
What Makes a Good Reasoning Chain?
Uncovering Structural Patterns in Long Chain-of-Thought Reasoning

Anonymous ACL submission

Abstract001

Recent advances in reasoning with large lan-002
guage models (LLMs) have popularized Long003
Chain-of-Thought (LCoT), a strategy that en-004
courages deliberate and step-by-step reason-005
ing before producing a final answer. While006
LCoTs have enabled expert-level performance007
in complex tasks, how the internal structures008
of their reasoning chains drive, or even predict,009
the correctness of final answers remains a crit-010
ical yet underexplored question. In this work,011
we present LCoT2Tree, an automated frame-012
work that converts sequential LCoTs into hier-013
archical tree structures and thus enables deeper014
structural analysis of LLM reasoning. Using015
graph neural networks (GNNs), we reveal that016
structural patterns extracted by LCoT2Tree, in-017
cluding exploration, backtracking, and verifica-018
tion, serve as stronger predictors of final perfor-019
mance across a wide range of tasks and models.020
Leveraging an explainability technique, we fur-021
ther identify critical thought patterns such as022
over-branching that account for failures. Be-023
yond diagnostic insights, the structural patterns024
by LCoT2Tree support practical applications,025
including improving Best-of-N decoding effec-026
tiveness. Overall, our results underscore the027
critical role of internal structures of reasoning028
chains, positioning LCoT2Tree as a powerful029
tool for diagnosing, interpreting, and improv-030
ing reasoning in LLMs.031

1 Introduction032

Large Language Models (LLMs) have achieved re-033

markable progress in nature language understand-034

ing and processing, with recent developments ex-035

tending their capabilities to more complex reason-036

ing tasks. Cutting-edge models such as OpenAI037

o3 (OpenAI, 2025) and DeepSeek R1 (Guo et al.,038

2025) push this frontier by emulating System 2039

thinking (Li et al., 2025b), i.e, engaging in slow,040

deliberate, and step-by-step reasoning before arriv-041

ing at a final answer. This approach, well known as042
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Figure 1: The distribution of output token length for
correctly answered (Positive) and incorrectly answered
(Negative) samples by DeepSeek-R1-Distill-Qwen-32B
on two datasets.

Long Chain-of-thought (LCoT) reasoning (Chen 043

et al., 2025; Gandhi et al., 2025), has empowered 044

LLMs to achieve expert-level performance in chal- 045

lenging tasks such as mathematics, code generation, 046

and scientific problem-solving (Seed et al., 2025; 047

Team et al., 2025; Team, 2024). Despite their grow- 048

ing adoption, LCoTs remain largely a black box in 049

one key aspect: what makes a good thought chain? 050

Before the emergence of LCoT, researchers at- 051

tempted to answer this question from a seman- 052

tic perspective, often using process reward mod- 053

els (PRMs) that provide token-level or step-wise 054

supervision based on logical coherence and fac- 055

tual accuracy (Xia et al., 2025; Zhang et al., 2025). 056

While effective for short or moderately long CoTs, 057

PRMs struggle to scale effectively as the length 058

and structure complexity of reasoning chains in- 059

crease (He et al., 2025). In the LCoT era, recent 060

work has increasingly emphasized the importance 061

of reasoning structure (Gandhi et al., 2025; Li et al., 062

2025a; Ye et al., 2025). Both Wu et al. and Ballon 063

et al. highlighted the overthinking phenomenon, 064

where overly long reasoning chains can degrade 065

rather than improve final answer quality. However, 066

our analysis (Figure 1) shows that response length 067
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alone remains an inadequate predictor of answer068

correctness, as responses with similar lengths vary069

greatly in correctness. These findings suggest that070

these heuristics, such as token count, step count,071

or PRM-based semantic metrics fall short in effec-072

tively dictating reasoning success.073

Thus, we propose Long Chain-of-Thought to074

Tree (LCoT2Tree), the first automated frame-075

work for structural analysis of reasoning in LLMs.076

LCoT2Tree transforms sequential LCoTs into hier-077

archical tree representations (Section 3.2), which078

enable structural patterns in reasoning chains, in-079

cluding exploration, backtracking, and verification,080

to be made explicit and analyzable. By modeling081

these trees with graph neural networks (GNNs),082

we not only extract these structural patterns as fea-083

tures, but also demonstrate that they serve as strong084

predictors of reasoning success (Section 3.3).085

Beyond establishing their predictive power, we086

further investigate which structural patterns specifi-087

cally contribute to reasoning success or failure, how088

these patterns vary across tasks and models, and089

how they can be applied to further enhance LLM090

reasoning in practice. Concretely, by leveraging a091

GNN-based explainability method, we unveil key092

thought patterns (i.e., critical substructures within093

the tree) that that explain answer correctness across094

diverse tasks and models (Section 4). These anal-095

yses reveal how reasoning behaviors differ by (1)096

answer correctness, (2) task type, and (3) model097

variant. Furthermore, we demonstrate that these098

patterns can be leveraged to improve Best-of-N099

decoding: incorporating our tree-based predictive100

classifier into its selection strategy consistently en-101

hances accuracy across diverse models and tasks102

(Section 5). We summarize the main contributions103

of the proposed LCoT2Tree in three aspects:104

• (Predictability) We are the first to explicitly con-105

struct structural representations of LCoT; our pro-106

posed LCoT2Tree offers stronger signals for rea-107

soning success and improves binary classification108

of answer correctness by an average of 5.63%,109

compared to using length alone.110

• (Interpretability) We leverage LCoT2Tree to pin-111

point the reasoning patterns that oftentimes lead112

to errors, e.g., over-branching, and to account for113

disparate behaviors across tasks and models.114

• (Practicality) We demonstrate that LCoT2Tree115

offers a principled path for selecting well-116

structured reasoning chains, greatly enhancing117

Best-of-N decoding and also remaining extensi-118

ble for future decoding strategies.119

2 Related Works 120

Reasoning LLMs Advancing reasoning capabil- 121

ities of LLMs has shown benefits in tackling com- 122

plex tasks (Kojima et al., 2022; Wei et al., 2022; 123

Li et al., 2025b). Researchers first demonstrated 124

that CoT prompting can significantly improve per- 125

formance on complex tasks like arithmetic (Wei 126

et al., 2022). To refine the reasoning processes, 127

hierarchical cognitive phases have been introduced, 128

such as multi-path exploration (Wang et al., 2023b; 129

Zhou et al., 2023; Yao et al., 2023), step verifi- 130

cation (Miao et al., 2024; Gou et al., 2024), and 131

iterative refinement (Madaan et al., 2023; Besta 132

et al., 2024). These approaches expand solution 133

spaces and deepen reasoning, driving more reliable 134

answers. More recently, models such as Deepseek- 135

R1 (Guo et al., 2025), Kimi-1.5 (Team et al., 2025) 136

and QwQ-32B (Team, 2024) have leveraged rule- 137

based reinforcement learning to embed reason- 138

ing capabilities directly into model parameters, 139

achieving remarkable progress in handling com- 140

plex tasks (Chen et al., 2025; Gandhi et al., 2025). 141

Chain-of-Thought Analysis Numerous studies 142

have explored when CoT prompting is effective. 143

Empirical research has revealed that factors, such 144

as step length (Jin et al., 2024), relevance, the order 145

of reasoning fragments (Wang et al., 2023a), and 146

prompt structure (Li et al., 2025a), heavily influ- 147

ence performance. Expanding on these findings, 148

Feng et al. (2023) and Chen et al. (2024a) proposed 149

that there is an inherent reasoning limit in LLMs 150

when tackling tasks exceeding a complexity thresh- 151

old. In the context of long CoT, research has in- 152

creasingly emphasized the importance of response 153

structures in enhancing reasoning success (Li et al., 154

2025a; Gandhi et al., 2025; Muennighoff et al., 155

2025; Ye et al., 2025). Additionally, challenges 156

like the overthinking phenomenon, where overly 157

long responses inadvertently hurt the model perfor- 158

mance, seemingly establish the correlation between 159

length and reasoning success (Chen et al., 2024b; 160

Wu et al., 2025; Cuadron et al., 2025). Beyond 161

these prior works, we are motivated to develop an 162

automated tool to empirically identify the structural 163

patterns that dictate reasoning success in long CoT. 164

Besides the above analyses towards reasoning 165

success, another line of works primarily analyzes 166

towards the semantic rationality of reasoning. Thus, 167

early methods directly compare generated steps 168

to human-annotated explanations (Welleck et al., 169

2022). However, such methods often fail to cap- 170
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ture logical coherence beyond surface-level sim-171

