
ViPCap: Retrieval Text-based Visual Prompts for
Lightweight Image Captioning

Taewhan Kim Soeun Lee Si-Woo Kim Dong-Jin Kim
Hanyang University, South Korea.

{taewhan, soeun, boreng0817, djdkim}@hanyang.ac.kr

Abstract

Recent lightweight image captioning models using retrieved data mainly focus
on text prompts. However, previous works only utilize the retrieved data as text
prompts, while the visual information relies only on the vision encoder. This
leads to a limitation that the image descriptions in the prompt are not sufficiently
reflected in the visual representations. To tackle this issue, we propose ViPCap, a
novel retrieval text-based visual prompt for lightweight image captioning. ViPCap
leverages the retrieved text with image information as visual prompts to enhance
the ability of the model to capture relevant visual information. By mapping
text prompts into the CLIP space and sampling from Gaussian distributions, we
effectively retrieve semantic features containing image information. These retrieved
features are integrated into the image and designated as the visual prompt, leading
to performance improvements on the datasets such as COCO, Flickr30k, and
NoCaps. Experimental results demonstrate that ViPCap significantly outperforms
prior lightweight captioning models in efficiency and effectiveness, demonstrating
the potential for a plug-and-play solution.

1 Introduction

:  a brown dog with big eyes on a chair
:  a brown dog peeks over the edge of a table
:  a beagle dog looking innocent standing by a fence
:  a dog is peaking its head behind a chair
:  a beagle is peeking out of a window
:  a dog peeking out from under a wooden chair

Retrieval

GT
SmallCap
ViPCap

Figure 1: SmallCap [25] fails to accurately cap-
ture local visual information present in the ground
truth (GT) or retrieval text (Retrieval). In con-
trast, ViPCapeffectively captures visual details
from both GT and retrieval text.

Vision and language tasks, such as image cap-
tioning, have advanced with large-scale mod-
els [28, 4, 9, 13, 2, 4]. However, these models
require high computational costs. To enhance
training efficiency, recent works [24, 25, 29]
primarily focus on prompt tuning and using re-
trieved text from datastore as text prompts. In
contrast, there is a limitation in that visual in-
formation relies only on the vision encoder. As
depicted in Fig. 1, SmallCap [25], which uses
retrieval captions as text prompts without visual
prompts, challenges to include detailed visual
descriptions. We suspect this is because text
descriptions are not effectively utilized as visual
information.

In this paper, we propose a retrieval text-based
visual prompt for lightweight image captioning
(ViPCap), leveraging retrieved texts with image
information as visual prompts. First, given that the retrieved text provides a comprehensive image
description, we encode the text prompt into the CLIP embedding space and transform it into patch-
level hidden representations to extract semantic information. To effectively enhance local visual
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Figure 2: ViPCap leverages the CLIP text encoder to extract retrieval text features for visual prompts
generation. The ViP module performs M sampling iterations G from the text embedding distribution
to retrieve semantic features closely aligned with image patch features V . The ViP module samples
M semantic vectors from the text embedding distribution. From the semantic vector set G, we
retrieve semantic vectors closely aligned with image patch features V during patch retrieval. The
retrieved semantic features R are fused with image features V within the Feature Fusion Network,
and the resulting output is set as the visual prompt Z. Finally, the refined visual feature V ′ via
summation with the visual prompt is fed to the decoder through the cross-attention layer.

representations using a global text representation, we assume that the embedding vectors follow a
randomized Gaussian distribution and sample M semantic features from this distribution. Unlike the
heuristic approach like CapDec and LinCIR [20, 7], which address the modality gap using Gaussian
distributions, our method generates semantic features by sampling from a learnable distribution for a
high correlation with visual features. We assume these semantic features contain visual information
and expect them to closely resemble the input image features. Then, the retrieved semantic features
are combined with image features to generate the visual prompt, which are added before decoder
input. This approach aims to enhance the model’s ability to capture relevant visual representations.

Our approach achieves superior performance on the COCO dataset [16] compared to our baseline
model, SmallCap, and it significantly improves performance over previous lightweight models on the
NoCaps dataset [1]. In the experiments, we integrate our ViP module into retrieval-based models,
text-only training models, and various prompts, resulting in consistent performance improvements.
Our contribution can be summarized as follows: (1) We propose a novel visual prompt for lightweight
image captioning models named ViPCap, which leverages retrieved texts to generate visual prompts.
(2) We introduce the ViP module, which retrieves semantic information from text features and
combines it with image features to generate the visual prompt. (3) Extensive experiments demonstrate
that our method is efficient and outperforms previous models across datasets like COCO and NoCaps,
regardless of the text prompt types used.

