What Makes a Good Reasoning Chain?
Uncovering Structural Patterns in Long Chain-of-Thought Reasoning

Anonymous ACL submission

Abstract

Recent advances in reasoning with large lan-
guage models (LLMs) have popularized Long
Chain-of-Thought (LCoT), a strategy that en-
courages deliberate and step-by-step reason-
ing before producing a final answer. While
LCoTs have enabled expert-level performance
in complex tasks, how the internal structures
of their reasoning chains drive, or even predict,
the correctness of final answers remains a crit-
ical yet underexplored question. In this work,
we present LCoT2Tree, an automated frame-
work that converts sequential LCoTs into hier-
archical tree structures and thus enables deeper
structural analysis of LLM reasoning. Using
graph neural networks (GNNs), we reveal that
structural patterns extracted by LCoT2Tree, in-
cluding exploration, backtracking, and verifica-
tion, serve as stronger predictors of final perfor-
mance across a wide range of tasks and models.
Leveraging an explainability technique, we fur-
ther identify critical thought patterns such as
over-branching that account for failures. Be-
yond diagnostic insights, the structural patterns
by LCoT2Tree support practical applications,
including improving Best-of-N decoding effec-
tiveness. Overall, our results underscore the
critical role of internal structures of reasoning
chains, positioning LCoT2Tree as a powerful
tool for diagnosing, interpreting, and improv-
ing reasoning in LLMs.

1 Introduction

Large Language Models (LLMs) have achieved re-
markable progress in nature language understand-
ing and processing, with recent developments ex-
tending their capabilities to more complex reason-
ing tasks. Cutting-edge models such as OpenAl
03 (OpenAl, 2025) and DeepSeek R1 (Guo et al.,
2025) push this frontier by emulating System 2
thinking (Li et al., 2025b), i.e, engaging in slow,
deliberate, and step-by-step reasoning before arriv-
ing at a final answer. This approach, well known as

MATH

0.301 Postive samples

-‘E 0.20 1 Negative samples
=

[}

2 0.104

- T e ———

0.00 -+ T T T T U T
0.0 2.5 5.0 7.5 10.0 12.5 15.0
GPQA
0.10 1
e
g 0.05
0.00 - T T T T T T
0.0 25 5.0 7.5 10.0 12.5 15.0
Length (K)

Figure 1: The distribution of output token length for
correctly answered (Positive) and incorrectly answered
(Negative) samples by DeepSeek-R1-Distill-Qwen-32B
on two datasets.

Long Chain-of-thought (LCoT) reasoning (Chen
et al., 2025; Gandhi et al., 2025), has empowered
LLMs to achieve expert-level performance in chal-
lenging tasks such as mathematics, code generation,
and scientific problem-solving (Seed et al., 2025;
Team et al., 2025; Team, 2024). Despite their grow-
ing adoption, LCoTs remain largely a black box in
one key aspect: what makes a good thought chain?

Before the emergence of LCoT, researchers at-
tempted to answer this question from a seman-
tic perspective, often using process reward mod-
els (PRMs) that provide token-level or step-wise
supervision based on logical coherence and fac-
tual accuracy (Xia et al., 2025; Zhang et al., 2025).
While effective for short or moderately long CoTs,
PRMs struggle to scale effectively as the length
and structure complexity of reasoning chains in-
crease (He et al., 2025). In the LCoT era, recent
work has increasingly emphasized the importance
of reasoning structure (Gandhi et al., 2025; Li et al.,
2025a; Ye et al., 2025). Both Wu et al. and Ballon
et al. highlighted the overthinking phenomenon,
where overly long reasoning chains can degrade
rather than improve final answer quality. However,
our analysis (Figure 1) shows that response length

alone remains an inadequate predictor of answer
correctness, as responses with similar lengths vary
greatly in correctness. These findings suggest that
these heuristics, such as token count, step count,
or PRM-based semantic metrics fall short in effec-
tively dictating reasoning success.

Thus, we propose Long Chain-of-Thought to
Tree (LCoT2Tree), the first automated frame-
work for structural analysis of reasoning in LLMs.
LCoT2Tree transforms sequential LCoTs into hier-
archical tree representations (Section 3.2), which
enable structural patterns in reasoning chains, in-
cluding exploration, backtracking, and verification,
to be made explicit and analyzable. By modeling
these trees with graph neural networks (GNNs),
we not only extract these structural patterns as fea-
tures, but also demonstrate that they serve as strong
predictors of reasoning success (Section 3.3).

Beyond establishing their predictive power, we
further investigate which structural patterns specifi-
cally contribute to reasoning success or failure, how
these patterns vary across tasks and models, and
how they can be applied to further enhance LLM
reasoning in practice. Concretely, by leveraging a
GNN-based explainability method, we unveil key
thought patterns (i.e., critical substructures within
the tree) that that explain answer correctness across
diverse tasks and models (Section 4). These anal-
yses reveal how reasoning behaviors differ by (1)
answer correctness, (2) task type, and (3) model
variant. Furthermore, we demonstrate that these
patterns can be leveraged to improve Best-of-N
decoding: incorporating our tree-based predictive
classifier into its selection strategy consistently en-
hances accuracy across diverse models and tasks
(Section 5). We summarize the main contributions
of the proposed LCoT2Tree in three aspects:

* (Predictability) We are the first to explicitly con-
struct structural representations of LCoT; our pro-
posed LCoT2Tree offers stronger signals for rea-
soning success and improves binary classification
of answer correctness by an average of 5.63%,
compared to using length alone.

* (Interpretability) We leverage LCoT2Tree to pin-
point the reasoning patterns that oftentimes lead
to errors, e.g., over-branching, and to account for
disparate behaviors across tasks and models.

* (Practicality) We demonstrate that LCoT2Tree
offers a principled path for selecting well-
structured reasoning chains, greatly enhancing
Best-of-N decoding and also remaining extensi-
ble for future decoding strategies.

2 Related Works

Reasoning LLMs Advancing reasoning capabil-
ities of LLMs has shown benefits in tackling com-
plex tasks (Kojima et al., 2022; Wei et al., 2022;
Li et al., 2025b). Researchers first demonstrated
that CoT prompting can significantly improve per-
formance on complex tasks like arithmetic (Wei
et al., 2022). To refine the reasoning processes,
hierarchical cognitive phases have been introduced,
such as multi-path exploration (Wang et al., 2023b;
Zhou et al., 2023; Yao et al., 2023), step verifi-
cation (Miao et al., 2024; Gou et al., 2024), and
iterative refinement (Madaan et al., 2023; Besta
et al., 2024). These approaches expand solution
spaces and deepen reasoning, driving more reliable
answers. More recently, models such as Deepseek-
R1 (Guo et al., 2025), Kimi-1.5 (Team et al., 2025)
and QwQ-32B (Team, 2024) have leveraged rule-
based reinforcement learning to embed reason-
ing capabilities directly into model parameters,
achieving remarkable progress in handling com-
plex tasks (Chen et al., 2025; Gandhi et al., 2025).

Chain-of-Thought Analysis Numerous studies
have explored when CoT prompting is effective.
Empirical research has revealed that factors, such
as step length (Jin et al., 2024), relevance, the order
of reasoning fragments (Wang et al., 2023a), and
prompt structure (Li et al., 2025a), heavily influ-
ence performance. Expanding on these findings,
Feng et al. (2023) and Chen et al. (2024a) proposed
that there is an inherent reasoning limit in LLMs
when tackling tasks exceeding a complexity thresh-
old. In the context of long CoT, research has in-
creasingly emphasized the importance of response
structures in enhancing reasoning success (Li et al.,
2025a; Gandhi et al., 2025; Muennighoff et al.,
2025; Ye et al., 2025). Additionally, challenges
like the overthinking phenomenon, where overly
long responses inadvertently hurt the model perfor-
mance, seemingly establish the correlation between
length and reasoning success (Chen et al., 2024b;
Wu et al., 2025; Cuadron et al., 2025). Beyond
these prior works, we are motivated to develop an
automated tool to empirically identify the structural
patterns that dictate reasoning success in long CoT.

Besides the above analyses towards reasoning
success, another line of works primarily analyzes
towards the semantic rationality of reasoning. Thus,
early methods directly compare generated steps
to human-annotated explanations (Welleck et al.,
2022). However, such methods often fail to cap-

ture logical coherence beyond surface-level sim-
ilarity. Recent work has introduced LLM-driven
PRMs (Ling et al., 2023; Yuan et al., 2024; She
et al., 2025; Zhang et al., 2025) to provide holis-
tic and step-wise assessment, but they struggle
with scaling to long and complex CoT reasoning
chains (He et al., 2025). Rather than relying on
surface similarity or token-level reward signals, we
analyze reasoning success through internal struc-
tural patterns derived from hierarchical tree repre-
sentations. The structural patterns offer a princi-
pled alternative for dictating “good” chains, and
are fully complementary to this body of semantic-
based research.

3 LCoT2Tree: Automated Long
Chain-of-Thoughts to Tree

In this section, we empirically study overthinking,
highlighting issues with assessing reasoning quality
via CoT length. Then, we propose Long Chain-of-
Thought to Tree (LCoT2Tree), an automated tool
that converts LCoTs into tree structures to reveal
cognitive frameworks and enable deeper analysis
of LLMs’ reasoning processes.