ilarity. Recent work has introduced LLM-driven172

PRMs (Ling et al., 2023; Yuan et al., 2024; She173

et al., 2025; Zhang et al., 2025) to provide holis-174

tic and step-wise assessment, but they struggle175

with scaling to long and complex CoT reasoning176

chains (He et al., 2025). Rather than relying on177

surface similarity or token-level reward signals, we178

analyze reasoning success through internal struc-179

tural patterns derived from hierarchical tree repre-180

sentations. The structural patterns offer a princi-181

pled alternative for dictating “good” chains, and182

are fully complementary to this body of semantic-183

based research.184

3 LCoT2Tree: Automated Long185

Chain-of-Thoughts to Tree186

In this section, we empirically study overthinking,187

highlighting issues with assessing reasoning quality188

via CoT length. Then, we propose Long Chain-of-189

Thought to Tree (LCoT2Tree), an automated tool190

that converts LCoTs into tree structures to reveal191

cognitive frameworks and enable deeper analysis192

of LLMs’ reasoning processes.193

3.1 Overthinking Phenomenon194

The “overthinking” phenomenon in reasoning mod-195

els refers to situations where a model expends196

excessive computational resources (e.g., generat-197

ing overly long sequences or repeating reasoning198

steps), yet makes little contributions to the cor-199

rectness of final answer. In some cases, this can200

even lead to a decline in performance (Chen et al.,201

2024b; Wu et al., 2025). Figure 2 illustrates this202

phenomenon by showing the relationship between203

the output token length and the answer accuracy of204

DeepSeek-32B (i.e., DeepSeek-R1-Distill-Qwen-205

32B (Guo et al., 2025)) on the MATH (Hendrycks206

et al., 2021) dataset. It demonstrates that as the rea-207

soning chain becomes unnecessarily long, model208

performance deteriorates, highlighting how over-209

thinking can harm the reasoning ability of LLMs.210

To tackle this issue, researchers have proposed211

using a length penalty during the training period212

to constrain the length of generated LCoTs (Team213

et al., 2025; Yu et al., 2025). However, this strat-214

egy relies on the oversimplified assumption that215

shorter or moderately long reasoning chains inher-216

ently lead to better reasoning quality. In this work,217

we conduct a classification experiment to empiri-218

cally quantify the actual relationship between these219
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Figure 2: Data count and accuracy of the MATH dataset
for DeepSeek-32B across varying response lengths. Ac-
curacy notably declines as response length increases.

two factors and uncover the limitations of relying 220

on length as an indicator of reasoning quality. 221

Experimental Setup. For our study, we use 222

DeepSeek-32B, DeepSeek-R1 (Guo et al., 2025), 223

QwQ-32B (Team, 2024), Seed-1.5-Thinking- 224

pro (Seed et al., 2025), and Grok-3-mini-beta (xAI, 225

2025) as the primary models. We evaluate these 226

models on four benchmark datasets: MATH 227

(Level5 question in high school math competi- 228

tions; Hendrycks et al., 2021), GPQA (“main” sub- 229

set in grade-level google-proof question answer- 230

ing; Rein et al., 2024), LiveCodeBench (version 231

5 in live code benchmark; Jain et al., 2025), and 232

MMLU-Pro (proficient-level multi-discipline lan- 233

guage understanding; Wang et al., 2024). For each 234

dataset, we collect 2,000 model responses, consist- 235

ing of 1,000 correctly answered cases (Positive) 236

and 1,000 incorrectly answered cases (Negative). 237

These samples are divided into training and testing 238

sets at a ratio of 4:1. 239

In our experiments, we train a logistic regression 240

model using LCoT response length as the input fea- 241

ture and answer correctness as the target label. The 242

test set accuracy quantifies the degree of correlation 243

between LCoT length and reasoning quality-higher 244

accuracy suggests a stronger association between 245

these two factors. 246

Results and Analysis. Figure 1 shows the token 247

length distributions of positive and negative sam- 248

ples. It reveals a significant overlap between the 249

two classes, indicating that responses with similar 250

lengths can vary greatly in reasoning quality. More- 251

over, Table 1 presents the classification results, 252

where the accuracy on the MMLU-Pro dataset 253

is only 60.0% for DeepSeek-32B and 58.0% for 254

QwQ-32B. These relatively low accuracies under- 255

score the limitations of using response length alone 256

in predicting reasoning success. 257
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Reasoning Sketch

Step 0 (Fixed): Task 
decomposition
Step 1: Determine divisibility by 
4 requirement: …
Step 2: Analyze valid B value: …
Step 3: Compute probability: …

Thought List

𝑻𝟎: Okay, so … First, let’s …
𝑻𝟏	: Wait, actually, the last …
𝑻𝟐	: Alternative, … So, for …
𝑻𝟑	: Wait, wait: 10 B should be …
…
𝑻𝟗	: Let me verify: k … Yes, …

Thought Function

𝑻𝟏:  1 (Continuous Logic)
𝑻𝟐:  2 (Exploration)
𝑻𝟑:  4 (Verification)
𝑻𝟒:  3 (Backtrack)
...
𝑻𝟗:  4 (Verification)

Thought Step

𝑻𝟎	: [Step 0] 𝑻𝟏	: [Step 1]
𝑻𝟐	: [Step 1, Step 2, Step 3]
𝑻𝟑	: [Step 3]   𝑻𝟒	: [Step 2]
𝑻𝟓	: [Step 2]   𝑻𝟔	: [Step 2] 	
𝑻𝟕	: [Step 3]   𝑻𝟗	: [Step 3]
𝑻𝟖	: [Step 1,  Step 2, Step 3]

⓵ ⓶Extract 
Sketch

Split
Thought 

Assign 
Step

Identify 
Function

⓷ ⓸ ⓹

The positive three-digit integer N as a 
ones digit of  0. What is the probability 
that N is divisible by 4?

Long Chain-of-thought

Okay, so I need to figure …
First, let’s understand …
Wait, actually, the last number should …
Alternative, since three-digit number …
So, for each A, there are 5 …
Wait, wait: 10 B should be …
…
Let me verify: k is from 10 to 99 …
Yes, that make sense …

Answer

To determine the probability that a 
three-digit integer …
…
Therefore, the final answer is: (\boxed 
{\frac{1}{2}}). I hope it is correct. 

Reasoning Tree

Build 
Tree

Exploration

Backtrack Verification

𝑁!"

𝑁"" 𝑁#"

𝑁##

𝑁#$ 𝑁$"

𝑁%" 𝑁&" 𝑁'"

𝑁(" 𝑁)$ 𝑁*"

𝑁)"
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Step 1

Step 0

Step 2

Step 3

Continuous 
logic flow

Question

Figure 3: The workflow for LCoT2Tree. It transforms sequential long chain-of-thought into reasoning tree, which
involves five steps: (1) Extract Sketch, (2) Split Thought, (3) Assign Step, (4) Identify Function, and (5) Build Tree.

