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ABSTRACT

Recent advancements in text-to-image generation models have witnessed the suc-
cess of large-scale diffusion-based generative models. However, exerting control
over these models, particularly for structure-conditioned text-to-image genera-
tion, remains an open challenge. One straightforward way to achieve control is
via fine-tuning, often coming at the cost of efficiency. In this work, we address
this challenge by introducing ELR-Diffusion (Efficient Low-rank Diffusion), a
method tailored for efficient structure-conditioned image generation. Our innova-
tive approach leverages the low-rank decomposition of model weights, leading to a
dramatic reduction in memory cost and model parameters — by up to 58%, at the
same time performing comparably to larger models trained with expansive datasets
and more computational resources. At the heart of ELR-Diffusion lies a two-stage
training scheme that resorts to the low-rank decomposition and knowledge dis-
tillation strategy. To provide a robust assessment of our model, we undertake a
thorough comparative analysis in the controllable text-to-image generation domain.
We employ a diverse array of evaluation metrics with various conditions, including
edge maps, segmentation maps, and image quality measures, offering a holistic
view of the model’s capabilities. We believe that ELR-Diffusion has the potential
to serve as an efficient foundation model for diverse user applications that demand
accurate comprehension of inputs containing multiple conditional information.

1 INTRODUCTION
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Figure 1: The comparison of computa-
tion costs between our method and Uni-
ControlNet (Zhao et al., 2023). Our
method significantly reduces the over-
all memory cost by 45% and a number
of trainable parameters by 58%, in the
meanwhile largely retaining the perfor-
mance.

In the realm of text-to-image (T2I) generation, diffusion
models exhibit exceptional performance in transforming
textual descriptions into visually accurate images. Such
models exhibit extraordinary potential across a plethora
of applications, spanning from content creation (Rombach
et al., 2022; Saharia et al., 2022b; Nichol et al., 2021;
Ramesh et al., 2021b; Yu et al., 2022; Chang et al., 2023),
image editing (Balaji et al., 2022; Kawar et al., 2023;
Couairon et al., 2022; Zhang et al., 2023; Valevski et al.,
2022; Nichol et al., 2021; Hertz et al., 2022; Brooks et al.,
2023; Mokady et al., 2023), and also fashion design. As
the field strives for more control over image generation,
enabling more targeted, stable, and accurate visual out-
puts, several models like T2I-Adapter (Mou et al., 2023),
Composer (Huang et al., 2023), and Uni-ControlNet (Zhao
et al., 2023) have emerged which aim to enhance control
over the image generation process. Despite their prowess,
ensuing challenges arise, particularly concerning memory
usage, computational requirements, and a thirst for exten-
sive datasets (Saharia et al., 2022a; Rombach et al., 2022;
Ramesh et al., 2021a). Controllable text-to-image generation models also often come at significant
computational costs, facing challenges such as linear growth in costs and size when dealing with
different conditions.
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Figure 2: The overview pipeline of our method. Our method improves the efficiency of controllable
text-to-image generation from two aspects. At Stage I, we propose an efficient pre-training method
for the standard text-to-image generation via knowledge distillation. For Stage II, we propose to
resort to low-rank and Kronecker decomposition to reduce the tunable parameter space.

To address these challenges, we present ELR-Diffusion, an innovative method tailored for the
U-Net architecture integral to diffusion-based T2I models. This method adeptly harnesses low-
rank structures to streamline the training of T2I diffusion models. We adopt a two-stage training
approach: First, we train a lightweight T2I diffusion model based on a standard U-Net architecture.
This is bolstered by the inclusion of knowledge distillation during the training phase. Next, we
fine-tune the model to enhance its capabilities for controlled T2I tasks. Such two-stage strategy
leads to substantial reductions in the resources needed for fine-tuning and also curtails the total
number of model parameters. Figure 1 presents a comparative analysis between our approach and
Uni-ControlNet (Zhao et al., 2023), particularly focusing on memory consumption and trainable
parameters.

