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ABSTRACT

Data preprocessing is a crucial step in machine learning that significantly influ-
ences model accuracy and performance. In Federated Learning (FL), where multi-
ple entities collaboratively train a model using decentralized data, the importance
of preprocessing is often overlooked. This is particularly true in Non-IID set-
tings, where clients hold heterogeneous datasets, requiring aggregated parameter
estimates to perform consistent data preprocessing. In this paper, we introduce
FedPS, a comprehensive suite of tools for federated data preprocessing. FedPS
leverages aggregated statistics, data sketching, and federated machine learning
models to address the challenges posed by distributed and diverse datasets in FL.
Additionally, we resolve key numerical issues in power transforms by improving
numerical stability through log-space computations and constrained optimization.
Our proposed Federated Power Transform algorithm, based on Brent’s method,
achieves superlinear convergence. Experimental results demonstrate the impact
of effective data preprocessing in federated learning, highlighting FedPS as a ver-
satile and robust solution compared to existing frameworks. The implementation
of FedPS is open-sourced.

1 INTRODUCTION

Data preprocessing (Garcia et al., 2016) plays a crucial role in data mining and machine learn-
ing, ensuring that raw data—often fraught with missing values and inconsistencies—can be refined
into a form suitable for model training. Proper preprocessing not only enhances the robustness of
the training process but also significantly boosts model accuracy. However, in Federated Learning
(Kairouz et al.l 2021), where data is stored locally across multiple clients and models are trained
collaboratively, centralizing the data for preprocessing is not feasible due to privacy concerns and
decentralized storage. This presents a unique challenge, as traditional preprocessing steps, which are
typically applied before data distribution in centralized simulations, cannot be directly implemented
in a federated setting.

In federated environments, preprocessing requires the estimation of statistics from decentralized
data, which must then be aggregated on the server. While some statistics like min, max, sum, mean,
and variance are straightforward to compute with minimal communication overhead, others—such
as quantiles and frequent items—pose significant challenges due to computational and communica-
tion constraints.

This paper introduces FedPS, a comprehensive suite of tools designed to tackle these preprocessing
challenges in FL. Leveraging data sketching techniques (Cormode & Yi, [2020), which efficiently
summarize large datasets while retaining critical information, FedPS enables the computation of
both simple and complex statistics in a distributed manner. The concept of mergeability (Agar-
wal et al., 2013) further supports the federated learning setting by allowing sketches from different
clients to be combined efficiently. We also extend several key algorithms, such as Bayesian Linear
Regression (Tippingl 2001]), to both horizontal and vertical federated settings.

Additionally, our paper conducts an in-depth analysis of existing data preprocessors in the widely-
used Scikit-learn (Pedregosa et al, [2011)) library, implementing federated versions while maintain-
ing the flexibility and functionality of the original modules. Unlike other federated learning libraries,
such as FATE (Liu et al., [2021) and SecretFlow (The SecretFlow Authors, [2022), which offer lim-
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ited preprocessing options, our approach provides a full range of preprocessors with customizable
parameters, making it more versatile and powerful.

In tackling the numerical challenges of the power transform, previously identified by Marchand
et al.| (2022) but not fully resolved in practice, we propose a effective solution. By performing
calculations in log space, we also introduce constrained optimization to improve numerical stability.
Furthermore, we develop a Federated Power Transform algorithm using Brent’s method (Brent,
2013)), which achieves superlinear convergence, outperforming previous approaches that relied on
slower exponential search methods (Marchand et al., [2022)), offering only a linear convergence rate.

Our main contributions are as follows:

* Implementation of a comprehensive suite of federated data preprocessing tools, utilizing
aggregated statistics, data sketching.

* Addressing the numerical issues identified in power transform through log space computa-
tions and constrained optimization.

* Extending Bayesian Linear Regression to both Horizontal and Vertical federated learning
setting. And proposing a federated power transform algorithm with a superlinear conver-
gence rate.

* Open-sourcing the implementation of FedPS.

The remainder of the paper is structured as follows: Section 2 outlines our motivation. Section 3
provides a review of existing techniques, laying the foundation for the technical aspects of federated
preprocessing discussed in Section 4. Our solution to the power transform’s numerical issues and
the corresponding federated algorithm are detailed in Section 5. Section 6 presents experimental
results, followed by related work in Section 7. Finally, we conclude the paper in Section 8.

2  MOTIVATION

Boosting Model Performance. Data preprocessing plays a pivotal role in enhancing the accuracy
and performance of machine learning models. While much attention has been directed towards opti-
mizing federated training algorithms, the significance of preprocessing data in a distributed manner
cannot be overlooked. In our experiments, we aim to shed light on this aspect by contrasting the test
accuracy achieved using raw data against that obtained using preprocessed data. Through this com-
parison, we seek to demonstrate the impact of federated data preprocessing on model performance,
highlighting its potential to significantly boost accuracy.

Necessity of Federated Computation. In federated learning, data is distributed across multiple
clients, preprocessing steps need to be adapted to this decentralized nature. While a decentralized
strategy, with each client independently conducting preprocessing locally, may be suitable for sce-
narios with independent and identically distributed (IID) data, it encounters difficulties in non-I1ID
scenarios. In such cases, clients may possess varied data distributions, such as label distribution
skew, where each client exclusively holds one type of labeled data. To illustrate the significance
of federated data preprocessing, consider a scenario where two parties collaboratively train a hor-
izontally federated classification model. The initial data is linearly separable when pooled (see
Figure [[(a)). However, when each party’s data has distinct target categories (e.g., party A’s data
labeled O and party B’s data labeled 1), applying local scaling for zero mean and unit variance re-
sults in non-linearly separable data (see Figure [I(b)). Consequently, federated data preprocessing
becomes indispensable.

Robust (Federated) Power Transform. Power transform is widely utilized across various domains,
including genomic studies (Zwiener et al.| 2014) and geochemical data analysis (Howarth & Earle}
1979). Previous research (Marchand et al., 2022)) has highlighted numerical challenges associated
with power transform, yet adequate solutions remain elusive. Their solution relies on exponential
search, resulting in linear convergence rates. In contrast, our approach involves a comprehensive
theoretical analysis of the underlying numerical instabilities and presents an effective solution. Fur-
thermore, we extend our methodology to federated settings and employ Brent’s method, known for
its superlinear convergence property, thereby offering a more robust and efficient approach.
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Figure 1: The impact of feature scaling on label-skewed data if each client independently conducting
preprocessing locally.