3.1 Overthinking Phenomenon

The “overthinking” phenomenon in reasoning mod-
els refers to situations where a model expends
excessive computational resources (e.g., generat-
ing overly long sequences or repeating reasoning
steps), yet makes little contributions to the cor-
rectness of final answer. In some cases, this can
even lead to a decline in performance (Chen et al.,
2024b; Wu et al., 2025). Figure 2 illustrates this
phenomenon by showing the relationship between
the output token length and the answer accuracy of
DeepSeek-32B (i.e., DeepSeek-R1-Distill-Qwen-
32B (Guo et al., 2025)) on the MATH (Hendrycks
et al., 2021) dataset. It demonstrates that as the rea-
soning chain becomes unnecessarily long, model
performance deteriorates, highlighting how over-
thinking can harm the reasoning ability of LLMs.
To tackle this issue, researchers have proposed
using a length penalty during the training period
to constrain the length of generated LCoTs (Team
et al., 2025; Yu et al., 2025). However, this strat-
egy relies on the oversimplified assumption that
shorter or moderately long reasoning chains inher-
ently lead to better reasoning quality. In this work,
we conduct a classification experiment to empiri-
cally quantify the actual relationship between these

Token Length vs Accuracy

I 1.00

)
L

F0.75

Accuracy

F0.50 <

Data Count (K)

0 5 10 15
Length (K)

Figure 2: Data count and accuracy of the MATH dataset
for DeepSeek-32B across varying response lengths. Ac-
curacy notably declines as response length increases.

two factors and uncover the limitations of relying
on length as an indicator of reasoning quality.

Experimental Setup. For our study, we use
DeepSeek-32B, DeepSeek-R1 (Guo et al., 2025),
QwQ-32B (Team, 2024), Seed-1.5-Thinking-
pro (Seed et al., 2025), and Grok-3-mini-beta (xAl,
2025) as the primary models. We evaluate these
models on four benchmark datasets: MATH
(Level5 question in high school math competi-
tions; Hendrycks et al., 2021), GPQA (“main” sub-
set in grade-level google-proof question answer-
ing; Rein et al., 2024), LiveCodeBench (version
5 in live code benchmark; Jain et al., 2025), and
MMLU-Pro (proficient-level multi-discipline lan-
guage understanding; Wang et al., 2024). For each
dataset, we collect 2,000 model responses, consist-
ing of 1,000 correctly answered cases (Positive)
and 1,000 incorrectly answered cases (Negative).
These samples are divided into training and testing
sets at a ratio of 4:1.

In our experiments, we train a logistic regression
model using LCoT response length as the input fea-
ture and answer correctness as the target label. The
test set accuracy quantifies the degree of correlation
between LCoT length and reasoning quality-higher
accuracy suggests a stronger association between
these two factors.

Results and Analysis. Figure 1 shows the token
length distributions of positive and negative sam-
ples. It reveals a significant overlap between the
two classes, indicating that responses with similar
lengths can vary greatly in reasoning quality. More-
over, Table 1 presents the classification results,
where the accuracy on the MMLU-Pro dataset
is only 60.0% for DeepSeek-32B and 58.0% for
QwQ-32B. These relatively low accuracies under-
score the limitations of using response length alone
in predicting reasoning success.

Question Reasoning Sketch

The positive three-digit integer N as a
ones digit of 0. What is the probability
that N is divisible by 4? Step 1: Determine divisibility by

4 requirement

Step 2: Analyze valid B value: ...
Step 3: Compute probability: ...

Long Chain-of-thought

Okay, so I need to figure ...

First, let’s understand ...

‘Wait, actually, the last number should ...
Alternative, since three-digit number ...
So, for each A, there are 5 ...

‘Wait, wait: 10 B should be ...

Let me verify: k is from 10 to 99 ...

Yes, that make sense ...

Thought List

Answer : Okay, so ... First, let’s ...

: Wait, actually, the last ...
: Alternative, ... So, for ...
: Wait, wait: 10 B should be ...

To determine the probability that a
three-digit integer ...

Therefore, the final answer is: (\boxed
{\frac{1} {2} }). I hope it is correct.

: Let me verify: k ... Yes, ...

P
1
| P mmmm e e ey
Thought Step ! Reasoning Tree .
[1
Ty: [] Tq:[Step 1] 1 Build E :
Ty : [Step 1, Step 2, Step 3] [i
Ty :[Step 3] Ty:[Step 2] b Tree [
Ts: [Step 2] Tg:[Step 2] ! 7R\ vl
T, : [Step 3] To:[Step 3] i 7N ' :
Tg: [Step 1, Step 2, Step 3] [;’ y \ [
|
O @ e
' x X]
I P
= @ = oF H //If \\ X \\ ' :
Assign YWl Identify Wdgl AR/ N N "
. LY 7 1
Step Function i @ @ @ @ @ Step2! !
I A A H
[|'\\ A /’4 1 ' :
L] | \ ,/ 7 1 : I
|
Thought Function : P4 \ 4 ’ ! i
00 ¢ ® O«
Ty: 1 (Continuous Logic) =% ' H :
T,: 2 (Exploration) = [— Conti —_— . i
Ty: 4 (Verification) = i — Lontmuous TEF Eyploration i
T,: 3 (Backtrack) = : ! logic flow :l
" T Backtrack ~ = Verification H :
Tq: 4 (Verification) = ' - - "y
| e cc e e e c e e e e] 1

Figure 3: The workflow for LCoT2Tree. It transforms sequential long chain-of-thought into reasoning tree, which
involves five steps: (1) Extract Sketch, (2) Split Thought, (3) Assign Step, (4) Identify Function, and (5) Build Tree.

3.2 LCoT2Tree Tool

We present LCoT2Tree, a novel tool that extracts
structural insights from LCoTs, addressing the lim-
itations of length-based prediction. LCoT2Tree
converts the sequential chain of reasoning into a
tree structure, enabling a deeper analysis of cog-
nitive behaviors such as exploration, backtracking,
and reasoning depth. These components increas-
ingly recognized as crucial for developing reason-
ing LLMs (Chen et al., 2025; Gandhi et al., 2025;
Ye et al., 2025). To our knowledge, our work is
the first to explicitly extract this structural infor-
mation and conduct a quantitative analysis of its
correlation with reasoning quality.

The LCoT2Tree tool involves five automated
stages that transform a LCoT into an organized tree
structure using an LLM (DeepSeek-v3; Liu et al.,
2024a), as shown in Figure 3:

Stage 1: Extract Sketch. Leveraging the LLM
with prompting (Figure 6), we condense the LCoT
into a concise Reasoning Sketch that outlines its
main reasoning steps. The sketch serves as an ab-
stract summary, highlighting the essential compo-
nents and logical flow of the reasoning process.
Stage 2: Split Thought. We first define a
“Thought” as a consecutive segment in the reason-
ing chain that involves no logical transition (e.g.,
exploration and verification). We utilize common
linguistic cues (e.g., “Wait”, “Alternatively”, and
“Let me verify”) indicative of transitions between
reasoning steps to segment the full reasoning chain
into distinct fragments, yielding a Thoughts List.
Stage 3: Assign Step. Each thought in the
Thoughts List is matched to one or more steps in
the Reasoning Sketch, depending on its role in the
overall reasoning process. This alignment is carried

out using an LLM with prompting (Figure 7), gen-
erating a Thought Step dictionary that maps each
thought to its corresponding reasoning depths.
Stage 4: Identify Function. By prompting the
LLM (Figure 8), we analyze consecutive thought
pairs to determine the later thought’s role relative
to the former, with possible roles: (1) Continuous
Logic; (2) Exploration; (3) Backtracking; and (4)
Verification. This assigns a Thoughts Function
label to each thought for clearer reasoning-flow
purpose understanding.
Stage 5: Build Tree. Finally, we organize the
segmented thoughts into a hierarchical tree struc-
ture. Each node Nij in the tree corresponds to
the ¢-th thought 7;, where j indicates how many
times 7; has appeared. The placement of a node is
determined by the Thought Step, and each edge rep-
resents a transition to a deeper level of reasoning,
with the edge type defined by the Thought Function
of its child node. When inserting a new thought
T;, we first identify the ordered list of reasoning
steps it maps to, denoted as [S}, ..., S*]. Here, n
indicates that the current thought encompasses n
reasoning steps. Consequently, we create n nodes
N}, ...,NP, where each node N/ represents the
portion of the thought aligned with the Sf -th step.
The insertion process follows two rules: (1) If Sil
is greater than the step of the latest node Nijq in
the tree, the new node Ni1 is added as a child of
Nij_l. (2) Otherwise, we backtrack to the most
recent node at step S} — 1. Then we create a new
branch from that node and link it to new node Nil.
Once Ni1 is determined, the remaining nodes
N2, ...,N! are added sequentially and connected to
the previous one. For example, in Figure 3, when
inserting Tg to the tree, its associated reasoning

| | MATH GPQA LiveCodeBench MMLU-Pro 4 Datasets | Average

Length-based | 74.13% 67.08% 81.59% 59.95% 66.27% 69.80%

DeepSeek-32B Tree-based 80.81% 70.37% 82.21% 72.41% 71.14% 75.39%
Gain +6.68% +3.29% +0.62 % +12.46 % +4.87 % +5.58 %