Upon being trained on a sizable dataset encompassing 5 million text-image pairs, ELR-Diffusion
stands out by delivering performance metrics comparable to its counterparts—even those trained on far
larger datasets (e.g., 10 million text-image pairs from the LAION dataset)—as illustrated in Figure 2.
Central to our strategy is including a distinctive multi-scale knowledge distillation process. This
involves guiding a novice or ‘Student’ diffusion model using feature maps that draw upon the wisdom
of a more seasoned ‘Teacher’ model. For tasks centered around controlled T2I generation, we’ve
deployed a shared, Stable Diffusion encoder, reducing the number of trainable parameters and memory
cost via synergizing the prowess of low-rank formulations with the intricacies of the Kronecker
product. This aids in converting input conditions into conditional tokens, subsequently channeled
through a cross-attention mechanism. A pivotal insight from our study lies in the mathematical
congruence between the low-rank training processes across both training phases, unveiling the
symmetries in low-rank training trajectories across both phases.

Our primary contributions are summarized as follows:

• We propose ELR-Diffusion, a novel text-to-image generation model for efficient controllable
image generation tasks that substantially reduces training memory overhead and model
parameters concurrently.

• We propose a two-stage training scheme, at Stage I, we design a lightweight U-Net structure
via the low-rank decomposition and involve knowledge distillation in the training process.
At Stage II, we bring down the parameter and memory cost through low-rank decomposition
over the controller.

• ELR-Diffusion shows on-par performance with the Uni-ControlNet baseline with overall
58% trainable parameters and 45% training memory. Quantitative results validate the effec-
tiveness of our method on comprehensive metrics for controllable text-to-image generation
tasks.

2 METHOD

An overview of our proposed two-stage pipeline is shown in Figure 2. In Stage I, we train the U-Net
of a text-to-image model with a low-rank schema. Specifically, we employ matrix factorization
techniques that decompose high-dimensional matrices into smaller matrices, capturing essential
features with reduced computational overhead. This process is augmented through knowledge
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Figure 3: Overview of the Stage-1 training: Training a low-rank U-Net using knowledge distillation
from a teacher model (green) to the student model (blue). This process involves initializing the
student U-Net with a decomposition into low-rank matrices and minimizing the loss between the
predicted noise representations from the student and teacher.

distillation, visually represented in green on Figure 2. We then conduct efficient fine-tuning at Stage
II (shown in yellow part on Figure 2), where we employ low-rank decomposition and Kronecker
decomposition to streamline the parameter space.

2.1 BACKGROUND ON LOW-RANK TRAINING

Background on Training in Low-dimensional Space Let θD =
[
θ0

D . . . θm
D
]

be a set of m
D-dimensional parameters that parameterize the U-Net within the Stable Diffusion. Instead of
optimizing the noise prediction loss in the original parameter space

(
θD

)
, we are motivated to train

the model in the lower-dimensional space
(
θd
)

(Aghajanyan et al., 2020). Our overall pipeline is
trying to train the controllable text-to-image diffusion model in such a lower-dimension space to
improve the overall efficiency.

2.2 STAGE I: TRAINING A LOW-RANK U-NET

Low-rank Text-to-image Diffusion Model To establish a foundational understanding of our model,
it’s crucial to first comprehend the role of U-Nets in the diffusion process. In diffusion models, there
exists an input language prompt y that is processed by a text encoder τθ. This encoder projects y
to an intermediate representation τθ(y) ∈ RM×dτ , where M is denotes the token length, and dτ
denotes the dimension of the embedding space . This representation is subsequently mapped to the
intermediate layers of the U-Net through a cross-attention layer given by

Attention(Q,K, V ) = softmax

(
QKT

√
d

)
V, (1)

with Q = WQφi (zt) , K = WKτθ(y), V = WV τθ(y). In this context, φi (zt) ∈ RN×dϵ is an
intermediate representation of the U-Net. The terms WV ∈ Rd×dϵ ,WQ ∈ Rd×dτ ,WK ∈ Rd×dτ

represent learnable projection matrices.

