
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FEDPS: FEDERATED DATA PREPROCESSING VIA AG-
GREGATED STATISTICS

Anonymous authors
Paper under double-blind review

ABSTRACT

Data preprocessing is a crucial step in machine learning that significantly influ-
ences model accuracy and performance. In Federated Learning (FL), where multi-
ple entities collaboratively train a model using decentralized data, the importance
of preprocessing is often overlooked. This is particularly true in Non-IID set-
tings, where clients hold heterogeneous datasets, requiring aggregated parameter
estimates to perform consistent data preprocessing. In this paper, we introduce
FedPS, a comprehensive suite of tools for federated data preprocessing. FedPS
leverages aggregated statistics, data sketching, and federated machine learning
models to address the challenges posed by distributed and diverse datasets in FL.
Additionally, we resolve key numerical issues in power transforms by improving
numerical stability through log-space computations and constrained optimization.
Our proposed Federated Power Transform algorithm, based on Brent’s method,
achieves superlinear convergence. Experimental results demonstrate the impact
of effective data preprocessing in federated learning, highlighting FedPS as a ver-
satile and robust solution compared to existing frameworks. The implementation
of FedPS is open-sourced.

1 INTRODUCTION

Data preprocessing (Garcı́a et al., 2016) plays a crucial role in data mining and machine learn-
ing, ensuring that raw data—often fraught with missing values and inconsistencies—can be refined
into a form suitable for model training. Proper preprocessing not only enhances the robustness of
the training process but also significantly boosts model accuracy. However, in Federated Learning
(Kairouz et al., 2021), where data is stored locally across multiple clients and models are trained
collaboratively, centralizing the data for preprocessing is not feasible due to privacy concerns and
decentralized storage. This presents a unique challenge, as traditional preprocessing steps, which are
typically applied before data distribution in centralized simulations, cannot be directly implemented
in a federated setting.

In federated environments, preprocessing requires the estimation of statistics from decentralized
data, which must then be aggregated on the server. While some statistics like min, max, sum, mean,
and variance are straightforward to compute with minimal communication overhead, others—such
as quantiles and frequent items—pose significant challenges due to computational and communica-
tion constraints.

This paper introduces FedPS, a comprehensive suite of tools designed to tackle these preprocessing
challenges in FL. Leveraging data sketching techniques (Cormode & Yi, 2020), which efficiently
summarize large datasets while retaining critical information, FedPS enables the computation of
both simple and complex statistics in a distributed manner. The concept of mergeability (Agar-
wal et al., 2013) further supports the federated learning setting by allowing sketches from different
clients to be combined efficiently. We also extend several key algorithms, such as Bayesian Linear
Regression (Tipping, 2001), to both horizontal and vertical federated settings.

Additionally, our paper conducts an in-depth analysis of existing data preprocessors in the widely-
used Scikit-learn (Pedregosa et al., 2011) library, implementing federated versions while maintain-
ing the flexibility and functionality of the original modules. Unlike other federated learning libraries,
such as FATE (Liu et al., 2021) and SecretFlow (The SecretFlow Authors, 2022), which offer lim-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ited preprocessing options, our approach provides a full range of preprocessors with customizable
parameters, making it more versatile and powerful.

In tackling the numerical challenges of the power transform, previously identified by Marchand
et al. (2022) but not fully resolved in practice, we propose a effective solution. By performing
calculations in log space, we also introduce constrained optimization to improve numerical stability.
Furthermore, we develop a Federated Power Transform algorithm using Brent’s method (Brent,
2013), which achieves superlinear convergence, outperforming previous approaches that relied on
slower exponential search methods (Marchand et al., 2022), offering only a linear convergence rate.

Our main contributions are as follows:

• Implementation of a comprehensive suite of federated data preprocessing tools, utilizing
aggregated statistics, data sketching.

• Addressing the numerical issues identified in power transform through log space computa-
tions and constrained optimization.

• Extending Bayesian Linear Regression to both Horizontal and Vertical federated learning
setting. And proposing a federated power transform algorithm with a superlinear conver-
gence rate.

• Open-sourcing the implementation of FedPS.

