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Abstract

Despite the progress in machine translation001
quality estimation and evaluation in the last002
years, decoding in neural machine translation003
(NMT) is mostly oblivious to this and centers004
around finding the most probable translation ac-005
cording to the model (MAP decoding), approxi-006
mated with beam search. In this paper, we bring007
together these two lines of research and propose008
quality-aware decoding for NMT, by leverag-009
ing recent breakthroughs in reference-free and010
reference-based MT evaluation through various011
inference methods like N -best reranking and012
minimum Bayes risk decoding. We perform an013
extensive comparison of various possible can-014
didate generation and ranking methods across015
four datasets and two model classes and find016
that quality-aware decoding consistently out-017
performs MAP-based decoding according both018
to state-of-the-art automatic metrics (COMET019
and BLEURT) and to human assessments.020

1 Introduction021

The most common procedure in neural machine022

translation (NMT) is to train models using maxi-023

mum likelihood estimation (MLE) at training time,024

and to decode with beam search at test time, as a025

way to approximate maximum-a-posteriori (MAP)026

decoding. However, several works have questioned027

the utility of model likelihood as a good proxy for028

translation quality (Koehn and Knowles, 2017; Ott029

et al., 2018; Stahlberg and Byrne, 2019; Eikema030

and Aziz, 2020). In parallel, significant progress031

has been made in methods for quality estimation032

and evaluation of generated translations (Specia033

et al., 2020; Mathur et al., 2020b), but this progress034

is, by and large, not yet reflected in either training035

or decoding methods. Exceptions such as minimum036

risk training (Shen et al., 2016; Edunov et al., 2018)037

come at a cost of more expensive and unstable train-038

ing, often with modest quality improvements.039

An appealing alternative is to modify the decod-040

ing procedure only, separating it into two stages:041

Figure 1: Quality-aware decoding framework. First,
translation candidates are generated according to the
model. Then, using reference-free and/or reference-
based MT metrics, these candidates are ranked, and the
highest ranked one is picked as the final translation.

candidate generation (§2.1; where candidates are 042

generated with beam search or sampled from the 043

whole distribution) and ranking (§2.2; where they 044

are scored using a quality metric of interest, and the 045

translation with the highest score is picked). This 046

strategy has been explored in approaches using 047

N -best reranking (Ng et al., 2019; Bhattacharyya 048

et al., 2021) and minimum Bayes risk (MBR) de- 049

coding (Shu and Nakayama, 2017a; Eikema and 050

Aziz, 2021; Müller and Sennrich, 2021). While 051

this previous work has exhibited promising results, 052

it has mostly focused on optimizing lexical metrics 053

such as BLEU or METEOR (Papineni et al., 2002; 054

Lavie and Denkowski, 2009), which have limited 055

correlation with human judgments (Mathur et al., 056

2020a; Freitag et al., 2021a). Moreover, a rigorous 057

apples-to-apples comparison among this suite of 058

techniques and their variants is still missing, even 059

though they share similar building blocks. 060

Our work fills these gaps by asking the question: 061

“Can we leverage recent advances in MT qual- 062

ity evaluation to generate better translations? 063

If so, how can we most effectively do so?” 064

To answer this question, we systematically explore 065

NMT decoding using a suite of ranking proce- 066

dures. We take advantage of recent state-of-the- 067

art learnable metrics, both reference-based, such 068

as COMET and BLEURT (Rei et al., 2020a; Sel- 069
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lam et al., 2020), and reference-free (also known070