Shifting focus to the diffusion process, during the t-timestep, we can represent:

K = WKτθ(y) = ABτθ(y), V = WV τθ(y) = ABτθ(y), (2)

where A and B are decomposed low-rank matrices from the cross-attnetion matrices, dτ and dϵ
denote the dimension for the text encoder and noise space respectively. Conventionally, the diffusion
model is trained via minimizing Lθ =

∥∥ϵ − ϵθ
∥∥2
2
, where ϵ is the groundtruth noise and ϵθ is the

predicted noise from the model.

To fully exploit the prior knowledge from the pre-trained teacher model while exploiting less data and
training a lightweight diffusion model, we propose a new two-stage training schema. The first one is
the initialization strategy to inherit the knowledge from the teacher model. Another is the knowledge
distillation strategy. The overall pipeline is shown in Figure 3.
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2.2.1 INITIALIZATION

Directly initializing the student U-Net is not feasible due to the inconsistent matrix dimension across
the Student and teacher U-Net. We circumvent this by decomposing U-Net into two low-rank
matrices, namely A and B for the reconstruction. We adopt an additional transformation to adapt the
teacher’s U-Net weights to the Student, which leverages the Singular Value Decomposition (SVD)
built upon the teacher U-Net. The initialization process can be expressed as:

1. Compute the SVD of the teacher U-Net: Starting with the teacher U-Net parameterized by
θ0, we compute its SVD as θ0 = UΣV T .

2. Extract Low-Rank Components: to achieve a low-rank approximation, we extract the first k
columns of U , the first k rows and columns of Σ, and the first k rows of V T . This results in
matrices Uk, Σk, and V T

k as follows:

Uk = first k columns of U, Σk = first k rows & columns of Σ, V T
k = first k rows of V T

3. We then initialize the student U-Net with UkΣk and V T
k that encapsulate essential informa-

tion from the teacher U-Net but in a lower-rank format.

We observe in practice that such initialization effectively retains the prior knowledge inherited
from Teacher U-Net while enabling the student U-Net to be represented in a compact form thus
computationally more efficient for later training.

2.2.2 LOSS FUNCTION

We propose to train our Student U-Net with knowledge distillation (Meng et al., 2023) to mimic the
behavior of a teacher U-Net. This involves minimizing the loss between the student’s predicted noise
representations and those of the teacher. To be specific, our training objective can be expressed as:

Lθ = w (λt)
∥∥ϵ̃− ϵ̂θ

∥∥2
2
, (3)

where ϵ̃ denotes the predicted noise in the latent space of Stable Diffusion from the teacher model,
ϵ̂θ is the corresponding predicted noise from the student model, parameterized by θ, and w (λt) is a
weighting function that may vary with the time step t. Such an objective encourages the model to
minimize the squared Euclidean distance between the teacher and Student’s predictions thus providing
informative guidance to the Student. We also tried combining the loss with the text-to-image Diffusion
loss but using our training objective works better.

2.3 DISCUSSION: CONNECTION BETWEEN LORA AND OUR EFFICIENT TRAINING PARADIGM

In this section, we discuss the connections between LoRA (Low-Rank Adaptation) fine-tuning (Hu
et al., 2021) and our proposed efficient training method, centering on the low-rank structure of the
model.

2.3.1 LORA FINE-TUNING V.S. ELR-DIFFUSION

LoRA optimizes a model by constraining the rank of the difference between the fine-tuned parameters,
θ, and the initial parameters θ0. The objective can be expressed as:

rank(θ − θ0) = k, (4)

where k is the pre-determined rank constraint. This method transforms the optimization problem into
a constrained lower-dimensional subspace.

In contrast to LoRA, our method introduces a low-rank U-Net architecture by designating the weights
at initialization as low-rank so that:

rank(θ0) = k, (5)

where θ0 denotes low-rank learnable parameters. Instead of introducing extra parameters for di-
mensionality reduction, we aim to facilitate efficient training by reducing the dimensionality of
parameters.
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2.3.2 EQUIVALENCE PROOF

We note that our proposed efficient training is intrinsically similar to LoRA in that they optimize
identical target functions. In specific:

LoRA Paradigm: Given an input x, LoRA computes the output h in such a way that:

h = (θ0)
⊤
x+ (∆θ)⊤x = (θ0 +∆θ)

⊤
x = (θ0 + (T− I) · θ0)⊤ x, (6)

where ∆θ is the change of parameters from fine-tuning, and T is a general transformation matrix.