3 PRELIMINARIES

In this section, we begin with an overview of common data preprocessing steps. Subsequently, we
delve into the background of federated learning. We also conduct a review of relevant aggregated
statistics employed in our implementation and introduce the background of power transform.

3.1 DATA PREPROCESSING

Data preprocessing involves a diverse set of methods for preparing data. Common steps encom-
pass feature scaling, encoding, discretization, missing value imputation, and various transformation
methods tailored to specific scenarios. Our focus in this paper is on the preprocessors presented in
Scikit-learrﬂ (Pedregosa et al.,|2011). The preprocessing workflow includes setting up the prepro-
cessor with user-defined parameters, estimating the preprocessing parameters by calling the fit
method, and finally, using the t ransform method to yield transformed data using the learned
parameters. A review of the preprocessors in Scikit-learn is deferred to Appendix [A]

3.2 FEDERATED LEARNING

Federated learning is a setting where data is decentralized, and immediate results are exchanged for
aggregation to achieve a common learning objective. Two typical data partition axes are horizontal
(example-partitioned) and vertical (feature-partitioned). In the horizontal setting, each client has
the same feature space, while in the vertical setting, they share the same ID. As data preprocessing
is often applied to each feature, most of the federated preprocessors presented in this paper are
designed for the horizontal setting.

3.3 AGGREGATING STATISTICS

In federated learning, individual clients generate their local statistics and send to the server. Sub-
sequently, these statistics are collected and aggregated by a central server, enabling queries and
obtaining global estimations. A straightforward example is Min/Max, where each client computes
its local minimum or maximum and transmits it to the server to obtain the global value. In the fol-
lowing paragraphs, we will provide a brief overview of other statistics used in our implementations.

Sum, Mean, Variance. These statistics involve maintaining counts. Sum has one counter. Mean has
two counters: ¢ for the sum of data and n for the number of examples. The mean value is calculated
as ¢/n. Variance introduces another counter, s, representing the sum of squared data. It’s computed
as s/n — (¢/n)? (Cormode & Yi, 2020). When merging counter-based statistics, simply add the
corresponding counters.

Quantiles. Quantiles represent ordered statistics, associating values with specific ranks in sorted
data. For instance, the median corresponds to quantile 0.5. Obtaining exact quantiles requires

'https://scikit-learn.org/stable/modules/preprocessing.html
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maintaining information proportionate to the full data size, leading to many quantile sketches be-
ing approximate. Two common types of errors associated with approximate quantile sketches are
additive error (Karnin et al., [2016)) and multiplicative error (Cormode et al., [2023]).

Set Union, Frequent Items. The union operation is executed by the server after receiving local sets
from all clients. This process primarily utilizes hash tables. The frequent items sketch (Anderson
et al.| 2017), also known as heavy hitters, aims to track the frequency of each item in the set.

DataSketches (The DataSketches Authors},[2023) is an open-source library that provides fast stream-
ing algorithms for big data. It includes sketches for quantiles, frequent items, and more. We leverage
these sketches from this library in our implementation of federated data preprocessing.

3.4 POWER TRANSFORM

The power transform is a data transformation technique employed to make data more Gaussian
distribution-like. Two well-known transformations for this purpose are Box-Cox (BC) (Box & Cox},
1964) and Yeo-Johnson (YJ) (Yeo, [2000). It’s essential to note that Box-Cox requires input data to
be strictly positive (i.e., z > 0), while Yeo-Johnson extends its applicability to both positive and
negative data. The transformation functions for both methods are continuous and defined as follows,
with visualizations provided in Figure 2]

(@ =1\ ifA#0,
Ve o) = {lnx if A = 0. M
[(z+1)* = 1]/A ifA#£0,2 >0,
In(x + 1) ifA=0,z>0
ANzx) = e 2
() [—(—z+1)27A=1]/(2-)) ifA#2,2<0, @
—In(—z+1) ifA=2,2<0.
E: ’ — =3 S§ ’ — A=3
B - - %
(a) Box-Cox (b) Yeo-Johnson

Figure 2: Box-Cox and Yeo-Johnson transformation functions.

The power parameter A is estimated by minimizing the negative log-likelihood function, as defined
in Equation [3| and 4] Notably, the negative log-likelihood functions for both Box-Cox and Yeo-
Johnson transformations have been proven to be strictly convex (Kouider & Chen, |1995; Marchand
et al.,[2022)), indicating that the function exhibits a unique global minimum.

~InLpc(A )= (1 -2 Iz + gln T nc(ra) )

- n
—InLy;(A,z) =(1-N) Z sgn(z;) In(|x;| + 1) + 0 lnaiw(/\’w) “4)

In the implementation within SciPy (Virtanen et al., 2020)), the one-dimensional minimization for
the power transform utilizes Brent’s method (Brent, |2013). This algorithm efficiently evaluates the
target function at a small number of points and converges superlinearly.
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Table 1: Preprocessors and associated statistics.

Categories Preprocessors Formulation Associated Statistics
MaxAbsScaler /|| max Max
MinMaxScaler (2 — Zmin)/(Tmax — Tmin) Min, Max
Scaling StandardScaler (x—p)/o Mean, Variance
RobustScaler (x —qo.5)/(g0.75 — 90.25) Quantiles
Normalizer z/|z| Sum, Max
FeatureHasher hash(x) -
OneHotEncoder one-hot(z) Set Union, Frequent items
OrdinalEncoder ordinal(x) Set Union, Frequent items
Encoding TargetEncoder A(ni) 22 + (1 = A(n) 5 Set Union, Mean, Variance
LabelBinarizer one-hot(y) Set Union
MultiLabelBinarizer multi-hot(y) Set Union
LabelEncoder ordinal(y) Set Union
FunctionTransformer f(z) —*
Transformation PowerTransformer YA x) Sum, Mean, Variance, Mix, Max
QuantileTransformer CDF(z), ' (CDF(x)) Quantiles
SplineTransformer B-spline(x) Min, Max, Quantiles
Discretization Binarizer lifz >Telse0 -
KBinsDiscretizer JifT; <o <Tj Min, Max, Quantiles, Mean
SimpleImputer mean(x), median(x), most-freq(x) Mean, Quantiles, Frequent items
Imputation IterativeImputer RegressionModel(x) Sum
KNNImputer mean(k-nearest neighbors of z) Horizontal: Min, Mean; Vertical: Sum

*Only if the transformation function is stateless

4 FEDERATED DATA PREPROCESSING

The overview of federated data preprocessing steps is illustrated in Figure[3] Initially, each client
generates its local statistics and transmits it to the server. Subsequently, the server performs the
merging step on clients’ summaries, and the server queries the merged summaries to obtain the
necessary preprocessing parameters. Finally, these parameters are communicated back to the clients
for the execution of data preprocessing.

e e 0
®

Params

/ Stats

Figure 3: An overview of federated data preprocessing steps.

