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Abstract

Optical multilayer thin film structures are widely used in various photonic applica-
tions. Inverse design is an important but difficult step to enable these applications,
which seeks to find out the best structure (material & thickness arrangements) given
a target optical response. Recently, deep learning-based methods have been devel-
oped to solve the inverse design efficiently. However, existing methods usually fix
the material arrangements and only design the thickness, which is not versatile for
a different material arrangement and may lead to sub-optimal performance. In this
study, we resolve this issue by treating the structure as a sequence and using struc-
ture tokens to represent the material and thickness simultaneously. Later on, the
inverse design problem can be formulated as a common sequence generation task
conditioned on the input optical responses. Based on this, we propose OptoGPT
to act as a versatile inverse design model that can design material and thickness
simultaneously, significantly expanding the design capability. In addition, using
probability resampling further provides a versatile method to satisfy fabrication
and design requirements in practical applications.

1 Introduction

Optical multilayer thin film structures (shorten as "multilayer structures") are staked thin film layers
(typical thickness around several hundred nanometers) with different materials at each layer. Because
of the ease of fabrication, they are widely used in optical and energy applications, including structural
colors[1, 2, 3], filters[4], photovoltaics[5, 6], display devices[7, 8], and radiative cooling[9, 10].

When light goes through a multilayer structure with different combinations of materials and thickness,
photons will interact with these layered materials, leading to different optical responses. The
forward prediction process from a given structure to its corresponding optical response is easy to
calculate, either through accurate physics-based solvers[11, 12], or machine learning-based surrogate
models[13, 14]. However, the inverse design process[15, 16, 17], which seeks to find out the best
structure according to a desired optical response, is nontrivial as it is challenging to reveal the
complicated inverse correlation.

Recently, researchers have started to use machine learning-based methods to facilitate the inverse
design process, including tandem networks[18], GAN[19, 20], MDN[21], etc. After training, these
neural networks are capable of capturing the intricate inverse relationship from the space of optical
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Figure 1: (a) Model Architecture of OptoGPT. (b) An example of the optical multilayer thin film
structure as well as its structure serialization. (c) A diagram of forming structure tokens by concate-
nating the material and thickness at each layer.

responses to the space of structures and outputting designed structures directly when given a desired
optical target. Although fast, existing inverse design models simplify the inverse design problem
as thickness-only design while ignoring the material selections, e.g., the three-layer structure of
Ag/SiO2/Ag in [20] and the six-layer structure of MgF2/SiO2/Al2O2/TiO2/Si/Ge in [22]. Therefore,
these models only work when designing for specific types of multilayer structures, limiting their
capabilities in versatile applications.

In this work, we propose the OptoGPT as a versatile inverse design model by leveraging the strong
learning and generalization abilities of transformer. First, we reformulate the multilayer structure as
a sequence and propose the structure token to denote the material and thickness at each layer. By
doing so, the task of multilayer structure inverse design is equivalent to a sequence generation task
conditioned on the input, e.g., the optical response. Our OptoGPT is a decoder-only transformer
that auto-regressively generates the structure sequence when given a design target. A series of
experiments demonstrate that our model can not only output versatile structures with different material
combinations, but can also design structures that satisfy practical constraints during fabrication and
manufacture.

2 Related Works

There have been many works that use deep learning-based models to tackle the inverse design of
different types of photonic structures, including diffractive metagratings[23], metamaterials[24, 25],
free-form metasurfaces[26, 27], etc. These models have demonstrated excellent inverse design perfor-
mance in multiple photonic applications, including absorbers[22], reflectors[28], spectrometer[29],
transmissive antenna[30], etc. In addition to inverse design, they have also been widely used as a fast
surrogate simulator to speed up the time-consuming forward simulation and prediction process in
scientific applications [31, 32, 33]. From another perspective, many research groups have already
started to combine the transformer with their domain-specific scientific problems and proposed
different ML models to solve complicated scientific discovery and engineering applications, including
material design[34], chemistry[35], biology[36, 37, 38], etc. Our work serves as an exploration of
using transformer to solve the inverse design in multilayer thin film structures.

3 Methods

3.1 Problem Set

For a given N -layer multilayer structure (see Fig. 1b), we denote the material arrangement as
m = [m1,m2, . . . ,mN ], and the thickness sequence as t = [t1, t2, . . . , tN ], where mi, ti refers to
the material and thickness at the ith layer, respectively. mi ∈ M is a discrete variable that can take
several distinct values from the material database M. Then, we can denote a multilayer structure as
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Table 1: Important parameters of OptoGPT

NAME PARAMETER

EMBEDDING DIMENSION 1024
NUMBER OF DECODER BLOCKS (N) 6
NUMBER OF ATTENTION HEAD (A) 8

CONTEXT LENGTH (K) 21
NUMBER OF TOKENS 901
SPECTRA DIMENSION 142

BATCH SIZE 1000
OPTIMIZER ADAM OPTIMIZER

TRAINING EPOCHS ∼200
NUMBER OF PARAMETERS 58 M

x = {m, t} ∈ X . Physics laws guarantee that there is a deterministic function f(·) that maps from
the space of multilayer structure x to the d-dimensional optical properties y = [y1, y2, . . . , yd] ∈ Y .
This forward process can be solved using physical simulators[11, 12] or approximated by surrogate
simulators[13, 14]. Differently, the inverse design problem focuses on solving the inverse mapping of
f−1(·), which seeks to identify a suitable x in the space of X such that its corresponding response
y = f(x) is close enough to the target response y∗. In this work, we consider designing the
transmission and reflection spectra from 400 nm to 1100 nm. Both spectra are discretized by 10 nm,
making d=2×71=142.