Our Paradigm: For our method, the output h is obtained with a low-rank initialized parameter θd0
so that:

h = (θd0)
⊤x = (T (θ0))

⊤
x = (θ0 + (T− I) · θ0)⊤ x. (7)

From the equations above, it is shown that both methods transform the optimization objective into
a lower-dimensional space. LoRA achieves this via fine-tuning separate parameters, whereas our
method takes advantage of a low-rank U-Net structure from the initialization stage.

2.4 STAGE II: FINE-TUNING FOR CONTROLLABLE TEXT-TO-IMAGE GENERATION

To achieve flexible control over the generated images and harness the potential of the foundational
model developed in Stage I, we delve into the second stage of our approach. This stage aims to
integrate enhanced control mechanisms without ballooning the computational overhead.

Local Control Adapter and Condition Injection Inspired by ControlNet, we fix the weights of
a Stable Diffusion (SD) model (Rombach et al., 2022) and use it as a backbone. We leverage the
network architecture and weights of the encoder and middle block from the U-Net backbone, denoting
them as F ′ and M ′, respectively. This architecture and the weights inherit the low-rank format from
our Stage I training. We modify the input of the decoder to gradually integrate control information
into the main backbone. Unlike ControlNet, which directly applies conditions to input noises, we
adopt a multi-scale condition injection strategy that extracts features at different resolutions and
uses them for condition injection referring to the implementation of Feature Denormalization (FDN)
in Zhao et al. (2023), expressed as:

FDN (Z, c) = norm (Z) · (1 + Φ (zero (hr (c)))) + Φ (zero (hr (c))) , (8)

where Z denotes noise features, c denotes the input conditional features, Φ denotes learnable
convolutional layers, and zero denotes zero convolutional layer. The zero convolutional layer
contains weights initialized to zero. This ensures that during the initial stages of training, the model
relies more on the knowledge from the backbone part, gradually adjusting these weights as training
progresses. The use of such layers aids in preserving the architecture’s original behavior while
introducing structure-conditioned inputs.

Parameter Reduction through Low-Rank Decomposition Building on the low-rank methods used
during Stage I training, we hypothesize that the update weights of the copied encoder, denoted as ∆W ,
can be adapted in a low-rank subspace via Kronecker decomposition and low-rank decompostion to
further reduce parameter cost. This leads to:

∆W =

n∑
i=1

Ai ⊗
(
uiv

⊤
i

)
, (9)

with ui ∈ R k
n×r and vi ∈ Rr× d

n , where r is the rank of the matrix which is a small number, Ai

are the decomposed learnable matrices, and ⊗ is the Kronecker product operation. The low-rank
decomposition ensures a consistent low-rank representation strategy. This approach substantially
saves trainable parameters, allowing efficient fine-tuning of the copied encoder.
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3 EXPERIMENTS

In this section, we embark on evaluating our ELR-Diffusion method across two stages, focusing
primarily on the task of controllable text-to-image (T2I) generation. By controllable generation,
we are referring to the generation of images based on structured input conditions, specifically the
sketch maps, edge maps, and the segmentation maps. We begin by detailing the datasets( 3.1) we
have utilized, followed by the diverse set of evaluation metrics employed to quantitatively assess
our model’s performance ( 3.2). Our experimental setup ( 3.3) provides insight into the specific
models and techniques we have incorporated, after which we present a comparative study of our
approach against the widely recognized Uni-ControlNet in the controllable text-to-image generation
domain ( 3.4). We then offer a synthesis of our findings through tables that showcase efficiency and
performance measures ( 3.5), culminating with a qualitative analysis contrasting our results with
Uni-ControlNet across various structural input conditions.