as quality estimation; QE), such as TransQuest071

and OpenKiwi (Ranasinghe et al., 2020; Kepler072

et al., 2019). We compare different ranking strate-073

gies under a unified framework, which we name074

quality-aware decoding (§3). First, we analyze075

the performance of decoding using N -best rerank-076

ing, both fixed according to a single metric and077

learned using multiple metrics, where the coeffi-078

cients for each metric are optimized according to a079

reference-based metric. Second, we explore rank-080

ing using reference-based metrics directly through081

MBR decoding. Finally, to circumvent the expen-082

sive computational cost of the latter when the num-083

ber of candidates is large, we develop a two-stage084

ranking procedure, where we use N -best rerank-085

ing to pick a subset of the candidates to be ranked086

through MBR decoding. We explore the interac-087

tion of these different ranking methods with various088

candidate generation procedures including beam089

search, vanilla sampling, and nucleus sampling.090

Experiments with two model sizes and four091

datasets (§4) reveal that while MAP-based de-092

coding appears competitive when evaluating with093

lexical-based metrics (BLEU and ChrF), the story094

is very different with state-of-the-art evaluation095

metrics, where quality-aware decoding shows sig-096

nificant gains, both with N -best reranking and097

MBR decoding. We perform a human-study to098

more faithfully evaluate our systems and find that,099

while performance on learnable metrics is not al-100

ways predictive of the best system, quality-aware101

decoding usually results in translations with higher102

quality than MAP-based decoding.103

2 Candidate Generation and Ranking104

We start by reviewing some of the most commonly105

used methods for both candidate generation and106

ranking under a common lens.107

2.1 Candidate Generation108

An NMT model defines a probability distribution109

pθ(y|x) over a set of hypotheses Y , conditioned110

on a source sentence x, where θ are learned pa-111

rameters. A translation is typically predicted using112

MAP decoding, formalized as113

ŷMAP = argmax
y∈Y

log pθ(y|x). (1)114

In words, MAP decoding searches for the most115

probable translation under pθ(y|x), i.e., the mode116

of the model distribution. Finding the exact ŷMAP 117

is intractable since the search space Y is combi- 118

natorially large, thus, approximations like beam 119

search (Graves, 2012; Sutskever et al., 2014) are 120

used. However, it has been shown that the transla- 121

tion quality degrades for large values of the beam 122

size (Koehn and Knowles, 2017; Yang et al., 2018; 123

Murray and Chiang, 2018; Meister et al., 2020), 124

with the empty string often being the true MAP 125

hypothesis (Stahlberg and Byrne, 2019). 126

A stochastic alternative to beam search is to draw 127

samples directly from pθ(y|x) with ancestral sam- 128

pling, optionally with variants that truncate this dis- 129

tribution, such as top-k sampling (Fan et al., 2018) 130

or p-nucleus sampling (Holtzman et al., 2020) – 131

the latter samples from the smallest set of words 132

whose cumulative probability is larger than a pre- 133

defined value p. Deterministic methods combining 134

beam and nucleus search have also been proposed 135

(Shaham and Levy, 2021). 136

Unlike beam search, sampling is not a search 137

algorithm nor a decision rule – it is not expected 138

for a single sample to outperform MAP decoding 139

(Eikema and Aziz, 2020). However, samples from 140

the model can still be useful for alternative decod- 141

ing methods, as we shall see. While beam search 142

focus on high probability candidates, typically sim- 143

ilar to each other, sampling allows for more explo- 144

ration, leading to higher candidate diversity. 145

2.2 Ranking 146

We assume access to a set Ȳ ⊆ Y containing N 147

candidate translations for a source sentence, ob- 148

tained with one of the generation procedures de- 149

scribed in §2.1. As long as N is relatively small, it 150

is possible to (re-)rank these candidates in a post- 151

hoc manner, such that the best translation maxi- 152

mizes a given metric of interest. We highlight two 153

different lines of work for ranking in MT decod- 154

ing: first, N -best reranking, using reference-free 155

metrics as features; second, MBR decoding, using 156

reference-based metrics. 157

2.2.1 N -best Reranking 158

In its simplest form (which we call fixed reranking), 159

a single feature f is used (e.g., an estimated quality 160

score), and the candidate that maximizes this score 161

is picked as the final translation, 162

ŷF-RR = argmax
y∈Ȳ

f(y). (2) 163
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When multiple features [f1, . . . , fK ] are available,164

one can tune weights [w1, . . . , wK ] for these fea-165

tures to maximize a given reference-based evalua-166

tion metric on a validation set (Och, 2003; Duh and167

Kirchhoff, 2008) – we call this tuned reranking. In168

this case, the final translation is169

ŷT-RR = argmax
y∈Ȳ

∑K
k=1wkfk(y). (3)170

2.2.2 Minimum Bayes Risk (MBR) Decoding171

While the techniques above rely on reference-free172

metrics for the computation of features, MBR de-173

coding uses reference-based metrics to rank candi-174

dates. Unlike MAP decoding, which searches for175

the most probable translation, MBR decoding aims176

to find the translation that maximizes the expected177

utility (equivalently, that minimizes risk, Kumar178

and Byrne 2002, 2004; Eikema and Aziz 2020).179

Let again Ȳ ⊆ Y be a set containing N hypotheses180

and u(y∗, y) a utility function measuring the simi-181

larity between a hypothesis y ∈ Y and a reference182

y∗ ∈ Ȳ (e.g, an automatic evaluation metric such183

as BLEU or COMET). MBR decoding seeks for184

ŷMBR = argmax
y∈Ȳ

EY∼pθ(y|x)[u(Y, y)]︸ ︷︷ ︸
≈ 1

M

∑M
j=1 u(y

(j), y)

, (4)185

where in Eq. 4 the expectation is approximated as186

a Monte Carlo (MC) sum using model samples187

y(1), . . . , y(M) ∼ pθ(y|x).1 In practice, the transla-188

tion with the highest expected utility can be com-189

puted by comparing each hypothesis y ∈ Ȳ to all190

the other hypotheses in the set.191

3 Quality-Aware Decoding192

While recent works have explored various combi-193

nations of candidate generation and ranking pro-194

cedures for NMT (Lee et al., 2021; Bhattacharyya195

et al., 2021; Eikema and Aziz, 2021; Müller and196

Sennrich, 2021), they suffer from two limitations:197

• The ranking procedure is usually based on simple198

lexical-based metrics (BLEU, chrF, METEOR).199

Although these metrics are well established and200

inexpensive to compute, they correlate poorly201

with human judgments at segment level (Mathur202

et al., 2020b; Freitag et al., 2021c).203

1We also consider the case where y(1), . . . , y(M) are ob-
tained from nucleus sampling or beam search. Although the
original MC estimate is unbiased, these ones are biased.