Raw
Data

We categorize data preprocessors into distinct groups (scaling, encoding, transformation, imputa-
tion) to improve clarity regarding their functionalities. Within each category, we summarize the
formulation and required statistics for each module, as outlined in Table Additionally, Table E]
provides a comprehensive overview of the statistics associated with preprocessors and their com-
munication cost. As most statistics are directly related to the functionality of each module , such
as MinMaxScaler requiring computation of global minimum and maximum values, we focus on
explaining the most significant ones.

Scaling. In RobustScaler, we utilize a quantile sketch to obtain the necessary quantiles. A unique
scenario arises with Normalizer, particularly in vertical federated learning settings, where computing
the global norm of each sample is necessary. For [ or l5 norms, the computation involves obtaining
the global sum of |z| or 22 for each sample (then taking the square root for /3 norm); for the max
norm, simply compute the global maximum of |x|.
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Encoding. In federated learning, it’s crucial for all clients to agree on a unified encoding scheme to
ensure consistent encoding of the same categorical value into the same numeric value. Thus, encod-
ing modules need to compute set unions, except for FeatureHasher, which relies on hash functions.
Additionally, we utilize frequent items sketch in OneHotEncoder and OrdinalEncoder to ignore in-
frequent items. For TargetEncoder, the global mean is required, along with variance for determining
the smoothing parameter.

Transformation. Regarding FunctionTransformer, if the user-provided function is stateless (i.e.,
requires no parameter estimation from the data), then the aggregation isn’t necessary. However,
in the case of PowerTransformer, aggregation is required for evaluating the negative log-likelihood
function (Equation [3] and [4) multiple times, necessitating computation of the global sum and vari-
ance. Additionally, addressing overflow problems requires knowledge of min and max values, as
explained in Section[5.2} Afterward, user has the option to apply StandardScaler to the transformed
data, requiring global mean and variance.

Discretization Binarizer does not require federated computation, as all clients can agree on a preset
threshold. On the other hand, KBinsDiscretizer relies on global min and max values to generate
intervals with equal width, or it uses quantiles to ensure equal frequency of data samples in each bin.
The strategy involving federated k-means (see Appendix [C) in KBinsDiscretizer needs to update the
new clustering centroids during each iteration, which requires compute the global mean of data in
each cluster.

Imputation In the SimpleImputer, the imputation strategies such as mean, median, and most fre-
quent rely on the aggregation of mean, quantiles, and frequent items sketch. However, more ad-
vanced imputers like Iterativelmputer (Buck, 1960; |Buuren & Groothuis-Oudshoorn, 2011) and
KNNImputer (Iroyanskaya et al.l 2001) require more sophisticated federated algorithms, namely
Federated Bayesian Linear Regression (see Appendix [D)) and Federated k-Nearest Neighbors (see
Appendix [E) for imputing missing values. Notably, the KNN model incorporates a specialized
Euclidean distance calculation (Dixonl [1979), which is adapted to handle the presence of missing
values in the data.

5 NUMERICALLY STABILIZED FEDPOWER

This section first discusses the reasons behind numerical instabilities in power transform. Then,
we present our solutions, using the Box-Cox transformation as an example. The federated power
transform is outlined in Appendix [K}

5.1 UNDERSTANDING NUMERICAL INSTABILITIES

Due to the convexity of negative log-likelihood functions, optimizing the parameter A can be
achieved through direct minimization or root-finding algorithms. However, these methods involve
computing the logarithm of the variance of transformed data, see Equation [3], which can lead to
numerical instabilities when directly squaring large values in the power function.

This numerical instability can affect the optimization, potentially resulting in suboptimal solutions.
To illustrate, we apply the exponential search algorithnﬂ to two seemingly ordinary datasets. As
depicted in Figure ] the computed result does not match the true minimum.

Additionally, the power transform itself presents a secondary challenge, as depicted in Figure [4]
Employing the optimal A for transformation may result in numerical overflow beyond the precision
limit. For instance, extreme values such as 2009.01%% ~ 3.2 x 103%3 and 0.17361 = 103%! can
occur. In such cases, users may encounter difficulties analyzing the transformed data or rescaling
the Gaussianized data to achieve zero mean and unit variance.

While increasing precision, may partially mitigate these issues, it does not provide a comprehensive
solution. Moreover, even seemingly ordinary data, or adversarial data, can exceed double-precision
limits, and many mathematical libraries do not support quad-precision or higher due to efficiency
considerations.

>The ExpUpdate algorithm presented in [Marchand et al.| (2022) contains a typo, which we correct in Ap-
pendix [F}
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Figure 5: Computation of the negative log-likelihood of Box-Cox as a function of A in log space
vs. linear space. The datasets are the same as in Figure [4]

5.2 NUMERICALLY STABILIZED POWER TRANSFORM

The primary challenge is to mitigate numerical instabilities and obtain the true minimum during
optimization. Notice that directly optimizing the negative log-likelihood function only requires
computing the logarithm of the variance on the transformed data. We can leverage computations in
the log space to enhance numerical stability, as illustrated in [Haberland| (2023), which employs the
Log-Sum-Exp (LSE) trick (see Appendix [G).

A visual representation of this comparison is presented in Figure[5] highlighting the efficacy of log
space computations and illustrating the limitations of linear space computations in certain ranges of
A. Additionally, linear space computations may not be able to find the optimal parameter \.

To also better adapt the computation to log space, we carefully chose formulations to ensure numer-
ical stability, particularly when the denominator is near zero, as shown in Figure [6] For Box-Cox
transformation, this could also avoid converting some computation into complex domain since - is
always positive. In particular, when A # 0, it becomes:

In Uisc(k,x) = In Var[(z* — 1)/)] (5)
= In Var(z*/)) (6)
= In Var(z?) — 21n | )| 7

To mitigate the transformed data beyond precision limit, we introduce a constraint to con-
fine the transformed data within the representable range of floating-point numbers, specified as
[—¥max, Ymax]- This ensures that positive and negative overflow issues are avoided.