3.1 DATASETS

In alignment with our goal of controlled T2I generation, we employed the LAION-6+ (Schuhmann
et al., 2022) dataset. We first curated a subset consists of 5,082,236 examples by deduplicating,
omitting images with copyright and NSFW issues, and filtering based on resolution. Given the
controlled generation tasks we target, we collect training data based on additional input conditions
such as sketch maps, edge maps, and the segmentation maps, The feature extraction process for these
maps was based on the methodology presented in (Zhang & Agrawala, 2023).

3.2 EVALUATION METRICS

Our model’s performance is assessed using various metrics tailored to different aspects of the
generated output:

• Normalized Mean Square Error (NMSE): We use the Normalized Mean Squared Error
to quantify the difference between the predicted and actual edge maps. For the generated
images, we extract the edge mapsr (Canny, 1986) and then measure the MSE between the
predicted map and the actual map. A lower value signifies that the predicted maps closely
resemble the actual maps.

• Intersection over Union (IoU) (Rezatofighi et al., 2019): Intersection over Union measures
the overlap between the predicted and ground truth segmentation maps. A higher IoU score
demonstrates better segmentation accuracy.

• FID: We use FID (Heusel et al., 2017) to measure the realism and variation of the generated
images. A lower FID indicate superior quality and diversity of the output images.

• CLIP Score (Hessel et al., 2021; Radford et al., 2021)1: We use CLIP Score to measure
the semantic similarity between the generated images and the input text prompts, as well
as the sketch maps. The strength of the CLIP Score lies in its ability to embed both visual
and textual information into a shared semantic space, making it a potent metric to assess
the consistency between visual outputs (like sketch maps and generated images) and textual
descriptions.

3.3 EXPERIMENTAL SETUP

We employed the Stable Diffusion 2.1 2 model in conjunction with xFormers (Lefaudeux et al., 2022)
and FlashAttention (Dao et al., 2022) using the implementation available in HuggingFace Diffusers. 3

Our approach emphasizes efficiency improvements through the decomposition of model weights,
particularly the U-Net architecture. For the computational setup, our experiments were mainly
conducted on AWS EC2 instances, specifically on P3 instances containing 64 NVIDIA V100 GPUs
for fine-tuning. In Stage I, we used the standard training scheme of Stable Diffusion Rombach et al.
(2022) without the classifier-free guidance (Ho & Salimans, 2022). In Stage II, as a same setup with

1https://github.com/jmhessel/clipscore
2https://huggingface.co/stabilityai/stable-diffusion-2-1
3https://huggingface.co/docs/diffusers/index
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Table 1: Comparing U-Net models: Original, decomposed, with and without Knowledge Distillation. ELR-
Diffusion-Stage I showcases a promising balance between performance and efficiency. Note that compared
with Stable Diffusion, ELR-Diffusion-Stage I is only trained on 5 million data. ELR-Diffusion-Stage I beats
Decomposed U-Net w/o Distillation interms of FID and CLIP Score, suggesting the effectiveness of our
distillation strategy in training the decomposed U-Net.

Methods FID↓ CLIP Score↑ # Parameters ↓

Stable Diffusion 27.7 0.824 1290M
Standard U-Net w/o Distill. 66.7 0.670 1290M
Decomposed U-Net w/o Distill. 84.3 0.610 790M
ELR-Diffusion-Stage I 45.0 0.768 790M

Table 2: Efficiency and controllability comparison: Our method vs. Uni-ControlNet for text-to-image generation.
Notably, ELR-Diffusion-Stage II exhibits significant reductions in memory cost, trainable parameters, and
training time, while maintaining competitive performance metrics across various tasks.

Metric Uni-ControlNet Ours-Stage II

Efficiency
Memory Cost ↓ 20GB 14GB
# Params. ↓ 1271M 750M
Training Time ↓ 5.72s/it 2.15s/it

Performance

Sketch Maps (CLIP Score ↑) 0.49 0.45
Edge Maps (NMSE ↓) 0.60 0.60
Segmentation Maps (IoU ↑) 0.70 0.74
Image Quality (FID ↓) 27.7 27.5

Uni-ControlNet, we trained our model with 1 epoch. We adopted the AdamW optimizer (Kingma &
Ba, 2014) with the learning rate of 105. In all of our experiments, we resized the input images and
extracted conditional images to resolutions of 512× 512.