3.2 LCoT2Tree Tool258

We present LCoT2Tree, a novel tool that extracts259

structural insights from LCoTs, addressing the lim-260

itations of length-based prediction. LCoT2Tree261

converts the sequential chain of reasoning into a262

tree structure, enabling a deeper analysis of cog-263

nitive behaviors such as exploration, backtracking,264

and reasoning depth. These components increas-265

ingly recognized as crucial for developing reason-266

ing LLMs (Chen et al., 2025; Gandhi et al., 2025;267

Ye et al., 2025). To our knowledge, our work is268

the first to explicitly extract this structural infor-269

mation and conduct a quantitative analysis of its270

correlation with reasoning quality.271

The LCoT2Tree tool involves five automated272

stages that transform a LCoT into an organized tree273

structure using an LLM (DeepSeek-v3; Liu et al.,274

2024a), as shown in Figure 3:275

Stage 1: Extract Sketch. Leveraging the LLM276

with prompting (Figure 6), we condense the LCoT277

into a concise Reasoning Sketch that outlines its278

main reasoning steps. The sketch serves as an ab-279

stract summary, highlighting the essential compo-280

nents and logical flow of the reasoning process.281

Stage 2: Split Thought. We first define a282

“Thought” as a consecutive segment in the reason-283

ing chain that involves no logical transition (e.g.,284

exploration and verification). We utilize common285

linguistic cues (e.g., “Wait”, “Alternatively”, and286

“Let me verify”) indicative of transitions between287

reasoning steps to segment the full reasoning chain288

into distinct fragments, yielding a Thoughts List.289

Stage 3: Assign Step. Each thought in the290

Thoughts List is matched to one or more steps in291

the Reasoning Sketch, depending on its role in the292

overall reasoning process. This alignment is carried293

out using an LLM with prompting (Figure 7), gen- 294

erating a Thought Step dictionary that maps each 295

thought to its corresponding reasoning depths. 296

Stage 4: Identify Function. By prompting the 297

LLM (Figure 8), we analyze consecutive thought 298

pairs to determine the later thought’s role relative 299

to the former, with possible roles: (1) Continuous 300

Logic; (2) Exploration; (3) Backtracking; and (4) 301

Verification. This assigns a Thoughts Function 302

label to each thought for clearer reasoning-flow 303

purpose understanding. 304

Stage 5: Build Tree. Finally, we organize the 305

segmented thoughts into a hierarchical tree struc- 306

ture. Each node N j
i in the tree corresponds to 307

the i-th thought Ti, where j indicates how many 308

times Ti has appeared. The placement of a node is 309

determined by the Thought Step, and each edge rep- 310

resents a transition to a deeper level of reasoning, 311

with the edge type defined by the Thought Function 312

of its child node. When inserting a new thought 313

Ti, we first identify the ordered list of reasoning 314

steps it maps to, denoted as [S1
i , ..., S

n
i ]. Here, n 315

indicates that the current thought encompasses n 316

reasoning steps. Consequently, we create n nodes 317

N1
i , ..., N

n
i , where each node N j

i represents the 318

portion of the thought aligned with the Sj
i -th step. 319

The insertion process follows two rules: (1) If S1
i 320

is greater than the step of the latest node N j
i−1 in 321

the tree, the new node N1
i is added as a child of 322

N j
i−1. (2) Otherwise, we backtrack to the most 323

recent node at step S1
i − 1. Then we create a new 324

branch from that node and link it to new node N1
i . 325

Once N1
i is determined, the remaining nodes 326

N2
i , ...,N

n
i are added sequentially and connected to 327

the previous one. For example, in Figure 3, when 328

inserting T8 to the tree, its associated reasoning 329
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MATH GPQA LiveCodeBench MMLU-Pro 4 Datasets Average

DeepSeek-32B
Length-based 74.13% 67.08% 81.59% 59.95% 66.27% 69.80%

Tree-based 80.81% 70.37% 82.21% 72.41% 71.14% 75.39%
Gain +6.68% +3.29% +0.62% +12.46% +4.87% +5.58%

QwQ-32B
Length-based 75.82% 62.09% 78.30% 58.00% 66.97% 68.24%

Tree-based 77.63% 68.55% 80.05% 72.58% 70.98% 73.96%
Gain +1.81% +6.46% +1.75% +14.58% +4.01% +5.72%

DeepSeek-R1
Length-based 76.94% 69.57% 81.75% 63.00% 70.54% 72.36%

Tree-based 80.30% 73.56% 81.80% 75.85% 73.72% 77.05%
Gain +3.36% +3.99% +0.05% +12.85% +3.18% +4.69%

Seed-1.5-
Thinking-pro

Length-based 67.48% 64.84% 76.39% 63.59% 64.34% 67.33%
Tree-based 70.07% 69.81% 77.72% 70.82% 67.68% 71.22%

Gain +2.59% +4.97% +1.33% +7.23% +3.34% +3.89%

Grok-3-
mini-beta

Length-based 71.31% 61.48% 84.77% 55.47% 63.87% 67.38%
Tree-based 83.18% 66.79% 86.35% 70.68% 71.26% 75.65%

Gain +11.87% +5.31% +1.58% +15.21% +7.40% +8.27%

Table 1: Comparison of performance across various reasoning LLMs and datasets using the length-based method and
our proposed tree-based approach for classifying response correctness based on LCoT information. Classification
results are reported as the average over five runs.

steps [S1
8 , S

2
8 , S

3
8 ] = [1, 2, 3], as determined by the330

Thought Step. At that point, the latest node in tree331

is N1
7 , which is at step 3 (greater than 1). Therefore,332

we backtrack to the latest node at step 0, N1
0 , and333

attach N1
8 as its child. After that, N2

8 and N3
8 are334

linked sequentially to N1
8 and N2

8 , respectively.335

In the end, we extract the tree structure, showing336

how thoughts are connected and branch through-337

out the reasoning process. This structural repre-338

sentation offers three key benefits: (1) highlights339

key cognitive patterns (e.g., exploration, backtrack-340

ing and verification); (2) supports more accurate341

assessment of reasoning quality; and (3) enables342

structure-aware analysis of reasoning behaviors.343

Implementation details, including prompts and case344

visualizations, are available in Appendix A.345

3.3 Effectiveness of LCoT2Tree346

To assess the effectiveness of the LCoT2Tree tool,347

we conduct a quantitative evaluation by using graph348

neural networks (GNNs) to predict answer correct-349

ness based on the tree structures extracted from350

LCoTs. This evaluation demonstrates the practical351

value of tree-based representations for understand-352

ing complex reasoning processes.353

Experimental Setup. We use the same dataset354

described in Section 3.1, which contains responses355

from five reasoning models across four public356

benchmarks. The key difference is that we extract357

the tree structure from each LCoT response and358

use it as input to the GNNs. Our objective is to359

assess how effectively these tree structures can dis-360

tinguish between correct and flawed reasoning. To361

this end, we utilize GATv2 (Brody et al., 2022), a 362

GNN architecture suited for modeling hierarchical 363

structures and their relationships. The model takes 364

the nodes, edges, and associated features of each 365

LCoT tree as input and learns a structural embed- 366

ding that represents the overall reasoning pattern. 367

Implementation details and graph construction are 368

provided in Appendix B. We use classification ac- 369

curacy as the evaluation metric. A high accuracy 370

score indicates that the model successfully captures 371

the correlation between reasoning structure and an- 372

swer correctness. 373

Effectiveness across Tasks. Table 1 shows the 374

classification results using tree-based input, com- 375

pared to baseline methods that rely on the length- 376

based feature. We assess how well the tree- 377

based method generalizes across diverse types of 378

reasoning tasks, including MATH, GPQA, Live- 379

CodeBench, MMLU-Pro, and a combined dataset 380

of these benchmarks. Across all tasks, the tree- 381

based method consistently outperforms the length- 382

based baseline. The improvement is particularly 383

notable on MMLU-Pro, a dataset where reasoning 384

correctness is difficult to predict from token length 385

alone. For example, our method achieves substan- 386

tial accuracy gains of +12.46% and +14.58% on 387

DeepSeek-32B and QwQ-32B, respectively. Even 388

on datasets like LiveCodeBench, where the length- 389

based approach already performs strongly, the tree- 390

based method still yields improvements, demon- 391

strating its robustness. 392

Effectiveness across Models. For the generaliz- 393

ability of our method, the tree-based classifier con- 394
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sistently achieves higher accuracy than the length-395