Lemma 5.1. The transformation function 1 (A, x) defined in Equationsatisﬁes the following:
(i) v(A\,x) > 0forxz > 1, and p(\ x) <0 forz < 1.

(ii) (A, x) is increasing in both \ and x.
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Given the Lemma above (proof see Appendix [H), we only need to consider at most two points (the
minimum and the maximum) to decide the bounds. We formulated the constrained optimization
problem belo

m/\in —In Lpc(A, x)

st ifxme > 1,A <K 1/1§c1 (:Emaxv ymax)7 (®)
if Tpin < 1,A 2> w];cl (xmina _ymax)

Here, zbgé represents the inverse of Box-Cox to compute A using the Lambert W function (Corless
et al., [1996). Given that the solution of z = a + bc” is ¢ = a — W(—bc®Inc)/Inc, the inverse
functionis defined as:

Ve (z,y) = 1)y =W (—z YInz/y)/Inzx 9)

Constrained optimization may yield suboptimal results; however, these bounds are crucial to pre-
vent overflow issues and maintain the usability of the transformed data. By default, yn,y is set
to the maximum value within the floating-point precision of the input data, typically represented
as Ymax ~ 103°% (double-precision). Additionally, users have the flexibility to manually set these
bounds, enabling customization based on specific requirements. For instance, setting the bound to
infinity can yield optimal unconstrained results, while setting it to a reasonable value prevents the
transformed data from becoming excessively large.

6 EXPERIMENTAL RESULTS

6.1 IMPACT OF DATA PREPROCESSING IN FEDERATED LEARNING

Feature engineering involves various techniques, often rooted in domain-specific knowledge. For
tabular data, crucial steps typically include feature scaling, encoding, and handling missing values.
In our experiments, we investigate the influence of StandardScaler on the Adult (Becker & Kohavi,
1996), Bank Marketing (Moro et al} [2012), and Covertype (Blackard, [1998) datasets (see Table E]
for the dataset information). Using FedAvg (McMahan et al., 2017) with the SGD optimizer and
a Logistic Regression and Multi-Layer Perceptron models, we manually tuned the learning rate
from {10_4, 33x1074,...,0.1, 0.33} and report the best result. The data were evenly split in
an IID fashion among all clients. The results, illustrated in Table 2] and Appendix [[] demonstrate
that applying StandardScaler leads to an increase in accuracy ranging from 4% to 37% for Logistic
Regression and 2% to 26% for Multi-Layer Perceptron.

3The constrained optimization for Yeo-Johnson is presented in Appendix
“The Lambert W function, characterized by two branches on the real line, necessitates a subsequent con-
sideration of branch selection (see Appendixfor branch discussion.
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Table 2: Test accuracy comparison of FedAvg on Raw vs. Preprocessed Data (StandardScaler) using
Logistic Regression (LR) and Multi-Layer Perceptron (MLP).

Model #Clients Preprocessing Adult Bank Marketing Covertype

10 Raw 0.792 0.777 0.529
+Scaling 0.824 0.893 0.725
30 Raw 0.792 0.843 0.581
LR +Scaling 0.824 0.893 0.724
100 Raw 0.779 0.842 0.573
+Scaling 0.824 0.893 0.723
300 Raw 0.775 0.829 0.550
+Scaling 0.824 0.892 0.723
10 Raw 0.765 0.881 0.767
+Scaling 0.850 0.901 0.912
30 Raw 0.766 0.880 0.743
MLP +Scaling 0.849 0.903 0.906
100 Raw 0.764 0.880 0.696
+Scaling 0.850 0.902 0.877
300 Raw 0.764 0.881 0.659
+Scaling 0.847 0.900 0.829

Yeo-Johnson Yeo-Johnson
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Figure 7: Computation of the negative log-likelihood of Yeo-Johnson as a function of \ in log space
vs. linear space. The figures use feature chg and lip in the Ecoli dataset.

6.2 NUMERICAL EXPERIMENTS ON POWER TRANSFORM

We conduct numerical experiments on three datasets confirmed for their numerical instabilities, as
documented in Table 1 of Marchand et al.| (2022): Blood Transfusion Service Center (Yeh, 2008)),
Breast Cancer Wisconsin (Diagnostic) (Wolberg et al., [1993)), and Ecoli (Nakail, [1996) (see Table E]
for the dataset information). The objective is to test the computation of the negative log-likelihood
function in both log space and linear space. The results are presented in Figure[7)and further detailed

in Appendix

The computation in linear space may face challenges in identifying the optimal A\ due to numerical
instabilities, see the vertical dotted lines in Figure [/l In contrast, conducting computations in log
space not only enables the calculation of the negative log-likelihood over a broader range of A values
but also guarantees finding the optimum.

7 RELATED WORKS

Distributed Learning vs. Federated Learning. Relevant literature includes distributed data pre-
processing, where data is centrally stored, and a datacenter performs distributed computation on
large-scale datasets. Prior works (Nurmi et al.| 2005} |Celik et al.,|2019) implemented outlier anal-
ysis, normalization, and missing value imputation. Spark MLIib (Meng et al.l 2016) also offers



Under review as a conference paper at ICLR 2025

Table 3: Federated data preprocessors in FATE and SecretFlow.

Frameworks Preprocessors

MinMaxScaler
StandardScaler

FATE N SecretFlow OneHotEncoder
LabelEncoder

KBinsDiscretizer

FATE SimpleImputer

OrdinalEncoder
LogroundTransformer*

SecretFlow

*A variant of log transformation

a diverse set of functionality for data preprocessing in this setting. Our system is designed for
federated learning, where data remains decentralized. Further comparisons between federated and
distributed learning can be found in|Kairouz et al.|(2021)).

Existing Federated Data Preprocessors. Existing federated learning frameworks, such as FATEE]
(Liu et al., 2021) and SecretF' lowE] (The SecretFlow Authors, [2022), provide a limited number of
preprocessors, summarized in Table[3] Note that we have renamed some preprocessors in FATE for
better comparison. Additionally, some of their preprocessors have simplified parameters compared
to ours, limiting the flexibility of these modules.