The remainder of the paper is structured as follows: Section 2 outlines our motivation. Section 3
provides a review of existing techniques, laying the foundation for the technical aspects of federated
preprocessing discussed in Section 4. Our solution to the power transform’s numerical issues and
the corresponding federated algorithm are detailed in Section 5. Section 6 presents experimental
results, followed by related work in Section 7. Finally, we conclude the paper in Section 8.

2 MOTIVATION

Boosting Model Performance. Data preprocessing plays a pivotal role in enhancing the accuracy
and performance of machine learning models. While much attention has been directed towards opti-
mizing federated training algorithms, the significance of preprocessing data in a distributed manner
cannot be overlooked. In our experiments, we aim to shed light on this aspect by contrasting the test
accuracy achieved using raw data against that obtained using preprocessed data. Through this com-
parison, we seek to demonstrate the impact of federated data preprocessing on model performance,
highlighting its potential to significantly boost accuracy.

Necessity of Federated Computation. In federated learning, data is distributed across multiple
clients, preprocessing steps need to be adapted to this decentralized nature. While a decentralized
strategy, with each client independently conducting preprocessing locally, may be suitable for sce-
narios with independent and identically distributed (IID) data, it encounters difficulties in non-IID
scenarios. In such cases, clients may possess varied data distributions, such as label distribution
skew, where each client exclusively holds one type of labeled data. To illustrate the significance
of federated data preprocessing, consider a scenario where two parties collaboratively train a hor-
izontally federated classification model. The initial data is linearly separable when pooled (see
Figure 1(a)). However, when each party’s data has distinct target categories (e.g., party A’s data
labeled 0 and party B’s data labeled 1), applying local scaling for zero mean and unit variance re-
sults in non-linearly separable data (see Figure 1(b)). Consequently, federated data preprocessing
becomes indispensable.

Robust (Federated) Power Transform. Power transform is widely utilized across various domains,
including genomic studies (Zwiener et al., 2014) and geochemical data analysis (Howarth & Earle,
1979). Previous research (Marchand et al., 2022) has highlighted numerical challenges associated
with power transform, yet adequate solutions remain elusive. Their solution relies on exponential
search, resulting in linear convergence rates. In contrast, our approach involves a comprehensive
theoretical analysis of the underlying numerical instabilities and presents an effective solution. Fur-
thermore, we extend our methodology to federated settings and employ Brent’s method, known for
its superlinear convergence property, thereby offering a more robust and efficient approach.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

4 2 0 2 4

4

2

0

2

4

Party A's data
Party B's data

(a) Before scaling

2 1 0 1 2

2

1

0

1

2

Party A's data
Party B's data

(b) After scaling

Figure 1: The impact of feature scaling on label-skewed data if each client independently conducting
preprocessing locally.

3 PRELIMINARIES

In this section, we begin with an overview of common data preprocessing steps. Subsequently, we
delve into the background of federated learning. We also conduct a review of relevant aggregated
statistics employed in our implementation and introduce the background of power transform.

3.1 DATA PREPROCESSING

Data preprocessing involves a diverse set of methods for preparing data. Common steps encom-
pass feature scaling, encoding, discretization, missing value imputation, and various transformation
methods tailored to specific scenarios. Our focus in this paper is on the preprocessors presented in
Scikit-learn1 (Pedregosa et al., 2011). The preprocessing workflow includes setting up the prepro-
cessor with user-defined parameters, estimating the preprocessing parameters by calling the fit
method, and finally, using the transform method to yield transformed data using the learned
parameters. A review of the preprocessors in Scikit-learn is deferred to Appendix A.

3.2 FEDERATED LEARNING

Federated learning is a setting where data is decentralized, and immediate results are exchanged for
aggregation to achieve a common learning objective. Two typical data partition axes are horizontal
(example-partitioned) and vertical (feature-partitioned). In the horizontal setting, each client has
the same feature space, while in the vertical setting, they share the same ID. As data preprocessing
is often applied to each feature, most of the federated preprocessors presented in this paper are
designed for the horizontal setting.