3.2 Structure Serialization

Existing inverse design models post strong restrictions on the design space of multilayer structures
X , e.g., setting N to a specific number and fixing the material arrangement m. Therefore, they only
search for the thickness t in the limited design subspace X ′ ∈ X , which limits their applications.
It would be more versatile if these models could also determine the total number of layers N and
material combinations m automatically.

In order to achieve this, we start by reformulating the multilayer structure x = {m, t} =
{[m1,m2, . . . ,mN ], [t1, t2, . . . , tN ]} as a sequence of x = {[m1, t1], [m2, t2], . . . , [mN , tN ]}. Then
we propose a technique called structure serialization (see Fig. 1b-c), where structure tokens are used
to represent the material and thickness information [mi, ti] at each layer simultaneously, similar to
how Natural Language Processing (NLP) researchers tokenize language sentences. By appending
multiple tokens one-by-one, we can convert a multilayer structure into a sequence of tokens that a
common sequence model can deal with. We also use a special token of ‘EoS’ (end of sequence) to
enable the design of structures with different numbers of layers (we set the maximum to be 20 layers).

There are 18 different types of materials in our material database M (see Fig. 1c). In addition, the
designed thickness ranges from 10 nm to 500 nm and we discretize it by 10 nm. Therefore, there are
18×50+1=901 tokens in our vocabulary. The total number of different types of material arrangements
that our model can design expands to 1820 ∼ 1025, significantly expanding our model’s capability.
This method is scalable and can be used to include other materials and extend to more layers.

3.3 Model Architecture

Since the multilayer structure is formulated as a sequence, we can treat the inverse design as a
sequence generation task conditioned on the input of the design target. Therefore, we choose the
decoder in the transformer as our model architecture (see Fig. 1a), similar to how GPT generates the
language sequence. Here, spectrum embedding is a fully connected layer that maps the target optical
response into the same embedding space of structure tokens. We generate a large training dataset with
10M samples, where each sample is a pair of randomly generated structures and the corresponding
spectra simulated by Transfer Matrix Methods (TMM)[11]. The dataset generation takes ∼1200h
using a single CPU. The dimension of the embedding is 1024 and the number of decoder blocks is 6,
making the model size ∼58M. We train the model based on next-word prediction for 200 epochs by
setting the batch size 1000, which takes about two weeks on a single NVIDIA 3090 GPU. Table 1
lists some important parameters.
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Figure 2: (a-c) Two examples of inverse design for transmission (T) and reflection (R) spectra.
Real lines and dashed lines are the target spectra and simulated spectra of the designed structure,
respectively.

Figure 3: (a-d) Examples of inverse design reflection and transmission spectra with different
constraints. Real lines and real lines with squares are the target spectra and simulated spectra of the
designed structure, respectively.

4 Experiments

After training, we examine the inverse design performance by designing for transmission and
reflection spectra that our model has never seen before. Once the model outputs a structure sequence,
we convert it back into a multilayer structure and use TMM to simulate the spectra. The Mean Square
Error (MSE) between the target spectra and the simulated spectra of the designed structure is used
to evaluate the design accuracy. The averaged MSE on 1000 spectra is as low as 2× 10−3. In Fig.
2, we also give three examples to visualize the difference between the target spectra (real lines) and
the designed spectra (dashed lines). We want to mention that the designed structures come from our
model’s output directly, although running an iterative optimization on thickness can further improve
the accuracy.

To further demonstrate the versatility of our model, we use probability sampling to align the designed
structures with practical constraints. For example, researchers or engineers may impose restrictions on
the material selection or thickness range at any layers specific to the fabrication or design needs. This
is done by removing these structure tokens that do not satisfy constraints from probability sampling
during the auto-regressive generation process. As an example, we use OptoGPT to inverse design a
Fabry-Parot resonator[39]. Here, the target spectra has a resonance absorption at 610 nm, leading
to a dip in the reflection spectra (see Fig. 3). Now we consider adding four different constraints
separately:

1. Fix the first layer to be 100 nm SiO2

2. Remove Ag in the third layer

3. Limit the thickness of the first layer inside [10, 150] nm and remove Ag/Al in the first layer

4. Specify the material arrangement to be a three-layer Ag/Si3N4/Ag structure and design the
thickness only

The first constraint can be used when requiring a dielectric layer at the air interface to protect
structures from oxidization when exposed to air, while the second constraint is practical when looking
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for an alternative to replace silver, considering silver is a precious metal. For the third constraint, we
use it as a general example of adding thickness and material restrictions simultaneously. The fourth
constraint specifies the number of layers as well as the material arrangements to be designed, which
is a special case that converts our model into a thickness-only design model. Through probability
resampling, our model can finish designs that satisfy these constraints. We simulate the spectra of
these designed structures and compare them with the target spectra in Fig. 3a-d. We can find that the
designed spectra are close to the target spectra, demonstrating that our model is versatile to different
constraints required in practical applications, e.g., fabrication and manufacture.

5 Conclusion

In this work, we propose a new machine learning-based method to solve the inverse design problem in
optical multilayer thin film structures. By formulating the multilayer structure as a sequence and using
the structure token to represent the layered information, we convert the inverse design problem as a
conditional sequence generation problem that can be well solved using transformer. Benefiting from
this, our OptoGPT is capable of automatically determining the total number of layers and designing
the material and thickness simultaneously. This differentiates our model from existing models,
which usually post strong restrictions on the designed structures, and makes our model versatile to
different applications, significantly expanding the model’s capability in designing structures that
satisfy practical constraints required in fabrication and manufacture. Our work expands the existing
transformer applications from mainstream NLP and CV to optical science and demonstrates that
transformer architecture is also an effective learner for photonic inverse design.
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