Private Federated Data Preprocessing. In parallel, there are works on privacy-preserving data pre-
processing for federated learning. For example, Hsu and Huang (Hsu & Huangl |2022) implemented
one-hot encoding and label encoding based on fully homomorphic encryption. Marchand et al.
(Marchand et al., 2022) proposed a private federated Yeo-Johnson based on secure multi-party com-
putation. Given the paramount importance of privacy in federated learning, ensuring that collected
statistics do not divulge sensitive information is imperative. And, it’s worth noting that quantiles and
frequent items inherently contain more information compared to simpler preprocessing techniques
like Min/Max scaling. Addressing the privacy implications of these methods remains an area for fu-
ture research. As outlined in Table[I] the computation can be replaced with their privacy-preserving
counterparts, offering enhanced privacy guarantees in federated preprocessing tasks.

8 CONCLUSION

In this paper, we highlight the often-underappreciated domain of data preprocessing in Federated
Learning, introducing FedPS—a robust suite of tools leveraging aggregated statistics, data sketch-
ing, and federated machine learning models. Additionally, we have addressed numerical issues in
power transform and proposed a federated version based on Brent’s method. By providing a com-
prehensive and flexible set of data preprocessors, FedPS facilitates the convenient preparation of
data, establishing a solid foundation for training federated learning models.

Our future work will delve into privacy-preserving federated data preprocessing, employing tech-
niques like Secure Aggregation (Bonawitz et al., 2017)), Secure Multi-Party Computation (Lindell,
2020)), and Differential Privacy (Dwork & Roth,|2014). This extension aims to enhance and privacy
aspects of FedPS, contributing to the development of more robust federated learning systems.

51’1ttps ://fate.readthedocs.io/en/latest/2.0/fate/components/
#algorithm-1list

%https://www.secretflow.org.cn/en/docs/secretflow/v1.9.0b2/source/
secretflow.preprocessing
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A PREPROCESSORS IN Scikit-learn

A.1 SCALING

Scaling each feature of the data is a common preprocessing step before training machine learning
models, referred to as normalization or standardization, usually involving a linear transformation.
Different scalers employ various strategies to transform data into predefined ranges. MaxAbsScaler
ensures that the maximal absolute value equals 1, MinMaxScaler| confines data between a given
minimum and maximum value, and StandardScaler ensures that transformed data have a zero mean
and unit variance. However, these methods are sensitive to outliers, as the scaling factor depends on
them. For more robust scaling, RobustScaler| transforms data into a preset quantile range, typically
quantiles 0.25 to 0.75 of the data, making it less susceptible to outliers. Notably, Normalizer applies
scaling to each data sample instead of each feature, ensuring individual samples have a unit norm,
such as [ (absolute), l5 (euclidean), and max (infinity) norms.

A.2 ENCODING

Data may contain features represented using strings, necessitating encoding into numeric values.
OneHotEncoder| encodes them as a one-hot array, and OrdinalEncoder| uses an ordinal encoding
scheme. They can also ignore infrequent items below a preset threshold of frequency and limit the
maximum number of output categories. An alternative approach is the hash trick (Weinberger et al.,
2009), exemplified by [FeatureHasher, which computes encoding representation based on hash func-
tions. TargetEncoder (Micci-Barreca, 2001) utilizes target mean and the target mean conditioned
on the categorical value for encoding, often combined with cross-validation (CV) techniques or ad-
ditional smoothing parameters to prevent overfitting due to incorporating target information. The
default smoothing parameter is set by empirical Bayes estimation, blending the global target vari-
ance and the target variance conditioned on the category value. In supervised learning, label encod-
ing might be necessary if labels are strings, addressed by LabelBinarizer| for one-vs-all binarization,
particularly useful in multiclass classification, and MultiLabelBinarizer in multilabel learning, trans-
forming targets into a multilabel format. LabelEncoder encodes target labels into ordinal numbers,
typically used in classification tasks.

A.3 TRANSFORMATION

Feature transformation is another type of data preprocessing that applies a certain function, typically
non-linear, to the features. FunctionTransformer applies a user-defined function to the data, making
it useful for tasks like log transformation. PowerTransformer is a parametric method that maps data
into a Gaussian distribution, supporting both Box-Cox and Yeo-Johnson transformations. After-
ward, the user has the option to apply StandardScaler to the transformed data. QuantileTransformer
is a non-parametric method capable of transforming arbitrary data into Gaussian or Uniform dis-
tributions. It estimates the cumulative probability distribution function, using quantiles, then maps
the data to desired output distributions. SplineTransformer| generates univariate B-spline (de Boor,
1978) bases for each feature, particularly useful in time-related feature engineering. It requires
setting uniformly distributed knots between the min and max values or along the quantiles.

A.4 DISCRETIZATION

For continuous features, discretization provides a way to transform them into discrete values, also
known as quantization or binning. While it may result in a loss of information, it simplifies the data,
making it easier to use and understand. Binarizer uses a threshold to binarize the data. In contrast,
KBinsDiscretizer|can transform continuous data into k bins using various strategies. It can generate
intervals with equal width for each bin or ensure an equal frequency of data samples in each bin.
Alternatively, it can employ k-means, an unsupervised learning algorithm, to generate k clusters.

A.5 IMPUTATION

Missing values are prevalent in real-world data for various reasons, posing a challenge for most
machine learning algorithms. One common strategy is to discard entire rows or columns containing
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missing values, but this approach may introduce bias and reduce the availability of data. Alterna-
tively, imputation strategies, such as SimpleImputer, offer a univariate method to fill missing values
with the mean, median, mode (most frequent item) of the respective feature, or a constant value.
In contrast, IterativeImputer (Buck} [1960; Buuren & Groothuis-Oudshoorn, 2011), a multivariate
imputation strategy, models missing values as a function of other features. It selects a specific fea-
ture column as the target and utilizes other features as inputs to fit a regression model, subsequently
using this model to predict the missing values. Another method, KNNImputer| (Troyanskaya et al.,
2001)), employs a weighted average of k-nearest neighbors for imputation.

B SUPPLEMENTAL TABLES

Below is the aggregated statistics and corresponding preprocessors, along with an analysis of the
communication cost from the client’s perspective. Assume each client has a dataset X containing
n examples (rows) and m features (columns), and the dataset X’ on which preprocessing steps
will be applied contains n’ examples and m’ features. For iterative processes or algorithms such
as k-Means, PowerTransformer, and Iterativelmputer, we denote the number of iterations as . In
the case of k-Means, k Nearest Neighbors, and frequent items sketch (with k bins), k represents
different values depending on the specific context in the communication cost analysis. For encoding
methods, we assume there are d distinct categories across n examples. Lastly, the KLL sketch
(Karnin et al., 2016)) is employed as the default quantile sketch, and its communication cost (space
usage) is referenced from that work.