2 Proposed Method

Our model adopts SmallCap as a baseline, which retrieves texts from an external datastore and
connects the frozen encoder and decoder [22, 23] through trainable cross-attention layers.

As shown in Fig. 2, our work aims to extract semantic information from text prompts and generate
it as visual prompts to enhance visual features. ViP module encodes retrieved texts into the CLIP
embedding space and converts them into patch-level representations. Given retrieved texts T , our
model encodes the retrieved text into D dimensional vector using pretrained CLIP text encoder
ϕ(·). Also, the CLIP image encoder embeds the input image into K dimensional visual features
V = {v⃗1, v⃗2, . . . , v⃗N} ∈ RN×K representing N number of patch-level visual features.
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When generating visual prompts, a single text feature might be insufficient to provide the necessary
details to generate a visual prompt with complex patch-level local information. To address this, we
employ a random augmentation to sample semantic features from the Gaussian distribution. Also,
instead of learning multiple mapping functions for local regions individually, we empirically find
that sampling random vectors helps better match with visual local representations. We estimate
the parameters of distribution of the text embedding µ⃗, σ⃗ ∈ RK assuming it follows a multivariate
Gaussian distribution N (µ⃗, σ⃗2I). We design functions Hµ(·) and Hσ(·) to map text features into the
mean and standard deviation of multivariate Gaussian distribution. These functions are implemented
as MLP layers to map from D dimensions to K dimensions while sampling the mean and standard
deviation (H : RD → RK ). We empirically find that adding an additional learnable vector ⃗ωadd with
a hyperparameter α as a scaling factor to the MLP shows better performance and captures complex
data structures more effectively. The α is used to expand the range of the learnable vector. Let µ⃗ and
σ⃗2 are computed via µ⃗ = Hm(ϕ(T )) + α · ⃗ωadd, and σ⃗ = Hv(ϕ(T )), respectively.

ViP module samples M number of semantic features from this learnable Gaussian distribution
to obtain semantic features that are highly correlated to the local visual embedding. We define
the set of semantic representation G ∈ RM×K obtained from the text features as G = {g⃗i ∼
N (µ⃗, σ⃗2I;ϕ(T ))}Mi=1. The g⃗ can be re-formulated by reparameterization trick [11].

2.1 Patch Retrieval Module for Semantic Features

We hypothesize that the semantic features G = {g⃗1, g⃗2, . . . , g⃗M} sampled from the Gaussian distri-
bution contain the textual information describing the image. To effectively leverage G, we compare
cosine similarity Sim(·, ·) between image patch-level features V and G to retrieve the most relevant
semantic information for each patch v⃗i ∈ V . From M candidates, we select N relevant vectors, one
for each patch, to generate R:

R = {g⃗I(j)}Nj=1 ∈ RN×K , where I(j) = argmaxi∈[1:M ]Sim(g⃗i, v⃗j). (1)

This simple calculation process extracts valuable information through R without any additional
training.

2.2 Feature Fusion Network and Visual Prompts

Feature
Fusion
Network

G 𝑽 𝑹

𝑽’⋮ ⋮

M

NN ⋮ N

𝑽: Image feature
𝑮: Semantic feature
𝑹: Retrieved semantic feature

: Visual prompt
𝑽’: Refined visual feature

Figure 3: Similarity calculation between input fea-
ture V and semantic features G, where V retrieves
essential representations from G and fuses them
using the proposed fusion network. The fusion
network generates visual prompt Z by integrating
V , which is then combined with image features to
produce refined visual features V ′.

As shown in Fig. 3, after obtaining R contained
information relevant to the visual features, we
integrate them with image feature to generate
the visual prompt Z. We use a Feature Fusion
Network (FFN) designed to combine V and R
by transformer layers. Unlike previous networks
with many layers, a single layer is enough since
the features are already aligned.