based baseline across all models. Average accuracy396

gains range from +3.89% (Seed-1.5-Thinking-pro)397

to +8.27% (Grok-3-mini-beta), indicating that the398

LCoT2Tree provides more informative and reliable399

structural representations of reasoning processes.400

These quantitative evaluation validates the ef-401

fectiveness of the LCoT2Tree tool across diverse402

tasks and models. By capturing deeper structural403

and cognitive patterns in reasoning, it enables more404

accurate prediction of reasoning success. Overall,405

LCoT2Tree shows strong potential as an automated406

tool for analyzing, evaluating, and improving the407

behavior of reasoning systems.408

4 Understand Behaviors of Reasoning409

Large Language Models410

In this section, we leverage LCoT2Tree to analyze411

and understand reasoning behaviors. First, we iden-412

tify key thought patterns in the reasoning tree that413

predict errors. Then, we compare behaviors across414

tasks and models. Our findings show that reasoning415

varies by (1) output correctness, (2) task type, and416

(3) model variant, underscoring the importance of417

structural information in reasoning analysis.418

Explainability Method. To interpret the model’s419

predictions on reasoning quality and uncover the420

influential reasoning patterns, we adapt a graph421

explainability method called GNNExplainer (Ying422

et al., 2019). This method uncovers important sub-423

graphs by maximizing the mutual information be-424

tween the GNN’s output and the distribution of425

possible subgraph structures. These extracted sub-426

graphs also correspond to critical thought patterns427

within the reasoning chain. For example, in models428

trained to predict incorrect answers, the highlighted429

subgraphs often reflect flawed reasoning behaviors430

that lead to poor performance. Similarly, in models431

trained on MATH tasks, the important subgraphs432

typically capture common reasoning patterns ob-433

served in mathematical problem-solving.434

4.1 Error Patterns in LCoT435

The experiments in Section 3.3 suggest that reason-436

ing trees of model responses exhibit separable struc-437

tures for correct and incorrect outcomes. To further438

explore the behaviors that contribute to failures, we439

employ GNNExplainer to identify the most influ-440

ential edges in each reasoning tree. This allows441

us to extract critical subgraphs from incorrect re-442

sponses and summarize common patterns across443

…

(C) Direct 
Reasoning

(D) Skipped 
Thinking

(A) Over
Branching

(B) Step 
Redundancy

…

…

Step 𝑖

Step 𝑗
(𝑗 ≫ 𝑖)

Figure 4: Visualization and frequency of four structural
error patterns across three datasets. (A) Over Branch-
ing: abundance of explorations or verifications within
a single node, (B) Step Redundancy: over-generation
of thoughts within a single reasoning step, (C) Direct
Reasoning: following a straight, minimal-branch path
from one step to a much deeper step, and (D) Skipped
Thinking: jumping multiple steps ahead without inter-
mediate logical analysis. Representative example of
each class is available in Figure 9.

diverse examples (See details in Appendix D.1). 444

The identified error patterns are visualized in the 445

top portion of Figure 4, with detailed examples 446

shown in Figure 9. Additionally, we analyze 100 447

error responses from three tasks and report the fre- 448

quency of each pattern in the bottom portion of 449

Figure 4. A key observation is that excessive and 450

insufficient branching are both strongly associated 451

with incorrect reasoning. 452

4.2 Task-Specific Patterns in LCoT 453

In the left part of Table 2, we present the results 454

of a task separability experiment conducted on the 455

DeepSeek-32B model. We classify reasoning trees 456

across task pairs (e.g., MATH/GPQA, MATH/LCB, 457

MATH/MMLU-Pro, GPQA/LCB), with additional 458

results for QwQ-32B provided in Appendix C.1. 459

The dataset follows the same construction as in 460

Section 3.1, but labels tasks instead of correctness. 461

Results show that our tree-based method effec- 462

tively distinguishes task-specific reasoning patterns, 463

achieving an average accuracy of 84.19%. Notably, 464

in cases where length-based features fall short, such 465

as MATH/GPQA and GPQA/LCB, tree-based rep- 466

resentations yield substantial gains of +33.06% and 467

+24.90%, respectively, highlighting their strength 468

in capturing deeper reasoning patterns. 469

Discovering Task-Specific Reasoning Patterns. 470

Beyond quantitative separation, we further lever- 471
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Task-specific Analysis Model-specific Analysis

MATH/GPQA MATH/LCB MATH/MMLU GPQA/LCB DS-32/DS-R1 DS-32/Grok

Length-based 50.45% 63.72% 69.43% 60.65% 55.17% 61.06%
Tree-based 83.51% 89.22% 78.46% 85.55% 67.88% 93.22%
Gain +33.06% +25.50% +9.03% +24.90% +12.71% +32.16%

Table 2: Comparison of task-specific and model-specific classification accuracy using the length-based method and
the proposed tree-based approach. Task-specific analysis is conducted on the DeepSeek-32B model across different
datasets, while model-specific analysis is performed on the MATH dataset across multiple model variants.

age LCoT2Tree to reveal task-specific reasoning472

patterns through qualitative analysis. Main con-473

clusions, based on DeepSeek-32B, are as follows:474

For MATH (Figure 10), the reasoning trees ex-475

hibit a diagonally descending structure, reaching476

deeper steps through repeated backtracking. This477

reflects a layered, step-by-step problem-solving ap-478

proach. In contrast, the behaviors in code comple-479

tion (Figure 11) show wide, parallel branches with480

minimal exploration or verification, reflecting a481

more straightforward pattern of generation. GPQA482

(Figure 12) samples reveal high out-degree nodes,483

where the model repeatedly revisits complex con-484

cepts, indicating the model’s uncertainty in deal-485

ing an expert-level question. Meanwhile, the trees486

of MMLU-Pro (Figure 13) are relatively shallow487

with minimal branching, reflecting a straightfor-488

ward deductive reasoning style that aligns with the489

nature of knowledge-based questions. These obser-490

vations highlight LCoT2Tree’s ability to provide491

interpretable insights into the distinct reasoning492

strategies employed across different task types. De-493

tailed case studies are provided in Appendix D.2494

with visualizations shown in Figure 10 - Figure 13.495

4.3 Model-Specific Patterns in LCoT496

We explore whether different models exhibit distin-497

guishable reasoning behaviors on the same dataset.498

The results, shown in the right part of Table 2,499

demonstrate that LCoT2Tree effectively captures500

model-specific patterns. In particular, tree-based501

representations significantly outperform simple502

length-based features, with gains of +12.71% for503

DS-32 (DeepSeek-32B) vs. DS-R1 (DeepSeek-504

R1), and +32.16% for DS-32 vs. Grok (Grok-3-505

mini-beta). Notably, the relatively lower separa-506

bility score between DS-32 and DS-R1 (67.88%)507

can be attributed to the fact that DS-32 is a dis-508

tilled version of DS-R1. In contrast, DS-32 and509

Grok show a high separability of 93.22%, suggest-510

ing fundamentally different reasoning styles driven511

by architectural and training differences. Addi-512

tional results (Appendix C.2) show that QwQ-32B 513

aligns more closely with the DeepSeek family than 514

with Grok or Seed (Seed-1.5-Thinking-pro). These 515

findings again highlight the strength of structural 516

representations in revealing fine-grained behavioral 517

distinctions. 518

Discovering Model-Specific Reasoning Patterns. 519

To complement the quantitative analysis, we also 520

conduct a qualitative comparison of reasoning trees 521

across different models on the MATH dataset (Ap- 522

pendix D.3). Our analysis reveals that both DS-R1 523

(Figure 14) and QwQ-32B (Figure 15) produce 524

reasoning structures similar to DS-32 (Figure 10), 525

consistent with quantitative results. However, DS- 526

R1 tends to prune its reasoning paths earlier, sug- 527

gesting a more aggressive backtracking strategy. 528

In contrast, QwQ-32B shows more extensive ex- 529

ploration in the later stages of reasoning. On the 530

other hand, Seed (Figure 16) and Grok (Figure 17) 531

follow simpler, more linear reasoning paths with 532

fewer thought transitions and minimal branching, 533

reflecting a straightforward reasoning strategy. 534

4.4 Shortcomings in Understanding LCoT 535

from the Structural Perspective 536

Correct Structure but Wrong Output. Despite 537

structurally valid reasoning paths, models can still 538

produce incorrect answers due to semantic errors 539

like misinterpreting the problem, making calcula- 540

tion mistakes, or failing conditional logic. This 541

indicates that reasoning LLMs do not consistently 542

exhibit behaviors like backtracking or verification 543

when facing ambiguity or errors. These cases ex- 544

pose the limitation of structural analysis alone and 545

suggests that combining structural insights with se- 546

mantic verification is necessary for comprehensive 547

reasoning understanding. 548

Flawed Structure but Correct Output. Using 549

our classifier, we identify a set of responses with 550

correct final answer but weak or flawed reason- 551

ing. These cases often involve reasoning paths that 552

deviate from systematic problem-solving, includ- 553
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ing guessing, brute-force enumeration, or overly554

