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ABSTRACT

NLP models have grown as a powerful technology and impact our social life like
never before, along with rising concerns in practical applications including privacy
invasion and high computational cost. While federated learning alleviates these
problems, attackers can still recover the private training data of victim clients by
leveraging the transmitted model parameters and gradients. Protecting against such
attacks of private information leakage remains an open challenge. We propose
Subword Embedding from Bytes (SEB) as a novel solution that can protect privacy
while maintaining efficiency and accuracy. Our experiments demonstrate that
SEB can effectively protect against embedding-based attacks, which recover the
sentences in a batch of text data, based on the gradients in federated learning. As a
defense, SEB does not compromise the model’s accuracy. We also verify that SEB
obtains comparable and even better results over traditional subword embedding
methods in machine translation, sentiment analysis, and language modeling.

1 INTRODUCTION

Natural Language Processing (NLP), such as Large Language Models (LLMs) and Machine Trans-
lations (MT), has made noticeable advancements in performance over the last decades, which is
partially attributed to the availability of larger datasets and richer computational resources. Since most
data are from users, their privacy concerns play an increasingly critical role. Federated learning (FL)
offers a promising approach for preserving user data privacy, enabling training shared models across
multiple clients without transferring the data to a central server. However, data leakage attack is
a severe problem in federated learning. Although only the model updates are sent to the central
server, sensitive information can be leaked through the model updates so that adversaries can use
them to reconstruct the original data, compromising the user’s privacy. Figure 1(a) demonstrates
an FL framework, and Figure 1(b) shows how embedding-based attacks work as in Gupta et al.
(2022). In the illustrated example, the attacker extracts all candidate words in a batch of data from
the embedding gradients and can easily reconstruct the text with beam search and reordering.

The reason why the original text can be easily reconstructed is that most NLP models are typically
based on word/subword tokenization such as Byte Pair Encoding (BPE) (Sennrich et al., 2015; Kudo &
Richardson, 2018). There is a one-to-one mapping between a word/subword and an embedding vector.
When a vector is updated, we can directly look up the corresponding word/subword. Therefore, we
aim to design a one-to-many mapping between words/subwords and embedding vectors to increase
the difficulty of the simple lookup. An intuitive idea is applying the byte embedding method because
the same bytes are repeatedly used for multiple subwords. Thus, retrieving input subwords with the
updated byte embeddings is harder, which makes the byte embedding in NLP models a potential
defense. As shown in Figure 1(c), although the attacker extracts a bag of bytes, the candidate
subword number is much larger than using subword embeddings. Therefore, the search space is the
whole vocabulary and the recovery is more random.

Although previous work shows byte-based models can reduce vocabulary size compared to the
subword models Xue et al. (2022); Shaham & Levy (2021); Zhang & Xu (2022), directly applying
existing byte encodings to enhance privacy and efficiency faces two major challenges: First, the
lack of explicit word boundaries makes it difficult to disambiguate between words and similar byte
sequences. Smaller textual granularity cannot show the semantic meaning of each word leading to a
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Figure 1: An attack example of recovering text in FL. (a): An FL framework. (b) and (c): Recovering
text using embedding gradients of subwords and bytes.

less interpretable and analyzable model. Second, byte-based models tend to be more computationally
expensive, as input sequences become much longer after byte tokenization.

To address these challenges in byte-based models, we propose to encode subwords with bytes and
aggregate the byte embeddings to obtain a single subword embedding. This approach allows us to
preserve the advantages of a small vocabulary and maintain the original subword boundaries with
the same sequence length. The procedure consists of three steps: (1) Construct a mapping between
subwords and bytes. (2) Convert the input text into a byte sequence. (3) Retrieve the corresponding
byte embeddings and aggregate them back into subword embeddings using a feed-forward network,
while ensuring that the subword boundaries are maintained. By adopting this approach, we can
leverage the privacy protection provided by bytes while preserving the semantic meaning of the input
sequence without increasing its length.

Our main contributions are:

• We introduce a novel and universal text representation method SEB, which achieves a constant
vocabulary size (e.g., 256) without increasing the input sequence length.