Length-based 75.82% 62.09% 78.30% 58.00% 66.97% 68.24%

QwQ-32B Tree-based 77.63% 68.55% 80.05% 72.58% 70.98% 73.96%
Gain +1.81% +6.46% +1.75% +14.58% +4.01% +5.72%

Length-based | 76.94% 69.57% 81.75% 63.00% 70.54% 72.36%

DeepSeek-R1 Tree-based 80.30% 73.56% 81.80% 75.85% 73.72% 77.05%
Gain +3.36% +3.99% +0.05% +12.85% +3.18% +4.69 %

Seed-1.5- Length-based | 67.48% 64.84% 76.39% 63.59% 64.34% 67.33%
Thinkiﬁ pro Tree-based 70.07% 69.81% 77.72% 70.82% 67.68% 71.22%
&P Gain +259% +4.97% +1.33% +7.23% +334% | +3.89%
Grok-3- Length-based | 71.31% 61.48% 84.77% 55.47% 63.87% 67.38%
mini-beta Tree-based 83.18% 66.79% 86.35% 70.68% 71.26% 75.65%
Gain +11.87% +5.31% +1.58 % +15.21% +7.40% +8.27%

Table 1: Comparison of performance across various reasoning LLMs and datasets using the length-based method and
our proposed tree-based approach for classifying response correctness based on LCoT information. Classification

results are reported as the average over five runs.

steps [S§, S2,53] = [1,2, 3], as determined by the
Thought Step. At that point, the latest node in tree
is N 71, which is at step 3 (greater than 1). Therefore,
we backtrack to the latest node at step 0, N, and
attach]\781 as its child. After that, Ng and NS3 are
linked sequentially to N¢ and NZ, respectively.

In the end, we extract the tree structure, showing
how thoughts are connected and branch through-
out the reasoning process. This structural repre-
sentation offers three key benefits: (1) highlights
key cognitive patterns (e.g., exploration, backtrack-
ing and verification); (2) supports more accurate
assessment of reasoning quality; and (3) enables
structure-aware analysis of reasoning behaviors.
Implementation details, including prompts and case
visualizations, are available in Appendix A.

3.3 Effectiveness of LCoT2Tree

To assess the effectiveness of the LCoT2Tree tool,
we conduct a quantitative evaluation by using graph
neural networks (GNN5) to predict answer correct-
ness based on the tree structures extracted from
LCoTs. This evaluation demonstrates the practical
value of tree-based representations for understand-
ing complex reasoning processes.

Experimental Setup. We use the same dataset
described in Section 3.1, which contains responses
from five reasoning models across four public
benchmarks. The key difference is that we extract
the tree structure from each LCoT response and
use it as input to the GNNs. Our objective is to
assess how effectively these tree structures can dis-
tinguish between correct and flawed reasoning. To

this end, we utilize GATv2 (Brody et al., 2022), a
GNN architecture suited for modeling hierarchical
structures and their relationships. The model takes
the nodes, edges, and associated features of each
LCoT tree as input and learns a structural embed-
ding that represents the overall reasoning pattern.
Implementation details and graph construction are
provided in Appendix B. We use classification ac-
curacy as the evaluation metric. A high accuracy
score indicates that the model successfully captures
the correlation between reasoning structure and an-
SWer correctness.

Effectiveness across Tasks. Table 1 shows the
classification results using tree-based input, com-
pared to baseline methods that rely on the length-
based feature. We assess how well the tree-
based method generalizes across diverse types of
reasoning tasks, including MATH, GPQA, Live-
CodeBench, MMLU-Pro, and a combined dataset
of these benchmarks. Across all tasks, the tree-
based method consistently outperforms the length-
based baseline. The improvement is particularly
notable on MMLU-Pro, a dataset where reasoning
correctness is difficult to predict from token length
alone. For example, our method achieves substan-
tial accuracy gains of +12.46% and +14.58% on
DeepSeek-32B and QwQ-32B, respectively. Even
on datasets like LiveCodeBench, where the length-
based approach already performs strongly, the tree-
based method still yields improvements, demon-
strating its robustness.

Effectiveness across Models. For the generaliz-
ability of our method, the tree-based classifier con-

sistently achieves higher accuracy than the length-
based baseline across all models. Average accuracy
gains range from +3.89% (Seed-1.5-Thinking-pro)
to +8.27% (Grok-3-mini-beta), indicating that the
LCoT2Tree provides more informative and reliable
structural representations of reasoning processes.

These quantitative evaluation validates the ef-
fectiveness of the LCoT2Tree tool across diverse
tasks and models. By capturing deeper structural
and cognitive patterns in reasoning, it enables more
accurate prediction of reasoning success. Overall,
LCoT2Tree shows strong potential as an automated
tool for analyzing, evaluating, and improving the
behavior of reasoning systems.

4 Understand Behaviors of Reasoning
Large Language Models

In this section, we leverage LCoT2Tree to analyze
and understand reasoning behaviors. First, we iden-
tify key thought patterns in the reasoning tree that
predict errors. Then, we compare behaviors across
tasks and models. Our findings show that reasoning
varies by (1) output correctness, (2) task type, and
(3) model variant, underscoring the importance of
structural information in reasoning analysis.
Explainability Method. To interpret the model’s
predictions on reasoning quality and uncover the
influential reasoning patterns, we adapt a graph
explainability method called GNNExplainer (Ying
et al., 2019). This method uncovers important sub-
graphs by maximizing the mutual information be-
tween the GNN’s output and the distribution of
possible subgraph structures. These extracted sub-
graphs also correspond to critical thought patterns
within the reasoning chain. For example, in models
trained to predict incorrect answers, the highlighted
subgraphs often reflect flawed reasoning behaviors
that lead to poor performance. Similarly, in models
trained on MATH tasks, the important subgraphs
typically capture common reasoning patterns ob-
served in mathematical problem-solving.

4.1 Error Patterns in LCoT

The experiments in Section 3.3 suggest that reason-
ing trees of model responses exhibit separable struc-
tures for correct and incorrect outcomes. To further
explore the behaviors that contribute to failures, we
employ GNNExplainer to identify the most influ-
ential edges in each reasoning tree. This allows
us to extract critical subgraphs from incorrect re-
sponses and summarize common patterns across

Step i
. Step j
®)

(A) Over (B) Step (C) Direct (D) Skipped
Branching Redundancy Reasoning Thinking
60, 57

<40 37 40
£ 25 2
g 20 101513 g 12 13
2
0 MATH LiveCodeBench GPQA

(A) (B) ©) (D)

Figure 4: Visualization and frequency of four structural
error patterns across three datasets. (A) Over Branch-
ing: abundance of explorations or verifications within
a single node, (B) Step Redundancy: over-generation
of thoughts within a single reasoning step, (C) Direct
Reasoning: following a straight, minimal-branch path
from one step to a much deeper step, and (D) Skipped
Thinking: jumping multiple steps ahead without inter-
mediate logical analysis. Representative example of
each class is available in Figure 9.

diverse examples (See details in Appendix D.1).
The identified error patterns are visualized in the
top portion of Figure 4, with detailed examples
shown in Figure 9. Additionally, we analyze 100
error responses from three tasks and report the fre-
quency of each pattern in the bottom portion of
Figure 4. A key observation is that excessive and
insufficient branching are both strongly associated
with incorrect reasoning.

4.2 Task-Specific Patterns in LCoT

In the left part of Table 2, we present the results
of a task separability experiment conducted on the
DeepSeek-32B model. We classify reasoning trees
across task pairs (e.g., MATH/GPQA, MATH/LCB,
MATH/MMLU-Pro, GPQA/LCB), with additional
results for QwQ-32B provided in Appendix C.1.
The dataset follows the same construction as in
Section 3.1, but labels tasks instead of correctness.
Results show that our tree-based method effec-
tively distinguishes task-specific reasoning patterns,
achieving an average accuracy of 84.19%. Notably,
in cases where length-based features fall short, such
as MATH/GPQA and GPQA/LCB, tree-based rep-
resentations yield substantial gains of +33.06% and
+24.90%, respectively, highlighting their strength
in capturing deeper reasoning patterns.