late-stage corrections. Such cases underscore the555

limitations of using answer correctness alone to556

assess reasoning quality, as it tolerates shallow or557

unsound reasoning paths. Addressing these flawed-558

but-correct patterns can guide LLMs toward pro-559

ducing reasoning that is not only accurate but also560

logically sound.561

5 Application of LCoT2Tree: Tree-based562

Best-of-N Decoding563

Beyond evaluating the quality of model reason-564

ing (Section 3.3), we put forward practical appli-565

cation to support the decoding process in LLMs.566

Specifically, we propose an approach to improve567

the reasoning quality during the decoding stage by568

selecting the best model response from multiple569

candidates with the tree-based classifier.570

Method. Best-of-N decoding is a widely used571

strategy for improving the quality of responses gen-572

erated by LLMs (Wu et al., 2024; Snell et al., 2024;573

Brown et al., 2024). In this strategy, the model574

produces N candidate outputs, and a final response575

is selected based on a scoring function. However,576

conventional scoring methods, based on surface-577

level heuristics or reward models, often ignore the578

impact of output structures. This limitation can579

lead to suboptimal choices, especially in tasks that580

require deep or structured reasoning.581

To this end, we incorporate LCoT2Tree into the582

Best-of-N decoding framework to guide the selec-583

tion of high-quality reasoning outputs. Our method584

involves three main steps: (1) For each candidate585

response, we use LCoT2Tree to build its corre-586

sponding reasoning tree; (2) A graph-based classi-587

fier, trained to distinguish between successful and588

flawed reasoning structures, assigns a score to each589

candidate based on its structural features; (3) The590

candidate with the highest score is chosen as the591

final output.592

Experiments. We choose LiveCodeBench (LCB)593

as our primary benchmark. We train the GNN594

models following the setup in Section 3.3 using595

LCB-v5 dataset and then evaluate on a challenging596

subset (filtered by correctness ratio) of the LCB-597

v6 dataset. We compare our tree-based Best-of-N598

decoding method with three baselines: (1) ORM-599

Best (Brown et al., 2024), which selects the re-600

sponse with the highest score from an outcome601

reward model (we use Skywork-Reward-Gemma-602

2-27B-v0.2 (Liu et al., 2024b)); (2) PRM-Best,603

DeepSeek-32B QwQ-32B
30%
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70%

A
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Figure 5: Accuracy comparison of different Best-of-N
decoding strategies on the LCB-v6 benchmark.

which scores responses based on the product of 604

step-level scores from a process reward model (i.e., 605

Qwen2.5-Math-PRM-72B (Zhang et al., 2025)); 606

and (3) Length-Best (Wang et al., 2025), which 607

selects the response with the fewest tokens. All 608

experiments use N = 10 candidate responses. Ad- 609

ditional results on MATH with more baselines are 610

presented in Appendix C.3. 611

Results. As shown in Figure 5, our tree-based Best- 612

of-N method outperforms both Length-Best, ORM- 613

Best and PRM-Best on the LCB-v6 benchmark. 614

For DeepSeek-32B, it achieves 61.54% accuracy, 615

exceeding Length-Best by +4.62%, ORM-Best by 616

+10.77% and PRM-Best by +6.16%. QwQ-32B 617

shows similar gains, with our method reaching 618

52.63%, outperforming the baselines by +5.26%, 619

+10.52% and 1.75%, respectively. These results 620

highlight the advantage of using structural reason- 621

ing signals via LCoT2Tree to improve candidate 622

selection in complex tasks. 623

6 Conclusion 624

In this work, we introduce a novel framework, 625

named LCoT2Tree, for converting LCoT responses 626

into hierarchical tree structures. LCoT2Tree en- 627

ables more interpretable and structural analysis of 628

complex reasoning processes, with significantly im- 629

proving the prediction of reasoning success across a 630

wide range of tasks and models. Beyond evaluation, 631

we apply LCoT2Tree for behavioral analysis, re- 632

vealing error patterns and accounting for disparate 633

behaviors across tasks and models. Furthermore, 634

we extend LCoT2Tree to a practical application by 635

integrating it into the Best-of-N decoding paradigm, 636

leading to more accurate outputs than ORM, PRM 637

and length-based baselines. Collectively, these 638

findings underscore the significance of structural 639

reasoning analysis and establish LCoT2Tree as a 640

promising tool for understanding and improving 641

LLMs reasoning capabilities. 642
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Limitations643

While LCoT2Tree is a powerful framework for644

analyzing reasoning structures, several limitations645

remain. First, as discussed in Section 4.4, struc-646

tural analysis alone cannot capture semantic errors647

or recognize correct reasoning that deviates from648

common structural patterns. To address this limi-649

tation, future work should integrate semantic rea-650

soning signals with structural analysis to achieve651

a more holistic understanding of LLM reasoning652

behaviors.653

Second, the effectiveness of structural analysis654

relies in part on the fact that current LLMs often655

generate reasoning that is incomplete or loosely656

organized. As models improve and begin to pro-657

duce more coherent and well-structured reasoning658

by default, the value of structural diagnostics may659

decrease. Nevertheless, until such consistency is660

achieved, structural cues remain a valuable tool for661

identifying and improving reasoning quality.662

Finally, the construction of reasoning trees in663

LCoT2Tree currently depend on off-the-shelf large664

language models (e.g., DeepSeek-V3 (Liu et al.,665

2024a)), which makes the pipeline computationally666

expensive.667
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A LCoT2Tree Tool Implementation917