• Each work independently explores N -best 204

reranking or MBR decoding, making unclear 205

which method produces better translations. 206

In this work, we hypothesize that using more 207

powerful metrics in the ranking procedure may lead 208

to better quality translations. We propose a unified 209

framework for ranking with both reference-based 210

(§3.1) and reference-free metrics (§3.2), indepen- 211

dently of the candidate generation procedure. We 212

explore four methods with different computational 213

costs for a given number of candidates, N . 214

Fixed N -best Reranker. An N -best reranker us- 215

ing a single reference-free metric (§3.2) as a feature, 216

according to Eq. 2. The computational cost of this 217

ranker is O(N×CMQE), where CMQE denotes the 218

cost of running an evaluation with a metric MQE. 219

Tuned N -best Reranker. An N -best reranker us- 220

ing as features all the reference-free metrics in §3.2, 221

along with the model log-likelihood log pθ(y|x). 222

The weights in Eq. 3 are optimized to maximize 223

a given reference-based metric Mref using MERT 224

(Och, 2003), a coordinate-ascent optimization al- 225

gorithm widely used in previous work. Note that 226

Mref is used for tuning only; at test time, only 227

reference-free metrics are used. Therefore, the de- 228

coding cost is O(N ×
∑

iCMQE
i

). 229

MBR Decoding. Choosing as the utility function 230

a reference-based metric Mref (§3.1), we estimate 231

the utility using a simple Monte Carlo sum, as 232

shown in Eq. 4. The estimation requires computing 233

pairwise comparisons and thus the cost of running 234

MBR decoding is O(N2 × CMref ). 235

N -best Reranker → MBR. Using a large num- 236

ber of samples in MBR decoding is expensive 237

due to its quadratic cost. To circumvent this is- 238

sue, we explore a two-stage ranking approach: we 239

first rank all the candidates using a tuned N -best 240

reranker, followed by MBR decoding using the top 241

M candidates. The computational cost becomes 242

O(N×
∑

iCMi+M2×CMref ). The first ranking 243

stage prunes the candidate list to a smaller, higher 244

quality subset, making possible a more accurate 245

estimation of the utility with less samples, and po- 246

tentially allowing a better ranker than plain MBR 247

for almost the same computational budget. 248

3.1 Reference-based Metrics 249

Reference-based metrics are the standard way to 250

evaluate MT systems; the most used ones rely on 251
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the lexical overlap between hypotheses and ref-252

