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ABSTRACT

Vision Language Models (VLMs) have demonstrated strong capabilities across
various visual understanding and reasoning tasks, driven by incorporating image
representations into the token inputs of Large Language Models (LLMs). How-
ever, their real-world deployment is often constrained by high latency during in-
ference due to the substantial compute required by the LLM to process the large
number of input tokens, predominantly arising from the image. To reduce infer-
ence costs, one can either downsize the LLM or reduce the number of input tokens
needed to represent the image, the latter of which has been the focus of many re-
cent efforts around token compression. However, it is unclear what the optimal
trade-off is given a fixed inference budget. We first characterize this optimal trade-
off between the number of visual tokens and LLM parameters by establishing scal-
ing laws that capture variations in performance with these two factors. Our results
reveal a surprising trend: for visual reasoning tasks, the inference-optimal behav-
ior in VLMs is achieved by using the largest LLM that fits within the inference
budget while minimizing visual token count — often to a single token. While the
token reduction literature has mainly focused on maintaining base model perfor-
mance by modestly reducing the token count (e.g., 5 – 10×), our results indicate
that the compute-optimal inference regime requires operating under even higher
token compression ratios. Based on these insights, we take the first steps toward
designing token compression algorithms tailored for high-compression settings,
utilizing prompt-based compression of tokens. Our work underscores the perfor-
mance and efficiency benefits of operating in low visual token regimes and the
importance of developing tailored token reduction algorithms for such conditions.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) have enabled Vision Language Models
(VLMs) to perceive, reason, and respond through both text and image inputs (Liu et al., 2023;
Alayrac et al., 2022; Dai et al., 2023). Many VLMs are built on top of pretrained vision encoders,
like CLIP, and pass the patch-based tokens from the visual encoder into the pretrained LLM back-
bone at a one-to-one ratio for visual context. This results in the LLM processing hundreds of tokens
per image, overshadowing those from the user prompt and accounting for most of inference time
compute. Consequently, deploying VLMs in real-world applications, particularly on consumer-side
edge devices such as monitoring systems, driving assistants, etc., is often limited by the significant
inference cost and resulting latency.

To reduce the inference cost of VLMs, many recent works have focused on decreasing the number of
visual tokens, via merging or pruning, prior to passing into the LLM while minimizing performance
degradation (Li et al., 2024c; Shang et al., 2024). Alternatively, inference FLOPs, proportional to
the number of parameters and number of tokens processed, can be reduced by using a smaller LLM.
Since both the LLM size and number of visual input tokens directly affect the VLM’s performance,
it becomes unclear what the optimal trade-off between the two is. For example, one could process
all visual input tokens using a 4B LLM or use an 8B LLM on a reduced set of half the original visual
tokens, as both result in similar inference costs — currently, the ideal choice is unknown.

This observation raises an important question: given a fixed inference budget, what is the optimal
trade-off between LLM size and the number of visual tokens processed for downstream performance?
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Figure 1: Inference optimal scaling laws for VLMs. The number of visual tokens (V ) passed
to the LLM (after token compression, § 2.2), along with the LLM parameter count (N ), directly
determine the inference cost of VLMs (O(N(Q+ V ))), where Q is the text input tokens. Since the
downstream performance of VLMs is directly affected by both these factors, it makes it unclear what
the optimal trade-off is for a fixed inference compute. In this work, we try to answer this question
with our scaling laws. Left: We plot the fitted scaling curves, assuming cached text input tokens
(Q=0). We observe a surprising trend: for visual reasoning tasks, the compute optimal behavior
(dotted black curve) requires using a single visual token with the largest possible language model
that can fit under the inference budget. Right: Inference optimal behavior under Q = 50 requires
slightly higher number of visual tokens as the LLM already incurs a fixed cost due to the text tokens.

In this work, we try to answer this question by building the first inference-time compute-optimal
scaling laws for VLMs, modeling performance as a function of both key factors affecting inference
cost: LLM size and the number of visual tokens processed. Our scaling laws reveal a striking
observation: for visual reasoning tasks, the compute-optimal inference regime entails using the
largest feasible LLM with a very small number of visual input tokens — often just one — when
the input query can be cached. However, for certain use cases that require detailed image analysis,
like Optical Character Recognition (OCR) or document understanding tasks, the optimal approach
is quite the opposite, requiring as many visual tokens as possible, as token compression proves
ineffective for capturing the dense and diverse information present in such tasks.

Most existing work on token compression has focused on reducing visual tokens by a modest factor
(e.g., from 576 to 144 tokens or 64 tokens). In contrast, our results underscore the critical impor-
tance of pursuing much higher compression rates (e.g., reducing tokens to 1 or 4) for visual reasoning
tasks where such compression is not only feasible, but also compute-optimal. Building upon these
insights, we take initial steps toward developing token compression algorithms specifically tailored
for high compression regimes. We propose a prompt-based token compression approach, recogniz-
ing that in extreme compression scenarios, it is essential to selectively curate tokens based on the
user’s query to preserve the most relevant tokens. In summary, our work identifies the compute-
optimal inference regime for VLMs, emphasizing the importance of high token compression for
visual reasoning tasks. We hope these findings will serve as a motivation and foundation for shifting
token reduction techniques towards more effective and higher compression ratios.

We first introduce some preliminaries around inference costs and visual token compression for
VLMs in Section 2. In Section 3, we formulate and analyze our inference-compute scaling laws, the
results of which motivate the introduction of our compression algorithm designed for high token-
reduction regimes (Section 4). Section 5 covers the related work, and we conclude with Section 6.

2 PRELIMINARIES

2.1 ESTIMATING INFERENCE COST FOR VLMS

The language model in VLMs processes the visual input tokens along with the user text query tokens.
As language models become larger, the FLOPs (Floating Point Operations) required to process each

2
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input token scales accordingly. We follow the standard practice for estimating the inference time
FLOPs as (Kaplan et al., 2020; Sardana et al., 2024; Snell et al., 2024):

FLOPsinf = O(N × T ), (1)

where N denotes the parameter count of LLM and T denotes the total inference time tokens. We
ignore the inference cost stemming from the visual encoder, as we use the same vision encoder
with the same input image resolution across all experiments. In addition, many current open-source
VLMs currently utilize the same CLIP-L vision encoder (Radford et al., 2021).

We highlight that the inference cost of VLMs scales proportionally with both the parameters and the
number of input tokens processed by the LLM.

In the context of VLMs, the total inference tokens, T , can be further decomposed as T = Q+V +G,
where Q represents the text input tokens, i.e., the question/prompt, V represents the number of
visual tokens from the vision encoder (after token compression), and G accounts for the generated
tokens. In many real world applications, such as driving assistance systems, the text input remains
constant (e.g., ”Alert the driver if the scene ahead has a hazard”). In these scenarios, the text input
can be cached, effectively making Q = 0 by bypassing self-attention projections and feed-forward
calculations. However, in other interactive applications, Q may vary based on dynamic input. We
will study the behavior of the downstream error with FLOPsinf under both the Q = 0 and varying
Q regimes. Finally, the generation tokens again are quite small for most inference tasks (single word
answers). However, the analysis with increasing Q transfers to increasing Q+G as well.

2.2 TOKEN COMPRESSION IN VLMS

As discussed in the previous section, inference FLOPs for VLMs increase proportionally with the
number of visual input tokens (e.g., 576 with CLIP-ViT-L visual encoder). Often, the number of
visual tokens dominate the total tokens processed by the language model, especially in applications
where the text input can be cached or is on the shorter side. Thus, there has been a growing interest
in developing approaches to compress the visual information into a fewer number of tokens.