Details918

The LCoT2Tree process involves five automated919

stages to transform a LCoT into an organized tree920

structure using the LLM (DeepSeek-v3; Liu et al.,921

2024a), as shown in Figure 3. Here, we introduce922

the detailed implementation of each step:923

Stage 1: Extract Sketch. Leveraging the LLM924

with prompt 6, we condense the LCoT into a sketch925

that captures its core reasoning steps. This Reason-926

ing Sketch provides an abstract of the reasoning927

process, focusing on the key steps and the logical928

flow of the reasoning.929

Stage 2: Split Thought. In this stage, the LCoT930

is split into a list of thoughts. We first define a931

“Thought” as: a continue segment in a reasoning932

chain that involves no logical transition, such as933

exploration or verification. We then analyze the934

collected LCoTs to identify common linguistic pat-935

terns (i.e., separators) that signal shifts between936

distinct reasoning steps. The separators set to [“Al-937

ternatively”, “Hmm”, “Let me verify”, “let’s ver-938

ify”, “To verify”, “Wait”, “Verify”] for Deepseek-939

32B, QwQ-32B, and Deepseek-R1. And extend940

with [“Let’s confirm”, “Let’s check”, “Another ex-941

ample”, “But let’s”, “wait”, “No:”, “no:”, “Now”]942

for Seed-1.5-thinking-pro and Grok-3-mini-beta.943

According to these markers, the long reasoning944

chain is divided into individual thoughts, forming a945

Thoughts List where each item represents a single946

reasoning fragment.947

Stage 3: Assign Step. Each thought in the948

Thoughts List is then aligned with one or more949

corresponding steps in the Reasoning Sketch, based950

on its role in the overall reasoning process. This951

mapping is performed using an LLM with prompt 7,952

generating a Thought Step dictionary that captures953

the contextual meaning and reasoning stage (i.e.,954

depth) associated with each thought. To improve955

token efficiency, we group and merge adjacent956

thoughts before feeding them into the LLM. How-957

ever, due to the large number of thoughts in the958

Thought List, processing them all at once is infea-959

sible. Therefore, we segment the list into smaller960

batches, each containing consecutive thoughts with961

a combined word count of no more than 600. These962

batches are then input to the LLM, which returns963

the corresponding reasoning step for each thought964

in a single response.965

Stage 4: Identify Function. We further analyze966

each pair of consecutive thoughts using LLM with967

prompt 8 to determine the role of the latter thought 968

in relation to the former (e.g., continuation, ex- 969

ploration, or verification). This step provides a 970

more precise understanding of the relationships 971

between individual thoughts within the reasoning 972

process. Specifically, the roles are categorized as 973

follows: (1) Continuous Logic – A direct continua- 974

tion or extension of the reasoning in the previous 975

thought. (2) Exploration – Introduces alternative 976

reasoning paths, unrelated concepts, or new topics. 977

(3) Backtracking – Revises, corrects, or adjusts the 978

reasoning from the previous step. (4) Validation – 979

Provides supporting evidence, justification, or ex- 980

amples for the previous thought. If the Thought 981

List contains N thoughts, we perform N − 1 LLM 982

calls to analyze each adjacent pair. 983

Stage 5: Build Tree. Finally, we organize the 984

segmented thoughts into a hierarchical tree struc- 985

ture. Each node N j
i in the tree corresponds to 986

the i-th thought Ti, where j indicates how many 987

times Ti has appeared. The placement of a node is 988

determined by the Thought Step, and each edge rep- 989

resents a transition to a deeper level of reasoning, 990

with the edge type defined by the Thought Function 991

of its child node. When inserting a new thought 992

Ti, we first identify the ordered list of reasoning 993

steps it maps to, denoted as [S1
i , ..., S

n
i ]. Here, n 994

indicates that the current thought encompasses n 995

reasoning steps. Consequently, we create n nodes 996

N1
i , ..., N

n
i , where each node N j

i represents the 997

portion of the thought aligned with the Sj
i -th step. 998

The insertion process follows two rules: (1) If S1
i 999

is greater than the step of the latest node N j
i−1 in 1000

the tree, the new node N1
i is added as a child of 1001

N j
i−1. (2) Otherwise, we backtrack to the most 1002

recent node at step S1
i − 1. Then we create a new 1003

branch from that node and link it to new node N1
i . 1004

Once N1
i is placed, the remaining nodes 1005

N2
i , ...,N

n
i are added sequentially and connected to 1006

the previous one. For example, in Figure 3, when 1007

inserting T8 to the tree, its associated reasoning 1008

steps [S1
8 , S

2
8 , S

3
8 ] = [1, 2, 3], as determined by the 1009

Thought Step. At that point, the latest node in tree 1010

is N1
7 , which is at step 3—greater than 1. There- 1011

fore, we backtrack to the latest node at step 0, N1
0 , 1012

and attach N1
8 as its child. After that, N2

8 and N3
8 1013

are linked sequentially to N1
8 and N2

8 , respectively. 1014

In the end, we successfully extract the whole 1015

tree structure using LCoT2Tree. To support inter- 1016

pretation, we provide a visualization tool for the 1017

generated reasoning tree, which allows users to in- 1018
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teractively explore the thought process behind each1019

node while viewing the overall tree structure. Ex-1020

ample screenshots of the visualization results are1021

shown in Figures 10–17. In each figure, the right1022

column displays the key reasoning steps identified1023

in Step 1, and each node represents an individual1024

thought. The solid line denotes the edge from fa-1025

ther to child and the dash line denotes the edge1026

from child to father. Edges are colored according1027

to its function in reasoning process.1028

B Classification Implementation Detail1029

B.1 Dataset Construction1030

We use the same dataset as described in Section 3.1,1031

consisting of response samples generated by five1032

reasoning LLMs (LLMs) across four public bench-1033

marks: MATH, GPQA, LiveCodeBench (LCB),1034

and MMLU-Pro. Each sample is labeled as pos-1035

itive or negative with answer correctness, which1036

serves as the ground truth for our binary classi-1037

fication task. To ensure sufficient data volume,1038

we apply repeated sampling for each benchmark,1039

generating up to 2,000 samples per dataset. For1040

instance, the LCB benchmark contains 167 unique1041

problems. By generating 16 responses per problem,1042

we obtain approximately 1,000 correctly answered1043

samples and 1,000 incorrect ones.1044

B.2 Graph Construction1045

For each response, we begin by applying the1046

LCoT2Tree framework to convert it into a struc-1047

tured reasoning tree. Each node N j
i in the tree cor-1048

responds to the i-th thought Ti, where j indicates1049

how many times Ti has appeared. The placement of1050

a node is determined by the Thought Step, and each1051

edge represents a transition to a deeper level of rea-1052

soning, with the edge type defined by the Thought1053

Function of its child node as introduced in 3.2. We1054

then transform the tree into a graph representation.1055

Notably, we construct bidirectional edges, allowing1056

information to flow both from parent to child and1057

from child to parent. This design enables the model1058

to simulate behaviors like backtracking, which are1059

often essential in complex reasoning. In the end,1060

each sample produces a single graph instance for1061

classification.1062

B.3 Node and Edge Features1063

We design informative features for both nodes and1064

edges to enhance the performance of our tree-based1065

classification model. For each node in the reason-1066

ing tree, we extract the following features: (1) 1067

the index of the current thought, (2) the reason- 1068

ing depth of the current node, (3) the cumulative 1069

number of tokens used up to current node, (4) the 1070

number of child nodes, and (5) the cumulative num- 1071

ber of nodes at the same reasoning depth. 1072

For edge features, we assign each parent-to-child 1073

edge a feature based on its logical role as identi- 1074

fied by LCoT2Tree: “1” for continuation, “2” for 1075

exploration, “3” for backtracking, and “4” for vali- 1076

dation. To distinguish child-to-parent edges (used 1077

to capture reverse information flow, such as back- 1078

tracking), we assign the same value but multiply 1079

it by -1. This setup helps the model differentiate 1080

directional semantics during message passing. 1081

B.4 Hyperparameters 1082

We adopt the GATv2 architecture (Brody et al., 1083

2022) to model reasoning trees, leveraging its dy- 1084

namic attention mechanism and improved capabil- 1085

ity for capturing hierarchical dependencies. The 1086

model comprises two GATv2 layers, each with a 1087

hidden size of 64. After message passing, graph- 1088

level embeddings are obtained via global mean 1089

pooling. These embeddings are then fed into a 1090

two-layer MLP with ReLU activation, serving as 1091

the classification head to predict whether a given 1092

reasoning structure leads to a correct or incorrect 1093

answer. 1094

To train the model, we use binary cross-entropy 1095

loss and the Adam optimizer with a learning rate 1096

of 1e-3. The model is trained for up to 100 epochs 1097

with a batch size of 32. We split the training dataset 1098

into 90% for training and 10% for validation. All 1099

experiments are conducted using the PyTorch Geo- 1100

metric framework. 1101

C Additional Experimental Results 1102

C.1 Additional Results on Task-specific 1103

Analysis 1104

In Table 3, we provide additional results from the 1105

task separability experiments using the DeepSeek- 1106

32B and QwQ-32B models. We classify reasoning 1107

trees across all task pairs, including MATH/GPQA, 1108

MATH/LCB, MATH/MMLU-Pro, GPQA/LCB, 1109

GPQA/MMLU-Pro, and LCB/MMLU-Pro. The 1110

findings are consistent with the conclusions pre- 1111

sented in Section 4.2. 1112
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MATH/GPQA MATH/LCB MATH/MMLU GPQA/LCB GPQA/MMLU MMLU/LCB

DS-32
Length-based 50.45% 63.72% 69.43% 60.65% 77.71% 82.34%
Tree-based 83.51% 89.22% 78.46% 85.55% 82.89% 92.12%
Gain +33.06% +25.50% +9.03% +24.90% +5.18% +9.78%

QwQ-32
Length-based 52.51% 56.64% 67.38% 61.22% 68.25% 73.03%
Tree-based 77.82% 67.88% 80.85% 85.69% 76.70% 87.20%
Gain +25.31% +11.24% +12.17% +24.47% +8.45% +14.17%

Table 3: Comparison of task-specific classification accuracy using the baseline length-based method and the
proposed tree-based representation.

MATH GPQA LiveCodeBench MMLU-Pro 4 Datasets

DeepSeek-32B ±0.0048 ± 0.0037 ±0.0024 ± 0.0089 ± 0.0043

QwQ-32B ±0.0023 ±0.0025 ±0.0030 ±0.0079 ± 0.0039

DeepSeek-R1 ±0.0076 ±0.0029 ±0.0010 ±0.0051 ± 0.0018

Seed-1.5-Thinking-pro ±0.0037 ±0.0061 ±0.0041 ±0.0066 ± 0.0026

Grok-3-mini-beta ±0.0025 ±0.0020 ±0.0037 ±0.0153 ± 0.0041

Table 4: Standard deviation of our proposed tree-based approach on classifying response correctness based on LCoT
information corresponding to Table 1.