erence translations (Papineni et al., 2002; Lavie253

and Denkowski, 2009; Popović, 2015). However,254

lexical-based approaches have important limita-255

tions: they have difficulties recognizing correct256

translations that are paraphrases of the reference(s);257

they ignore the source sentence, an important indi-258

cator of meaning for the translation; and they do259

not always correlate well with human judgments,260

particularly at segment-level (Freitag et al., 2021c).261

In this work, apart from BLEU (computed us-262

ing SacreBLEU2 (Post, 2018)) and chrF, we use263

the following state-of-the-art trainable reference-264

based metrics for both ranking and performance265

evaluation of MT systems:266

• BLEURT (Sellam et al., 2020; Pu et al., 2021b),267

trained to regress on human direct assessments268

(DA; Graham et al. 2013). We use the largest269

multilingual version, BLEURT-20, based on the270

RemBERT model (Chung et al., 2021).271

• COMET (Rei et al., 2020a), based on XLM-R272

(Conneau et al., 2020), trained to regress on qual-273

ity assessments such as DA using both the ref-274

erence and the source to assess the quality of a275

given translation. We use the publicly available276

model developed for the WMT20 metrics shared277

task (wmt20-comet-da).278

These metrics have shown much better correla-279

tion at segment-level than previous lexical metrics280

in WMT metrics shared tasks (Mathur et al., 2020b;281

Freitag et al., 2021c). Hence, as discussed in §2.2,282

they are good candidates to be used either indi-283

rectly as an optimization objective for learning the284

tuned reranker’s feature weights, or directly as a285

utility function in MBR decoding. In the former,286

the higher the metric correlation with human judg-287

ment, the better the translation picked by the tuned288

reranker. In the latter, we approximate the expected289

utility in Eq. 4 by letting a candidate generated by290

the model be a reference translation – a suitable291

premise if the model is good in expectation.292

3.2 Reference-free Metrics293

MT evaluation metrics have also been developed294

for the case where references are not available –295

they are called reference-free or quality estimation296

(QE) metrics. In the last years, considerable im-297

provements have been made to such metrics, with298

2nrefs:1|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.0.0

state-of-the-art models having increasing correla- 299

tions with human annotators (Freitag et al., 2021c; 300

Specia et al., 2021). These improvements enable 301

the use of such models for ranking translation hy- 302

potheses in a more reliable way than before. 303

In this work, we explore four recently pro- 304

posed reference-free metrics as features for N -best 305

reranking, all at the sentence-level: 306

• COMET-QE (Rei et al., 2020b), a reference-free 307

version of COMET (§3.1). It was the winning 308

submission for the QE-as-a-metric subtask of the 309

WMT20 shared task (Mathur et al., 2020b). 310

• TransQuest (Ranasinghe et al., 2020), the win- 311

ning submission for the sentence-level DA pre- 312

diction subtask of the WMT20 QE shared task 313

(Specia et al., 2020). Similarly to COMET-QE 314

this metric predicts a DA score. 315

• MBART-QE (Zerva et al., 2021), based on the 316

mBART (Liu et al., 2020) model, trained to pre- 317

dict both the mean and the variance of DA scores. 318

It was a top performer in the WMT21 QE shared 319

task (Specia et al., 2021). 320

• OpenKiwi-MQM (Kepler et al., 2019; Rei et al., 321

2021), based on XLM-R, trained to predict the 322

multidimensional quality metric (MQM; Lom- 323

mel et al. 2014).3 This reference-free metric 324

was ranked second on the QE-as-a-metric subtask 325

from the WMT 2021 metrics shared task. 326

4 Experiments 327

4.1 Setup 328

We study the benefits of quality-aware decoding 329

over MAP-based decoding in two regimes: 330

• A high-resource, unconstrained, setting with 331

large transformer models (6 layers, 16 atten- 332

tion heads, 1024 embedding dimensions, and 333

8192 hidden dimensions) trained by Ng et al. 334

(2019) for the WMT19 news translation task 335

(Barrault et al., 2019), using English to German 336

(EN → DE) and English to Russian (EN → RU) 337

language pairs. These models were trained on 338

over 20 million parallel and 100 million back- 339

translated sentences, being the winning submis- 340

sions of that year’s shared task. We consider the 341

non-ensembled version of the model and use new- 342

stest19 for validation and newstest20 for testing. 343

3MQM annotations are expert-level type of annotations
more fine-grained then DA, with individual errors annotated.
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Figure 2: Values for BLEU (top) and COMET (bottom) for EN → DE as we increase the number of candidates for
different generation and ranking procedures, as well as oracles with the respective metrics, for the large (left) and
small (right) models. Baseline values (with beam size of 5) are marked with a dashed horizontal line.

