results,
and as was discussed in Sec. 3.2, global/local OP is better suited for the lower/higher shot regimes.

Importantly, the capability of using any independent combination of uni-modal encoders is shared
only by FSF and LFA among the compared methods. As is clear in this case, and was made more
so in the other experiments, this flexibility can be highly beneficial, due to the ability to choose an
adequate combination of encoders for a given task.

A.3 ABLATIONS

A.3.1 FSF COMPONENTS.

In Table 4 we ablate alignment (OP: local vs. global/GOP) and the flow prior on ImageNet across
shots. Conclusions: (i) Geometry matters. Using a geodesic (spherical) path instead of a linear one
consistently helps once a few labels are available, raising the shot-averaged score (68.94 vs. 67.74),
which aligns with our unit-normalized embeddings. (ii) GOP as a low-shot prior. Although the
global W ⋆ is fitted on an external dataset (subset of CC3M) and starts from a weaker OP than local
OP, coupling GOP with the flow stabilize the low-shot regime: about +4.4 at 1-shot and +2.9 at 2-
shot over local + geodesic, while staying within 1 point at 8/16; it achieves the highest average across
shots (70.26). This suggests the learned flow is more robust to alignment quality and compensates
residual cross-modal mismatch. (iii) Net effect. Moving from local OP (no flow) to local + geodesic
yields ∼+6.5 on average; adding GOP contributes a further ∼+1.3. In practice, prefer GOP for
K≤2, use local OP at higher shots, and adopt geodesic flow by default.

A.3.2 HYPER-PARAMETERS.

We examine the sensitivity of the mixing weight α in Eq. 9 and the integration horizon τ (Sec. 3).
Recall our selection protocol from Sec. 4: α and τ are tuned only on at most max(K, 4) shots from
the official validation splits and then fixed. Here we visualize accuracy surfaces on the test sets for
analysis only—no test-time selection.

Figure layout. Fig. 4 shows two heatmaps and a compact trend summary: (a) CLIP text + DINOv2
image (independent encoders) and (b) CLIP-RN50 (co-trained encoders). Each heatmap has two
rows (16-shot on top, 1-shot below) and three columns (ImageNet, Oxford Pets, DTD). Rows sweep
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Table 5: Residual MLP ablation on ImageNet 16-shot (DINOv2-B + Qwen-8B). Top-1 (%). Best
in bold; defaults are underlined.

Depth 1 2 4 8
Acc. (%) 76.47 76.47 76.37 76.17
Width 512 1536 2048 4096
Acc. (%) 75.83 76.37 76.47 76.73
time dim 128 256 512 1024
Acc. (%) 76.30 76.37 76.43 76.47

Table 6: VinDr-CXR (RAD-DINO vision). Macro-AUPRC (%). Best per row in bold.

Shots Linear Probe FSF-BiomedCLIP FSF-Qwen8B FSF-CLIP ViT-B/16 FSF-CLIP RN50
16 52.80 47.48 47.65 44.83 44.60
32 52.80 51.64 51.28 48.89 48.57
64 52.80 52.65 52.31 50.69 50.34
128 52.80 53.55 53.61 51.63 51.38

τ ∈ [0, 1], columns sweep α∈ [0, 1]; lighter is better. Edge cases: α=0 uses only the learned adapters
(at τ=1 this reduces to the image→ text adapter, at τ=0 to the text→ image adapter). Conversely,
α=1 falls back to the base model (zero-shot CLIP in (b); OP-only in (a)). Panel (c) summarizes
the mean optimal α and τ vs. shots over five datasets (ImageNet/DTD/Oxford Pets/Oxford Flow-
ers/SUN397).

What changes with more data. Three consistent patterns emerge. (i) Robustness grows with K.
From 1-shot to 16-shot, bright plateaus expand and the surfaces become smooth, indicating reduced
sensitivity to (α, τ); wide ranges perform near-optimally once a few labels are available. (ii) Less
reliance on the base model. The preferred α decreases with shots in both panels and is systematically
smaller for CLIP+DINOv2 than for CLIP (panel (c)): roughly α≈ 0.28→ 0.10 (CLIP+DINOv2)
vs. 0.85→ 0.45 (CLIP) from 1→16 shots, showing that the learned flow contributes increasingly as
supervision grows, especially with independent encoders. (iii) Mild shift in transport. The preferred
τ moves modestly lower with shots in both settings (about 0.50→0.35 for CLIP+DINOv2; 0.45→
0.30 for CLIP), giving relatively more weight to the text→ image adapter side.

Practical recipe. FSF does not require brittle parameter tuning: for quick deployment we find
CLIP-only robust in α ∈ [0.4, 0.7], τ ∈ [0.3, 0.5], and CLIP+DINOv2 robust in α ∈ [0.05, 0.3],
τ ∈ [0.35, 0.55], with both decreasing slightly as K increases. These settings align with prior practice
while underscoring that FSF remains strong even without careful per-dataset tuning.