• We verify that the proposed SEB can protect NLP models against data leaking attacks on privacy-
sensitive information from the gradients of embeddings in federated learning. To the best of our
knowledge, our work is the first one to study privacy preservation with byte representations in
federated learning.

• We demonstrate that SEB achieves comparable and even superior performance in various NLP
tasks compared to subword baselines with less space complexity and better privacy preservation.

2 RELATED WORK

Attacks and defenses in language model Contrary to the belief that gradient sharing is safe in
federated learning, many works show that it is possible to infer private information about the training
data from the shared gradients (Zhu et al., 2019; Zhu & Blaschko, 2021; Deng et al., 2021; Balunovic
et al., 2022; Gupta et al., 2022). Some recent works consider the reconstruction as an optimization
task (Zhu et al., 2019; Deng et al., 2021; Balunovic et al., 2022). The attacker updates its dummy
inputs and labels to minimize the distance between the gradients that the victim uploaded and the
gradients the attacker calculated based on its dummy inputs and labels. Gupta et al. (2022) shows that
the attackers can reconstruct a set of words with the embedding gradients, then apply beam search
and reorder with a pretrained language model for input recovery.

One potential strategy to mitigate the gradient inversion attack described in Zhu et al. (2019);
Deng et al. (2021); Balunovic et al. (2022) is to encrypt the communicated gradients or make them
not directly inferable. However, encryption of the gradients requires special setups and could be
costly to implement. Moreover, it does not provide effective protection against server-side privacy
leakage (Aono et al., 2017; Huang et al., 2021; Fang & Qian, 2021). Differential privacy is another
approach to protect against privacy attacks, but it may have an impact on model performance (Zhu
et al., 2019; Wei et al., 2020; Yin et al., 2021; Li et al., 2021). While Zhang & Wang (2021)
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proposed a secure federated learning framework that can prevent privacy leakage based on gradient
reconstruction, it does not effectively address the retrieval of a bag of words from the embedding
matrix gradients, as proposed in Gupta et al. (2022).

Subword-level and byte-level language models Subword-based models are widely used in NLP
tasks, where subwords are typically the smallest units of input. These models take a sequence of
subwords based on subword tokenization methods such as BPE, WordPiece, and SentencePiece (Sen-
nrich et al., 2015; Wu et al., 2016; Kudo & Richardson, 2018). Despite their great performance,
subword-based models still have some limitations. For instance, they cannot handle out-of-vocabulary
subwords and require language-specific tokenizers for languages such as Chinese, Korean, and
Japanese. Another challenge is the high space complexity of the large size of the embedding matrix
when the vocabulary size is very large.

One possible solution to address these issues is to use byte tokens as inputs and outputs, as demon-
strated in many recent works (Shaham & Levy, 2020; Zhang & Xu, 2022; Xue et al., 2022). UTF-8
is a universal standard for almost all language writing systems, making it possible to represent all
languages using a fixed and shared byte vocabulary. Therefore, there will be no out-vocabulary words
and the language-specific tokenizer is unnecessary. In addition, as the total number of bytes in UTF-8
is 256, the embedding matrix for byte vocabulary is much smaller than most subword vocabularies,
reducing the number of parameters in the embedding layer and saving memory space.

Subword-level model with character- or byte-level fusion The naive character-based and byte-
based models often result in longer input sequences compared to the subword-based model, which
increases the time complexity. To make the model efficient, several recent papers have explored
character-level or byte-level fusion. For example, (Tay et al., 2021) propose CHARFORMER, using
a soft gradient-based subword tokenization module to obtain “subword tokens”. It generates and
scores multiple subword blocks, aggregates them to obtain subword representation, and then performs
downsampling to reduce the sequence length. Although CHARFORMER is faster than vanilla
byte-based or character-based models, it does not maintain the subword boundaries, which can limit
the interpretability ability of the model. Sreedhar et al. (2022) propose Local Bytes Fusion (LOBEF)
to aggregate local semantic information and maintain the word boundary. However, it does not reduce
the sequence length, making training and inference time-consuming.