3.3 AGGREGATING STATISTICS

In federated learning, individual clients generate their local statistics and send to the server. Sub-
sequently, these statistics are collected and aggregated by a central server, enabling queries and
obtaining global estimations. A straightforward example is Min/Max, where each client computes
its local minimum or maximum and transmits it to the server to obtain the global value. In the fol-
lowing paragraphs, we will provide a brief overview of other statistics used in our implementations.

Sum, Mean, Variance. These statistics involve maintaining counts. Sum has one counter. Mean has
two counters: c for the sum of data and n for the number of examples. The mean value is calculated
as c/n. Variance introduces another counter, s, representing the sum of squared data. It’s computed
as s/n − (c/n)2 (Cormode & Yi, 2020). When merging counter-based statistics, simply add the
corresponding counters.

Quantiles. Quantiles represent ordered statistics, associating values with specific ranks in sorted
data. For instance, the median corresponds to quantile 0.5. Obtaining exact quantiles requires

1https://scikit-learn.org/stable/modules/preprocessing.html

3

https://scikit-learn.org/stable/modules/preprocessing.html

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

maintaining information proportionate to the full data size, leading to many quantile sketches be-
ing approximate. Two common types of errors associated with approximate quantile sketches are
additive error (Karnin et al., 2016) and multiplicative error (Cormode et al., 2023).

Set Union, Frequent Items. The union operation is executed by the server after receiving local sets
from all clients. This process primarily utilizes hash tables. The frequent items sketch (Anderson
et al., 2017), also known as heavy hitters, aims to track the frequency of each item in the set.

DataSketches (The DataSketches Authors, 2023) is an open-source library that provides fast stream-
ing algorithms for big data. It includes sketches for quantiles, frequent items, and more. We leverage
these sketches from this library in our implementation of federated data preprocessing.

3.4 POWER TRANSFORM

The power transform is a data transformation technique employed to make data more Gaussian
distribution-like. Two well-known transformations for this purpose are Box-Cox (BC) (Box & Cox,
1964) and Yeo-Johnson (YJ) (Yeo, 2000). It’s essential to note that Box-Cox requires input data to
be strictly positive (i.e., x > 0), while Yeo-Johnson extends its applicability to both positive and
negative data. The transformation functions for both methods are continuous and defined as follows,
with visualizations provided in Figure 2.

ψBC(λ, x) =

{
(xλ − 1)/λ if λ ̸= 0,

lnx if λ = 0.
(1)

ψYJ(λ, x) =


[(x+ 1)λ − 1]/λ if λ ̸= 0, x ≥ 0,

ln(x+ 1) if λ = 0, x ≥ 0,

[−(−x+ 1)2−λ − 1]/(2− λ) if λ ̸= 2, x < 0,

− ln(−x+ 1) if λ = 2, x < 0.

(2)

0 1 2 3
x

4

2

0

2

4

BC
(

,x
)

=3
=2
=1
=0
=-1

(a) Box-Cox

2 1 0 1 2
x

4

2

0

2

4

YJ
(

,x
)

=3
=2
=1
=0
=-1

(b) Yeo-Johnson

Figure 2: Box-Cox and Yeo-Johnson transformation functions.

The power parameter λ is estimated by minimizing the negative log-likelihood function, as defined
in Equation 3 and 4. Notably, the negative log-likelihood functions for both Box-Cox and Yeo-
Johnson transformations have been proven to be strictly convex (Kouider & Chen, 1995; Marchand
et al., 2022), indicating that the function exhibits a unique global minimum.

− lnLBC(λ, x) = (1− λ)
n∑
i

lnxi +
n

2
lnσ2

ψBC(λ,x)
(3)

− lnLYJ(λ, x) = (1− λ)
n∑
i

sgn(xi) ln(|xi|+ 1) +
n

2
lnσ2

ψYJ(λ,x)
(4)

In the implementation within SciPy (Virtanen et al., 2020), the one-dimensional minimization for
the power transform utilizes Brent’s method (Brent, 2013). This algorithm efficiently evaluates the
target function at a small number of points and converges superlinearly.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Preprocessors and associated statistics.