Discovering Task-Specific Reasoning Patterns.
Beyond quantitative separation, we further lever-

\ Task-specific Analysis |

Model-specific Analysis

| MATH/GPQA MATH/LCB MATH/MMLU GPQA/LCB | DS-32/DS-R1 DS-32/Grok
Length-based 50.45% 63.72% 69.43% 60.65% 55.17% 61.06%
Tree-based 83.51% 89.22% 78.46% 85.55% 67.88% 93.22%
Gain +33.06 % +25.50 % +9.03% +24.90 % +12.71% +32.16%

Table 2: Comparison of task-specific and model-specific classification accuracy using the length-based method and
the proposed tree-based approach. Task-specific analysis is conducted on the DeepSeek-32B model across different
datasets, while model-specific analysis is performed on the MATH dataset across multiple model variants.

age LCoT2Tree to reveal task-specific reasoning
patterns through qualitative analysis. Main con-
clusions, based on DeepSeek-32B, are as follows:
For MATH (Figure 10), the reasoning trees ex-
hibit a diagonally descending structure, reaching
deeper steps through repeated backtracking. This
reflects a layered, step-by-step problem-solving ap-
proach. In contrast, the behaviors in code comple-
tion (Figure 11) show wide, parallel branches with
minimal exploration or verification, reflecting a
more straightforward pattern of generation. GPQA
(Figure 12) samples reveal high out-degree nodes,
where the model repeatedly revisits complex con-
cepts, indicating the model’s uncertainty in deal-
ing an expert-level question. Meanwhile, the trees
of MMLU-Pro (Figure 13) are relatively shallow
with minimal branching, reflecting a straightfor-
ward deductive reasoning style that aligns with the
nature of knowledge-based questions. These obser-
vations highlight LCoT2Tree’s ability to provide
interpretable insights into the distinct reasoning
strategies employed across different task types. De-
tailed case studies are provided in Appendix D.2
with visualizations shown in Figure 10 - Figure 13.

4.3 Model-Specific Patterns in LCoT

We explore whether different models exhibit distin-
guishable reasoning behaviors on the same dataset.
The results, shown in the right part of Table 2,
demonstrate that LCoT2Tree effectively captures
model-specific patterns. In particular, tree-based
representations significantly outperform simple
length-based features, with gains of +12.71% for
DS-32 (DeepSeek-32B) vs. DS-R1 (DeepSeek-
R1), and +32.16% for DS-32 vs. Grok (Grok-3-
mini-beta). Notably, the relatively lower separa-
bility score between DS-32 and DS-R1 (67.88%)
can be attributed to the fact that DS-32 is a dis-
tilled version of DS-R1. In contrast, DS-32 and
Grok show a high separability of 93.22%, suggest-
ing fundamentally different reasoning styles driven
by architectural and training differences. Addi-

tional results (Appendix C.2) show that QwQ-32B
aligns more closely with the DeepSeek family than
with Grok or Seed (Seed-1.5-Thinking-pro). These
findings again highlight the strength of structural
representations in revealing fine-grained behavioral
distinctions.

Discovering Model-Specific Reasoning Patterns.
To complement the quantitative analysis, we also
conduct a qualitative comparison of reasoning trees
across different models on the MATH dataset (Ap-
pendix D.3). Our analysis reveals that both DS-R1
(Figure 14) and QwQ-32B (Figure 15) produce
reasoning structures similar to DS-32 (Figure 10),
consistent with quantitative results. However, DS-
R1 tends to prune its reasoning paths earlier, sug-
gesting a more aggressive backtracking strategy.
In contrast, QwQ-32B shows more extensive ex-
ploration in the later stages of reasoning. On the
other hand, Seed (Figure 16) and Grok (Figure 17)
follow simpler, more linear reasoning paths with
fewer thought transitions and minimal branching,
reflecting a straightforward reasoning strategy.

4.4 Shortcomings in Understanding LCoT
from the Structural Perspective

Correct Structure but Wrong Output. Despite
structurally valid reasoning paths, models can still
produce incorrect answers due to semantic errors
like misinterpreting the problem, making calcula-
tion mistakes, or failing conditional logic. This
indicates that reasoning LLMs do not consistently
exhibit behaviors like backtracking or verification
when facing ambiguity or errors. These cases ex-
pose the limitation of structural analysis alone and
suggests that combining structural insights with se-
mantic verification is necessary for comprehensive
reasoning understanding.

Flawed Structure but Correct Qutput. Using
our classifier, we identify a set of responses with
correct final answer but weak or flawed reason-
ing. These cases often involve reasoning paths that
deviate from systematic problem-solving, includ-

ing guessing, brute-force enumeration, or overly
late-stage corrections. Such cases underscore the
limitations of using answer correctness alone to
assess reasoning quality, as it tolerates shallow or
unsound reasoning paths. Addressing these flawed-
but-correct patterns can guide LLMs toward pro-
ducing reasoning that is not only accurate but also
logically sound.

5 Application of LCoT2Tree: Tree-based
Best-of-N Decoding

Beyond evaluating the quality of model reason-
ing (Section 3.3), we put forward practical appli-
cation to support the decoding process in LLMs.
Specifically, we propose an approach to improve
the reasoning quality during the decoding stage by
selecting the best model response from multiple
candidates with the tree-based classifier.

Method. Best-of-N decoding is a widely used
strategy for improving the quality of responses gen-
erated by LLMs (Wu et al., 2024; Snell et al., 2024;
Brown et al., 2024). In this strategy, the model
produces IV candidate outputs, and a final response
is selected based on a scoring function. However,
conventional scoring methods, based on surface-
level heuristics or reward models, often ignore the
impact of output structures. This limitation can
lead to suboptimal choices, especially in tasks that
require deep or structured reasoning.

To this end, we incorporate LCoT2Tree into the
Best-of-N decoding framework to guide the selec-
tion of high-quality reasoning outputs. Our method
involves three main steps: (1) For each candidate
response, we use LCoT2Tree to build its corre-
sponding reasoning tree; (2) A graph-based classi-
fier, trained to distinguish between successful and
flawed reasoning structures, assigns a score to each
candidate based on its structural features; (3) The
candidate with the highest score is chosen as the
final output.

Experiments. We choose LiveCodeBench (LCB)
as our primary benchmark. We train the GNN
models following the setup in Section 3.3 using
LCB-v5 dataset and then evaluate on a challenging
subset (filtered by correctness ratio) of the LCB-
v6 dataset. We compare our tree-based Best-of-N
decoding method with three baselines: (1) ORM-
Best (Brown et al., 2024), which selects the re-
sponse with the highest score from an outcome
reward model (we use Skywork-Reward-Gemma-
2-27B-v0.2 (Liu et al., 2024b)); (2) PRM-Best,

70%

oY
<
B

(%)
N
S

42.11

Accuracy (%)

40% 1

30%

DeepSeek-32B QwQ-32B

Figure 5: Accuracy comparison of different Best-of-N
decoding strategies on the LCB-v6 benchmark.

which scores responses based on the product of
step-level scores from a process reward model (i.e.,
Qwen2.5-Math-PRM-72B (Zhang et al., 2025));
and (3) Length-Best (Wang et al., 2025), which
selects the response with the fewest tokens. All
experiments use N = 10 candidate responses. Ad-
ditional results on MATH with more baselines are
presented in Appendix C.3.

Results. As shown in Figure 5, our tree-based Best-
of-N method outperforms both Length-Best, ORM-
Best and PRM-Best on the LCB-v6 benchmark.
For DeepSeek-32B, it achieves 61.54% accuracy,
exceeding Length-Best by +4.62%, ORM-Best by
+10.77% and PRM-Best by +6.16%. QwQ-32B
shows similar gains, with our method reaching
52.63%, outperforming the baselines by +5.26%,
+10.52% and 1.75%, respectively. These results
highlight the advantage of using structural reason-
ing signals via LCoT2Tree to improve candidate
selection in complex tasks.

6 Conclusion

In this work, we introduce a novel framework,
named LCoT2Tree, for converting LCoT responses
into hierarchical tree structures. LCoT2Tree en-
ables more interpretable and structural analysis of
complex reasoning processes, with significantly im-
proving the prediction of reasoning success across a
wide range of tasks and models. Beyond evaluation,
we apply LCoT2Tree for behavioral analysis, re-
vealing error patterns and accounting for disparate
behaviors across tasks and models. Furthermore,
we extend LCoT2Tree to a practical application by
integrating it into the Best-of-N decoding paradigm,
leading to more accurate outputs than ORM, PRM
and length-based baselines. Collectively, these
findings underscore the significance of structural
reasoning analysis and establish LCoT2Tree as a
promising tool for understanding and improving
LLMs reasoning capabilities.

Limitations

While LCoT2Tree is a powerful framework for
analyzing reasoning structures, several limitations
remain. First, as discussed in Section 4.4, struc-
tural analysis alone cannot capture semantic errors
or recognize correct reasoning that deviates from
common structural patterns. To address this limi-
tation, future work should integrate semantic rea-
soning signals with structural analysis to achieve
a more holistic understanding of LLM reasoning
behaviors.

Second, the effectiveness of structural analysis
relies in part on the fact that current LLMs often
generate reasoning that is incomplete or loosely
organized. As models improve and begin to pro-
duce more coherent and well-structured reasoning
by default, the value of structural diagnostics may
decrease. Nevertheless, until such consistency is
achieved, structural cues remain a valuable tool for
identifying and improving reasoning quality.

Finally, the construction of reasoning trees in
LCoT2Tree currently depend on off-the-shelf large
language models (e.g., DeepSeek-V3 (Liu et al.,
2024a)), which makes the pipeline computationally
expensive.

References

Marthe Ballon, Andres Algaba, and Vincent Ginis. 2025.
The relationship between reasoning and performance
in large language models—03 (mini) thinks harder,
not longer. arXiv preprint arXiv:2502.15631.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Ger-
stenberger, Michal Podstawski, Lukas Gianinazzi,
Joanna Gajda, Tomasz Lehmann, Hubert Niewiadom-
ski, Piotr Nyczyk, and 1 others. 2024. Graph of
thoughts: Solving elaborate problems with large lan-
guage models. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence (AAAI).