3 PRELIMINARIES

3.1 SUBWORD-LEVEL AND BYTE-LEVEL TOKENIZATION

Tokenization is an essential process in NLP. It splits input text into a sequence of tokens, which
can be subwords or bytes. The resulting sequence of tokens is fed into various NLP models such
as Transformer, convolutional neural network (CNN), and recurrent neural network (RNN) for
further processing. The following example shows an input text “comedy film” and its subword token
sequence with BPE and byte token sequence with UTF-8.

• Input text: “comedy film” with 11 characters.
• Subword tokenization with BPE: “com”, “##edy”, “film”.
• Byte tokenization with UTF-8: 99, 111, 109, 101, 100, 121, 32, 102, 105, 108, 109 (11 bytes).

3.2 FEDERATED LEARNING

In federated learning (FL), multiple clients jointly train a model using their private data but without
sharing the data. Assume we have N clients, C = {c1, c2, . . . , cN}, and a server s, in an FL system.
The jointly trained model is f with parameters ✓. The clients’ private data are D1,D2, . . . ,DN

and the objective function is L. To make it easier to illustrate the computation and communication
operations of FL, We assume all the clients participate in each communication and clients use
FedSGD (McMahan et al., 2017) to update the model parameters.

In each communication round t, server s first sends the model parameters ✓t to all clients. Then
each client ci compute �t

i = r✓tL✓t(Bi), the gradients of current model f✓t , based on a randomly
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Figure 2: (a): An overview of the transformer model with SEB. (b): An example of calculating
subword embeddings with byte embedding.

sampled data batch Bi ⇢ Di and | Bi |. After local computation, the clients send the gradients
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r✓tL✓t(Bi). (1)

Here, Equation (1) is the gradient descent, and ⌘ is the learning rate.

3.3 THREAT MODEL

Adversary’s capabilities and objective In this paper, we follow the attack settings in Gupta et al.
(2022) under client-server architecture. The optimized model is a language model L, parameterized
by ✓. This scenario makes the attacker white box access to the gradients r✓tL✓t(Bi) sent by the
victim client ci. ✓t is the model parameter that the server sends to the clients at any communication
round t. From parameters ✓t and gradients r✓tL✓t(Bi), the attacker can get the information of the
vocabulary V and the embedding matrix W to retrieve which tokens are updated. The goal of the
attacker is to recover at least one sentence from Bi, based on r✓tL✓t(Bi) and ✓t.

Attack model This paper does not address the issue of gradient leakage attacks, which aim to
obtain private data by minimizing the difference between gradients derived from a dummy input and
the actual gradients of the victim’s data. This is because several methods have already been proposed
to mitigate this particular attack (Zhu et al., 2019; Deng et al., 2021; Wei et al., 2020). Instead, our
focus is on a specific attack model introduced in Gupta et al. (2022), for which effective defenses
have yet to be explored. In this model, the attacker attempts to reconstruct sentences from the victim’s
training batches through a three-step process: (1) extracting candidate tokens from the gradients, (2)
applying beam search with a pre-trained Language Model, such as GPT-2, to reconstruct the input
sentence, and (3) reordering the subword tokens to achieve the best possible reconstruction.

4 PROPOSED METHOD

Our goal is to develop a subword embedding approach that requires a smaller byte embedding
matrix while maintaining subword boundaries. A smaller byte embedding matrix can save space and
potentially protect against attacks based on the embedding gradients in federated learning. Preserving
subword boundaries and keeping the subword sequence maintains the model’s time efficiency. This
raises two main challenges: 1) how to convert subwords into a byte sequence? and 2) how to obtain
subword embeddings using byte representations?

In this section, we describe our proposed Subword Embedding from Bytes (SEB) method. Figure 2
shows an overview of SEB, including byte sequence for input text, byte embeddings, aggregation of
byte embeddings, and a feed-forward network to output the subword embedding. We will introduce
the details of each part and analyze the complexity in the following sections.
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4.1 CONSTRUCTION OF SUBWORD TO BYTE SEQUENCE MAPPING

UTF-8 encoding results in different sequence lengths for subwords. In real practice, all byte sequences
need to be padded to the same length, making the byte sequence of the subword even longer. Instead
of using the existing byte encoding system, we define our subword to byte sequence mapping
M : Vw ! (Vb)n. Vw and Vb are subword and byte vocabularies with size of Vw and Vb, respectively.
(Vb)n is a sequence of n bytes in Vb. Here the byte vocabulary size Vb and the number of bytes n to
represent a subword are hyperparameters. In this way, every subword is represented with the same
length, getting rid of the longer byte sequence with padding.