DS-32/DS-R1 DS-32/QwQ-32 DS-32/Seed DS-32/Grok DS-R1/Seed

MATH
Length-based 55.17% 61.49% 55.58% 61.06% 56.90%
Tree-based 67.88% 70.93% 82.15% 93.22% 80.10%
Gain +12.71% +9.44% +26.57% +32.16% +23.20%

GPQA
Length-based 50.87% 51.12% 67.96% 49.43% 65.34%
Tree-based 75.34% 61.60% 95.20% 99.42% 84.68%
Gain +24.47% +10.48% +27.24% +49.99% +19.34%

LCB
Length-based 54.49% 54.17% 52.37% 54.49% 53.39%
Tree-based 86.32% 71.73% 96.12% 86.32% 82.51%
Gain +31.83% +17.56% +43.75% +31.83% +29.12%

MMLU
Length-based 55.36% 60.10% 54.17% 53.23% 59.55%
Tree-based 62.86% 64.99% 73.65% 85.62% 71.89%
Gain +7.50% +4.89% +19.48% +32.39% +12.34%

Table 5: Comparison of model-specific classification accuracy using the baseline length-based method and the
proposed tree-based representation.

DeepSeek-32B QwQ-32B

LiveCodeBench MATH LiveCodeBench MATH

Vote - 80.41% - 71.19%

Length-Best 56.92% 56.70% 47.37% 55.93%
Length-Vote - 67.01% - 57.63%

ORM-Best 50.77% 60.82% 42.11% 57.63%
ORM-Vote - 68.04% - 67.80%

PRM-Best 62.89% 63.92% 50.88% 57.63%
PRM-Vote - 62.89% - 55.93%

Ours-Best 61.54% 65.98% 52.63% 67.80%
Ours-Vote - 82.47% - 71.19%

Table 6: Accuracy comparison of different Best-of-N decoding strategies on the two benchmark.
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C.2 Additional Results on Model-specific1113

Analysis1114

Table 5 presents the detailed analysis of whether1115

different models display distinguishable reasoning1116

behaviors when applied to the same dataset. The re-1117

sults confirm that LCoT2Tree effectively captures1118

model-specific reasoning patterns that generalize1119

across tasks. Specifically, QwQ-32B exhibits rea-1120

soning behaviors more closely aligned with the1121

DeepSeek family, compared to Grok-3-mini-beta1122

and Seed-1.5-Thinking-pro. These findings further1123

underscore the effectiveness of structural represen-1124

tations in revealing subtle differences in model be-1125

havior.1126

C.3 Additional Results on Best-of-N Decoding1127

Table 6 provides a detailed comparison of different1128

Best-of-N decoding strategies on the MATH and1129

LiveCodeBench (LCB) datasets using responses1130

from two LLMs: DeepSeek-32B (DS-32) and1131

Qwen-32B (QwQ-32). For the MATH benchmark,1132

we evaluate on samples from the MATH500 and1133

Level5 subsets that are not included in the training1134

set. For LCB, we use LCB-v6 as the test set. In1135

both cases, we ensure that the selected test sam-1136

ples are challenging—each sample is incorrectly1137

answered at least twice across 10 runs. We set1138

N = 10 and compare our proposed tree-based1139

methods (Ours-Best and Ours-Vote) against several1140

baselines:1141

• Vote (Wang et al., 2023b): Standard majority1142

voting among N outputs.1143

• Length-Best (Wang et al., 2025): Select the1144

response with the fewest tokens.1145

• Length-Vote (Wu et al., 2025): Majority vot-1146

ing after selecting the k responses with reli-1147

able CoT length.1148

• ORM-Best (Brown et al., 2024): Select the1149

response with the highest outcome reward1150

model score using Skywork-Reward-Gemma-1151

2-27B-v0.2 (Liu et al., 2024b).1152

• ORM-Vote (Brown et al., 2024): Weighted1153

Majority voting (Lightman et al., 2023) with1154

the outcome reward model score.1155

• PRM-Best (Zhang et al., 2025), which scores1156

responses based on the product of step-level1157

scores from a process reward model (i.e.,1158

Qwen2.5-Math-PRM-72B)1159

• PRM-Vote (Zhang et al., 2025), Weighted Ma- 1160

jority voting (Lightman et al., 2023) with the 1161

processing reward model score. 1162

• Ours-Best: Select the response with the high- 1163

est score assigned by our tree-based reasoning 1164

quality classifier mentioned in Section 3.3. 1165

• Ours-Vote: Weighted Majority voting with the 1166

score of our classifier. 1167

Our method consistently outperforms traditional 1168

heuristics and reward model-based baselines, par- 1169

ticularly in the MATH dataset, where precise multi- 1170

step reasoning is crucial. Notably, for DeepSeek- 1171

32B on MATH, our tree-based voting method 1172

achieves the highest accuracy at 82.47%, signif- 1173

icantly surpassing both Length-Best (56.70%) and 1174

ORM-Best (60.82%). Similar trends are observed 1175

for QwQ-32B, with our model showing competi- 1176

tive or superior performance. These results confirm 1177

that incorporating structural reasoning patterns via 1178

LCoT2Tree leads to a reliable output selection in 1179

complex reasoning tasks. 1180

D Diagnostic Insight into Reasoning 1181

Behaviors & Visualization Results 1182

D.1 Insight into Error Behaviors 1183

In this section, we present a detailed analysis of 1184

common error patterns found within reasoning 1185

trees. We use GNNExplainer (Ying et al., 2019), 1186

a graph-based interpretability method, to identify 1187

which edges in a reasoning tree contribute most 1188

significantly to the model’s predictions. For each 1189

reasoning tree, GNNExplainer assigns an impor- 1190

tance weight to every edge, reflecting its influence 1191

on the model’s output. These weights are normal- 1192

ized to the [0, 1] range, and we visualize the tree by 1193

adjusting the edge thickness and color intensity ac- 1194

cording to these scores. The darker and thicker the 1195

edge, the more critical it is to the model’s decision. 1196

Illustrative examples are shown in Figure 9. 1197

Based on this analysis, we extract and categorize 1198

the most usual subgraphs associated with incorrect 1199

predictions into four primary error patterns. (A) 1200

Over Branching: excessive exploration or verifi- 1201

cation from a single node; (B) Step Redundancy: 1202

repetitive or unnecessary reasoning within the same 1203

step; (C) Direct Reasoning: abrupt transitions from 1204

one reasoning step to much deeper steps with min- 1205

imal branching; (D) Skipped Thinking: leaping 1206

across multiple reasoning steps without proper in- 1207

termediate logic. 1208
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These patterns are visualized in the left part of1209