Finally, we obtain refined visual features V ′

with a simple summation (V ′ = V + Z). The
FFN generates the visual prompt Z closely
aligned with the distribution of image features,
enabling the refined visual features through sim-
ple summation. This method allows models with
vision encoders and language decoders to uti-
lize refined features V ′ without modifying the
decoder, making it compatible across different
models using other encoders. The decoder takes
the input text embedding, while V ′ is included conditionally when computing the loss function:

Lθ = −
Q∑
i=1

logPθ (yi | y<i, V
′; θ) . (2)

In the cross-attention layers (θ), weights are optimized by reducing the cross-entropy loss.
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Method
Training COCO Flickr30k NoCaps
Param Test Test Val

θ B@4 M C S C S In Near Out Entire

Large scale training models
OSCARLarge [15] 338M 37.4 30.7 127.8 23.5 - - 78.8 78.9 77.4 78.6
LEMONHuge [8] 675M 41.5 30.8 139.1 24.1 - - 118.0 116.3 120.2 117.3
SimVLMHuge [28] 632M 40.6 33.7 143.3 25.4 - - 113.7 110.9 115.2 112.2
BLIP2ViT-g OPT2.7B [13] 1.1B 43.7 - 145.8 - - - 123.0 117.8 123.4 119.7
CogVLM [27] 1.5B - - 148.7 - 94.9 - - - 132.6 128.3
PaLImT5-XXL [4] 1.6B - - 149.1 - - - - - - 127.0

Lightweight models
CaMEL [3] 76M 39.1 29.4 125.7 22.2 - - - - - -
I-TuningMedium [18] 44M 35.5 28.8 120.0 22.0 72.3 19.0 89.6 77.4 58.8 75.4
ClipCap [19] 43M 33.5 27.5 113.1 21.1 - - 84.9 66.8 49.1 65.8
I-TuningBase [18] 14M 34.8 28.3 116.7 21.8 61.5 16.9 83.9 70.3 48.1 67.8
SmallCap [25] 7M 37.0 27.9 119.7 21.3 60.6 - 87.6 78.6 68.9 77.9
SmallCapd=16, Large [25] 47M 37.2 28.3 121.8 21.5 - - - - - -
ViPCap (Ours) 14M 37.7 28.6 122.9 21.9 66.8 17.2 93.8 81.6 71.5 81.3

Table 1: Comparison with large pre-training and lightweight models with existing methods on the
COCO test, Flickr30k test, and NoCaps val set. CIDEr score is used for NoCaps evaluation. Our
method shows the best performance in most metrics.

3 Experiments

3.1 Experimental Setup

Training dataset. We conduct experiments on image captioning benchmarks, i.e., COCO dataset
[16], NoCaps [1], Flickr30k [21]. For COCO and Flickr30k, we follow the Karpathy split [10] used
in the image captioning. We evaluate our model on the COCO and Flickr30k test set and NoCaps
validation and test datasets, as well as the cross-domain experiments.

3.2 Main Results

In-domain. We evaluate ViPCap on COCO, Flickr30k, and NoCaps datasets in Table 1. On the
COCO dataset, ViPCap outperforms in B@4 score compared to the large training models OSCAR
while using only 4% of the parameters. Despite having 5 times fewer parameters than CaMEL [3],
ViPCap achieves the second-highest CIDEr score among lightweight models. Additionally, ViPCap
exceeds the baseline, SmallCap, and outperforms SmallCapLarge (14M vs. 47M) on COCO, while
also demonstrating strong performance on Flickr30k.

Cross-domain. On the Nocaps validation dataset, we achieve a CIDEr score of 93.8 on in-domain
data, outperforming all lightweight models. This shows that ViPCap is highly suitable for real-world
scenarios. Furthermore, it surpasses OscarLarge by over 10 points on in-domain data, indicating
superior performance in entire domain.

3.3 ViP Module Capability

We explore different model sizes and prompt styles to evaluate the capabilities of our model.

Plug-and-Play manner. In Table 2, we evaluate the COCO, Flickr30k, and NoCaps test datasets
to explicitly demonstrate the visual prompt ability by the ViP module. We combine our module
with text-only training models. As a result, applying the ViP module to CapDec and ViECap [20, 6]
improves performance, demonstrating that the ViP module can function as both a visual prompt
and an image feature. The ViP module easily fuses with the vision encoders without modifying the
framework. CapDec and ViECap with the ViP module result in an average increase of 3.5 points in
CIDEr score performance on cross-domain in the NoCaps dataset. Our method shows the capability
of ViP module in zero-shot tasks across real-world scenarios. We do not test with DeCap [14] due to
its focus on memory efficiency, which does not align with our goals.
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In-Domain Cross-Domain