To construct the mapping, for every subword wi 2 Vw, we randomly sample n bytes with replacement
from Vb to obtain the byte sequence (bi1, bi2, . . . , bin). If the byte sequence already exists in M,
we repeat the sampling until a unique byte sequence is obtained. For example, we set Vb = 64 and
n = 4. A subword “Hello” can be represented with (14, 3, 10, 4), shown in Figure 2(b).

We analyze the probability p that two subwords are mapped to the same byte sequence. With the
byte vocabulary size Vb and the number of bytes per subword n, the probability p = 1/(Vb)n. For
example, if Vb = 16 and n = 4 then p = 1.5⇥ 10�5. For Vb = 128 and n = 8 in our experiment,
p = 1.39 ⇥ 10�17, which means there is almost no possibility to map two words into the same
subword sequence. Therefore, SEB is highly expressive for representing subwords.

4.2 SUBWORD EMBEDDING BASED ON BYTE REPRESENTATION

Raw byte sequences as input result in longer lengths, leading to higher space and time complexity
(Dai et al., 2019; Sukhbaatar et al., 2019). Different from these models, our method tokenizes the text
into a sequence of bytes while preserving the subword boundary. We first tokenize the original text
into subwords using a common subword tokenization method, such as BPE. Then, we token each
subword into a byte sequence with the mapping we designed above and aggregate byte representations
back to subword embeddings. The two detailed algorithms are in Appendix, Algorithm 1 and 2.

Assume the byte embedding matrix is B 2 RVb⇥d, where d is the embedding size. Give an input text
S, we first tokenize S into a subword sequence (w1, w2, . . . , wm). Then we further use the mapping
M defined above to tokenize this sequence into a byte sequence (b11, . . . , b1n, . . . , bm1, . . . , bmn)
with mn bytes. We retrieve the byte embeddings E 2 Rmn⇥d for these bytes from B.

To get a subword embedding, adding the byte representations for every n bytes in E is a simple way.
However, this approach does not consider the position of each byte within the subword. Inspired
by the idea that incorporating positional information can improve model performance for subword
tokens, we induce positional information for byte sequences of subwords by concatenation. This
enables the model to capture the position of each byte within the subword and obtain a more accurate
and informative representation of the subword. Given the retrieved byte embeddings E 2 Rmn⇥d,
we reshape E to Ẽ 2 Rm⇥nd in a row-major order, which is equivalent to concatenation. Then, an
FFN is applied to project Ẽ into the dimension d0 of the original subword embedding for a specific
language model: E0 = FFN(Ẽ) 2 Rm⇥d0

. Note that, the byte embedding matrix B can be either a
real-valued or one-hot embedding matrix because the vocabulary size is small for bytes. We compare
the performances for both embedding methods in experiments.

4.3 COMPLEXITY ANLYSIS

Table 1: Complexity for conventional sub-
word embeddings, byte embedding, and our
proposed SEB.

Embedding Memory Time

Subword O(Vwd) O(m2d)
Byte O(Vbd) O(c2m2d)
SEB (Ours) O((nd+ Vb)d) O(m2d)

To demonstrate the efficiency of the proposed SEB,
we summarize the space and time complexity of each
embedding method in Table 1. Here, the column
“Memory” represent the memory usage for each em-
bedding, and the column “Time" shows the time com-
plexity in Transformer attention. For simplicity, we
let d0 = d and use one linear layer as FFN in SEB
which contains nd2 parameters.