Figure 9, with real examples provided on the right.1210

Notably, these findings reveal that both overly com-1211

plex and overly simplistic reasoning paths can lead1212

to incorrect outcome, underscoring the need for1213

balanced, coherent, and well-structured reasoning1214

in high-quality LLMs.1215

D.2 Task-specific Reasoning Behaviors1216

We have quantitatively demonstrated that1217

LCoT2Tree effectively facilitates the separation1218

of task-specific reasoning contents, as detailed1219

in Section 4.2. In this section, we leverage1220

LCoT2Tree to pinpiont the disparate behaviors1221

exhibited by the DeepSeek-32B model across1222

various tasks. The key findings are summarized1223

below:1224

For MATH (Figure 10), the reasoning trees typ-1225

ically display a diagonally descending structure,1226

with progressively deeper steps achieved through1227

repeated backtracking. This pattern reflects a struc-1228

tured, hierarchical problem-solving strategy. In1229

the visualization, dashed lines—representing back-1230

tracking—are identified as key structural features1231

that distinguish MATH from other tasks.1232

For LiveCodeBench (Figure 11), the trees of-1233

ten exhibit broad, parallel branching, where many1234

sibling nodes continue with independent linear1235

thoughts that are rarely explored or verified further.1236

This suggests a shallow, scattered reasoning style.1237

Our visualization also reveals that these parallel1238

branches contribute most significantly to classify-1239

ing this task.1240

For GPQA (Figure 12), the reasoning trees con-1241

tain numerous high out-degree nodes, indicating1242

that the model frequently revisits and expands on1243

specific concepts. This behavior suggests intensive1244

cognitive effort and repeated clarification, reflect-1245

ing the model’s attempt to thoroughly understand1246

difficult points—while also hinting at a lack of con-1247

fidence in its reasoning.1248

Finally, for MMLU-Pro(Figure 13), the reason-1249

ing trees are relatively shallow, with fewer nodes1250

and minimal branching. This suggests a more di-1251

rect, deductive approach with limited exploration,1252

which is consistent with the knowledge-intensive1253

nature of MMLU-Pro questions rather than deeply1254

compositional reasoning.1255

These observations highlight how LCoT2Tree1256

provides fine-grained insights into the cognitive1257

strategies employed by the model in diverse reason-1258

ing scenarios.1259

D.3 Model-specific Reasoning Behaviors 1260

We provide a detailed comparison of how differ- 1261

ent LLMs approach the same task by visualizing 1262

and analyzing their reasoning trees on the MATH 1263

dataset. Focusing on DeepSeek-32B as a reference 1264

point, we summarize several key observations: 1265

DeepSeek-32B (DS-32; Figure 10) typically pro- 1266

duces reasoning trees with a diagonally descend- 1267

ing structure, with depth increasing progressively 1268

through backtracking. This reflects a structured, 1269

step-by-step problem-solving reasoning process. 1270

DeepSeek-R1 (Figure 14) exhibits similar struc- 1271

tural characteristics to DS-32, but with a notable 1272

difference: it tends to terminate detailed explo- 1273

ration earlier and backtrack more quickly to begin- 1274

ning steps. This indicates a more aggressive prun- 1275

ing strategy to streamline the reasoning path. In vi- 1276

sualizations, connections between Step 0 and Step 1277

1 serve as critical features distinguishing DeepSeek- 1278

R1’s behavior. 1279

QwQ-32B (Figure 15) also mirrors the behavior 1280

of DS-32 to some extent but differs in the latter 1281

stages. Unlike DS-32, which often rushes toward 1282

the final answer, QwQ-32B continues to invest cog- 1283

nitive effort into deeper exploration. In the visu- 1284

alization, expanded right subtrees often emerge as 1285

defining characteristics of QwQ-32B’s reasoning 1286

tree. 1287

In contrast, Seed-1.5-Thinking-pro (Figure 16) 1288

and Grok-3-mini-beta (Figure 17) follow a 1289

markedly different reasoning strategy. They ex- 1290

hibit fewer thought transitions during reasoning. 1291

As a result, their trees contain fewer nodes and 1292

branches, forming simpler structures. This sug- 1293

gests a straightforward problem-solving style with 1294

limited iterative refinement. 1295

These insights reinforce that LCoT2Tree not 1296

only captures reasoning structure at the task level, 1297

but also reveals distinctive behavioral patterns 1298

across model families. 1299
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Step1 Prompt in LCoT2Tree tool to extract reasoning sketch from LCoT

Analyze the following reasoning text and extract a strictly ordered, atomic sequence of key
reasoning steps. Focus on extracting the validated, logically essential progression of thoughts
while excluding backtracking, rechecks, or redundant details.

Reasoning text:
<reasoning_text>
{{text}}
</reasoning_text>

Please read the entire text carefully and generate by following these rules:
1. Find the key steps and the logical flow of reasoning.
2. Each step must represent a single, indivisible logical action that directly advances the reasoning.
3. Determine the correct version of the step, ignoring redundant information. A correct step should
be able to push the reasoning logic forward and have no errors in itself.
4. Do not skip steps. Do not merge steps. Use the original phrasing where possible.
5. Do not include verification steps unless it introduces new constraints.
6. Organize the steps into a coherent sequence of key reasoning steps and number it sequentially
(1., 2., 3., ...).
7. Maintain strict output format.

Output format:
<reasoning_process>
Step 1. concise statement: Detail step
Step 2. concise statement: Detail step
Step 3. concise statement: Detail step
</reasoning_process>

Please list the key reasoning steps of the provided text.

Figure 6: The content of Step1 Prompt in LCoT2Tree tool to extract reasoning sketch from LCoT.
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Step3 Prompt in LCoT2Tree tool to assign reasoning step to each thought.

Your task is to match each reasoning thought from List B to corresponding step number(s) in the
List A. Follow the following process:

1. First understand List B:
- For each thought in List B, identify if it describes some specific calculation processes (mathemati-
cal operation, logical transformation, or data manipulation)
- Ignore the describation that only state conclusions, concepts without showing the actual
processing detail

2. Then math to List A:
- For each thought from List B, find all steps in List A that:
* Show the same underlying calculation (even with different numbers/words)
* Represent the partial or same reasoning process
- Ignore superficial wording differences - focus on logical equivalence

3. Output requirements:
- Return ALL plausible matches where computational processes align
- Never return empty arrays (except for thought B0 if needed)
- Multiple matches are encouraged when justified
- Maintain strict JSON format

Input:
- List A (Detailed Steps):
<list_a>
{{reasoning_step}}
</list_a>
- List B (Reasoning Thoughts):
<list_b>
{{thoughts}}
</list_b>

Output Format (strict JSON):
“‘json
{
"B0": ["A1"],
"B1": ["A3"],
"B2": ["A1", "A4"],
...
}”’

Please match the reasoning thoughts in List B to step in the List A.

Figure 7: The content of Step3 Prompt in LCoT2Tree tool to assign reasoning step to each thought.
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Step4 Prompt in LCoT2Tree tool to assign function to each thought.

Your task is to classify Text2’s purpose relative to Text1 using these categories:

Categories:
1. Continuous Logic - Direct continuation/extension of Text1’s reasoning flow
2. Exploration - Introduces parallel/unrelated concepts from Text1, alternative reasoning paths, or
new topics
3. Backtracking - Revises, corrects, or adjusts previous step
4. Validation - Provides supporting evidence, logical justification, or examples for Text1’s claims

Input: {{
"Text1": "TEXT1",
"Text2": "TEXT2"

}}

Output Format:
Return only JSON format “‘json{"Category": "Name of Category"}”’

Figure 8: The content of Step4 Prompt in LCoT2Tree tool to assign function to each thought.
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(A) Over
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Figure 9: Visualization results of tree structure corresponding to different error patterns. The edge is labeled with
the importance generated by GNNExplainer. The darker the color and the thicker the edge, the more important it is.
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Figure 10: Visualization results of tree structure of a response from DeepSeek-32B on MATH dataset extracted
using LCoT2Tree. The reasoning trees exhibit a downward-sloping hierarchical structure, with progressively deeper
steps achieved through repeated backtracking.

Figure 11: Visualization results of tree structure of a response from DeepSeek-32B on LiveCodeBench dataset
extracted using LCoT2Tree. The reasoning patterns tend to show broad, parallel branching, where many sibling
nodes initiate independent linear thought without subsequent exploration or verification.
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Figure 12: Visualization results of tree structure of a response from DeepSeek-32B on GPQA dataset extracted
using LCoT2Tree. The reasoning trees contain many high out-degree nodes, indicating that the model often revisits
and elaborates on complex concepts.

Figure 13: Visualization results of tree structure of a response from DeepSeek-32B on MMLU-Pro dataset extracted
using LCoT2Tree. The reasoning trees contain fewer nodes and minimal branching, indicating a more direct and
deductive reasoning style with less exploration.
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Figure 14: Visualization results of tree structure of a response from DeepSeek-R1 on MATH dataset extracted
using LCoT2Tree. It exhibits similar behavior to DS-32, but with an important distinction: it tends to truncate
detailed exploration earlier and backtrack to beginning steps more quickly to optimize its reasoning path.

Figure 15: Visualization results of tree structure of a response from QwQ-32B on MATH dataset extracted using
LCoT2Tree. QwQ-32B mirrors the behavior of DeepSeek-32B to some extent, but differs in how it allocates
attention in the latter stages of reasoning.

23



Figure 16: Visualization results of tree structure of a response from Seed-1.5-Thinking-pro on MATH dataset
extracted using LCoT2Tree. The reasoning trees contain fewer nodes and branches, forming simpler structures.

Figure 17: Visualization results of tree structure of a response from Grok-3-mini-beta on MATH dataset extracted
using LCoT2Tree. The reasoning trees contain fewer nodes and branches, forming simpler structures.
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