Method COCO Flickr30k COCO ⇒ Flickr30k Flickr30k ⇒ COCO COCO ⇒ NoCaps
B@4 M C S B@4 M C S B@4 M C S B@4 M C S In Near Out Entire

CapDec [20] 26.4 25.1 91.8 - 17.7 20.0 39.1 - 17.3 18.6 35.7 - 9.2 16.3 27.3 - 60.1 50.2 28.7 45.9
CapDec+ViP 27.0 25.6 94.2 18.8 18.6 20.1 44.4 14.4 15.7 18.0 35.8 11.8 9.5 16.3 30.7 9.2 60.2 50.9 33.7 47.8

∆ 0.6 0.5 2.4 - 0.9 0.1 5.3 - -1.6 -0.6 0.1 - 0.3 - 3.4 - 0.1 0.7 5.0 1.9
ViECap [6] 27.2 24.8 92.9 18.2 21.4 20.1 47.9 13.6 17.4 18.0 38.4 11.2 12.6 19.3 54.2 12.5 61.1 64.3 65.0 66.2
ViECap+ViP 27.3 25.1 93.6 18.4 21.2 20.2 48.8 13.9 17.4 18.1 40.2 11.1 13.6 19.3 55.2 12.7 62.2 64.9 67.1 67.2

∆ 0.1 0.3 0.7 0.2 -0.2 0.1 0.9 0.3 - 0.1 1.8 -0.1 1.0 - 1.0 0.2 1.1 0.6 2.1 1.0

Table 2: In-domain and cross-domain performance of text-only models with the ViP module applied:
Results on COCO, Flickr30k test sets, and NoCaps validation set. CIDEr scores for NoCaps
evaluation. The ViP module consistently enhances performance across most metrics and base models,
with notable improvements in cross-domain CIDEr scores.

Method Enc. Dec. ViP Ret CIDEr
OPT

✓

× 122.0
ViPCap ViT -125M ✓ 122.5 (0.5 ↑)

(Ours) -B/32 XGLM × 116.8
✓ 121.2 (4.4 ↑)

EVCap EVA- Vicuna × ✓ 140.1
CLIP-g -13B ✓ ✓ 141.3 (1.2 ↑)

Table 3: Performance improvements in CIDEr
scores on COCO test using various decoders with
the ViP module and retrieved text (Ret). Consis-
tent improvements are observed across various en-
coders and decoders.

Prompt ViP
× ✓

“This image shows” 111.1 116.0 (4.9 ↑)

Retrieval prompt 117.3 119.9 (2.6 ↑)

Table 4: CIDEr results of the ViP module
on COCO val dataset show the potential of
our prompt-agnostic model. Compared to
the baseline, performance improvements ob-
served with the ViP module when using “This
image shows” as the input text prompt.

Model-agnostic. Table 3 reveals that combining the ViP module with OPT [30] or XGLM [17]
as decoders, along with using both ViP and the retrieved text, leads to a notable improvement in
performance. This indicates the capability as a model-agnostic and flexible framework. Additionally,
similar to SamllCap, combining EVCap [12], which utilizes retrieval data, with the ViP module
enhances performance. This means our approach can be effectively applied to models that use
retrieval data, as well as large-scale models such as EVA-CLIP and Vicuna [26, 5], based on retrieved
data. Therefore, ViP presents a consistent performance improvement when combined with SOTA
models regardless of model size.

Prompt-agnostic. Table 4 compares ViPCap performance with and without the retrieval module.
SmallCap scores 111.1 without retrieval and 117.3 with retrieval. ViPCap scores 116.0 without
retrieval, using simple prompts like “This image shows ...” and 119.9 with retrieval. Additionally,
in CapDec, ViECap, and EVCap, we observe notable results by leveraging hard prompts such as
“a photo of” and “There are entity, ...”. This demonstrates that ViPCap addresses competitive
performance even with simple hard prompts and suggests its potential as a flexible visual prompt
module applicable to various prompt types.

4 Conclusion

In this work, we introduce ViPCap, a novel approach that generates visual prompts by leveraging
semantic information from retrieved text embedding through the ViP module. ViPCap performs well
across both in-domain and out-of-domain datasets. The ViP module proposes a plug-and-play method
that generates visual prompts based on various models and prompt types. Future work will explore
using learnable tokens as visual prompts for better flexibility.
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