In terms of space complexity, subword embeddings
typically have an exponentially large vocabulary size Vw, exceeding 104, while byte embeddings
typically have a dictionary size of no more than 256. For the proposed SEB, the number of parameters
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(a) Batch size = 1 (b) Batch size = 4 (c) Batch size = 16

Figure 3: The distribution of subword number, unique subword number, and unique byte number in a
batch when batch size is 1, 4, 16. The vocabulary sizes of subwords and bytes are 50K and 256.

in embedding is O(nd2 + Vbd) = O((nd+ Vb)d), including the FFN and byte embedding matrix.
In practice, nd+ Vb ⌧ Vw. As a result, both byte embeddings and our proposed SEB significantly
reduce the memory cost required for embeddings. In B.5, we show the analysis for space complexity
in our experiments. Regarding time complexity, we analyze the attention in the widely used Trans-
former Vaswani et al. (2017). Given the sequence length m, byte embedding is more time-consuming
since the input length is c times longer than subword embedding. Here c is the average ratio between
the lengths of byte and subword sequences. Based on the statistics Shaham & Levy (2020), c is
usually around 5. However, our proposed SEB maintains the same time efficiency as conventional
subword embeddings because we preserve the subword sequence along with its boundaries.

5 EXPERIMENT

We conduct experiments to demonstrate the advantages of SEB in reducing space complexity,
maintaining time efficiency, and preserving privacy for NLP models in federated learning. In all
experiments, we set Vb = 256 and n = 8, which is sufficient to prevent encoding two subwords into
the same byte sequences. We use a 2-layer FFN in the proposed SEB.

5.1 EXPERIMENTS ON PRIVACY PROTECTION

Dataset, attack task, and evaluation metrics We followed the settings in the FILM attack (Gupta
et al., 2022). The dataset is WikiText-103 Merity et al. (2016). For the attack task, we use GPT-2
base Radford et al. (2019) with 117M parameters to recover the input batches. The ROUGE-1/2/L
F-Scores Lin (2004) are used to evaluate the similarity between the recovered and original text.

Figure 4: The average coverage
of subwords given a random set
of bytes with GPT-2 tokenizer.

Quantitative analysis of defense We first show that it is difficult
to retrieve a bag of candidate subwords in SEB with Figure 3 and
4. In Figure 3, we present the distributions of the subword number,
unique subword number, and unique byte number in a client’s
batch of data. We observe that even a single sample contains over
120 unique bytes on average, while only having approximately 25
unique subwords. In Figure 4, we present the average coverage of
subwords for a subset of bytes. Based on Figure 4, 120 bytes cover
about 50K subwords. It means recovery is a random generation
using almost the entire vocabulary.

Additionally, Figure 5 shows the FILM attack performances using
various batches on WikiText-103, with subword embedding and
SEB. As the candidate subwords are almost the whole vocabulary,
beam search takes huge memory which is not executable on our
device. To show the defense performance, we loose the constraints and randomly sample 7,000
subwords, combined with the subwords in the original text. We randomly select 5 tested batches for
each batch size and take the average ROUGE F-Scores. When batch size is 1, ROUGE-1/2/L scores
are close to 1 for attacks with subword embedding, indicating a nearly perfect recovery. However,
these scores are quite low when using SEB, showing the effectiveness of SEB to defend the attacks
based on embedding gradients.

6



Under review as a conference paper at ICLR 2024

Figure 5: Recovery performance for batch size 1, 2, 4, 8 on WikiText-103.

Table 2: The best recovered sentences by FILM using subword embedding and BSE with batch size
1. Text in green are successfully recovered phrases and words.

Original Sentence Best Recovered Sentence

Subword The historic rainfall caused sev-
eral dams to fill throughout north-
east Mexico.

The rainfall caused several historic dams to fill throughout
northeast Mexico.

SEB Pujols is a highly regarded hitter
who has shown a "combination
of contact hitting ability, patience,
and raw power"

He is a professional who has a very high degree of abil-
ity, and always takes great advice, without ever assuming
power" ("Pivotal Decision Making With Your Head". Re-
trieved 12 Dec 2007 16 Mar)

Qualitative analysis of defense To intuitively show the difference between the recovered sentences
of FILM using subword embedding and the proposed SEB, we select the best-recovered sentences of
these two methods based on the ROUGE-L F-score and list the results in Table 2. In the recovered
sentence with the subword embedding, all words are successfully retrieved and have a very close
order to the original sentence. However, with SEB, only a few words are retrieved, and many of
them are stop words. The results show that SEB can prevent the attacker from recovering private
information in the original sentence even though the batch only contains one sentence.