Categories Preprocessors Formulation Associated Statistics

Scaling

MaxAbsScaler x/|x|max Max
MinMaxScaler (x− xmin)/(xmax − xmin) Min, Max
StandardScaler (x− µ)/σ Mean, Variance
RobustScaler (x− q0.5)/(q0.75 − q0.25) Quantiles
Normalizer x/∥x∥ Sum, Max

Encoding

FeatureHasher hash(x) –
OneHotEncoder one-hot(x) Set Union, Frequent items
OrdinalEncoder ordinal(x) Set Union, Frequent items
TargetEncoder λ(ni)

niY

ni
+ (1− λ(ni))nY

n Set Union, Mean, Variance
LabelBinarizer one-hot(y) Set Union

MultiLabelBinarizer multi-hot(y) Set Union
LabelEncoder ordinal(y) Set Union

Transformation

FunctionTransformer f(x) –*
PowerTransformer ψ(λ, x) Sum, Mean, Variance, Mix, Max

QuantileTransformer CDF(x), Φ−1(CDF(x)) Quantiles
SplineTransformer B-spline(x) Min, Max, Quantiles

Discretization Binarizer 1 if x > T else 0 –
KBinsDiscretizer j if Tj ≤ x < Tj+1 Min, Max, Quantiles, Mean

Imputation
SimpleImputer mean(x), median(x), most-freq(x) Mean, Quantiles, Frequent items
IterativeImputer RegressionModel(x) Sum

KNNImputer mean(k-nearest neighbors of x) Horizontal: Min, Mean; Vertical: Sum
*Only if the transformation function is stateless

4 FEDERATED DATA PREPROCESSING

The overview of federated data preprocessing steps is illustrated in Figure 3. Initially, each client
generates its local statistics and transmits it to the server. Subsequently, the server performs the
merging step on clients’ summaries, and the server queries the merged summaries to obtain the
necessary preprocessing parameters. Finally, these parameters are communicated back to the clients
for the execution of data preprocessing.

Params

1

1

2

2

3

4

4

5

5

Raw
Data

Processed
Data Stats

Stats

Stats

Figure 3: An overview of federated data preprocessing steps.

We categorize data preprocessors into distinct groups (scaling, encoding, transformation, imputa-
tion) to improve clarity regarding their functionalities. Within each category, we summarize the
formulation and required statistics for each module, as outlined in Table 1. Additionally, Table 4
provides a comprehensive overview of the statistics associated with preprocessors and their com-
munication cost. As most statistics are directly related to the functionality of each module , such
as MinMaxScaler requiring computation of global minimum and maximum values, we focus on
explaining the most significant ones.

Scaling. In RobustScaler, we utilize a quantile sketch to obtain the necessary quantiles. A unique
scenario arises with Normalizer, particularly in vertical federated learning settings, where computing
the global norm of each sample is necessary. For l1 or l2 norms, the computation involves obtaining
the global sum of |x| or x2 for each sample (then taking the square root for l2 norm); for the max
norm, simply compute the global maximum of |x|.

5

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.SplineTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Encoding. In federated learning, it’s crucial for all clients to agree on a unified encoding scheme to
ensure consistent encoding of the same categorical value into the same numeric value. Thus, encod-
ing modules need to compute set unions, except for FeatureHasher, which relies on hash functions.
Additionally, we utilize frequent items sketch in OneHotEncoder and OrdinalEncoder to ignore in-
frequent items. For TargetEncoder, the global mean is required, along with variance for determining
the smoothing parameter.

Transformation. Regarding FunctionTransformer, if the user-provided function is stateless (i.e.,
requires no parameter estimation from the data), then the aggregation isn’t necessary. However,
in the case of PowerTransformer, aggregation is required for evaluating the negative log-likelihood
function (Equation 3 and 4) multiple times, necessitating computation of the global sum and vari-
ance. Additionally, addressing overflow problems requires knowledge of min and max values, as
explained in Section 5.2. Afterward, user has the option to apply StandardScaler to the transformed
data, requiring global mean and variance.