Shaked Brody, Uri Alon, and Eran Yahav. 2022. How
attentive are graph attention networks? In Inter-

national Conference on Learning Representations
(ICLR).

Bradley Brown, Jordan Juravsky, Ryan Ehrlich, Ronald
Clark, Quoc V Le, Christopher Ré, and Azalia Mirho-
seini. 2024. Large language monkeys: Scaling infer-
ence compute with repeated sampling. arXiv preprint
arXiv:2407.21787.

Qiguang Chen, Libo Qin, Jinhao Liu, Dengyun Peng,
Jiannan Guan, Peng Wang, Mengkang Hu, Yuhang
Zhou, Te Gao, and Wangxiang Che. 2025. Towards
reasoning era: A survey of long chain-of-thought
for reasoning large language models. arXiv preprint
arXiv:2503.09567.

Qiguang Chen, Libo Qin, Jiaqi Wang, Jingxuan Zhou,
and Wanxiang Che. 2024a. Unlocking the capabili-
ties of thought: A reasoning boundary framework to
quantify and optimize chain-of-thought. Advances in
Neural Information Processing Systems (NeurIPS).

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, and 1 others.
2024b. Do not think that much for 2+ 3=? on
the overthinking of ol-like llms. arXiv preprint
arXiv:2412.21187.

Alejandro Cuadron, Dacheng Li, Wenjie Ma, Xingyao
Wang, Yichuan Wang, Siyuan Zhuang, Shu Liu,
Luis Gaspar Schroeder, Tian Xia, Huanzhi Mao, and
1 others. 2025. The danger of overthinking: Exam-
ining the reasoning-action dilemma in agentic tasks.
arXiv preprint arXiv:2502.08235.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye,
Di He, and Liwei Wang. 2023. Towards revealing the
mystery behind chain of thought: a theoretical per-
spective. Advances in Neural Information Processing
Systems (NeurIPS).

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh,
Nathan Lile, and Noah D Goodman. 2025. Cognitive
behaviors that enable self-improving reasoners, or,
four habits of highly effective stars. arXiv preprint
arXiv:2503.01307.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen,
Yujiu Yang, Nan Duan, and Weizhu Chen. 2024.
CRITIC: Large language models can self-correct
with tool-interactive critiquing. In International Con-
ference on Learning Representations (ICLR).

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-rl: Incentivizing reasoning capability in
Ilms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Yancheng He, Shilong Li, Jiaheng Liu, Weixun Wang,
Xingyuan Bu, Ge Zhang, Zhongyuan Peng, Zhaoxi-
ang Zhang, Zhicheng Zheng, Wenbo Su, and 1 others.
2025. Can large language models detect errors in
long chain-of-thought reasoning? arXiv preprint
arXiv:2502.19361.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In The
Conference on Neural Information Processing Sys-
tems Datasets and Benchmarks Track.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2025. Live-
codebench: Holistic and contamination free evalu-
ation of large language models for code. In Inter-

national Conference on Learning Representations
(ICLR).

https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=7Bywt2mQsCe

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao,
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. 2024. The impact of reasoning step
length on large language models. In Findings of the
Association for Computational Linguistics ACL.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yu-
taka Matsuo, and Yusuke Iwasawa. 2022. Large lan-
guage models are zero-shot reasoners. Advances in
Neural Information Processing Systems (NeurIPS).

Dacheng Li, Shiyi Cao, Tyler Griggs, Shu Liu, Xi-
angxi Mo, Eric Tang, Sumanth Hegde, Kourosh
Hakhamaneshi, Shishir G Patil, Matei Zaharia, and
1 others. 2025a. Llms can easily learn to reason
from demonstrations structure, not content, is what
matters! arXiv preprint arXiv:2502.07374.

Zhong-Zhi Li, Duzhen Zhang, Ming-Liang Zhang, Ji-
axin Zhang, Zengyan Liu, Yuxuan Yao, Haotian Xu,
Junhao Zheng, Pei-Jie Wang, Xiuyi Chen, and 1 oth-
ers. 2025b. From system 1 to system 2: A survey
of reasoning large language models. arXiv preprint
arXiv:2502.17419.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In International
Conference on Learning Representations (ICLR).

Zhan Ling, Yunhao Fang, Xuanlin Li, Zhiao Huang,
Mingu Lee, Roland Memisevic, and Hao Su. 2023.
Deductive verification of chain-of-thought reasoning.
Advances in Neural Information Processing Systems
(NeurlPS).

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, and 1 others.
2024a. Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Ju-
jie He, Chaojie Wang, Shuicheng Yan, Yang Liu,
and Yahui Zhou. 2024b. Skywork-reward: Bag of
tricks for reward modeling in llms. arXiv preprint
arXiv:2410.18451.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems (NeurIPS).

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2024.
Selfcheck: Using LLMs to zero-shot check their own
step-by-step reasoning. In International Conference
on Learning Representations (ICLR).

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

10

OpenAl. 2025. OpenAl 03-mini.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. Gpgqa:
A graduate-level google-proof q&a benchmark. In
Conference on Language Modeling.

ByteDance Seed, Yufeng Yuan, Yu Yue, Mingxuan
Wang, Xiaochen Zuo, Jiaze Chen, Lin Yan, Wenyuan
Xu, Chi Zhang, Xin Liu, and 1 others. 2025. Seed-
thinking-v1. 5: Advancing superb reasoning mod-
els with reinforcement learning. arXiv preprint
arXiv:2504.13914.

Shuaijie She, Junxiao Liu, Yifeng Liu, Jiajun Chen,
Xin Huang, and Shujian Huang. 2025. R-prm:
Reasoning-driven process reward modeling. arXiv
preprint arXiv:2503.21295.

Charlie Snell, Jachoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, and 1 others.
2025. Kimi k1. 5: Scaling reinforcement learning
with llms. arXiv preprint arXiv:2501.12599.

Qwen Team. 2024. Qwq: Reflect deeply on the bound-
aries of the unknown. URL https://qwenlm. github.
io/blog/qwq-32b-preview.

Boshi Wang, Sewon Min, Xiang Deng, Jiaming Shen,
You Wu, Luke Zettlemoyer, and Huan Sun. 2023a.
Towards understanding chain-of-thought prompting:
An empirical study of what matters. In Proceedings
of the Annual Meeting of the Association for Compu-
tational Linguistics (ACL).

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le,
Ed H. Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2023b. Self-consistency improves
chain of thought reasoning in language models. In In-
ternational Conference on Learning Representations

(ICLR).

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni,
Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, and 1 others.
2024. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In
The Conference on Neural Information Processing
Systems Datasets and Benchmarks Track.

Yue Wang, Qiuzhi Liu, Jiahao Xu, Tian Liang, Xingyu
Chen, Zhiwei He, Linfeng Song, Dian Yu, Juntao Li,
Zhuosheng Zhang, and 1 others. 2025. Thoughts are
all over the place: On the underthinking of ol-like
Ilms. arXiv preprint arXiv:2501.18585.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,

https://openai.com/index/openai-o3-mini/

and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances in
Neural Information Processing Systems (NeurIPS).

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh
Hajishirzi, and Yejin Choi. 2022. Naturalprover:
Grounded mathematical proof generation with lan-
guage models. Advances in Neural Information Pro-
cessing Systems (NeurlPS).

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. Scaling inference com-
putation: Compute-optimal inference for problem-
solving with language models. In The Workshop on
Mathematical Reasoning and Al at NeurIPS.

Yuyang Wu, Yifei Wang, Tianqi Du, Stefanie Jegelka,
and Yisen Wang. 2025. When more is less: Un-
derstanding chain-of-thought length in llms. arXiv
preprint arXiv:2502.07266.

xAlL 2025. Grok 3 Beta — The Age of Reasoning
Agents.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu,
and Pengfei Liu. 2025. Evaluating mathematical
reasoning beyond accuracy. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI).

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems (NeurlPS).

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. arXiv preprint arXiv:2502.03387.

Zhitao Ying, Dylan Bourgeois, Jiaxuan You, Marinka
Zitnik, and Jure Leskovec. 2019. Gnnexplainer: Gen-
erating explanations for graph neural networks. Ad-
vances in neural information processing systems, 32.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, and 1 others. 2025. Dapo:
An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476.

Lifan Yuan, Wendi Li, Huayu Chen, Ganqu Cui, Ning
Ding, Kaiyan Zhang, Bowen Zhou, Zhiyuan Liu,
and Hao Peng. 2024. Free process rewards without
process labels. arXiv preprint arXiv:2412.01981.

Zhenru Zhang, Chujie Zheng, Yangzhen Wu, Beichen
Zhang, Runji Lin, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2025. The lessons of
developing process reward models in mathematical
reasoning. arXiv preprint arXiv:2501.07301.

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables complex
reasoning in large language models. In International
Conference on Learning Representations (ICLR).