A.3.3 RESIDUAL MLP ARCHITECTURE

Our velocity network is a residual MLP (SiLU) with time conditioning. We ablate depth, width, and
time dim on ImageNet (16-shot) using DINOv2-B for vision and Qwen-8B for text, with geodesic
flows and OP alignment fixed. Results in Table 5 (Top-1, %) report a 4 value sweep over the
depth, width and time dim parameters, where default values are underlined and are used for the
independent sweeping of each other two parameters. It shows small variance (≤0.34 pp) per row,
indicating that FSF is stable to reasonable architectural choices. A shallower/wider model yields a
slight gain, but our default 4×1536 with time dim = 256 strikes a good accuracy/latency trade-off
and is used throughout.

A.4 FULL RESULTS ON VINDR-CXR (MULTI-LABEL)

We report macro-AUPRC (%) on VinDr-CXR (7 pathologies) for K ∈ {16, 32, 64, 128} shots in
T. FSF averages the positive label prompts before OP alignment and learns geodesic flows. Linear
probe uses the full training set for the given vision backbone. Complete results appear in Tables 6
and 7.
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Table 7: VinDr-CXR (generic DINO vision). Macro-AUPRC (%). Best per row in bold.

Shots DINO Linear Probe FSF-BiomedCLIP
16 31.60 33.05
32 31.60 33.07
64 31.60 34.81
128 31.60 37.38

A.5 VISUALIZING OP AND FLOWS ON OXFORD-PETS (QUALITATIVE)

To build intuition for FSF with independent encoders, we visualize in A.5 how OP and the learned
flow reshape text embeddings toward image features on a single Oxford-Pets class (“Abyssinian”, 16
shots). Text is encoded by a generic BERT Devlin et al. (2019) tower and images by the CLIP image
encoder (no joint training). On the left, we show the 16-shot support set for the class. In the center,
we render what the text→image embeddings “look like” along the integration path by training a
diffusion decoder (DiT Peebles & Xie (2022)) conditioned on CLIP image features; we then feed
the transported text-in-image features at t∈{0, 0.5, 1} to synthesize indicative images. The goal is
not realism, but qualitative interpretability of the trajectory. On the right, we plot a spherical (unit-
norm) PCA of image features with OP-projected text prototypes and the learned flow field (gray
arrows). Circles denote image features, squares the image features after flow, and triangles the text
prototypes; points are colored by class.

Two patterns emerge. First, LOP vs. GOP initialization: LOP (fitted on the episode’s support)
places text prototypes closer to the class manifold than GOP (estimated once from external data),
which appears farther and more diffuse in feature space. Second, the flow matters: in the center
panels, LOP at t=0 can decode to dogs rather than the intended cat, but as we integrate to t=0.5
and t=1.0 the synthesis becomes increasingly cat-like; GOP starts even less informative (near gray-
scale), yet the same flow progressively steers it to the correct semantics. Together, these views
illustrate why OP provides a geometry-preserving bridge while the learned flow performs the heavy
lifting to resolve residual cross-modal mismatch.
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Figure 4: FSF hyper-parameter space and trends. top and middle are results for DINO and
CLIP respectively. These are heatmaps over (α, τ) for 1-shot (bottom row) and 16-shot (top row);
lighter is better. Edge cases: α=0 uses only adapters (at τ=1 image→ text; at τ=0 text→ image).
α=1 falls back to the base model - zero-shot CLIP in CLIP (top) and OP-only in DINO (bottom).
(c) Summary of optimal α and τ vs. shots (mean over INet/DTD/Pets/Flowers/SUN397). As shots
increase, α decreases—especially with independently pretrained encoders (CLIP+DINOv2)—and τ
shifts lower and smooths out, indicating reduced sensitivity and strong performance without tuning.
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Prompt: “a photo of abyssinian, a type of pet.”
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Prompt: “a photo of abyssinian, a type of pet.”

text encoding

Abyssinian Support image

Figure 5: Qualitative visualization of OP and flow on Oxford-Pets (“Abyssinian”). Left: class
support (16 shots). Center: DiT-based visualizations of the text→image trajectory at t∈{0, 0.5, 1}
(top: LOP+Flow; bottom: GOP+Flow). Right: spherical PCA of image features with OP-projected
text prototypes and the learned flow (gray). LOP initializes closer to the class manifold; GOP is
farther due to global fitting on external data. In both cases, integrating the flow moves text em-
beddings toward the correct visual semantics, underscoring the necessity of flow on top of OP for
independently trained encoders. The figure is high-resolution. Please zoom in digitally for a best
possible view.
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