Discretization Binarizer does not require federated computation, as all clients can agree on a preset
threshold. On the other hand, KBinsDiscretizer relies on global min and max values to generate
intervals with equal width, or it uses quantiles to ensure equal frequency of data samples in each bin.
The strategy involving federated k-means (see Appendix C) in KBinsDiscretizer needs to update the
new clustering centroids during each iteration, which requires compute the global mean of data in
each cluster.

Imputation In the SimpleImputer, the imputation strategies such as mean, median, and most fre-
quent rely on the aggregation of mean, quantiles, and frequent items sketch. However, more ad-
vanced imputers like IterativeImputer (Buck, 1960; Buuren & Groothuis-Oudshoorn, 2011) and
KNNImputer (Troyanskaya et al., 2001) require more sophisticated federated algorithms, namely
Federated Bayesian Linear Regression (see Appendix D) and Federated k-Nearest Neighbors (see
Appendix E) for imputing missing values. Notably, the KNN model incorporates a specialized
Euclidean distance calculation (Dixon, 1979), which is adapted to handle the presence of missing
values in the data.

5 NUMERICALLY STABILIZED FEDPOWER

This section first discusses the reasons behind numerical instabilities in power transform. Then,
we present our solutions, using the Box-Cox transformation as an example. The federated power
transform is outlined in Appendix K.

5.1 UNDERSTANDING NUMERICAL INSTABILITIES

Due to the convexity of negative log-likelihood functions, optimizing the parameter λ can be
achieved through direct minimization or root-finding algorithms. However, these methods involve
computing the logarithm of the variance of transformed data, see Equation 3 , which can lead to
numerical instabilities when directly squaring large values in the power function.

This numerical instability can affect the optimization, potentially resulting in suboptimal solutions.
To illustrate, we apply the exponential search algorithm2 to two seemingly ordinary datasets. As
depicted in Figure 4, the computed result does not match the true minimum.

Additionally, the power transform itself presents a secondary challenge, as depicted in Figure 4.
Employing the optimal λ for transformation may result in numerical overflow beyond the precision
limit. For instance, extreme values such as 2009.0104 ≈ 3.2 × 10343 and 0.1−361 = 10361 can
occur. In such cases, users may encounter difficulties analyzing the transformed data or rescaling
the Gaussianized data to achieve zero mean and unit variance.

While increasing precision, may partially mitigate these issues, it does not provide a comprehensive
solution. Moreover, even seemingly ordinary data, or adversarial data, can exceed double-precision
limits, and many mathematical libraries do not support quad-precision or higher due to efficiency
considerations.

2The ExpUpdate algorithm presented in Marchand et al. (2022) contains a typo, which we correct in Ap-
pendix F.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

50 100 150 200
13.4

13.6

13.8

14.0

14.2

14.4

14.6

ln
(

,x
)

True Minimum
ExpSearch

ln

600 400 200

32.6

32.5

32.4

32.3

32.2

32.1

ln
(

,x
)

True Minimum
ExpSearch

ln

Figure 4: An illustration of the suboptimal results using exponential search on two datasets. The
left figure uses data [2003.0, 1950.0, 1997.0, 2000.0, 2009.0], with the true minimum λ ≈ 104;
the right figure uses data [0.1, 0.1, 0.1, 0.101], with the true minimum λ ≈ −361. The negative
log-likelihood are plotted using the method presented in Section 5.2

100 0 100 200

14

15

16

17

18

19

20

ln
(

,x
)

log space
linear space

600 400 200 0 200

32

31

30

29

28

27

ln
(

,x
)

log space
linear space

Figure 5: Computation of the negative log-likelihood of Box-Cox as a function of λ in log space
vs. linear space. The datasets are the same as in Figure 4.

5.2 NUMERICALLY STABILIZED POWER TRANSFORM

The primary challenge is to mitigate numerical instabilities and obtain the true minimum during
optimization. Notice that directly optimizing the negative log-likelihood function only requires
computing the logarithm of the variance on the transformed data. We can leverage computations in
the log space to enhance numerical stability, as illustrated in Haberland (2023), which employs the
Log-Sum-Exp (LSE) trick (see Appendix G).