11

https://x.ai/news/grok-3
https://x.ai/news/grok-3
https://x.ai/news/grok-3

A LCoT2Tree Tool Implementation
Details

The LCoT2Tree process involves five automated
stages to transform a LCoT into an organized tree
structure using the LLM (DeepSeek-v3; Liu et al.,
2024a), as shown in Figure 3. Here, we introduce
the detailed implementation of each step:

Stage 1: Extract Sketch. Leveraging the LLM
with prompt 6, we condense the LCoT into a sketch
that captures its core reasoning steps. This Reason-
ing Sketch provides an abstract of the reasoning
process, focusing on the key steps and the logical
flow of the reasoning.

Stage 2: Split Thought. In this stage, the LCoT
is split into a list of thoughts. We first define a
“Thought” as: a continue segment in a reasoning
chain that involves no logical transition, such as
exploration or verification. We then analyze the
collected LCoTs to identify common linguistic pat-
terns (i.e., separators) that signal shifts between
distinct reasoning steps. The separators set to [“Al-
ternatively”, “Hmm”, “Let me verify”, “let’s ver-
ify”, “To verify”, “Wait”, “Verify”’] for Deepseek-
32B, QwQ-32B, and Deepseek-R1. And extend
with [“Let’s confirm”, “Let’s check”, “Another ex-
ample”, “But let’s”, “wait”, “No:”, “no:”, “Now”’]
for Seed-1.5-thinking-pro and Grok-3-mini-beta.
According to these markers, the long reasoning
chain is divided into individual thoughts, forming a
Thoughts List where each item represents a single
reasoning fragment.

Stage 3: Assign Step. Each thought in the
Thoughts List is then aligned with one or more
corresponding steps in the Reasoning Sketch, based
on its role in the overall reasoning process. This
mapping is performed using an LLM with prompt 7,
generating a Thought Step dictionary that captures
the contextual meaning and reasoning stage (i.e.,
depth) associated with each thought. To improve
token efficiency, we group and merge adjacent
thoughts before feeding them into the LLM. How-
ever, due to the large number of thoughts in the
Thought List, processing them all at once is infea-
sible. Therefore, we segment the list into smaller
batches, each containing consecutive thoughts with
a combined word count of no more than 600. These
batches are then input to the LLM, which returns
the corresponding reasoning step for each thought
in a single response.

Stage 4: Identify Function. We further analyze
each pair of consecutive thoughts using LLM with

12

prompt 8 to determine the role of the latter thought
in relation to the former (e.g., continuation, ex-
ploration, or verification). This step provides a
more precise understanding of the relationships
between individual thoughts within the reasoning
process. Specifically, the roles are categorized as
follows: (1) Continuous Logic — A direct continua-
tion or extension of the reasoning in the previous
thought. (2) Exploration — Introduces alternative
reasoning paths, unrelated concepts, or new topics.
(3) Backtracking — Revises, corrects, or adjusts the
reasoning from the previous step. (4) Validation —
Provides supporting evidence, justification, or ex-
amples for the previous thought. If the Thought
List contains N thoughts, we perform N — 1 LLM
calls to analyze each adjacent pair.

Stage 5: Build Tree. Finally, we organize the
segmented thoughts into a hierarchical tree struc-
ture. Each node N/ in the tree corresponds to
the ¢-th thought 7;, where j indicates how many
times 7; has appeared. The placement of a node is
determined by the Thought Step, and each edge rep-
resents a transition to a deeper level of reasoning,
with the edge type defined by the Thought Function
of its child node. When inserting a new thought
T;, we first identify the ordered list of reasoning
steps it maps to, denoted as [S}, ..., S?]. Here, n
indicates that the current thought encompasses n
reasoning steps. Consequently, we create n nodes
N}, ...,NJ', where each node N/ represents the
portion of the thought aligned with the Slj -th step.
The insertion process follows two rules: (1) If S,L»l
is greater than the step of the latest node Nijq in
the tree, the new node Ni1 is added as a child of
Nij_l. (2) Otherwise, we backtrack to the most
recent node at step S} — 1. Then we create a new
branch from that node and link it to new node Nil.

Once N, is placed, the remaining nodes
Nf, ...,INj* are added sequentially and connected to
the previous one. For example, in Figure 3, when
inserting Ty to the tree, its associated reasoning
steps [SE,52,53] = [1,2, 3], as determined by the
Thought Step. At that point, the latest node in tree
is N71, which is at step 3—greater than 1. There-
fore, we backtrack to the latest node at step 0, N&,
and attach NV, 81 as its child. After that, V. 82 and N, g’
are linked sequentially to N¢ and NZ, respectively.

In the end, we successfully extract the whole
tree structure using LCoT2Tree. To support inter-
pretation, we provide a visualization tool for the
generated reasoning tree, which allows users to in-

teractively explore the thought process behind each
node while viewing the overall tree structure. Ex-
ample screenshots of the visualization results are
shown in Figures 10—17. In each figure, the right
column displays the key reasoning steps identified
in Step 1, and each node represents an individual
thought. The solid line denotes the edge from fa-
ther to child and the dash line denotes the edge
from child to father. Edges are colored according
to its function in reasoning process.

B Classification Implementation Detail

B.1 Dataset Construction

We use the same dataset as described in Section 3.1,
consisting of response samples generated by five
reasoning LLMs (LLMs) across four public bench-
marks: MATH, GPQA, LiveCodeBench (LCB),
and MMLU-Pro. Each sample is labeled as pos-
itive or negative with answer correctness, which
serves as the ground truth for our binary classi-
fication task. To ensure sufficient data volume,
we apply repeated sampling for each benchmark,
generating up to 2,000 samples per dataset. For
instance, the LCB benchmark contains 167 unique
problems. By generating 16 responses per problem,
we obtain approximately 1,000 correctly answered
samples and 1,000 incorrect ones.

B.2 Graph Construction

For each response, we begin by applying the
LCoT2Tree framework to convert it into a struc-
tured reasoning tree. Each node NN in the tree cor-
responds to the i-th thought 7;, where j indicates
how many times 7; has appeared. The placement of
a node is determined by the Thought Step, and each
edge represents a transition to a deeper level of rea-
soning, with the edge type defined by the Thought
Function of its child node as introduced in 3.2. We
then transform the tree into a graph representation.
Notably, we construct bidirectional edges, allowing
information to flow both from parent to child and
from child to parent. This design enables the model
to simulate behaviors like backtracking, which are
often essential in complex reasoning. In the end,
each sample produces a single graph instance for
classification.

B.3 Node and Edge Features

We design informative features for both nodes and
edges to enhance the performance of our tree-based
classification model. For each node in the reason-

13

ing tree, we extract the following features: (1)
the index of the current thought, (2) the reason-
ing depth of the current node, (3) the cumulative
number of tokens used up to current node, (4) the
number of child nodes, and (5) the cumulative num-
ber of nodes at the same reasoning depth.

For edge features, we assign each parent-to-child
edge a feature based on its logical role as identi-
fied by LCoT2Tree: “1” for continuation, “2” for
exploration, “3” for backtracking, and “4” for vali-
dation. To distinguish child-to-parent edges (used
to capture reverse information flow, such as back-
tracking), we assign the same value but multiply
it by -1. This setup helps the model differentiate
directional semantics during message passing.

B.4 Hyperparameters

We adopt the GATV2 architecture (Brody et al.,
2022) to model reasoning trees, leveraging its dy-
namic attention mechanism and improved capabil-
ity for capturing hierarchical dependencies. The
model comprises two GATVv2 layers, each with a
hidden size of 64. After message passing, graph-
level embeddings are obtained via global mean
pooling. These embeddings are then fed into a
two-layer MLP with ReLLU activation, serving as
the classification head to predict whether a given
reasoning structure leads to a correct or incorrect
answer.

To train the model, we use binary cross-entropy
loss and the Adam optimizer with a learning rate
of 1e-3. The model is trained for up to 100 epochs
with a batch size of 32. We split the training dataset
into 90% for training and 10% for validation. All
experiments are conducted using the PyTorch Geo-
metric framework.

C Additional Experimental Results

C.1 Additional Results on Task-specific
Analysis

In Table 3, we provide additional results from the
task separability experiments using the DeepSeek-
32B and QwQ-32B models. We classify reasoning
trees across all task pairs, including MATH/GPQA,
MATH/LCB, MATH/MMLU-Pro, GPQA/LCB,
GPQA/MMLU-Pro, and LCB/MMLU-Pro. The
findings are consistent with the conclusions pre-
sented in Section 4.2.

| | MATH/GPQA MATH/LCB MATH/MMLU GPQA/LCB GPQA/MMLU MMLU/LCB

Length-based 50.45% 63.72% 69.43% 60.65% 77.711% 82.34%
DS-32 Tree-based 83.51% 89.22% 78.46% 85.55% 82.89% 92.12%
Gain +33.06 % +25.50 % +9.03% +24.90 % +5.18% +9.78 %
Length-based 52.51% 56.64% 67.38% 61.22% 68.25% 73.03%
QwQ-32 | Tree-based 77.82% 67.88% 80.85% 85.69% 76.70% 87.20%
Gain +25.31% +11.24% +12.17% +24.47 % +8.45% +14.17 %

Table 3: Comparison of task-specific classification accuracy using the baseline length-based method and the
proposed tree-based representation.