• A more constrained scenario with a small trans-344

former model (6 layers, 4 attention heads, 512345

embedding dimensions, and 1024 hidden dimen-346

sions) trained from scratch in Fairseq (Ott et al.,347

2019) on the smaller IWSLT17 datasets (Cettolo348

et al., 2012) for English to German (EN → DE)349

and English to French (EN → FR), each with350

a little over 200k training examples. We chose351

these datasets because they have been extensively352

used in previous work (Bhattacharyya et al.,353

2021) and smaller model allows us to answer354

questions about how the training methodology355

affects ranking performance (see § 4.2.2). Fur-356

ther training details can be found in Appendix A.357

We use beam search with a beam size of 5 as our358

decoding baseline because we found that it resulted359

in better or similar translations than larger beam360

sizes. For tuned N-best reranking, we use Tra-361

vatar’s (Neubig, 2013) implementation of MERT362

(Och, 2003) to optimize the weight of each feature,363

as described in §3.2. Finally, we evaluate each sys-364

tem using the metrics discussed in §3.1, along with365

BLEU and chrF (Popović, 2015).366

4.2 Results367

Overall, given all the metrics, candidate generation,368

and ranking procedures, we evaluate over 150 sys-369

tems per dataset. We report subsets of this data370

separately to answer specific research questions,371

and defer to Appendix B for additional results.372

4.2.1 Impact of Candidate Generation373

First, we explore the impact of the candidate gener-374

ation procedure and the number of candidates.375

Which candidate generation method works best,376

beam search or sampling? We generate candi-377

dates with beam search, vanilla sampling, and nu-378

cleus sampling. For the latter, we use p = 0.6 379

based on early results showing improved perfor- 380

mance for all metrics.4 For N -best reranking, we 381

use up to 200 samples; for MBR decoding, due to 382

the quadratic computational cost, we use up to 100. 383

Figure 2 shows BLEU and COMET for differ- 384

ent candidate generation and ranking methods for 385

the EN → DE WMT20 and IWSLT17 datasets, 386

with increasing number of candidates. The base- 387

line is represented by the dashed line. To assess the 388

performance ceiling of the rankers, we also report 389

results with an oracle ranker for the reported met- 390

rics, picking the candidate that maximizes it. For 391

the fixed N -best reranker, we use COMET-QE as 392

a metric, albeit the results for other reference-free 393

metrics are similar. Performance seems to scale 394

well with the number of candidates, particularly for 395

vanilla sampling and for the tuned N -best reranker 396

and MBR decoder. (Lee et al., 2021; Müller and 397

Sennrich, 2021). However, all the rankers using 398

vanilla sampling severely under-perform the base- 399

line in most cases (see also §4.2.2). In contrast, 400

the rankers using beam search or nucleus sampling 401

are competitive or outperform the baseline in terms 402

of BLEU, and greatly outperform it in terms of 403

COMET. For the larger models, we see that the per- 404

formance according to the lexical metrics degrades 405

with more candidates. In this scenario, rankers us- 406

ing nucleus sampling seem to have an edge over 407

the ones that use beam search for COMET. 408

Based on the findings above, and due to gener- 409

ally better performance of COMET over BLEU 410

for MT evaluation (Kocmi et al., 2021), in follow- 411

ing experiments we use nucleus sampling with the 412

large model and beam search with the small model. 413

4We picked nucleus sampling over top-k sampling because
it allows varying support size and has outperformed top-k in
text generation tasks (Holtzman et al., 2020).
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Large (WMT20) Small (IWSLT)

BLEU chrF BLEURT COMET BLEU chrF BLEURT COMET

Baseline 36.01 63.88 0.7376 0.5795 29.12 56.23 0.6635 0.3028

F-RR w/ COMET-QE 29.83 59.91 0.7457 0.6012 27.38 54.89 0.6848 0.4071
F-RR w/ MBART-QE 32.92 62.71 0.7384 0.5831 27.30 55.62 0.6765 0.3533
F-RR w/ OpenKiwi 30.38 59.56 0.7401 0.5623 25.35 51.53 0.6524 0.2200
F-RR w/ Transquest 31.28 60.94 0.7368 0.5739 26.90 54.46 0.6613 0.2999

T-RR w/ BLEU 35.34 63.82 0.7407 0.5891 30.51 57.73 0.7077 0.4536
T-RR w/ BLEURT 33.39 62.56 0.7552 0.6217 30.16 57.40 0.7127 0.4741
T-RR w/ COMET 34.26 63.31 0.7546 0.6276 30.16 57.32 0.7124 0.4721

MBR w/ BLEU 34.94 63.21 0.7333 0.5680 29.25 56.36 0.6619 0.3017
MBR w/ BLEURT 32.90 62.34 0.7649 0.6047 28.69 56.28 0.7051 0.3799
MBR w/ COMET 33.04 62.65 0.7477 0.6359 29.43 56.74 0.6882 0.4480

T-RR+MBR w/ BLEU 35.84 63.96 0.7395 0.5888 30.23 57.34 0.6913 0.3969
T-RR+MBR w/ BLEURT 33.61 62.95 0.7658 0.6165 29.28 56.77 0.7225 0.4361
T-RR+MBR w/ COMET 34.20 63.35 0.7526 0.6418 29.46 57.13 0.7058 0.5005

Table 1: Evaluation metrics for EN → DE for the large and small model settings, using a fixed N -best reranker
(F-RR), a tuned N -best reranker (T-RR), MBR decoding, and a two-stage approach. Best overall values are bolded
and best for each specific group are underlined.
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Figure 3: COMET scores for EN → DE (IWSLT17)
for models trained with and without label smoothing.