A visual representation of this comparison is presented in Figure 5, highlighting the efficacy of log
space computations and illustrating the limitations of linear space computations in certain ranges of
λ. Additionally, linear space computations may not be able to find the optimal parameter λ.

To also better adapt the computation to log space, we carefully chose formulations to ensure numer-
ical stability, particularly when the denominator is near zero, as shown in Figure 6. For Box-Cox
transformation, this could also avoid converting some computation into complex domain since xλ is
always positive. In particular, when λ ̸= 0, it becomes:

lnσ2
ψBC(λ,x)

= lnVar[(xλ − 1)/λ] (5)

= lnVar(xλ/λ) (6)

= lnVar(xλ)− 2 ln |λ| (7)

To mitigate the transformed data beyond precision limit, we introduce a constraint to con-
fine the transformed data within the representable range of floating-point numbers, specified as
[−ymax, ymax]. This ensures that positive and negative overflow issues are avoided.
Lemma 5.1. The transformation function ψ(λ, x) defined in Equation 1 satisfies the following:

(i) ψ(λ, x) ≥ 0 for x ≥ 1, and ψ(λ, x) < 0 for x < 1.

(ii) ψ(λ, x) is increasing in both λ and x.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

1.0 0.5 0.0 0.5 1.0
1e 5

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

ln
(

,x
)

1e 6+1.532401e1

(a) Equation 6

1.0 0.5 0.0 0.5 1.0
1e 5

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

ln
(

,x
)

1e 6+1.532401e1

(b) Equation 7

Figure 6: Comparison of methods for calculating the negative log-likelihood of the Box-Cox trans-
formation in log space using Equation 6 and Equation 7, especially when the λ approaches zero.
The figures use data [2003.0, 1950.0, 1997.0, 2000.0, 2009.0].

Given the Lemma above (proof see Appendix H), we only need to consider at most two points (the
minimum and the maximum) to decide the bounds. We formulated the constrained optimization
problem below3.

min
λ

− lnLBC(λ, x)

s.t. if xmax > 1, λ ≤ ψ−1
BC (xmax, ymax),

if xmin < 1, λ ≥ ψ−1
BC (xmin,−ymax)

(8)

Here, ψ−1
BC represents the inverse of Box-Cox to compute λ using the Lambert W function (Corless

et al., 1996). Given that the solution of x = a + bcx is x = a −W (−bca ln c)/ ln c, the inverse
function4 is defined as:

ψ−1
BC (x, y) = −1/y −W (−x−1/y lnx/y)/ lnx (9)

Constrained optimization may yield suboptimal results; however, these bounds are crucial to pre-
vent overflow issues and maintain the usability of the transformed data. By default, ymax is set
to the maximum value within the floating-point precision of the input data, typically represented
as ymax ≈ 10308 (double-precision). Additionally, users have the flexibility to manually set these
bounds, enabling customization based on specific requirements. For instance, setting the bound to
infinity can yield optimal unconstrained results, while setting it to a reasonable value prevents the
transformed data from becoming excessively large.

6 EXPERIMENTAL RESULTS

6.1 IMPACT OF DATA PREPROCESSING IN FEDERATED LEARNING

Feature engineering involves various techniques, often rooted in domain-specific knowledge. For
tabular data, crucial steps typically include feature scaling, encoding, and handling missing values.
In our experiments, we investigate the influence of StandardScaler on the Adult (Becker & Kohavi,
1996), Bank Marketing (Moro et al., 2012), and Covertype (Blackard, 1998) datasets (see Table 5
for the dataset information). Using FedAvg (McMahan et al., 2017) with the SGD optimizer and
a Logistic Regression and Multi-Layer Perceptron models, we manually tuned the learning rate
from {10−4, 3.3 × 10−4, . . . , 0.1, 0.33} and report the best result. The data were evenly split in
an IID fashion among all clients. The results, illustrated in Table 2 and Appendix L, demonstrate
that applying StandardScaler leads to an increase in accuracy ranging from 4% to 37% for Logistic
Regression and 2% to 26% for Multi-Layer Perceptron.