More formally, let the visual encoder be defined as a function f(I) = X, where X ∈ Rn×d rep-
resents a sequence of n vision embedding tokens produced by the encoder from the input image
I. Token compression then learns a vision projector gθ(X) = Y that maps these embeddings X
to Y ∈ Rm×d, a compressed sequence of m < n tokens to be processed by the language model
(n = m for standard VLMs without any token compression). We refer the reader to § 5.1 for a
detailed discussion on some of the recent token compression algorithms.

Note that token compression doesn’t refer to using a smaller visual encoder or using smaller image
resolutions as inputs to the encoder. These approaches usually either do not decrease the visual
token count much (beyond around 224) or lead to a large drops in performance (Li et al., 2024a).

3 TOKENS VS PARAMETERS: INFERENCE TIME SCALING LAWS FOR VLMS

The deployment of vision language models in real-world applications comes with significant chal-
lenges, particularly surrounding inference latency and frames per second (FPS). For instance, in real-
time systems, such as automotive driver assistance or hazard monitoring, maintaining high FPS and
quick response times is crucial for safe and effective deployment. Consequently, reducing inference
FLOPs while minimizing downstream performance degradation is of critical, practical importance,
especially on consumer-grade edge devices, which are often severely compute constrained.

This has led to a growing interest in visual token compression for VLMs (§ 2.2). Alternatively, one
could also use a smaller LLM to reduce inference cost. However, both of the above factors directly
influence the downstream performance (§ 2.1). This raises a key question: Given a fixed inference
compute budget for VLMs, what is the optimal trade-off between the language model size and the
number of visual tokens processed? In our work, we answer this question by developing scaling
laws for VLMs that account for the varying parameter count of the language model component and
the number of visual input tokens processed by the language model. As mentioned in § 2.1, we
assume the inference cost from the visual encoder to be fixed and ignore it from here on out.
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3.1 TOKENS VS PARAMETERS: SCALING LAW FORMULATION

Recall that the performance of a VLM is primarily governed by the parameter count of the language
model and the number of visual tokens processed by the LLM, assuming a fixed visual encoder.
Accordingly, we model the scaling behavior of VLM performance as:

Y (N,T ) =
A

Nα
∗ B

T β
+D, (2)

where N denotes the LLM parameters, T denotes the total inference tokens, {A,B,D, α, β} are
learnable parameters, and Y (N,T ) is a measure of model quality. Although traditional scaling laws
have been studied in the context of training loss Kaplan et al. (2020), practitioners often use the
direct downstream performance to assess model quality (Gadre et al., 2024; Goyal et al., 2024b; Liu
et al., 2022). We use average performance error on a suite of nine commonly used visual reasoning
benchmarks (§ 3.2) as a measure of model quality Y (N,T ).

Below, we summarize the role of each of these learnable parameter in the scaling law (Eq. 2).

LLM Quality Parameter(α): This parameter dictates how the downstream error changes with the
complexity of the LLM, i.e., its parameter count. A higher α indicates a better language model, such
as Llama3-7B outperforming Llama2-7B, often due to superior pretraining.

Visual Token Quality Parameter(β): β captures the quality of the visual input tokens fed into
the LLM, reflecting the quality of the compression technique. A more efficient token compression
algorithm would yield a higher β, allowing for more reductions in number of T visual tokens than
less effective methods while maintaining the same downstream performance.

Constants A,B,D: A and B are normalizing constants and D refers to irreducible loss, which
cannot be reduced even with the largest N -sized language model or all T visual tokens (capped at
576 for our choice of vision encoder).

3.2 EXPERIMENTAL SETUP

VLM Training and Evaluation: We use the LLaVA-Next framework (Liu et al., 2024b) to train
VLMs with the Qwen-1.5 family of language models as the backbone. Specifically, we utilize
the {0.5, 1.8, 4, 7, 14}B-chat models (Bai et al., 2023). The pretraining and finetuning dataset and
hyperparameters follow Liu et al. (2024a), except we doubled the effective batch size for finetuning.

To estimate the downstream error Y (N,C), we test our trained VLMs on a suite of nine com-
monly used benchmarks for evaluating visual reasoning: MME (Fu et al., 2024), GQA (Hudson
& Manning, 2019), AI2D (Kembhavi et al., 2016), MMBench (Liu et al., 2024c), MMMU (Yue
et al., 2023), ScienceQA (Lu et al., 2022), MathVista (Lu et al., 2024), POPE (Li et al., 2023c),
and ChartQA (Masry et al., 2022). We average the normalized evaluation metric errors to compute
P (N,C). For MME, the Cognition and Perception scores were added and normalized, while the F1
score was used for POPE (Liu et al., 2024a). As previously mentioned in § 2.1, this set of datasets
was selected due to their similar prompt and generation length and overall comprehensiveness.

Visual Token Compression: CLIP ViT-L/14 (Radford et al., 2021) is used as the vision encoder for
all experiments, and we compress the original 576 tokens to {144, 64, 36, 16, 4, 1}. The compression
method is based on one of our variants of TokenPacker (Li et al., 2024c) which replaces interpolation
with a convolution for downsampling (no adding query embedding, refer to § 4 for more details).

Fitting Scaling Laws: We fit the proposed scaling law (Eq. 2) on {Y (N,T ), N, T} pairs, with
N ∈ {0.5B, 1.8B, 4B, 7B} and T ∈ {1, 4, 16, 36, 64, 144, 576} (described the experiment setup
above). We use grid-search, for its stability (Goyal et al., 2024b), to estimate the scaling parameters
α, β,A,B, and D. The final scaling law is evaluated on a N = 14B VLM model at various T
visual tokens. Further details about the grid-search fit can be found in Appendix A.3.

3.3 RESULTS: ESTIMATED SCALING CURVES

Figure 1 presents the fitted scaling curves, illustrating the variation in average downstream error
as a function of inference FLOPs. The scatter sizes represent the number of visual input tokens
processed by the language model, while the color scale indicates the varying number of language
model parameters. We make some key observations below.
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Log-Linear Relation between Error and Number of Visual Input Tokens: Consider the
change in performance for the 7B model as the number of visual input tokens varies (maroon curve
in Figure 1.) Recent works on visual token compression (Li et al., 2024c; Shang et al., 2024) claim
little to no performance degradation with token compression. For example, they report similar per-
formance to the base model’s 576 tokens even when visual token count is reduced to 36 or 144 on
certain tasks. However, our scaling curves in Figure 1 reveal a different trend, showing a log-linear
decrease in visual reasoning performance as the number of visual input tokens is reduced. We be-
lieve this discrepancy arises because of the limited downstream benchmarks evaluated in previous
works which may not fully capture the VLM’s overall capabilities.

Error Varies 5× Faster with LLM Parameters than with Tokens: Recall from the scaling law
(Eq. 2) that α represents the LLM quality parameter and β represents the visual token quality pa-
rameter, both denoting the rate at which they influence the downstream error respectively. From
Figure 1, we observe that for our selection of language model family (Qwen-1.5) and token com-
pression algorithm, α = 0.077 is more than five times larger than β = 0.015, signifying that VLM
error increases significantly faster when reducing the LLM parameters compared to reducing the
number of visual tokens. Therefore, when minimizing inference FLOPs, it is more effective to
prioritize reducing visual tokens (V ) first as the impact on performance is less pronounced than
reducing the LLM parameters (N ).
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Figure 2: Our scaling laws (fitted on 0.5-7B
VLMs), estimate the performance of 14B VLM
with an error margin of less than 2%.