C FEDERATED K-MEANS

The k-Means clustering is a unsupervised algorithm, which find & cluster centroids {1, ..., tg}-
It is an iterative algorithm that first computes distances between each data sample and each cluster
centroid. Afterwards, it assign each data sample x; to its closest cluster .S;. Finally, each cluster
centroid is updated by the mean of data samples in each cluster, i.e., u; = Emie s, Ti /nj. For
horizontal federated k-Means, see Algorithm |1} the server needs to first broadcast the cluster cen-
troids to all clients, then compute the global mean of data samples in each cluster to update new
cluster centroids. The colored steps indicate communication between the server and clients, with
blue indicating receiving and orange indicating sending actions.

Algorithm 1: Horizontal Federated k-Means (Server)

Input: Client c has data {:cgc)}
Initialize clustering centroids {1, .. ., ik}
repeat

Broadcast clustering centroids {1, . . ., g } to all clients
(c)

// Each client assign each data sample z;’ to its closest

cluster §;

Collect the local sums in each cluster {5(10), séc), cey s,(:)} where Sgc) = Zmﬁc’e s, xl(-c)
and the number of data samples in each cluster {n{”, ..., n{”}

Set new clustering centroids ; = > s](C) /> n](C)
until Convergence or reach the max iteration,;
Output: Clustering centroids {1, ..., g}

D FEDERATED BAYESIAN LINEAR REGRESSION

Bayesian Linear Regression adopts a probabilistic approach to define the model parameters. Typ-
ically, the model parameters are assumed to follow a zero-mean isotropic Gaussian distribution
Tipping|(2001); [Bishop|(2006) as given by:

p(w) =N(w[0,a7'T) (10)
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Table 4: Aggregated statistics and associated preprocessors.

Aggregated Statistics

Associated Preprocessors

Communication Cost (Client)

MaxAbsScaler* O(m)
MinMaxScaler O(m)
. Normalizer (max norm)* O(n
Min, Max KBinsDiscretizer (strategy=uniform) O((m))
PowerTransformer O(m)
SplineTransformer (knots=uniform) O(m)
KNNImputer (Horizontal)t O(n'km)
Normalizer (I or I norm) O(n)
PowerTransformer O(m)
Sum KNNImputer (Vertical) O(n'n)
IterativeImputer (Horizontal) O(tm? min(n, m))
IterativeImputer (Vertical) O(tmn min(n, m))
StandardScaler (with_mean=True) O(m)
SimpleImputer (strategy=mean) O(m)
Mean TargetEncoder O(dm)
PowerTransformer (standardize=True) O(m)
KBinsDiscretizer (strategy=kmeans) O(tkm)
KNNImputer (Horizontal) O(n'km)
StandardScaler (with_std=True) O(m)
Variance TargetEncoder O(dm)
PowerTransformer O(tm)
RobustScaler
KBinsDiscretizer (strategy=quantile)
Quantiles QuantileTransformer o+ log? log 1.m)
SplineTransformer (knots=quantile)
SimpleImputer (strategy=median)
LabelBinarizer
MultiLabelBinarizer O(d)
Set Union LabelEncoder
OneHotEncoder
OrdinalEncoder O(dm)
TargetEncoder
OneHotEncoder (group infrequent categories)
Frequent items OrdinalEncoder (group infrequent categories) O(km)

SimpleImputer (strategy=most_frequent)

*Max only, tMin only

The posterior distribution of the parameters takes the form of a Gaussian distribution:

where:

p(w|X,Y,ﬁ) = N(QJ|G), 2)

@ =pE1XTy
¥ =al +pXTX

The hyperparameters o and 3 can be modeled using Gamma distributions as hyperpriors:

p(a) = Gamma(a|aq, az)
p(B) = Gamma(3|b, by)
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An iterative process is used to re-estimate the hyperparameters « and 3, followed by updates to @
and X:

n—rvy+2a;
D B e 16
@ €+ 2aq (16)

¥+ 2by
— e 17
b= el + 2 an

OéAi

-y T 18
v Zi:BJraAi (18)
e=|Y - X&|3 (19)

To compute the matrix inverse in Equation [I3]efficiently, Singular Value Decomposition (SVD) is
applied:

1 1
»l= V(aI + BA‘l)VT (20)
where U, S, VT = SVD(X) and S? = A.

In Horizontal Bayesian Linear Regression, since the data is partitioned by examples, the server can
aggregate the terms X7 X from each client:
X (1)
XTX = [Xu)T x@T ] [|XP| 2 x0Tx0 L x@Tx@ 4 21)

Algorithm 2: Horizontal Federated Bayesian Linear Regression (Server)

Input: Client ¢ has data X(©) and Y (¢)
Initialize o and 8

Compute global sum X7Y =" X©Ty(©

Compute global sum X7X = 3" X©Tx(
Compute eigenvalues A and eigenvectors V of X7 X
repeat

Compute £~ = V(ZI+ A VT
Compute @ = fX'XTY

Broadcast the model parameter @ to all clients
Compute the global error €

Update « and 3
until Convergence or reach the max iteration;
Output: model parameter &

For Vertical Bayesian Linear Regression, where data is split by features, the formulas are adjusted
as follows:

@ =pXTe"ly (22)
> = ol 4 gXXT (23)
Here, the server sums over the feature matrices:
xmT
XXT =[x x@ ] [x@7| =xOx®O" L xox@" 4 (24)

To compute the matrix inverse in Equation 23] SVD can again be employed:

»l= U(éI + %A*l)UT (25)
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Algorithm 3: Vertical Federated Bayesian Linear Regression (Server)

Input: Client ¢ has data X(©) and only one client has Y
Initialize o and 8

Receive Y from the client who has target
Compute global sum XX7 = 3" X@x©"

Compute eigenvalues A and eigenvectors U of XX
repeat
Compute X' = U(LI+ %A*I)UT

Broadcast X 1Y to all clients

// Each client compute & = X(C)TBE_lY
Compute the global prediction Y = Yoo X (@)
Compute the error ¢ = ||[Y — Y3

Compute the global sum [|&||3 = 3" [|&© H;

Update o and 8

until Convergence or reach the max iteration;
QOutput: model parameter @

E FEDERATED K NEAREST NEIGHBORS REGRESSION

The k Nearest Neighbors (kNN) regression is a non-parametric algorithm that identifies the k closest
examples to a given point x and then averages the target values y of these neighbors. A commonly
used distance metric is the Euclidean distance. The averaging can be done using either the ordinary
mean or a weighted mean, where the weights are the reciprocals of the distances.