5.2 EXPERIMENT ON PERFORMANCE

To provide a more comprehensive assessment of our proposed technique’s applicability and per-
formance across different NLP tasks, we conduct experiments on machine translation, sentiment
analysis, and Language Modeling (LM) tasks. The enviormental settings are described in B.1

5.2.1 TRANSLATION

Dataset and evaluation metrics In the translation task, we consider two datasets, one is the
medium-size IWSLT14 (Cettolo et al., 2014) dataset and a large scale dataset WMT14 Bojar et al.
(2014). We follow the settings as prior work (Shaham & Levy, 2020; Zhang & Xu, 2022) and
translate German (de) to English (en) in IWSLT14 (Cettolo et al., 2014). The translation of WMT
is English (en) to German (de) and the preprocessing is the same as Fairseq (Ott et al., 2019). We
use SacreBLEU, case-sensitive, with the 13a tokenizer Post (2018) as the evaluation metric. A
detailed description of preprocessing, model architecture, and hyperparameter settings can be found
in Appendix B.2.

Main results For IWSLT14, we run 5 trials and report the average performance with the standard
deviation. We show the translation results of Transformer with subword embedding and SEB in Table
3. The hidden dimension of the two-layer FFN is 2048 for IWSLT because we try to keep the total
parameters of SEBco the same as the original Transformer. For WMT, the hidden dimension of FFN
is 4096. Here, we test three variants of SEB when aggregating the byte embedding back to subword
embedding: added real-valued embedding (SEBar), concatenated real-valued embedding (SEBcr),
and concatenated one-hot embedding (SEBco). In this experiment, the dimensions of real-valued
and one-hot vectors are 512 and 256. Table 3 shows that SEBcr and SEBco can achieve better
performances than subword embedding. Concatenating the one-hot vectors yields better results
even with fewer model parameters than concatenating byte embedding. Therefore, we can conclude
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Table 3: BLEU score of IWSLT14 and WMT14. SEBar and SEBcr: SEB with added and concate-
nated real-valued embeddings, respectively. SEBco: SEB with concatenated one-hot byte embeddings.

Datasets Embeddings # Params BLEU

IWSLT14

Subword 5.2M 34.54 ± 0.10
SEBar 4.3M 34.64 ± 0.15
SEBcr 9.6M 35.32 ± 0.15
SEBco 5.2M 35.44 ± 0.10

WMT14 Subword 22.3M 26.0
SEBco 6.3M 26.0

Figure 6: Results on embedding parameters, vocabulary size, and number of bytes per subword. Left:
The BLEU scores versus hidden dimension in FFN and embedding parameters. Right: Comparison
of mean BLEU scores for different byte vocabulary sizes and different numbers of bytes per subword.

that SEB is a better alternative to using large subword embeddings. Additionally, based on the
comparison between SEBar and SEBcr, we find that concatenation is better than the simple adding
of byte embeddings. This is expected as Section 4.2 because adding does not consider the positional
information of bytes. The result of WMT14 shows the same performance as the subword-based
model but with a smaller size of embedding parameters. It is important to emphasize that while
privacy is improved, our model achieves the same or better accuracy than the baseline methods.

Sensitivity analysis on FFN hidden units In this experiment, we test the sensitivity of SEBco on
FFN hidden units, because it is one of the major factors for embedding parameters. Here, we set
different FFN hidden units as {128, 256, 512, 1024, 2048, 4096}, with the total embedding parameter
numbers of 0.3M, 0.7M, 1.3M, 2.7M, 5.2M, and 10.5M, respectively. The number of embedding
parameters and translation BLEU scores are shown in the left of Figure 6. When the numbers of
hidden units are 256, 512, and 1024, SEBco can obtain better performance with fewer parameters.
Although the model can still achieve better performance when hidden units are larger than 2048, it
does not have advantages over the original transformer on model size.

Table 4: Embedding parameter number for
different Vb and n.