Scaling Laws Hold for Increases in LLM
Scale: We evaluate the accuracy of our scal-
ing laws (fitted on VLMs of 0.5B-7B range)
for predicting the performance for larger mod-
els. We estimate the performance of Qwen-1.5
14B using our fitted scaling laws. Our scal-
ing laws estimate the performance with an error
margin of less than 2%, as visualized in Fig-
ure 2. The log-linear relationship between the
error and number of visual tokens persists, and
the greater influence of the LLM’s size com-
pared to visual tokens on performance contin-
ues to hold. Thus, for VLMs using 7B language
model backbones, it is still optimal to increase
LLM size to 14B while reducing visual token
count for fixed inference costs.

3.3.1 COMPUTE-OPTIMAL INFERENCE REQUIRES A SINGLE VISUAL EMBEDDING TOKEN

Observe the pareto optimal curve (black dotted curve) in Figure 1. Our results reveal a striking
insight: under a fixed inference budget, using the largest possible LLM while reducing the number
of visual tokens (often to one) gives the compute optimal behavior. At any given inference FLOPs (a
vertical line in Figure 1), the compute-optimal strategy is to allocate FLOPs towards a larger LLM
by reducing visual tokens to as few as one.

A similar trend holds in the Q = 50 regime, where the optimal number of visual tokens is around 16.
This can be intuitively explained by the fact that since the language model is already dedicating a
fixed amount of compute to process text input tokens, initial increase in the number of visual tokens
represents only a minor amount of the fraction of compute already being spent. Thus, the optimal
tokens seems to be 16 here, compared to 1 we observed in the cached token regime.

In Figure 4, we compare VLMs with varying combinations of LLM size and visual token counts
under a fixed inference budget. Observe that for many visual reasoning tasks, increasing the size of
the language model while reducing visual tokens can lead to significant relative gains. This may be
in part due to the scaling properties of the LLMs themselves, leading to models with stronger world
views that can better extrapolate with less visual information than their smaller counterparts (Rad-
ford et al., 2021; Wei et al., 2022). We note that this trade-off, although effective for visual reasoning,
does not extend to certain tasks, e.g., document comprehension, text identification, etc., where a sin-
gle or handful of tokens may not be able to incorporate the high density of information. We discuss
this in detail in § 3.4.
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(a) Performance trend changes based on LLM sizes
when varying number of input text token Q.
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(b) Scaling law for VLM token compression and LLM
model size on OCR-like tasks.

Figure 3: Performance trends when shifting input text token count and benchmark family.
Left: For visual reasoning tasks, as the number of text tokens increases, the impact of increasing
the number of visual tokens V , i.e., reducing compression, becomes more apparent. Intuitively, at
a large enough amount of text tokens, initial increases in visual tokens are only a minor fraction of
the overall compute. Right: When the family of tasks shifts from visual reasoning to OCR/text-
understanding, the trends shift: visual token count should be the prioritized instead of LLM size.

Scaling Inference Compute by Simply Repeating Tokens: Many recent works around scaling
test-time compute by introducing special tokens (Goyal et al., 2024a) or multiple parallel genera-
tions (Zelikman et al., 2024) have shown promising gains in reasoning tasks for language models.
We test this notion with VLMs by repeating the visual input tokens (compressed to 4) multiple times.
However, we do not observe any performance gains. This is most likely due to the downstream tasks
for VLMs being not as reasoning-intensive, thus highlighting the importance of developing better
token compression algorithms and potentially introducing more challenging benchmarks.

3.3.2 VARIATION IN OPTIMAL TOKENS WITH TEXT QUERY LENGTH

In the previous section, we observed that when the text input can be cached (Q = 0), compute
optimal inference requires the use of a single visual token paired with the largest possible LLM that
fits under the inference budget. This scenario covers many practical applications, such as monitoring
systems or scenarios where text input remains static. However, in interactive systems where the text
input can be dynamic and long, i.e., high Q, the situation changes.

In Figure 3a, we plot the average downstream error against FLOPs across different lengths of text
input tokens (Q), with the color of the lines representing the variations in Q. When comparing the
performance of the 7B model (solid curves) with the 4B model (dashed curves) at a high Q (indicated
by the green curves for each model), we observe that there is a sharp increase in error as inference
FLOPs are reduced for the 7B model, particularly when visual tokens are reduced significantly. At
a certain point (marked by the red dot in Figure 3a), it becomes more advantageous to use the 4B
model with a higher number of visual tokens rather than the 7B model with fewer tokens.

This phenomenon can be understood intuitively: as the LLM processes longer text sequences, the
computational cost incurred by text tokens is already considerable. Consequently, increasing the
number of visual tokens has a comparatively smaller impact on the overall inference FLOPs. There-
fore, for higher text token lengths (Q), increasing the number of visual tokens leads to better per-
formance without significantly increasing the computational burden. Thus, the optimal number of
visual input tokens rises with an increase in Q. This case demonstrates the need for careful balancing
of visual token count and LLM size, especially in scenarios where text inputs are long, to achieve
compute-optimal performance without sacrificing accuracy.

6
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Figure 4: Performances of various LLM size and visual token count combinations with similar
inference compute on two families of tasks. For many visual reasoning tasks, increasing the LLM
size by decreasing the number of visual tokens improves performance. However, for text recognition
tasks, decreasing the number of visual tokens is detrimental to performance.

3.4 SCALING LAWS FOR OCR TASKS

Until now, we have focused on scaling behavior for visual reasoning tasks, highlighting the key
finding that using a single visual token with the maximum possible LLM parameters is the inference-
optimal configuration. However, is the same valid for all tasks? VLMs have recently been applied
to document reading and OCR-style tasks where a single visual token may be insufficient due to
the high density of information. Unlike visual reasoning tasks, these tasks lack visual structure in
the image and intuitively need more tokens to record the (generally textual) details in the image.
We verify the same by fitting our scaling laws (Eq. 2) on DocVQA (Mathew et al., 2021) and
TextVQA (Singh et al., 2019) benchmarks, where the tasks require mainly OCR capabilities.

Figure 3b presents the fitted scaling law for OCR tasks. Notably, there are no significant gains in
average downstream performance from increasing LLM parameters; instead, the number of visual
tokens predominantly dictates the performance. This observation is reflected in the scaling law pa-
rameters, where the LLM-quality parameter α = 0.029 is nearly twice as smaller than the token
quality parameter β = 0.048. This trend is in stark contrast to the scaling parameters observed for
visual reasoning tasks where the LLM-quality parameter (α) was more than five times larger than
the token parameter (§3.3). This notion of visual tokens playing the significant role in text-in-image
recognition and understanding is further echoed in Figure 4, which shows token compression weak-
ens VLM performance despite increasing the capabilities of the LLM component to compensate.

3.5 GENERALIZATION ACROSS VLM ARCHITECTURE

We find that our scaling laws generalize with other visual token compression algorithms. We share
additional scaling law results on LLaVA-PruMerge (Shang et al., 2024) in Appendix A.1.

4 PROMPT-BASED TOKEN COMPRESSION

We observed in the previous sections that for visual reasoning tasks, only a few tokens are required
for compute optimal performance. Here we discuss the importance of query based token compres-
sion especially under extreme compression.