4.2.2 Impact of Label Smoothing414

How does label smoothing affect candidate gener-415

ation? Label smoothing (Szegedy et al., 2016) is416

a regularization technique that redistributes proba-417

bility mass from the gold label to the other target418

labels, typically preventing the model from becom-419

ing overconfident (Müller et al., 2019). However,420

it has been found that label smoothing negatively421

impacts model fit, compromising the performance422

of MBR decoding (Eikema and Aziz, 2020, 2021).423

Thus, we train a small transformer model without424

label smoothing to verify its impact in the perfor-425

mance of N -best reranking and MBR decoding.426

Figure 3 shows that disabling label smoothing re-427

ally helps when generating candidates using vanilla428

sampling. However, the performance degrades for429

candidates generated using nucleus sampling when430

we disable label smoothing, hinting that the pruning431

mechanism of nucleus sampling may help mitigate432

the negative impact of label smoothing in sampling433

based approaches. Even without label smoothing,434

vanilla sampling is not competitive with nucleus435

sampling or beam search with label smoothing,436

thus, we do not experiment further with it. 437

4.2.3 Impact of Ranking and Metrics 438

We now investigate the usefulness of the metrics 439

presented in §3 as features and objectives for rank- 440

ing. For N -best reranking, we use all the available 441

candidates (200) while, for MBR, due to the com- 442

putational cost of using 100 candidates, we report 443

results with 50 candidates only (we found that rank- 444

ing with tuned N -best reranking with N = 100 and 445

MBR with N = 50 takes about the same time). We 446

report results in Table 1, and use them to answer 447

some specific research questions. 448

Which QE metric works best in a fixed N -best 449

reranker? We consider a fixed N -best reranker 450

with a single reference-free metric as a feature (see 451

Table 1, second group). While none of the metrics 452

allows for improving the baseline results in terms 453

of the lexical metrics (BLEU and chrF), rerankers 454

using COMET-QE or MBART-QE outperform the 455

baseline according to BLEURT and COMET, for 456

both the large and small models. Due to the afore- 457

mentioned better performance of these metrics for 458

translation quality evaluation, we hypothesize that 459

these rankers produce better translations than the 460

baseline. However, since the sharp drop in the 461

lexical metrics is concerning, we will verify this 462

hypothesis in a human study, in §4.2.4. 463

How does the performance of a tuned N -best 464

reranker vary when we change the optimization 465

objective? We consider a tuned N -best reranker 466

using as features all the reference-free metrics in 467

6



§3.2, and optimized using MERT. Table 1 (3rd468

group) shows results for EN → DE. For the small469

model, all the rankers show improved results over470

the baseline for all the metrics. In particular, opti-471

mizing for BLEU leads to the best results in the lex-472

ical metrics, while optimizing for BLEURT leads473

to the best performance in the others. Finally, opti-474

mizing for COMET leads to similar performance475

than optimizing for BLEURT. For the large model,476

although none of the rerankers is able to outper-477

form the baseline in the lexical metrics, we see478

similar trends as before for BLEURT and COMET.479

How does the performance of MBR decoding vary480

when we change the utility function? Table 1481

(4th group) shows the impact of the utility func-482

tion (BLEU, BLEURT, or COMET). For the small483

model, using COMET leads to the best perfor-484

mance according to all the metrics except BLEURT485

(for which the best result is attained when optimiz-486

ing itself). For the large model, the best result487

according to a given metric is obtained when using488

that metric as the utility function.489

How do (tuned) N -best reranking and MBR com-490

pare to each other? Looking at Table 1 we see491

that, for the small model, N -best reranking seems492

to perform better than MBR decoding in all the493

evaluation metrics, including the one used as the494

utility function in MBR decoding. The picture is495

less clear for the large model, with MBR decoding496

achieving best values for a given fine-tuned metric497

when using it as the utility; this comes at the cost of498

worse performance according to the other metrics,499

hinting at a potential “overfitting” effect. Overall,500

N -best reranking seems to have an edge over MBR501

decoding. We will further clarify this question with502

human evaluation in § 4.2.4.503

Can we improve performance by combining N -504

best reranking with MBR decoding? Table 1505

shows that, for both the large and the small model,506

the two-stage ranking approach described in §3507

leads to the best performance according to the508

fine-tuned metrics. In particular, the best result509

is obtained when the utility function is the same as510

the evaluation metric. These results suggest that511

a promising research direction is to seek more so-512

phisticated pruning strategies for MBR decoding.513

4.2.4 Human Evaluation514

Which metric correlates more with human judg-515

ments? How risky is it to optimize a metric and516

evaluate on a related metric? Our experiments 517

suggest that, overall, quality-aware decoding pro- 518

duces translations with better performance across 519

most metrics than MAP-based decoding. However, 520

for some cases (such as fixed N -best reranking and 521

most results with the large model), there is a con- 522

cerning “metric gap” between lexical-based and 523

fine-tuned metrics. While the latter have shown to 524

correlate better with human judgments, previous 525

work has not attempted to explicitly optimize these 526

metrics, and doing so could lead to ranking systems 527

that learn to exploit “pathologies” in these metrics 528

rather than improving translation quality. To inves- 529

tigate this hypothesis, we perform a human study 530

across all four datasets. We ask annotators to rate, 531

from 1 (no overlap in meaning) to 5 (perfect trans- 532

lation), the translations produced by the 4 ranking 533

systems in §3, as well as the baseline translation 534

and the reference. Further details are in App. C. 535

We choose COMET-QE as the feature for the fixed 536

N -best ranker and COMET as the optimization 537

metric and utility function for the tuned N -best 538

reranker and MBR decoding, respectively. The rea- 539

sons for this are two-fold: (1) they are currently 540

the reference-free and reference-based metrics with 541

highest reported correlation with human judgments 542

(Kocmi et al., 2021), (2) we saw the largest “metric 543

gap” for systems based on these metrics, hinting of 544

a potential “overfitting” problem (specially since 545

COMET-QE and COMET are similar models). 546

Table 2 shows the results for the human eval- 547

uation, as well as the automatic metrics. We see 548

that, with the exception of T-RR w/ COMET, when 549

fine-tuned metrics are explicitly optimized for, their 550

correlation with human judgments decreases and 551

they are no longer reliable indicators of system- 552

level ranking. This is notable for the fixed N -best 553

reranker with COMET-QE, which outperforms the 554

baseline in COMET for every single scenario, but 555

leads to markedly lower quality translations. How- 556

ever, despite the potential for overfitting these met- 557

rics, we find that tuned N -best reranking, MBR, 558

and their combination consistently achieve better 559

translation quality than the baseline, specially with 560

the small model. In particular, N -best reranking 561

results in better translations than MBR, and their 562

combination is the best system in 2 of 4 LPs. 563

5 Related Work 564

Reranking. Inspired by the work of Shen et al. 565

(2004) on discriminative reranking for SMT, Lee 566
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EN-DE (WMT20) EN-RU (WMT20)

BLEU chrF BLEURT COMET Human R. BLEU chrF BLEURT COMET Human R.