For horizontal federated kNN regression (Khedr, 2008), each client computes its local top-k mini-
mum distances and sends these distances to the server, as illustrated in Algorithm@ The server then
determines the global k nearest neighbors and retrieves their corresponding target values to compute
the average.

Algorithm 4: Horizontal Federated kNN Regression (Server)

Input: Client c has data {xEC), y§c) }, data z,, need to be predicted
Broadcast data z), to all clients

Collect local top-k£ minimum distances {d(lc), e ,d,(:)} between x,, and each client’s data
Compute the global top-k minimum distances {dy, . . ., d;} and their indices
Send the indices of k nearest neighbors to their corresponding clients

Compute (weighted) mean p of the target y based on the indices
Output: (Weighted) mean p

For vertical federated kNN regression, described in Algorithm [5 the distance cannot be directly
computed since clients possess different features. In this case, each client computes one segment
of the distance and sends it to the server. The server sums over each distance segment to identify
the global k nearest neighbors. Finally, the server sends the indices of these neighbors to the client
requesting the prediction.

18
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Algorithm 5: Vertical Federated kNN Regression (Server)

Input: Client c has data {xz(-c), ygc) 1, data Jc}(,c) need to be predicted

// Each client compute the local distance between x,(gc) and each
data sample

Compute the global distance between z,, and each data sample

Select the global top-k minimum distances {dy, . .., dx } and their indices

Send the indices of k nearest neighbors to client whose data contain target

// The client compute (weighted) mean p of the target y based
on the indices
Output: (Weighted) mean p

F CORRECTION OF THE EXPUPDATE ALGORITHM

The original ExpUpdate algorithm proposed in (Marchand et al., [2022) contains a typo that causes
the algorithm to update in the opposite direction. We present the corrected version below, with the

modified part highlighted in red.

Algorithm 6: ExpUpdate

Input: A\, A\t A7, A e {—1,1}
if A = —1 then
AT+ A
if AT < oo then

\ A (AT +)N)/2
else

| A< max(2),1)
end
else
At — )\
if \™ > —oo then

\ A= (AT +N)/2
else

| A< min(2X, —1)
end

end
Output: Updated A\, AT, A~

G LoG SPACE COMPUTATION VIA THE LSE TRICK

The LSE trick is defined as follows:
LSE(z1,...,2,) = lnz exp(x;)
= anexp(xi —¢c)+c

where ¢ = max z;

(26)

As illustrated by (Haberland| 2023)), this trick enables the computation of the logarithmic mean and
variance, mitigating potential numerical overflow issues. For instance, Equation [27|employs LSE to

compute the logarithmic mean term.
Inp=1In Z xi/n
=In Z z; —Inn

=LSE(Inzy,...,Inz,) —Inn
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The logarithmic variance term, as outlined in Equation [29] involves the LSE first applied to the
logarithms of the squared differences, preventing numerical overflow in comparison to standard
linear space computations.

In(z; — p) = In[exp(ln ;) + exp(ln p + 73)]
= LSE(Inz;, In pu + i) (28)
where 77 is the imaginary part.

Ino? =1n Z(xl —u)? —1Inn

(29)
=LSE[2In(zy — p),...,2In(z, — p)] —Inn

H PROPERTIES OF THE BOX-COX TRANSFORMATION FUNCTION

The Box-Cox transformation function has properties similar to Yeo-Johnson, as described in (Yeo),
1997;2000).

Lemma H.1. The transformation function ¥(\, x) defined in Equatzbnsatisﬁes the following:
(i) v\, x) > 0forxz > 1, and p(\, x) <0 forz < 1.
(ii) (A, x) is convex in x for X > 1 and concave in x for A < 1.

(iii) W(\, ) is a continuous function of (A, x).

(iv) IfYR) = 9F4p(\, ) /ONF then, for k > 1.

w _ [l (na)f — kpt=D]/N A £ 0,
= {(lnx)’““/(k +1) if A =0.

»*) is continuous in (X, x) and (0 = (A, x).
(v) ¥(A, x) is increasing in both \ and .

(vi) (A, ) is convex in A for x > 1 and concave in ) for 0 < x < 1.

Proof. (1) For x > 1, we have
2 —1>0 ifA>0,
22 —1<0 ifA<0.
When A\ = 0, In(z) > 0 for z > 1. Hence ¢(A, z) > 0 for all A whenever x > 1. Similarly,
for 0 < x < 1, we have

2 —1<0 ifA>0,
*—1>0 ifA<O.
When A = 0, In(z) < 0 for 0 < z < 1. Hence ¥ (A, ) < 0 for all A whenever 0 < x < 1.

(i) The second order partial derivative of v respect to x is

Y\ zx)  [(A=1z*2 ifA#0,
oz | —1/22 if A\ = 0.

Therefore, 621;;2"’”) > 0 when A > 1 and % < 0when A < 1.

(iii) It’s clear that (), ) is continuous for A\ and = except A = 0. We just need to prove it’s
continuous at A = 0. By L’Hopital’s rule, we have
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(iv) We prove this by induction. Let k£ = 1, then for A # 0

P = 2 Alnz — (22 — 1) _ 2 nz — O
A2 A

For A = 0, by L’Hopital’s rule, we have

(1) YA e) —(0,2)
1;0 ! (O,I) - )1\11)1%) by

— lim ™
lim (A, @)

2 A\lnzx —z* + 1

A0 A2
2 (Inz)?
= 1.
50 2
= (Inz)?/2

Assume that this hold for K = n where n > 1,thenfork =n + 1l and A # 0

P 0 aMInz)® —ny—Y
)\ A
[z*(Inz)"t — nahMIN — [z (Inz)™ — nyp(*—1)
\2
2 (Inz)" Tt — (n + 1))
A

For A = 0, by L’Hopital’s rule, we have
,(/}(n) <)‘7 x) B w(”)(o» x)

Y (0,2) = lim

A—0 A
— ] (n+1)
Lim 9™V (A, )

A n+1l _ (n)
— im & (Inz) (n+ 1)y
A—0 A
= lim 2 (Inz)"*2 — (n + 1) (\ z)
A—0

= (Inz)"*? — (n+1) lim "D (X, )
A—0

Therefore, 1/ +1) (0, z) = limy 0 ™tV (X, 2) = (In2)"*2/(n + 2)
Thus, the recurrence relation holds for all £ > 1 and A # 0.