\ MATH GPQA LiveCodeBench MMLU-Pro 4 Datasets

DeepSeek-32B | £0.0048 =+ 0.0037 +0.0024 + 0.0089 £ 0.0043
QwQ-32B | £0.0023 £0.0025 $0.0030 £0.0079 £ 0.0039
DeepSeek-R1 | £0.0076 £0.0029 £0.0010 +0.0051 £ 0.0018
Seed-1.5-Thinking-pro | £0.0037 40.0061 £0.0041 +0.0066 =+ 0.0026
Grok-3-mini-beta | £0.0025 £0.0020 +0.0037 +0.0153 £ 0.0041

Table 4: Standard deviation of our proposed tree-based approach on classifying response correctness based on LCoT
information corresponding to Table 1.

| | DS-32/DS-R1 DS-32/QwQ-32 DS-32/Seed DS-32/Grok DS-R1/Seed

Length-based 55.17% 61.49% 55.58% 61.06% 56.90%
MATH | Tree-based 67.88% 70.93% 82.15% 93.22% 80.10%
Gain +12.71% +9.44% +26.57% +32.16% +23.20%
Length-based 50.87% 51.12% 67.96% 49.43% 65.34%
GPQA | Tree-based 75.34% 61.60% 95.20% 99.42% 84.68%
Gain +24.47% +10.48% +27.24% +49.99 % +19.34%
Length-based 54.49% 54.17% 52.37% 54.49% 53.39%
LCB Tree-based 86.32% 71.73% 96.12% 86.32% 82.51%
Gain +31.83% +17.56% +43.75% +31.83% +29.12%
Length-based 55.36% 60.10% 54.17% 53.23% 59.55%
MMLU | Tree-based 62.86% 64.99% 73.65% 85.62% 71.89%
Gain +7.50% +4.89% +19.48% +32.39% +12.34%

Table 5: Comparison of model-specific classification accuracy using the baseline length-based method and the
proposed tree-based representation.

| DeepSeek-32B | QwQ-32B

| LiveCodeBench ~ MATH | LiveCodeBench ~ MATH
Vote | - 80.41% | - 71.19%
Length-Best 56.92% 56.70% 47.37% 55.93%
Length-Vote - 67.01% - 57.63%
ORM-Best 50.77% 60.82% 42.11% 57.63%
ORM-Vote - 68.04% - 67.80%
PRM-Best 62.89% 63.92% 50.88% 57.63%
PRM-Vote - 62.89% - 55.93%
Ours-Best 61.54% 65.98% 52.63% 67.80%
Ours-Vote - 82.47 % - 71.19%

Table 6: Accuracy comparison of different Best-of-N decoding strategies on the two benchmark.

14

C.2 Additional Results on Model-specific
Analysis

Table 5 presents the detailed analysis of whether
different models display distinguishable reasoning
behaviors when applied to the same dataset. The re-
sults confirm that LCoT2Tree effectively captures
model-specific reasoning patterns that generalize
across tasks. Specifically, QwQ-32B exhibits rea-
soning behaviors more closely aligned with the
DeepSeek family, compared to Grok-3-mini-beta
and Seed-1.5-Thinking-pro. These findings further
underscore the effectiveness of structural represen-
tations in revealing subtle differences in model be-
havior.

C.3 Additional Results on Best-of-N Decoding

Table 6 provides a detailed comparison of different
Best-of-N decoding strategies on the MATH and
LiveCodeBench (LCB) datasets using responses
from two LLMs: DeepSeek-32B (DS-32) and
Qwen-32B (QwQ-32). For the MATH benchmark,
we evaluate on samples from the MATH500 and
Level5 subsets that are not included in the training
set. For LCB, we use LCB-v6 as the test set. In
both cases, we ensure that the selected test sam-
ples are challenging—each sample is incorrectly
answered at least twice across 10 runs. We set
N = 10 and compare our proposed tree-based
methods (Ours-Best and Ours-Vote) against several
baselines:

* Vote (Wang et al., 2023b): Standard majority
voting among N outputs.

* Length-Best (Wang et al., 2025): Select the
response with the fewest tokens.

* Length-Vote (Wu et al., 2025): Majority vot-
ing after selecting the % responses with reli-
able CoT length.

¢ ORM-Best (Brown et al., 2024): Select the
response with the highest outcome reward

model score using Skywork-Reward-Gemma-
2-27B-v0.2 (Liu et al., 2024b).

* ORM-Vote (Brown et al., 2024): Weighted
Majority voting (Lightman et al., 2023) with
the outcome reward model score.

* PRM-Best (Zhang et al., 2025), which scores
responses based on the product of step-level

scores from a process reward model (i.e.,
Qwen2.5-Math-PRM-72B)

15

* PRM-Vote (Zhang et al., 2025), Weighted Ma-
jority voting (Lightman et al., 2023) with the
processing reward model score.

* Ours-Best: Select the response with the high-
est score assigned by our tree-based reasoning
quality classifier mentioned in Section 3.3.

* Ours-Vote: Weighted Majority voting with the
score of our classifier.

Our method consistently outperforms traditional
heuristics and reward model-based baselines, par-
ticularly in the MATH dataset, where precise multi-
step reasoning is crucial. Notably, for DeepSeek-
32B on MATH, our tree-based voting method
achieves the highest accuracy at 82.47%, signif-
icantly surpassing both Length-Best (56.70%) and
ORM-Best (60.82%). Similar trends are observed
for QwQ-32B, with our model showing competi-
tive or superior performance. These results confirm
that incorporating structural reasoning patterns via
LCoT2Tree leads to a reliable output selection in
complex reasoning tasks.

D Diagnostic Insight into Reasoning
Behaviors & Visualization Results

D.1 Insight into Error Behaviors

In this section, we present a detailed analysis of
common error patterns found within reasoning
trees. We use GNNExplainer (Ying et al., 2019),
a graph-based interpretability method, to identify
which edges in a reasoning tree contribute most
significantly to the model’s predictions. For each
reasoning tree, GNNExplainer assigns an impor-
tance weight to every edge, reflecting its influence
on the model’s output. These weights are normal-
ized to the [0, 1] range, and we visualize the tree by
adjusting the edge thickness and color intensity ac-
cording to these scores. The darker and thicker the
edge, the more critical it is to the model’s decision.
Illustrative examples are shown in Figure 9.

Based on this analysis, we extract and categorize
the most usual subgraphs associated with incorrect
predictions into four primary error patterns. (A)
Over Branching: excessive exploration or verifi-
cation from a single node; (B) Step Redundancy:
repetitive or unnecessary reasoning within the same
step; (C) Direct Reasoning: abrupt transitions from
one reasoning step to much deeper steps with min-
imal branching; (D) Skipped Thinking: leaping
across multiple reasoning steps without proper in-
termediate logic.

These patterns are visualized in the left part of
Figure 9, with real examples provided on the right.
Notably, these findings reveal that both overly com-
plex and overly simplistic reasoning paths can lead
to incorrect outcome, underscoring the need for
balanced, coherent, and well-structured reasoning
in high-quality LLMs.

D.2 Task-specific Reasoning Behaviors

We have quantitatively demonstrated that
LCoT2Tree effectively facilitates the separation
of task-specific reasoning contents, as detailed
in Section 4.2. In this section, we leverage
LCoT2Tree to pinpiont the disparate behaviors
exhibited by the DeepSeek-32B model across
various tasks. The key findings are summarized
below:

For MATH (Figure 10), the reasoning trees typ-
ically display a diagonally descending structure,
with progressively deeper steps achieved through
repeated backtracking. This pattern reflects a struc-
tured, hierarchical problem-solving strategy. In
the visualization, dashed lines—representing back-
tracking—are identified as key structural features
that distinguish MATH from other tasks.

For LiveCodeBench (Figure 11), the trees of-
ten exhibit broad, parallel branching, where many
sibling nodes continue with independent linear
thoughts that are rarely explored or verified further.
This suggests a shallow, scattered reasoning style.
Our visualization also reveals that these parallel
branches contribute most significantly to classify-
ing this task.

For GPQA (Figure 12), the reasoning trees con-
tain numerous high out-degree nodes, indicating
that the model frequently revisits and expands on
specific concepts. This behavior suggests intensive
cognitive effort and repeated clarification, reflect-
ing the model’s attempt to thoroughly understand
difficult points—while also hinting at a lack of con-
fidence in its reasoning.

Finally, for MMLU-Pro(Figure 13), the reason-
ing trees are relatively shallow, with fewer nodes
and minimal branching. This suggests a more di-
rect, deductive approach with limited exploration,
which is consistent with the knowledge-intensive
nature of MMLU-Pro questions rather than deeply
compositional reasoning.

These observations highlight how LCoT2Tree
provides fine-grained insights into the cognitive
strategies employed by the model in diverse reason-
ing scenarios.