3The constrained optimization for Yeo-Johnson is presented in Appendix I
4The Lambert W function, characterized by two branches on the real line, necessitates a subsequent con-

sideration of branch selection (see Appendix J for branch discussion.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Test accuracy comparison of FedAvg on Raw vs. Preprocessed Data (StandardScaler) using
Logistic Regression (LR) and Multi-Layer Perceptron (MLP).

Model # Clients Preprocessing Adult Bank Marketing Covertype

LR

10 Raw 0.792 0.777 0.529
+Scaling 0.824 0.893 0.725

30 Raw 0.792 0.843 0.581
+Scaling 0.824 0.893 0.724

100 Raw 0.779 0.842 0.573
+Scaling 0.824 0.893 0.723

300 Raw 0.775 0.829 0.550
+Scaling 0.824 0.892 0.723

MLP

10 Raw 0.765 0.881 0.767
+Scaling 0.850 0.901 0.912

30 Raw 0.766 0.880 0.743
+Scaling 0.849 0.903 0.906

100 Raw 0.764 0.880 0.696
+Scaling 0.850 0.902 0.877

300 Raw 0.764 0.881 0.659
+Scaling 0.847 0.900 0.829

1000 0 1000
0

25000

50000

75000

100000

125000

150000

175000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(a) chg

150 100 50 0
2000

0

2000

4000

6000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(b) lip

Figure 7: Computation of the negative log-likelihood of Yeo-Johnson as a function of λ in log space
vs. linear space. The figures use feature chg and lip in the Ecoli dataset.

6.2 NUMERICAL EXPERIMENTS ON POWER TRANSFORM

We conduct numerical experiments on three datasets confirmed for their numerical instabilities, as
documented in Table 1 of Marchand et al. (2022): Blood Transfusion Service Center (Yeh, 2008),
Breast Cancer Wisconsin (Diagnostic) (Wolberg et al., 1995), and Ecoli (Nakai, 1996) (see Table 6
for the dataset information). The objective is to test the computation of the negative log-likelihood
function in both log space and linear space. The results are presented in Figure 7 and further detailed
in Appendix M.

The computation in linear space may face challenges in identifying the optimal λ due to numerical
instabilities, see the vertical dotted lines in Figure 7. In contrast, conducting computations in log
space not only enables the calculation of the negative log-likelihood over a broader range of λ values
but also guarantees finding the optimum.

7 RELATED WORKS

Distributed Learning vs. Federated Learning. Relevant literature includes distributed data pre-
processing, where data is centrally stored, and a datacenter performs distributed computation on
large-scale datasets. Prior works (Nurmi et al., 2005; Celik et al., 2019) implemented outlier anal-
ysis, normalization, and missing value imputation. Spark MLlib (Meng et al., 2016) also offers

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 3: Federated data preprocessors in FATE and SecretFlow.

Frameworks Preprocessors

FATE ∩ SecretFlow

MinMaxScaler
StandardScaler
OneHotEncoder
LabelEncoder

KBinsDiscretizer

FATE SimpleImputer

SecretFlow OrdinalEncoder
LogroundTransformer*

*A variant of log transformation

a diverse set of functionality for data preprocessing in this setting. Our system is designed for
federated learning, where data remains decentralized. Further comparisons between federated and
distributed learning can be found in Kairouz et al. (2021).

Existing Federated Data Preprocessors. Existing federated learning frameworks, such as FATE5

(Liu et al., 2021) and SecretFlow6 (The SecretFlow Authors, 2022), provide a limited number of
preprocessors, summarized in Table 3. Note that we have renamed some preprocessors in FATE for
better comparison. Additionally, some of their preprocessors have simplified parameters compared
to ours, limiting the flexibility of these modules.

Private Federated Data Preprocessing. In parallel, there are works on privacy-preserving data pre-
processing for federated learning. For example, Hsu and Huang (Hsu & Huang, 2022) implemented
one-hot encoding and label encoding based on fully homomorphic encryption. Marchand et al.
(Marchand et al., 2022) proposed a private federated Yeo-Johnson based on secure multi-party com-
putation. Given the paramount importance of privacy in federated learning, ensuring that collected
statistics do not divulge sensitive information is imperative. And, it’s worth noting that quantiles and
frequent items inherently contain more information compared to simpler preprocessing techniques
like Min/Max scaling. Addressing the privacy implications of these methods remains an area for fu-
ture research. As outlined in Table 1, the computation can be replaced with their privacy-preserving
counterparts, offering enhanced privacy guarantees in federated preprocessing tasks.