Reference - - - - 4.51 - - - - 4.07

Baseline 36.01 63.88 0.7376 0.5795 4.28 23.86 51.16 0.6953 0.5361 3.62
F-RR w/ COMET-QE 29.83 59.91 0.7457 0.6012 4.19 20.32 49.18 0.7130 0.6207 3.25
T-RR w/ COMET 34.26 63.31 0.7546 0.6276 4.33 22.42 50.91 0.7243 0.6441 3.65
MBR w/ COMET 33.04 62.65 0.7477 0.6359 4.27 23.67 51.18 0.7093 0.6242 3.66
T-RR + MBR w/ COMET 34.20 63.35 0.7526 0.6418 4.30 23.21 51.26 0.7238 0.6736 3.72†

EN-DE (IWSLT17) EN-FR (IWSLT17)

Reference - - - - 4.38 - - - - 4.00

Baseline 29.12 0.6635 56.23 0.3028 3.68 38.12 0.6532 63.20 0.4809 3.92
F-RR w/ COMET-QE 27.38 0.6848 54.89 0.4071 3.67 35.59 0.6628 60.90 0.5553 3.63
T-RR w/ COMET 30.16 0.7124 57.32 0.4721 3.90† 38.60 0.7020 63.77 0.6392 4.05†

MBR w/ COMET 29.43 0.6882 56.74 0.4480 3.79† 37.77 0.6710 63.24 0.6127 4.05†

T-RR + MBR w/ COMET 29.46 0.7058 57.13 0.5005 3.83† 38.33 0.6883 63.53 0.6610 4.09†

Table 2: Results for automatic and human evaluation. Top: WMT20 (large models); Bottom: IWSLT17 (small
models). Methods with † are statistically significantly better than the baseline, with p < 0.05.