16

D.3 Model-specific Reasoning Behaviors

We provide a detailed comparison of how differ-
ent LLMs approach the same task by visualizing
and analyzing their reasoning trees on the MATH
dataset. Focusing on DeepSeek-32B as a reference
point, we summarize several key observations:

DeepSeek-32B (DS-32; Figure 10) typically pro-
duces reasoning trees with a diagonally descend-
ing structure, with depth increasing progressively
through backtracking. This reflects a structured,
step-by-step problem-solving reasoning process.

DeepSeek-R1 (Figure 14) exhibits similar struc-
tural characteristics to DS-32, but with a notable
difference: it tends to terminate detailed explo-
ration earlier and backtrack more quickly to begin-
ning steps. This indicates a more aggressive prun-
ing strategy to streamline the reasoning path. In vi-
sualizations, connections between Step 0 and Step
1 serve as critical features distinguishing DeepSeek-
R1’s behavior.

QwQ-32B (Figure 15) also mirrors the behavior
of DS-32 to some extent but differs in the latter
stages. Unlike DS-32, which often rushes toward
the final answer, QwQ-32B continues to invest cog-
nitive effort into deeper exploration. In the visu-
alization, expanded right subtrees often emerge as
defining characteristics of QwQ-32B’s reasoning
tree.

In contrast, Seed-1.5-Thinking-pro (Figure 16)
and Grok-3-mini-beta (Figure 17) follow a
markedly different reasoning strategy. They ex-
hibit fewer thought transitions during reasoning.
As a result, their trees contain fewer nodes and
branches, forming simpler structures. This sug-
gests a straightforward problem-solving style with
limited iterative refinement.

These insights reinforce that LCoT2Tree not
only captures reasoning structure at the task level,
but also reveals distinctive behavioral patterns
across model families.

Step1 Prompt in LCoT2Tree tool to extract reasoning sketch from LCoT

Analyze the following reasoning text and extract a strictly ordered, atomic sequence of key
reasoning steps. Focus on extracting the validated, logically essential progression of thoughts
while excluding backtracking, rechecks, or redundant details.

Reasoning text:
<reasoning_text>

{{text}}

</reasoning_text>

Please read the entire text carefully and generate by following these rules:

1. Find the key steps and the logical flow of reasoning.

2. Each step must represent a single, indivisible logical action that directly advances the reasoning.
3. Determine the correct version of the step, ignoring redundant information. A correct step should
be able to push the reasoning logic forward and have no errors in itself.

4. Do not skip steps. Do not merge steps. Use the original phrasing where possible.

5. Do not include verification steps unless it introduces new constraints.

6. Organize the steps into a coherent sequence of key reasoning steps and number it sequentially
1.,2.,3., ...

7. Maintain strict output format.

Output format:

<reasoning_process>

Step 1. concise statement: Detail step
Step 2. concise statement: Detail step
Step 3. concise statement: Detail step
</reasoning_process>

Please list the key reasoning steps of the provided text.

Figure 6: The content of Stepl Prompt in LCoT2Tree tool to extract reasoning sketch from LCoT.

17

Step3 Prompt in LCoT2Tree tool to assign reasoning step to each thought.

Your task is to match each reasoning thought from List B to corresponding step number(s) in the
List A. Follow the following process:

1. First understand List B:

- For each thought in List B, identify if it describes some specific calculation processes (mathemati-
cal operation, logical transformation, or data manipulation)

- Ignore the describation that only state conclusions, concepts without showing the actual
processing detail

2. Then math to List A:

- For each thought from List B, find all steps in List A that:

* Show the same underlying calculation (even with different numbers/words)
* Represent the partial or same reasoning process

- Ignore superficial wording differences - focus on logical equivalence

3. Output requirements:

- Return ALL plausible matches where computational processes align
- Never return empty arrays (except for thought BO if needed)

- Multiple matches are encouraged when justified

- Maintain strict JSON format

Input:

- List A (Detailed Steps):
<list_a>

{{reasoning_step}}

</list_a>

- List B (Reasoning Thoughts):
<list_b>

{{thoughts}}

</list_b>

Output Format (strict JSON):

el

json
{

HBOH: ["Al”]’
HB]VI: [HA3N]’

”B2": [”Al”, ”A4”],
}’”

Please match the reasoning thoughts in List B to step in the List A.

Figure 7: The content of Step3 Prompt in LCoT2Tree tool to assign reasoning step to each thought.

18

Step4 Prompt in LCoT2Tree tool to assign function to each thought.

Your task is to classify Text2’s purpose relative to Text] using these categories:

Categories:

1. Continuous Logic - Direct continuation/extension of Text1’s reasoning flow

2. Exploration - Introduces parallel/unrelated concepts from Text1, alternative reasoning paths, or
new topics

3. Backtracking - Revises, corrects, or adjusts previous step

4. Validation - Provides supporting evidence, logical justification, or examples for Text1’s claims

Input: {{
"Textl'": "TEXT1",
"Text2": "TEXT2"

)

Output Format:
Return only JSON format “‘json{"Category": "Name of Category"}

999

Figure 8: The content of Step4 Prompt in LCoT2Tree tool to assign function to each thought.

19

/N

L ((CCCC

(A) Over
Branching

(@e

(B) Step
Redundancy

Step i
v

o
6 Step j
Gg>»>10
(C) Direct
Reasoning

Step i

‘ Step j
Gg>»>10
(D) Skipped
Thinking

Figure 9: Visualization results of tree structure corresponding to different error patterns. The edge is labeled with
the importance generated by GNNExplainer. The darker the color and the thicker the edge, the more important it is.

20

Figure 10: Visualization results of tree structure of a response from DeepSeek-32B on MATH dataset extracted

using LCoT2Tree. The reasoning trees exhibit a downward-sloping hierarchical structure, with progressively deeper
steps achieved through repeated backtracking.

. o Step 0

61

o9 @ og¢ @ @ @ -
o
@ step a

@90 o0
ol \
wistisindeffon

)0000 0600~
DOOOOOC00O® © 0000 O

63

Figure 11: Visualization results of tree structure of a response from DeepSeek-32B on LiveCodeBench dataset
extracted using LCoT2Tree. The reasoning patterns tend to show broad, parallel branching, where many sibling
nodes initiate independent linear thought without subsequent exploration or verification.

21

Figure 12: Visualization results of tree structure of a response from DeepSeek-32B on GPQA dataset extracted
using LCoT2Tree. The reasoning trees contain many high out-degree nodes, indicating that the model often revisits
and elaborates on complex concepts.

Step 0

=2 @ e 0

Figure 13: Visualization results of tree structure of a response from DeepSeek-32B on MMLU-Pro dataset extracted
using LCoT2Tree. The reasoning trees contain fewer nodes and minimal branching, indicating a more direct and
deductive reasoning style with less exploration.

22

Step 0

R

- e = S
*/0-0 2-0 3-0 5-0 6-0 7-0 9-0 10-011-0] 14-0 | 18-019-022-023-024-025-026-027-028-045-046-047-045-043-050-051-0 56-0 66-067-072-073-074-075-0

| :

© ©% ©0@33I3®> IV O EIWVO ©
@ © O @ ©-
@ © - Y- @ © @
®

76-478-279-080-081-082-08% .. 114

Figure 14: Visualization results of tree structure of a response from DeepSeek-R1 on MATH dataset extracted
using LCoT2Tree. It exhibits similar behavior to DS-32, but with an important distinction: it tends to truncate
detailed exploration earlier and backtrack to beginning steps more quickly to optimize its reasoning path.

Figure 15: Visualization results of tree structure of a response from QwQ-32B on MATH dataset extracted using
LCoT2Tree. QwQ-32B mirrors the behavior of DeepSeek-32B to some extent, but differs in how it allocates
attention in the latter stages of reasoning.

23

7-0 30 Step 2
© 00 s
Q Step 4
\
\
@ O =0
Step 6

Step 7

Figure 16: Visualization results of tree structure of a response from Seed-1.5-Thinking-pro on MATH dataset
extracted using LCoT2Tree. The reasoning trees contain fewer nodes and branches, forming simpler structures.

Step 1

Step 4

Step 5

Step 8

3]

Figure 17: Visualization results of tree structure of a response from Grok-3-mini-beta on MATH dataset extracted
using LCoT2Tree. The reasoning trees contain fewer nodes and branches, forming simpler structures.

24

	Introduction
	Related Works
	LCoT2Tree: Automated Long Chain-of-Thoughts to Tree
	Overthinking Phenomenon
	LCoT2Tree Tool
	Effectiveness of LCoT2Tree

	Understand Behaviors of Reasoning Large Language Models
	Error Patterns in LCoT
	Task-Specific Patterns in LCoT
	Model-Specific Patterns in LCoT
	Shortcomings in Understanding LCoT from the Structural Perspective

	Application of LCoT2Tree: Tree-based Best-of-N Decoding
	Conclusion
	LCoT2Tree Tool Implementation Details
	Classification Implementation Detail
	Dataset Construction
	Graph Construction
	Node and Edge Features
	Hyperparameters

	Additional Experimental Results
	Additional Results on Task-specific Analysis
	Additional Results on Model-specific Analysis
	Additional Results on Best-of-N Decoding

	Diagnostic Insight into Reasoning Behaviors & Visualization Results
	Insight into Error Behaviors
	Task-specific Reasoning Behaviors
	Model-specific Reasoning Behaviors