Byte Tokens
per Subword

Byte Vocabulary Size

64 128 256

4 0.79M 1.05M 1.57M
8 1.05M 1.57M 2.62M
16 1.57M 2.62M 4.72M

Sensitivity analysis on Vb and n To investigate the
impact of the byte vocabulary size Vb and number of
bytes per subword n, we set Vb as 64, 128, 256 and n
as 4, 8, 16. Based on the previous experiment, we set
the hidden units in the 2-layer FFN to 1024 in SEBco,
which provides good performance with a small scale
of parameters. We first report the model size in terms
of embedding parameter numbers in Table 4. All
of the settings have smaller embedding parameter
numbers than the original Transformer. We further
demonstrate the translation performance with these
settings in Figure 6 (right). It indicates that increasing n leads to better model performance for a fixed
Vb. This is because increasing n results in more possible positions per byte token, which provide more
information in the aggregated vector. Similarly, when we fix n and increase Vb, the increased byte
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vocabulary diversity makes the aggregated vector more expressive. Therefore, increasing the byte
vocabulary size and the number of byte tokens per subword can improve the model expressiveness
leading to improved performance. Furthermore, Figure 6 (right) and Table 4 show that models with
similar amounts of parameters have similar performance, even with different Vb and n. In conclusion,
as long as Vb and n ensure that SEBco has sufficient expressive ability, the model performance is
more closely related to the number of parameters than to specific Vb and n.

5.2.2 SENTIMENT ANALYSIS

Dataset and evaluation metrics We use IMDb Maas et al. (2011) and SST2 Socher et al. (2013)
datasets provided by Hugging Face. The detailed preprocessing of the dataset is shown in Ap-
pendix B.2. We use the accuracy for evaluation which is a routine in prior work Minaee et al. (2019);
Yenter & Verma (2017). The implementation details are in Appendix B.3.

Table 5: Results on Sentiment analysis.

IMDb (%) SST2 (%)

Subword 85.6 ± 0.5 81.2 ± 0.7
SEBco 85.8 ± 0.2 82.5 ± 0.7

Main results We compare the same BiLSTM models
with subword embedding and SEBco. The classification
accuracies are shown in Table 5. The results show that
SEBco can replace the conventional subword embedding
without hurting the model performance. For SST2, SEBco

even has better performance. The reason for that is the
parameters of the conventional subword embedding layer
in BiLSTM take a large portion of the model parameters,
making the model easily overfitting. In this experiment, SEBco has smaller embedding parameters,
which can address overfitting. We show that SEB also learns the semantic meaning of subword in B.4.

5.2.3 LANGUAGE MODELING

Table 6: Perplexity of language model-
ing for subword embedding and SEB.

# Paramters Perplexity

Subword 13.7M 30.84
SEBco 10.5M 30.55

Dataset and evaluation metrics We use the same data
as Fairseq did for the language modeling tasks. The dataset
we use is WikiText-103. We use the same preprocessing
and training settings as the official Fairseq does. The
number of samples for training, testing, and validation are
1801350, 3760, and 4358 respectively. We evaluate the
language modeling performance with perplexity.

Main results For language modeling (LM), our pro-
posed method achieved better performance on perplexity
while using a smaller size of parameters. The results are shown in Table 6, which demonstrate that
our method SEBis an effective and efficient alternative to the traditional subword embedding.

6 CONCLUSION

Summary This paper introduces SEB, Subword Embedding of Bytes, a novel subword embedding
method that defends against privacy leakage attacks based on embedding gradients in federated
learning. Unlike traditional approaches that learn a large subword embedding matrix, SEB uses
smaller byte embeddings or byte one-hot encoding and aggregates byte representations to obtain
subword embeddings. With SEB, attackers cannot retrieve a small set of subwords and generate
private text, even with a well-trained large language model. Our extensive experiments show that SEB
is effective for machine translation without sacrificing performance or efficiency. Additionally, we
demonstrate that SEB makes it difficult for attackers to recover private text with embedding gradients
in federated learning.

Limitations and future work Limited to the computation resources, we only experiment with
moderate datasets and two tasks, machine translation, and sentiment analysis. The efficiency and
effectiveness of our proposed method on large language models as well as other natural language
processing tasks still need exploration. What’s more, the generalization ability of SEB is not discussed
in this work. Therefore, in the future, we will keep working on these aspects.
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