The Need for Token Compression in Extreme Regimes: While prior work has primarily fo-
cused on improving inference speeds by reducing the number of visual tokens while maintaining
the language model backbone, our findings suggest a need for a paradigm shift. Rather than aiming
for moderate token compression (e.g., reduction by 75%), the focus should shift towards developing
approaches tailored for extreme token reduction — down to 1, 4, or 16 tokens — with minimal
possible degradation. This would enable the use of larger LLM-backbones for the same inference
cost, compared to moderate reductions with the same backbone, while boosting performance.
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Query-Based CompressionOverall VLM Architecture
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Figure 5: Our query-based convolutional cross-attention (QueCC, pronounced “quick”) com-
pression technique. User input text tokens are first processed through the LLM backbone to gen-
erate text embeddings that are then combined with the visual tokens. Within QueCC, the query-
embedded visual tokens are downsampled via convolution. Next, local cross-attention is applied
between the downsampled tokens and their respective visual tokens regions. The compressed tokens
finally pass through an MLP into the LLM.

Our work takes initial steps in this direction by introducing a prompt-based token compression
strategy designed for such high-compression regimes. In cases where tokens are reduced to as
few as 1 or 4, selecting tokens based on the user’s input query becomes critical for retaining relevant
information and minimizing performance reductions. In the following section, we build over existing
token compression algorithms (Li et al., 2024c), to incorporate query-based token compression.
Figure 5 summarizes our query-based convolutional cross-attention (QueCC, pronounced “quick”)
compression technique.

User Query Information Injection: To make our projector prompt/query-dependent, we add the
text embedding of the user’s most recent prompt to the image embeddings from vision encoder. We
do this by taking the last hidden states prior to the LM head of the user input from the language
model as the representation of the user’s overall query. The hidden state converted into the text
embedding via a linear projection and added to the image visual token embeddings. These fused
tokens are later used as the query component for cross-attention. The text-embedding can easily
be cached for applications where the prompt is static or is part of a predetermined set. Even if
the prompt varies, the text-embedding can be pre-calculated prior to processing the image and KV
values cached and re-used when processing the visual and text tokens together for generation.

Token Downsampling with Cross-Attention and Learnable Convolutions: To compress the
number of visual tokens passed into the LLM, we utilize a region-based, cross-attention mechanism
that downsamples the vision encoder tokens, X, into a more information-dense form. The mecha-
nism hinges on the property that the X can be viewed as a

√
n×

√
n grid due to the vision encoder’s

patchification of the image. Li et al. (2024c;d) passes the “2D” version of X through a downsam-
pling function that compresses the input by a s2 factor where each resulting token corresponds with
a s × s region in the original input. After this, cross-attention is applied independently between
each downsampled token and the corresponding tokens in its s× s region. We improve upon bilin-
ear interpolation-based downsampling techniques (Li et al., 2024c; Wang et al., 2024b) by using a
learnable depth-wise 2D convolution filter of kernel size and stride s, providing better expressivity.

4.1 EXPERIMENTAL SETUP

We train our VLM using the same exact training regime, i.e., hyperparameters, training dataset,
CLIP ViT-L/14 vision encoder (Radford et al., 2021), etc., as LLaVA-1.5 (Liu et al., 2024a) and use
the pretrained Vicuna 7B model as the LLM component (Zheng et al., 2023). Like in Liu et al.
(2023), the vision encoder is frozen for both pretraining and instruction fine-tuning.

Based on the importance of high token compression underscored by our scaling laws (§ 3.3), we
focus on visual token budgets of {1, 4, 16, 36, 64}, resulting in compression rates of 88.9% to 99.8%.
We benchmark our method on a diverse, comprehensive set of datasets consisting of visual reasoning
and OCR/text-understanding tasks: GQA (Hudson & Manning, 2019), MMBench (MMB) (Liu
et al., 2024c), MME (Fu et al., 2024), POPE (Li et al., 2023c), ScienceQA (SQA) (Lu et al., 2022),
TextVQA (Singh et al., 2019) VizWiz (Gurari et al., 2018), and VQAv2 (Goyal et al., 2017).
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Method # Token GQA MMB MME POPE SQA TextVQA VizWiz VQAv2

LLaVA-1.5 576 62.0 64.3 1510.7 85.9 66.8 58.2 50.0 78.5

PruMerge ∼32 57.2* 60.9 1350.3 76.3 68.5 56.0 45.2* 72.0
TokenPacker 36 59.6 62.8 1440.9* 83.3* 71.0* 53.2* 50.2 75.0
Matryoshka Multi. 36 60.3 64.8 – 85.5 – – 52.8 –
Matryoshka Query 36 58.8 63.4 1416.3 81.9 66.8 – 51.0 73.7
QueCC (Ours) 36 60.5 62.5 1442.0 84.5 70.6 53.3 50.1 75.8

TokenPacker 16 58.9* 62.7* 1378.8* 83.7* 68.1* 52.5* 50.5* 74.4*
Matryoshka Query 16 57.6 61.9 1408.5 80.8 67.5 – 49.8 71.1
QueCC 16 59.0 62.2 1408.0 83.4 70.7 51.3 47.7 74.5

TokenPacker 4 56.2* 61.5* 1347.6* 81.7* 68.5* 49.2* 45.7* 70.5*
Matryoshka Query 4 53.0 56.5 1176.1 77.6 65.1 – 49.4 64.1
QueCC 4 56.5 62.1 1390.3 81.8 68.6 48.7 45.0 70.6

TokenPacker 1 53.4* 58.7* 1262.4* 80.7* 69.4* 46.2* 41.1* 66.9*
Matryoshka Multi. 1 52.6 59.5 – 78.4 – – 49.4 –
Matryoshka Query 2 50.8 54.4 1144.0 74.5 65.0 – 48.5 61.0
QueCC 1 53.5 59.4 1269.1 81.3 69.9 46.8 44.1 67.3

No Visual Tokens 0 37.7 21.0 697.8 45.4 63.6 41.7 44.4 41.0

Table 1: Comparison of various token compression methods for VLMs at different compression
rates. All models use the Vicuna-1.5 7B model as the language backbone. A ∗ denotes benchmark
results for other techniques we evaluated, while best scores are bolded, and second best underlined.
Our method outperforms alternatives on almost all benchmarks at extremely high compression re-
gions (visual tokens reduced to 1 or 4) and has strong performance at lower compression rates.

4.2 QUERY-BASED CONVOLUTIONAL CROSS-ATTENTION (QUECC) RESULTS

Table 1 presents the results of our QueCC algorithm in comparison to previous methods, includ-
ing TokenPacker (Li et al., 2024c), LLaVa-PruMerge (Shang et al., 2024), Matryoshka Multimodal
Models (Cai et al., 2024), and Matryoshka Query Transformer (Hu et al., 2024), in low token
regimes. We find that at our method performs better than alternatives at the highest levels of com-
pression on multiple different datasets. At the one token level, our method outperforms other meth-
ods on six of the eight datasets and is able to mitigate some of the shortcomings of the original
TokenPacker by reducing its gap between vanilla LLaVA-1.5 on VizWiz by 34% and ∼12% on both
POPE and MMBench. The trend continues at the four token level. Our model also exhibits strong
performance on GQA, MME, SQA, and VQAv2 across compression rates, signaling the prospects
of using the user’s query to identify key tokens.