(v) The partial derivative of i) respect to x is

op(Nx) 22t i A #£0,
or  \l/z ifA=0.

SO W > 0. Therefore, 7 is increasing in x.

The partial derivative of 1) respect to A is

G(\a) _ [l oiat ey 2,
oA\ (Inxz)?/2 if A =0.

Lety = 2 > 0and f1(y) = y(Iny — 1) + 1, we have f|(y) = Iny, f'(y) = 1/y > 0.

Thus f1(y) has the unique minimum at y = 1 and fi(y) > f1(1) = 0. Thus W > 0.
Therefore, 1 is increasing in \.
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(vi) The second order partial derivative of v respect to A is

32¢(>\,I) _ )‘[(lnz)‘)Q—an;E +2]—2 if )\ ?é 0’
oN? (Inz)3/3 if A=0.

Lety = 2* > 0 and f2(y) = y[(Iny)? — 2Iny + 2] — 2, we have f5(y) = (Iny)? > 0 and
f2(1) = 0. Thus f2(y) > 0 wheny > 1 and f2(y) < 0 when y < 1 since f2(y) is increasing
in y.

The relationship between z, A and y, f2(y) are as follows

r>1LA>0 =>y>1, faoy) > } Faly)/32 >0

(
r>1A<0 =y<l, foly) <
0<z<1L,A<0 =y>1, foly) >
(y) <

)\3
0<z<LA>0 =y<l fily };xfz(y)/ <0

Therefore, 627’5&);’“") > 0 when z > 1 and % <Owhen0 < x < 1.

I THE CONSTRAINED OPTIMIZATION FOR YEO-JOHNSON

Utilizing the properties of the Yeo-Johnson transformation function (refer to Lemma 1 in (Yeo,
2000)), the constrained optimization is similar to Equation [§] with a distinction at the point of sign
change at x = 0.

m)i\n —In Lyj(\, x)
s.t. if Tmax > O7 )\ S 'l,b;_]l (xma)u ymax)7 (30)
if Tmin < Oa A > ?/Jﬁl (Imina 7ymax)

Using the Lambert W function, the inverse function to compute )\ is defined as follows:

1y -W(- w)/ln( +1) ifz >0,
Uy (2,y) =

(31)
2 1/y+ W (U200 (1 gy ife <0,

J THE CHOICE OF TWO REAL BRANCHES IN THE LAMBERT W FUNCTION

The constrained optimization relies on the inverse functions of Box-Cox (see Equation[J)) and Yeo-
Johnson (see Equation to determine the constrained value of A\. However, the Lambert W
function has two real branches: the ¥ = 0 branch for W(z) > —1 and the k¥ = —1 branch for
W (z) < —1 (Corless et al.,|1996).

Here, we use the inverse function of Box-Cox to illustrate the choice of k; the Yeo-Johnson analysis
is analogous and thus omitted. When overflows occur during the transformation, and both y and 2*
approach the largest representable floating-point number, we can express Equation 0] differently:

W(—z YYIz/y) = —-A+1/y)mnz~ -Alnz = —Inz* < —1 (32)
As a result, the k£ = —1 branch should be used for computing the upper and lower bounds for A.

K FEDERATED POWER TRANSFORM

The FedPower, outlined in Algorithm[/| a federated algorithm designed for power transformations.
The algorithm comprises two primary steps: (1) Address numerical issues, as detailed in Section[5.2}
(2) Conduct minimization using Brent’s method.
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1. Compute the constraint for \.

As depicted in Equation[8] constrained optimization ensures that the transformed data falls
within the representable range of floating-point numbers. Consequently, it is essential to
compute both the global minimum and maximum to establish upper and lower bounds for
A

2. Perform minimization via Brent’s method.

This step involves evaluating the negative log-likelihood function at various A points. The
log-likelihood function can be divided into two parts. The summation part depends solely
on the data x, requiring a one-time computation that can be cached. However, the log-
variance part is A-dependent, necessitating an iterative approach for aggregation. This
computation is also performed in the log space.

Algorithm 7: FedPower (Server)
Input: Data {z;} distributed at clients
1 Compute total data size n

2 Compute the global z, and 2y.x

3 Compute the constraint [Ar, Ay| for A

4 Compute the global sum: > Inz; (BC) or > sgn(x;) In(|z;| + 1) (YJ)
// Start Brent’s method

s repeat
6 Broadcast the candidate ). to all clients
7 Compute the global log-variance In a?p( Aes)

8 Compute the negative log-likelihood — In L( A, x)

9 Continue Brent’s method

o until Convergence or reach the max iteration;
Output: The constrained optimal \*

—

Compared to the exponential search used inMarchand et al.| (2022), which exhibits a linear conver-
gence rate, our proposed method achieves superlinear convergence, a key benefit inherent to Brent’s
methods.

L SUPPLEMENTAL TABLES AND FIGURES FOR THE EFFECT OF DATA
PREPROCESSING

Table 5: Dataset information for the data preprocessing experiment.

Datasets # Train Instances  # Test Instances  # Features # Classes
Adult 32561 16281 14 2
Bank Marketing 31647 13564 16 2
Covertype 406708 174304 54 7

M SUPPLEMENTAL TABLES AND FIGURES FOR NUMERICAL EXPERIMENTS
ON POWER TRANSFORM
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Figure 8: Test accuracy comparison of FedAvg on Raw vs. Preprocessed data using Logistic Re-
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Table 6: Dataset information for the numerical experiment.

Datasets

# Instances  # Numeric Features

# Strictly Positive Numeric Features

Blood Transfusion Service Center

Breast Cancer Wisconsin (Diagnostic)

Ecoli

748 5
569 31
336 7

3
25
4
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Figure 10: Test accuracy comparison of FedAvg on Raw vs. Preprocessed data using Logistic

Regression and Multi-Layer Perceptron on the Covertype dataset.
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Figure 11: Computation of the negative log-likelihood of Box-Cox and Yeo-Johnson as a function
of X in log space vs. linear space. The figures use features in the Blood Transfusion Service Center

dataset.
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Figure 12: Computation of the negative log-likelihood of Yeo-Johnson as a function of A in log

space vs. linear space. The figures use selected features in the Breast Cancer Wisconsin (Diagnostic)
dataset.
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Figure 13: Computation of the negative log-likelihood of Box-Cox and Yeo-Johnson as a function
of A in log space vs. linear space. The figures use the rest features in the Ecoli dataset.
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