3.4 BASELINES

We compared our method against Uni-ControlNet, a widely used baseline in the text-to-image gener-
ation task. Uni-ControlNet is designed for unified controllable text-to-image generation, balancing
the trade-off between model complexity and expressive power. Our method further explores potential
efficiency improvement through model decomposition and low-rank optimization while maintaining
comparable performance.

3.5 RESULTS

Table 1 illustrates the comparison between different variations of our method in Stage I, including
original U-Net, decomposed low-rank U-Net, and their respective performance with and without
knowledge distillation. It is observed that the decomposed low-rank U-Net models demonstrate
efficiency gains, with a reduction in the total number of parameters to 790M, although at the cost of
some fidelity in metrics such as FID and CLIP Score. Employing distillation helps to mitigate some
of these performance reductions.

From Table 2, it is evident that our method offers significant efficiency gains over Uni-ControlNet,
with a 30% reduction in memory cost and a decrease in trainable parameters from 1271M to 750M,
with the original full number of parameters in Stage II being 1478M. At the same time, the training
time cost per iteration reduces from 5.72s to 2.15s. Our approach maintains the original full parameter
count while optimizing the model’s efficiency. Table 2 highlights our method’s performance in terms
of the metrics for different input conditions in comparison to Uni-ControlNet. While showing a
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Table 3: Performance and resource metrics comparison of ELR-Diffusion with the baseline Uni-
ControlNet. The ELR-Diffusion approach with distillation shows a significant reduction in resource
consumption while providing competitive image quality and outperforming in controllability metrics,
especially in segmentation maps. The ∆ column shows the improvement of ELR-Diffusion (w/o
distillation) compared with no distillation.

Metrics Uni-ControlNet ELR-Diffusion
∆

w/o Distill. w/ Distill.

Efficiency Memory Cost ↓ 20GB 11GB 11GB 0
# Params. ↓ 1271M 536M 536M 0

Image Quality FID ↓ 27.7 84.0 43.7 - 40.3
CLIP Score ↑ 0.82 0.61 0.77 +0.16

Controllability
Sketch Maps (CLIP Score)↑ 0.49 0.40 0.46 +0.06

Edge Maps (NMSE ) ↓ 0.60 0.54 0.57 +0.03
Segmentation Maps (IoU) ↑ 0.70 0.40 0.74 +0.34

ELR-Diffusion

UnicontrolNet

Structural Input Condition

Segmentation 
Maps

Edges MapsSketch Maps Depth Maps

Figure 4: Qualitative comparison of ELR-Diffusion finetuned for controllable text-to-image genera-
tion task with Uni-ControlNet as baseline. ELR-Diffusion shows comparable performance with the
Uni-ControlNet.

slight decrease in F1 score for edge maps, our method outperforms Uni-ControlNet in Normalized
MSE, IoU, and Inception Score. This demonstrates our approach’s capability to enhance performance
across various aspects of text-to-image generation, including edge maps, depth maps, segmentation
maps, and image quality.

Table 3 illustrates the comparison between our method and the baseline training end-to-end. It is
observed that the decomposed low-rank U-Net models demonstrate efficiency gains, with a reduction
in the total number of parameters to 790M, although at the cost of some fidelity in metrics such as
FID and CLIP Score. Employing distillation helps to mitigate some of these performance reductions.

These collective results affirm our method’s capability to not only enhance efficiency but also improve
or maintain performance across various aspects of text-to-image generation.
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3.6 QUALITATIVE RESULTS

We show the qualitative comparison of Stage II in Figure 4. As can be seen, ELR-Diffusion can
achieve competitive results with the baseline Uni-ControlNet under three different structural input
conditions: segmentation map, canny edges, and sketch edges.