5 RELATED WORK

5.1 TOKEN REDUCTION IN VISION-LANGUAGE MODELS (VLMS)

VLMs are composed of three key components: (a) a visual encoder that encodes the input images,
(b) a language model (LM) that processes the visual tokens from the encoder along with the user
text query, and (c) a projector that maps the visual tokens to the input embedding space of the LM.
Section § A.2 contains additional details exploring various projector designs. Often, the number of
visual tokens (576 tokens per image for CLIP-ViT-L, for instance) significantly exceeds the number
of text tokens, leading to high inference costs. This disproportionate scaling of visual tokens also
hinders multi-frame integration due to the limited context length of the model. Inference cost is
a critical factor in many real world applications of computer vision systems. Thus, reducing the
number of visual tokens processed by the language model has become an active area of research.

LLaVA-PruMerge (Shang et al., 2024) and Yu et al. (2024) propose training-free methods that filter
out visual tokens (from CLIP) that have a low similarity with the CLS token. TokenPacker (Li et al.,
2024c), on the other hand, learns a compact token compression module using cross-attention over
visual tokens, allowing for reduced number of tokens while preserving salient information. While
the above approaches focus on token reduction without directly changing the visual encoder (CLIP)
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output, recent works based on Matryoshka Representation (Cai et al., 2024; Hu et al., 2024) modify
the CLIP output directly to generate nested CLIP embeddings for a flexible token count. Zhang et al.
(2024) investigate methods that emphasize task-relevant pixels during image processing.

Another approach to reducing inference cost is adaptive token processing, where the compute ded-
icated to certain tokens at inference is varied Jain et al. (2024). Many methods prune visual to-
kens within the LLM due to their lower attention scores compared to the prompt, system, etc.,
tokens (Chen et al., 2024; Wan et al., 2024), a heuristic commonly found in regular text-only LLM
KV cache reduction techniques (Zhang et al., 2023; Oren et al., 2024). Finally, while we focus our
paper on image-based VLMs, a host of works (Xu et al., 2024; Shen et al., 2024) discuss token
compression for video processing using VLMs. We defer a discussion of these to Section A.2.

5.2 SCALING LAWS

Understanding how the performance of modern deep networks shifts as key design factors, such
as the number of parameters or training tokens, are scaled has become a focal point of research,
particularly as these models continue to grow in size and complexity. Scaling laws offer crucial
guidance for optimizing the architecture of such models. Notably, Kaplan et al. (2020); Hernandez
et al. (2021); Hoffmann et al. (2022) do a thorough investigation into training compute-optimal
language models, highlighting the need to scale pretraining tokens and parameters at the same rate.
Cherti et al. (2023); Gadre et al. (2023) perform a similar study on scaling laws for CLIP (Radford
et al., 2021), corroborating that performance improvements arise from increasing both parameter
counts and pretraining image-caption pairs.

Closest to our work, Li et al. (2024a) investigate what factors improve the performance of
LLaVA (Liu et al., 2023). They observe performance gains with increasing language model size,
visual encoder size, and input resolution. They investigate each of these factors when scaled in-
dependently. In contrast, in this work we focus on understanding the optimal trade-off between
language model size and the number of visual input tokens, given a fixed inference budget to fit
in. Note that in our work, visual input token count is varied (decreased) using token compression
algorithms (§ 5.1) and not by varying the input image resolution or using a different CLIP model.

While scaling the pretraining of LLMs has led to emergent capabilities, there has recently been
a growing interest in improving their reasoning capabilities by scaling inference time compute.
Brown et al. (2024) show impressive performance boosts if the language model is allowed mul-
tiple attempts on a problem. In fact, Snell et al. (2024) show that scaling test time compute by
parallel multiple generations at inference gives performance comparable to a 14× larger model on
math tasks. Goyal et al. (2024a) show performance gains by appending special tokens at the end of
input to scale test time compute. In contrast, we characterize the optimal trade-off between tokens
and parameters, for getting the best performance at a given fixed test time (inference) compute.

6 DISCUSSION AND CONCLUSION

In our work, we demonstrate that the optimal trade-off for VLMs inference is to use very few visual
input tokens along with the largest possible LLM that fits within the budget. This result has quite
important consequences. Existing works aim towards moderate reduction in token count (e.g., from
576 to 144), while trying to match the performance of the base model (no token reduction). However,
our results show that the community needs to focus towards extreme token reduction (e.g., down to
1, 4 or 16 tokens), as the inference optimal regime requires very few visual input tokens. Note
that although extreme token reduction can lead to a drop in performance compared to the base
model, it is still better than using more tokens with a smaller LLM. The performance with very few
visual tokens is poised to only improve further as we develop token reduction algorithms tailored for
extreme reduction. Our work takes an initial step in this direction by proposing input query-based
token reduction, as it is better to prioritize visual tokens with information relevant to the text input
query, under such an extreme token compression. While our findings are focused on visual token
compression at the projector level prior to passing into the LLM, we leave the compute-optimal
scaling properties of adaptive token processing algorithms that operate within the LLM component
for subsequent work. We hope that these critical insights from our paper will guide future research
towards developing better token reduction techniques and thus inference optimal VLMs.
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Ethics Statement: No additional harms beyond standard concerns exist from this line of research.
We study the scaling properties of existing models and do not foresee any potential introduction of
new biases or undesired behavior beyond what is expected.

Reproducibility Statement: The results of our paper are reproducible. For our scaling laws, we
reference the the framework and its associated training dataset and settings in § 3.2. The adjusted
compression technique used for the experiments is described in § 3.2 and § 4. The scaling law fitting
is discussed in § 3.2 and § A.3. For our QueCC compression method, we describe its implementation
in § 4 and the details of the experiments can be found in § 4.1.
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Azalia Mirhoseini. Large language monkeys: Scaling inference compute with repeated sampling,
2024. URL https://arxiv.org/abs/2407.21787.

Mu Cai, Jianwei Yang, Jianfeng Gao, and Yong Jae Lee. Matryoshka multimodal models, 2024.
URL https://arxiv.org/abs/2405.17430.

Liang Chen, Haozhe Zhao, Tianyu Liu, Shuai Bai, Junyang Lin, Chang Zhou, and Baobao Chang.
An image is worth 1/2 tokens after layer 2: Plug-and-play inference acceleration for large vision-
language models, 2024. URL https://arxiv.org/abs/2403.06764.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel Ilharco, Cade Gor-
don, Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for
contrastive language-image learning. In 2023 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, June 2023. doi: 10.1109/cvpr52729.2023.00276. URL
http://dx.doi.org/10.1109/CVPR52729.2023.00276.

Xiangxiang Chu, Limeng Qiao, Xinyang Lin, Shuang Xu, Yang Yang, Yiming Hu, Fei Wei, Xinyu
Zhang, Bo Zhang, Xiaolin Wei, and Chunhua Shen. Mobilevlm : A fast, strong and open vi-
sion language assistant for mobile devices, 2023. URL https://arxiv.org/abs/2312.
16886.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Meng Huat Tiong, Junqi Zhao, Weisheng Wang,
Boyang Li, Pascale Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language
models with instruction tuning, 2023. URL https://arxiv.org/abs/2305.06500.

Chaoyou Fu, Peixian Chen, Yunhang Shen, Yulei Qin, Mengdan Zhang, Xu Lin, Jinrui Yang, Xiawu
Zheng, Ke Li, Xing Sun, Yunsheng Wu, and Rongrong Ji. Mme: A comprehensive evaluation
benchmark for multimodal large language models, 2024. URL https://arxiv.org/abs/
2306.13394.

Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad, Rahim En-
tezari, Giannis Daras, Sarah Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani Marathe, Stephen

11

https://arxiv.org/abs/2204.14198
https://arxiv.org/abs/2309.16609
https://arxiv.org/abs/2407.21787
https://arxiv.org/abs/2405.17430
https://arxiv.org/abs/2403.06764
http://dx.doi.org/10.1109/CVPR52729.2023.00276
https://arxiv.org/abs/2312.16886
https://arxiv.org/abs/2312.16886
https://arxiv.org/abs/2305.06500
https://arxiv.org/abs/2306.13394
https://arxiv.org/abs/2306.13394


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei Koh, Olga Saukh, Alexan-
der Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi, Romain Beaumont, Sewoong Oh,
Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar, and Ludwig Schmidt. Datacomp:
In search of the next generation of multimodal datasets, 2023. URL https://arxiv.org/
abs/2304.14108.

Samir Yitzhak Gadre, Georgios Smyrnis, Vaishaal Shankar, Suchin Gururangan, Mitchell Worts-
man, Rulin Shao, Jean Mercat, Alex Fang, Jeffrey Li, Sedrick Keh, Rui Xin, Marianna Nezhurina,
Igor Vasiljevic, Jenia Jitsev, Luca Soldaini, Alexandros G. Dimakis, Gabriel Ilharco, Pang Wei
Koh, Shuran Song, Thomas Kollar, Yair Carmon, Achal Dave, Reinhard Heckel, Niklas Muen-
nighoff, and Ludwig Schmidt. Language models scale reliably with over-training and on down-
stream tasks, 2024. URL https://arxiv.org/abs/2403.08540.

Sachin Goyal, Ziwei Ji, Ankit Singh Rawat, Aditya Krishna Menon, Sanjiv Kumar, and Vaishnavh
Nagarajan. Think before you speak: Training language models with pause tokens, 2024a. URL
https://arxiv.org/abs/2310.02226.

Sachin Goyal, Pratyush Maini, Zachary C. Lipton, Aditi Raghunathan, and J. Zico Kolter. Scaling
laws for data filtering – data curation cannot be compute agnostic, 2024b. URL https://
arxiv.org/abs/2404.07177.

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in
vqa matter: Elevating the role of image understanding in visual question answering, 2017. URL
https://arxiv.org/abs/1612.00837.

Danna Gurari, Qing Li, Abigale J. Stangl, Anhong Guo, Chi Lin, Kristen Grauman, Jiebo Luo, and
Jeffrey P. Bigham. Vizwiz grand challenge: Answering visual questions from blind people, 2018.
URL https://arxiv.org/abs/1802.08218.

Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling laws for transfer,
2021. URL https://arxiv.org/abs/2102.01293.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hen-
nigan, Eric Noland, Katie Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, and Laurent Sifre.
Training compute-optimal large language models, 2022. URL https://arxiv.org/abs/
2203.15556.

Wenbo Hu, Zi-Yi Dou, Liunian Harold Li, Amita Kamath, Nanyun Peng, and Kai-Wei Chang. Ma-
tryoshka query transformer for large vision-language models, 2024. URL https://arxiv.
org/abs/2405.19315.

Drew A Hudson and Christopher D Manning. Gqa: A new dataset for real-world visual reasoning
and compositional question answering. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 6700–6709, 2019.

Gagan Jain, Nidhi Hegde, Aditya Kusupati, Arsha Nagrani, Shyamal Buch, Prateek Jain, Anurag
Arnab, and Sujoy Paul. Mixture of nested experts: Adaptive processing of visual tokens, 2024.
URL https://arxiv.org/abs/2407.19985.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models, 2020.

Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
Farhadi. A diagram is worth a dozen images, 2016.

Bo Li, Hao Zhang, Kaichen Zhang, Dong Guo, Yuanhan Zhang, Renrui Zhang, Feng
Li, Ziwei Liu, and Chunyuan Li. Llava-next: What else influences visual instruc-
tion tuning beyond data?, May 2024a. URL https://llava-vl.github.io/blog/
2024-05-25-llava-next-ablations/.

12

https://arxiv.org/abs/2304.14108
https://arxiv.org/abs/2304.14108
https://arxiv.org/abs/2403.08540
https://arxiv.org/abs/2310.02226
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/2404.07177
https://arxiv.org/abs/1612.00837
https://arxiv.org/abs/1802.08218
https://arxiv.org/abs/2102.01293
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2405.19315
https://arxiv.org/abs/2405.19315
https://arxiv.org/abs/2407.19985
https://llava-vl.github.io/blog/2024-05-25-llava-next-ablations/
https://llava-vl.github.io/blog/2024-05-25-llava-next-ablations/


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models, 2023a. URL https://
arxiv.org/abs/2301.12597.

KunChang Li, Yinan He, Yi Wang, Yizhuo Li, Wenhai Wang, Ping Luo, Yali Wang, Limin Wang,
and Yu Qiao. Videochat: Chat-centric video understanding, 2024b. URL https://arxiv.
org/abs/2305.06355.

Wentong Li, Yuqian Yuan, Jian Liu, Dongqi Tang, Song Wang, Jie Qin, Jianke Zhu, and Lei Zhang.
Tokenpacker: Efficient visual projector for multimodal llm, 2024c. URL https://arxiv.
org/abs/2407.02392.

Yanwei Li, Chengyao Wang, and Jiaya Jia. Llama-vid: An image is worth 2 tokens in large language
models, 2023b. URL https://arxiv.org/abs/2311.17043.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models,
2024d. URL https://arxiv.org/abs/2403.18814.

Yifan Li, Yifan Du, Kun Zhou, Jinpeng Wang, Wayne Xin Zhao, and Ji-Rong Wen. Evaluating
object hallucination in large vision-language models, 2023c. URL https://arxiv.org/
abs/2305.10355.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning, 2024a. URL https://arxiv.org/abs/2310.03744.

Haotian Liu, Chunyuan Li, Yuheng Li, Bo Li, Yuanhan Zhang, Sheng Shen, and Yong Jae Lee.
Llava-next: Improved reasoning, ocr, and world knowledge, January 2024b. URL https://
llava-vl.github.io/blog/2024-01-30-llava-next/.

Hong Liu, Sang Michael Xie, Zhiyuan Li, and Tengyu Ma. Same pre-training loss, better down-
stream: Implicit bias matters for language models, 2022. URL https://arxiv.org/abs/
2210.14199.

Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Dahua Lin. Mmbench: Is your multi-modal
model an all-around player?, 2024c. URL https://arxiv.org/abs/2307.06281.

Pan Lu, Swaroop Mishra, Tony Xia, Liang Qiu, Kai-Wei Chang, Song-Chun Zhu, Oyvind Tafjord,
Peter Clark, and Ashwin Kalyan. Learn to explain: Multimodal reasoning via thought chains for
science question answering. In The 36th Conference on Neural Information Processing Systems
(NeurIPS), 2022.

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. In International Conference on Learning Representations
(ICLR), 2024.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A
benchmark for question answering about charts with visual and logical reasoning, 2022. URL
https://arxiv.org/abs/2203.10244.

Minesh Mathew, Dimosthenis Karatzas, and C. V. Jawahar. Docvqa: A dataset for vqa on document
images, 2021. URL https://arxiv.org/abs/2007.00398.