et al. (2021) trained a large transformer model us-567

ing a reranking objective to optimize BLEU. Our568

work differs in which our rerankers are much sim-569

pler and therefore can be tuned on a validation set;570

and we use more powerful quality metrics instead571

of BLEU. Similarly, Bhattacharyya et al. (2021)572

learned an energy-based reranker to assign lower573

energy to the samples with higher BLEU scores.574

While the energy model plays a similar role to a QE575

system, our work differs in two ways: we use an576

existing, pretrained QE model instead of training577

a dedicated reranker, making our approach appli-578

cable to any MT system without further training;579

and the QE model is trained to predict human as-580

sessments, rather than BLEU scores. Leblond et al.581

(2021) compare a reinforcement learning approach582

to reranking approaches (but not MBR decoding, as583

we do). They investigate the use of reference-based584

metrics and, for the reward function, a reference-585

free metric based on a modified BERTScore (Zhang586

et al., 2020). This new multilingual BERTScore587

is not fine-tuned on human judgments as COMET588

and BLEURT and it is unclear what its level of589

agreement with human judgments is. Another line590

of work is generative reranking, where the reranker591

is not trained to optimize a metric, but rather as a592

generative noisy-channel model (Yu et al., 2017;593

Yee et al., 2019; Ng et al., 2019).594

Minimum Bayes Risk Decoding. MBR decod-595

ing (Kumar and Byrne, 2002, 2004) has recently596

been revived for NMT using candidates gener-597

ated with beam search (Stahlberg et al., 2017; Shu598

and Nakayama, 2017b) and sampling (Eikema and599

Aziz, 2020; Müller and Sennrich, 2021). Eikema600

and Aziz (2021) also explore a two-stage approach601

for MBR decoding. Additionally, there is con-602

current work by Freitag et al. (2021b) on using 603

neural metrics as utility functions during MBR de- 604

coding: however they limit their scope to MBR 605

with reference-based metrics, while we perform a 606

more extensive evaluation over ranking methods 607

and metrics. A comparison with N -best re-ranking 608

was missing in these works, a gap our paper fills. 609

A related line of work is minimum risk training 610

(MRT; Smith and Eisner 2006; Shen et al. 2016), 611

which trains models to minimize risk, allowing ar- 612

bitrary non-differentiable loss functions (Edunov 613

et al., 2018; Wieting et al., 2019) and avoiding ex- 614

posure bias (Wang and Sennrich, 2020; Kiegeland 615

and Kreutzer, 2021). However, MRT is consider- 616

ably more expensive and difficult to train and the 617

gains are often small. Incorporating our quality 618

metrics in MRT is an exciting research direction. 619

6 Conclusions and Future Work 620

We leverage recent advances in MT quality esti- 621

mation and evaluation and propose quality-aware 622

decoding for NMT. We explore different candidate 623

generation and ranking methods, with a comprehen- 624

sive empirical analysis across four datasets and two 625

model classes. We show that, compared to MAP- 626

based decoding, quality-aware decoding leads to 627

better translations, according to powerful automatic 628

evaluation metrics and human judgments. 629

There are several directions for future work. Our 630

ranking strategies increase accuracy but are sub- 631

stantially more expensive, particularly when used 632

with costly metrics such as BLEURT and COMET. 633

While reranking-based pruning before MBR decod- 634

ing was found helpful, additional strategies such 635

as caching encoder representations and distillation 636

(Pu et al., 2021a) are promising directions. 637
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Supplemental Material 1044

A Training Details 1045

For the experiments using IWSLT17, we train a small transformer model (6 layers, 4 attention heads, 512 1046

embedding dimensions, and 1024 hidden dimensions) from scratch, using Fairseq (Ott et al., 2019). We 1047

tokenize the data using SentencePiece (Kudo and Richardson, 2018), with a joint vocabulary with 20000 1048

units. We train using the Adam optimizer (Kingma and Ba, 2015) with β1 = 0.9 and β2 = 0.98 and use 1049

an inverse square root learning rate scheduler, with an initial learning rate of 5× 10−4 and with a linear 1050

warm-up in the first 4000 steps. For models trained with label smoothing, we use the default value of 0.1. 1051

B Additional Results 1052

For completeness, we include in Table 3 results to evaluate the impact of the metrics presented in §3 as 1053

features and objectives for ranking using the other language pairs: EN → RU (large model) and EN → FR 1054

(small model). 1055

Large (WMT20) Small (IWSLT)

BLEU chrF BLEURT COMET BLEU chrF BLEURT COMET

Baseline 23.86 51.16 0.6953 0.5361 38.12 63.20 0.6532 0.4809

F-RR w/ COMET-QE 20.32 49.18 0.7130 0.6207 35.59 60.90 0.6628 0.5553
F-RR w/ MBART-QE 22.39 50.59 0.6993 0.5481 36.68 62.17 0.6593 0.5091
F-RR w/ OpenKiwi 20.88 48.72 0.7040 0.5688 32.03 55.68 0.5996 0.2581
F-RR w/ Transquest 21.60 50.14 0.7060 0.5836 36.02 62.26 0.6681 0.5397

T-RR w/ BLEU 23.87 51.51 0.7042 0.5669 39.10 64.22 0.6968 0.6189
T-RR w /BLEURT 22.84 51.25 0.7265 0.6470 38.60 63.76 0.7042 0.6405
F-RR w/ COMET 22.42 50.91 0.7243 0.6441 38.60 63.77 0.7020 0.6392

MBR w/ BLEU 24.03 51.12 0.6938 0.5393 37.97 63.13 0.6484 0.4764
MBR w/ BLEURT 23.01 50.87 0.7314 0.5984 37.29 62.82 0.6886 0.5361
MBR w/ COMET 23.67 51.18 0.7093 0.6242 37.77 63.24 0.6710 0.6127

T-RR+MBR w/ BLEU 24.11 51.44 0.6967 0.5482 38.96 64.04 0.6781 0.5636
T-RR+MBR w/ BLEURT 23.18 51.30 0.7344 0.6277 37.43 63.14 0.7092 0.5961
T-RR+MBR w/ COMET 23.21 51.26 0.7238 0.6736 38.33 63.53 0.6883 0.6610

Table 3: Evaluation metrics for EN → RU for the large model setting and EN → FR for small model settings, using
a fixed N -best reranker (F-RR), a tuned N -best reranker (T-RR), MBR decoding, and a two-stage approach. Best
overall values are bolded and best for each specific group are underlined.

C Human Study 1056

In order to perform human evaluation, we recruited professional translators who were native speakers 1057

of the target language on the freelancing site Upwork.5 300 sentences were evaluated for each language 1058

pair, sampled randomly from the test sets after a restriction that sentences were no longer than 30 words. 1059

All translation hypotheses for a single source sentence were first deduplicated, and then shown to the 1060

translator side-by-side in randomized order to avoid any ordering biases. 1061

Sentences were evaluated according to a 1-5 rubric slightly adapted from that of Wieting et al. (2019): 1062

1. There is no overlap in the meaning of the source sentence whatsoever. 1063

2. Some content is similar but the most important information in the sentence is different. 1064

3. The key information in the sentence is the same but the details differ. 1065

4. Meaning is essentially equal but some expressions are unnatural. 1066

5. Meaning is essentially equal and the sentence is natural. 1067

5https://upwork.com. Freelancers were paid a market rate of 18-20 US dollars per hour, and finished approximately
50 sentences in one hour.
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