4 RELATED WORK

ELR-Diffusion is an instance of efficient training in the vision-and-language domain. Here, we
overview modeling efforts in the subset of efficient training towards reducing parameters and memory
cost as well as knowledg distillation strategies.

Efficient Training Prior work has proposed efficient training methodologies both for pre-training
and fine-tuning. These methods have established their efficacy across an array of language and
vision tasks. One of these explored strategies is Prompt Tuning (Lester et al., 2021), where trainable
prompt tokens are appended to pre-trained models (Schick & Schütze, 2020; Ju et al., 2021; Jia
et al., 2022). These tokens can be added exclusively to input embeddings or to all intermediate
layers (Li & Liang, 2021), allowing for nuanced model control and performance optimization.
Low-Rank Adaptation (LoRA) (Hu et al., 2021) is another innovative approach that introduces
trainable rank decomposition matrices for the parameters of each layer (Hu et al., 2021). LoRA
has exhibited promising fine-tuning ability on large generative models, indicating its potential for
broader application. Furthermore, the use of Adapters inserts lightweight adaptation modules into
each layer of a pre-trained transformer (Houlsby et al., 2019; Rücklé et al., 2021). This method
has been successfully extended across various setups (Zhang et al., 2021; Gao et al., 2021; Mou
et al., 2023), demonstrating its adaptability and practicality. Other approaches including post-training
model compression (Fang et al., 2023) facilitate the transition from a fully optimized model to a
compressed version – either sparse (Frantar & Alistarh, 2023), quantized (Li et al., 2023; Gu et al.,
2022), or both. This methodology was particularly helpful for parameter quantization (Dettmers et al.,
2023). Different from these methodologies, our work puts forth a new unified strategy that aims to
enhance the efficient training of text-to-image diffusion models through the leverage of low-rank
structure. Our proposed method integrates principles from these established techniques to offer a
fresh perspective on training efficiency, adding to the rich tapestry of existing solutions in this rapidly
evolving field.

Knowledge Distillation for Vision-and-Language Models Knowledge distillation (Gou et al.,
2021), as detailed in prior research, offers a promising approach for enhancing the performance
of a more streamlined “student” model by transferring knowledge from a more complex “teacher”
model (Hinton et al., 2015; Sanh et al., 2019; Hu et al.; Gu et al., 2021; Li et al., 2021). The crux
of this methodology lies in aligning the predictions of the student model with those of the teacher
model. While a significant portion of existing knowledge distillation techniques leans towards
employing pre-trained teacher models (Tolstikhin et al., 2021), there has been a growing interest in
online distillation methodologies (Wang & Jordan, 2021). In online distillation (Guo et al., 2020),
multiple models are trained simultaneously, with their ensemble serving as the teacher. Our approach
is reminiscent of online self-distillation, where a temporal and resolution ensemble of the student
model operates as the teacher. This concept finds parallels in other domains, having been examined
in semi-supervised learning (Peters et al., 2017), label noise learning (Bengio et al., 2010), and
quite recently in contrastive learning (Chen et al., 2020). Our work on distillation for pre-trained
text-to-image generative diffusion models distinguishes our method from these preceding works.
Salimans & Ho (2022); Meng et al. (2023) propose distillation strategies for diffusion models but
they aim at improving inference speed. Our work instead aims to distill the intricate knowledge of
teacher models into the student counterparts, ensuring both the improvements over training efficiency
and quality retention.

5 CONCLUSION

This work introduces an efficient optimization approach for diffusion-based text-to-image generation.
Our experimental results demonstrate a substantial reduction in memory cost and trainable param-
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eters without compromising inference time or performance. Our study offers an exciting avenue
toward more resource-efficient models, paving the way for text-to-image generation applications on
constrained hardware or for large-scale deployments. The potential applications of our method are
vast, suggesting its importance in the continually evolving domain of image synthesis. Future work
may explore more sophisticated decomposition techniques and their impact on different architectures,
furthering the pursuit of an optimal balance between model efficiency, complexity, and expressive
power.
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