Matanel Oren, Michael Hassid, Nir Yarden, Yossi Adi, and Roy Schwartz. Transformers are multi-
state rnns, 2024. URL https://arxiv.org/abs/2401.06104.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision, 2021. URL
https://arxiv.org/abs/2103.00020.

13

https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2301.12597
https://arxiv.org/abs/2305.06355
https://arxiv.org/abs/2305.06355
https://arxiv.org/abs/2407.02392
https://arxiv.org/abs/2407.02392
https://arxiv.org/abs/2311.17043
https://arxiv.org/abs/2403.18814
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2305.10355
https://arxiv.org/abs/2310.03744
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://llava-vl.github.io/blog/2024-01-30-llava-next/
https://arxiv.org/abs/2210.14199
https://arxiv.org/abs/2210.14199
https://arxiv.org/abs/2307.06281
https://arxiv.org/abs/2203.10244
https://arxiv.org/abs/2007.00398
https://arxiv.org/abs/2401.06104
https://arxiv.org/abs/2103.00020


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Nikhil Sardana, Jacob Portes, Sasha Doubov, and Jonathan Frankle. Beyond chinchilla-optimal:
Accounting for inference in language model scaling laws, 2024. URL https://arxiv.org/
abs/2401.00448.

Yuzhang Shang, Mu Cai, Bingxin Xu, Yong Jae Lee, and Yan Yan. Llava-prumerge: Adaptive token
reduction for efficient large multimodal models, 2024. URL https://arxiv.org/abs/
2403.15388.

Leqi Shen, Tianxiang Hao, Sicheng Zhao, Yifeng Zhang, Pengzhang Liu, Yongjun Bao, and
Guiguang Ding. Tempme: Video temporal token merging for efficient text-video retrieval, 2024.
URL https://arxiv.org/abs/2409.01156.

Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh,
and Marcus Rohrbach. Towards vqa models that can read, 2019. URL https://arxiv.org/
abs/1904.08920.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and Deng Cai. Pandagpt: One model to
instruction-follow them all, 2023. URL https://arxiv.org/abs/2305.16355.

Zhongwei Wan, Ziang Wu, Che Liu, Jinfa Huang, Zhihong Zhu, Peng Jin, Longyue Wang, and
Li Yuan. Look-m: Look-once optimization in kv cache for efficient multimodal long-context
inference, 2024. URL https://arxiv.org/abs/2406.18139.

Weihan Wang, Qingsong Lv, Wenmeng Yu, Wenyi Hong, Ji Qi, Yan Wang, Junhui Ji, Zhuoyi Yang,
Lei Zhao, Xixuan Song, Jiazheng Xu, Bin Xu, Juanzi Li, Yuxiao Dong, Ming Ding, and Jie Tang.
Cogvlm: Visual expert for pretrained language models, 2024a. URL https://arxiv.org/
abs/2311.03079.

Xidong Wang, Dingjie Song, Shunian Chen, Chen Zhang, and Benyou Wang. Longllava: Scaling
multi-modal llms to 1000 images efficiently via hybrid architecture, 2024b. URL https://
arxiv.org/abs/2409.02889.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models,
2022. URL https://arxiv.org/abs/2206.07682.

Yuetian Weng, Mingfei Han, Haoyu He, Xiaojun Chang, and Bohan Zhuang. Longvlm: Efficient
long video understanding via large language models, 2024. URL https://arxiv.org/
abs/2404.03384.

Jiaqi Xu, Cuiling Lan, Wenxuan Xie, Xuejin Chen, and Yan Lu. Slot-vlm: Slowfast slots for video-
language modeling, 2024. URL https://arxiv.org/abs/2402.13088.

Yuan Yao, Tianyu Yu, Ao Zhang, Chongyi Wang, Junbo Cui, Hongji Zhu, Tianchi Cai, Haoyu Li,
Weilin Zhao, Zhihui He, Qianyu Chen, Huarong Zhou, Zhensheng Zou, Haoye Zhang, Shengding
Hu, Zhi Zheng, Jie Zhou, Jie Cai, Xu Han, Guoyang Zeng, Dahai Li, Zhiyuan Liu, and Maosong
Sun. Minicpm-v: A gpt-4v level mllm on your phone, 2024. URL https://arxiv.org/
abs/2408.01800.

Gaotong Yu, Yi Chen, and Jian Xu. Balancing performance and efficiency: A multimodal large
language model pruning method based image text interaction, 2024. URL https://arxiv.
org/abs/2409.01162.

Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal
understanding and reasoning benchmark for expert agi. arXiv preprint arXiv:2311.16502, 2023.

14

https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2401.00448
https://arxiv.org/abs/2403.15388
https://arxiv.org/abs/2403.15388
https://arxiv.org/abs/2409.01156
https://arxiv.org/abs/1904.08920
https://arxiv.org/abs/1904.08920
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2305.16355
https://arxiv.org/abs/2406.18139
https://arxiv.org/abs/2311.03079
https://arxiv.org/abs/2311.03079
https://arxiv.org/abs/2409.02889
https://arxiv.org/abs/2409.02889
https://arxiv.org/abs/2206.07682
https://arxiv.org/abs/2404.03384
https://arxiv.org/abs/2404.03384
https://arxiv.org/abs/2402.13088
https://arxiv.org/abs/2408.01800
https://arxiv.org/abs/2408.01800
https://arxiv.org/abs/2409.01162
https://arxiv.org/abs/2409.01162


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Eric Zelikman, Georges Harik, Yijia Shao, Varuna Jayasiri, Nick Haber, and Noah D. Goodman.
Quiet-star: Language models can teach themselves to think before speaking, 2024. URL https:
//arxiv.org/abs/2403.09629.

Jiaxin Zhang, Wentao Yang, Songxuan Lai, Zecheng Xie, and Lianwen Jin. Dockylin: A large
multimodal model for visual document understanding with efficient visual slimming, 2024. URL
https://arxiv.org/abs/2406.19101.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
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A APPENDIX

A.1 GENERALIZING SCALING LAWS TO OTHER TOKEN COMPRESSION ALGORITHMS

We used state-of-the-art TokenPacker (Li et al., 2024c) as the vision projector in this work. Here,
we have added additional scaling laws when using LLaVa-PruMerge (Shang et al., 2024), one of the
first visual token compression projectors.

We find that the takeaways for our proposed scaling laws generalize across compression methods.
We fit our scaling laws on {36, 64, 144, 192, 228, 576} tokens across {0.5B, 1.8B, 4B} Qwen-1.5
models and evaluate as described in Section 3.2. Unlike many current projectors (Cai et al., 2024;
Hu et al., 2024; Li et al., 2024c), LLaVA-Prumerge suffers from massive performance drops in
extreme token compression regimes, stemming from its training-free methodology. Therefore, we
do not consider those conditions in its scaling laws.

When fitting using the same A,B,D values (from Eq. 2) , we find α = 0.069, β = 0.008 compared
to the reported α = 0.077, β = 0.015 for TokenPacker in Section 3.3. Similar values for α show
that our scaling law is capable of capturing the quality of the LLM across VLM architectures and the
decrease in β shows that the PruMerge compression algorithm of this VLM architecture is “weaker”
than TokenPacker, which was also empirically shown in our Table 1. Fitting the scaling laws from
scratch results in α = 0.077, β = 0.041. The increased β value (offset by larger values A,B) results
in performance error that only varies ∼2× faster with LLM parameters than with tokens. Thus, it is
shown that even with different VLM architectures, the main finding that compute-optimal inference
for visual reasoning and understanding tasks heavily favors LLM parameter count holds.
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Figure 6: Inference optimal scaling laws for PruMerge: When replacing the token compression
algorithm, the main findings still hold: inference-optimal behavior is still to increase the LLM pa-
rameter count by reducing visual tokens in fixed compute scenarios.

As shown in Figure 6, the optimal number of tokens for visual reasoning tasks while using PruMerge
is 36, the minimum token count we tested. This is analogous to the original scaling laws that found
the optimal token count for a stronger compression algorithm is one, as both scaling laws find that
for compute optimal inference, the smallest number of visual tokens should be used (up to massive
performance failure) while utilizing the largest LLM.

A.2 ADDITIONAL RELATED WORKS

A.2.1 VISION PROJECTOR DESIGN

To bridge the gap between the separate image and text modalities presented by the vision encoder
and language model respectively, vision projectors map the image tokens from the vision encoder
into the language space. Many design choices for the projector exist. Numerous VLMs utilize
query-based projectors, which combine the embeddings of visual tokens with that of query tokens
via cross-attention or similar mechanisms, like the Q-Former projector introduced BLIP-2 (Li et al.,
2023a) and used in following work (Dai et al., 2023; Zhu et al., 2023). Other VLMs use simple
linear projectors or MLPs to connect the encoder and LLM (Liu et al., 2023; 2024a; Su et al., 2023).
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While most architectures use the projectors to create new tokens to feed into the LLM alongside text,
some architectures like Flamingo (Alayrac et al., 2022) or CogVLM (Wang et al., 2024a) directly
interweave the visual information into the language model. In our work, we will be focusing on
projectors that fall in the former category.

A.2.2 ADDITIONAL APPROACHES FOR EFFICIENT VLMS

Apart from reducing the number of visual input tokens to the language model, people have explored
various other techniques, including a mix of quantization (Liu et al., 2024a) and smaller encoders or
language models (Yao et al., 2024; Chu et al., 2023; Zhou et al., 2024) for improving inference.

VLMs utilized in video processing often combine decreases in vision encoder output size with token
compression techniques to prevent excessive latency and memory constraints. Visual tokens are
often merged temporally across frames (Xu et al., 2024; Shen et al., 2024) as well as spatially
for individual frames (Xu et al., 2024). Vision encoders, such as Q-Former (Li et al., 2023a), are
preferred over more traditional CLIP models due to their ability to extract a smaller fixed number of
tokens per image (Weng et al., 2024; Li et al., 2024b). Although compression techniques used for
video processing often can reduce token counts by large margins, they are rarely evaluated on image
datasets, and when they are, compress visual tokens very little or not at all (Li et al., 2023b).

A.3 GRID SEARCH DETAILS

While there are many choices of optimizer for fitting the scaling laws like curve-fitting in SciPy,
gradient descent based solvers, etc. We observed that these are not stable and give varying so-
lutions. We converged to using grid-search to fit the scaling laws, similar to the recent works
like Goyal et al. (2024b). The grid-search range for each of the parameters were as follows:
α, β ∈ {0, 0.1}, A,B,D ∈ {0, 1}.

A.4 ADDITIONAL RESULTS FOR SCALING LAWS

We find that our original scaling laws are able to generalize and predict the performance of VLMs
at the 14B scale despite only being fitted up to the 7B scale. Our predictions result in less than 2%
error between the predicted and actual VLM performance on visual reasoning and understanding
tasks at the 14B model parameter scale. Performance is measured as described in Section 3.2.
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(a) Scaling law prediction for 14B LLM VLM at Q =
0.
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(b) Scaling law prediction for 14B LLM VLM at Q =
50.

Figure 7: Scaling law predictions at various Q. The scaling laws fitted based on LLMs up to the
7B scale generalize well to the 14B scale, resulting in less than 2% error between predicted and
actual VLM performance.
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# Token Model GQA MMB MME POPE SQA TextVQA VizWiz VQAv2

1 Conv and Query 53.5 59.4 1269.1 81.3 69.9 46.9 44.1 67.3
Query Only 53.3 59.2 1267.7 81.3 68.8 46.3 41.7 66.6
Conv Only 53.6 57.5 1215.5 80.6 69.1 46.4 45.6 66.7
No Conv, No Query 53.4 58.7 1262.4 80.7 69.4 46.2 41.1 66.9

4 Conv and Query 56.5 62.1 1390.3 81.8 68.6 48.7 45.0 70.6
Query Only 56.4 62.0 1345.9 82.3 70.7 48.8 46.5 70.6
Conv Only 56.7 60.6 1310.4 82.1 69.0 49.4 41.3 70.5
No Conv, No Query 56.2 61.5 1347.6 81.7 68.5 49.2 45.7 70.5

16 Conv and Query 59.0 62.2 1408.0 83.4 70.7 51.3 47.7 74.5
Query Only 56.6 61.4 1354.3 82.1 69.6 50.7 41.2 71.5
Conv Only 58.9 62.5 1402.3 82.5 69.6 52.6 45.7 74.1
No Conv, No Query 58.9 62.7 1378.8 83.7 68.1 52.5 50.5 74.4

Table 2: Comparison of model ablations across different token counts and configurations. Best
scores are bolded, and second-best scores are underlined for clarity. Adding both query and convo-
lutional components can help boost the baseline performance and can mitigate performance drops
that are associated with each individual component.

A.5 ABLATIONS OF PROMPT-BASED TOKEN COMPRESSION

We ablate the importance of the query injection and convolutional downsampling components and
report the results in Table 2. We find at extreme levels of compression that combining query and
convolution can magnify the benefits of either adding only query or only convolution; e.g., TextVQA
performance at token count one increased by 0.7 percentage points (pp) with both convolution and
query while using only one of the components led to at most 0.2 pp increase. In addition, combining
the two can mitigate performance drops that are associated with utilizing only query or convolu-
tion, as seen in MMB at one token where using only convolution drops performance by more than
1 pp but performance can not only be restored but also improved when adding query, eventually
outperforming the baseline by 0.7 pp; a similar situation can be seen for MME.

A.6 ADDITIONAL COMPARISONS TO MORE TOKEN COMPRESSION ALGORITHMS

# Token Model GQA POPE SQA TextVQA

16 LLaMA-VID 58.2 83.1 67.4 50.8
QueCC 59.0 83.4 70.7 51.3

4 LLaMA-VID 56.2 83.5 68.7 49.1
QueCC 56.5 81.8 68.6 48.7

Table 3: Comparison of LLaMA-VID and QueCC mod-
els across different visual/content token counts. LLaMA-
VID results, obtained from (Li et al., 2023b), utilizes the
context tokens, resulting in one addition overall token.

We also compare with LLaMA-
VID (Li et al., 2023b) which also has
strong performance in extreme com-
pression regimes. We compare the
performance of our method to its re-
ported performance at similar token
compression levels and show that we
are able to outperform it in certain
tasks despite LLaMA-VID utilizing
a stronger vision encoder (Li et al.,
2023b). Our analysis shows that both
our approach and theirs are compet-
itive, which also validates the key

point we wanted to make that query-based compression is necessary under extreme compression.
In addition, LLaMA-VID utilizes a separate text decoder model to process the user query, while our
method utilizes the existing LLM within the VLM model.
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