8 CONCLUSION

In this paper, we highlight the often-underappreciated domain of data preprocessing in Federated
Learning, introducing FedPS—a robust suite of tools leveraging aggregated statistics, data sketch-
ing, and federated machine learning models. Additionally, we have addressed numerical issues in
power transform and proposed a federated version based on Brent’s method. By providing a com-
prehensive and flexible set of data preprocessors, FedPS facilitates the convenient preparation of
data, establishing a solid foundation for training federated learning models.

Our future work will delve into privacy-preserving federated data preprocessing, employing tech-
niques like Secure Aggregation (Bonawitz et al., 2017), Secure Multi-Party Computation (Lindell,
2020), and Differential Privacy (Dwork & Roth, 2014). This extension aims to enhance and privacy
aspects of FedPS, contributing to the development of more robust federated learning systems.

5https://fate.readthedocs.io/en/latest/2.0/fate/components/
#algorithm-list

6https://www.secretflow.org.cn/en/docs/secretflow/v1.9.0b2/source/
secretflow.preprocessing

10

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://fate.readthedocs.io/en/latest/2.0/fate/components/#algorithm-list
https://fate.readthedocs.io/en/latest/2.0/fate/components/#algorithm-list
https://www.secretflow.org.cn/en/docs/secretflow/v1.9.0b2/source/secretflow.preprocessing
https://www.secretflow.org.cn/en/docs/secretflow/v1.9.0b2/source/secretflow.preprocessing

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and Ke Yi.
Mergeable summaries. ACM Trans. Database Syst., 38(4):26, 2013.

Daniel Anderson, Pryce Bevan, Kevin J. Lang, Edo Liberty, Lee Rhodes, and Justin Thaler. A high-
performance algorithm for identifying frequent items in data streams. In Proceedings of the 2017
Internet Measurement Conference, IMC 2017, London, United Kingdom, November 1-3, 2017,
pp. 268–282. ACM, 2017.

Barry Becker and Ronny Kohavi. Adult. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Christopher M Bishop. Pattern recognition and machine learning, volume 4. Springer, 2006.

Jock Blackard. Covertype. UCI Machine Learning Repository, 1998. DOI:
https://doi.org/10.24432/C50K5N.

Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan McMahan,
Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017, pp. 1175–1191. ACM, 2017.

G. E. P. Box and D. R. Cox. An analysis of transformations. Journal of the Royal Statistical Society:
Series B (Methodological), 26(2):211–243, July 1964.

Richard P. Brent. Algorithms for Minimization Without Derivatives. Dover Publications, Incorpo-
rated, 2013.

S. F. Buck. A method of estimation of missing values in multivariate data suitable for use with an
electronic computer. Journal of the Royal Statistical Society: Series B (Methodological), 22(2):
302–306, July 1960.

Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equa-
tions in r. Journal of Statistical Software, 45(3), 2011.

Oguz Celik, Muruvvet Hasanbasoglu, Mehmet S. Aktas, Oya Kalipsiz, and Alper Nebi Kanli. Im-
plementation of data preprocessing techniques on distributed big data platforms. In 2019 4th In-
ternational Conference on Computer Science and Engineering (UBMK). IEEE, September 2019.

R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth. On the lambertw
function. Advances in Computational Mathematics, 5(1):329–359, December 1996.

Graham Cormode and Ke Yi. Small summaries for big data. Cambridge University Press, 2020.

Graham Cormode, Zohar S. Karnin, Edo Liberty, Justin Thaler, and Pavel Veselý. Relative error
streaming quantiles. J. ACM, 70(5):30:1–30:48, 2023.

Carl de Boor. A Practical Guide to Splines. Applied Mathematical Sciences. Springer, 1978.

John K. Dixon. Pattern recognition with partly missing data. IEEE Transactions on Systems, Man,
and Cybernetics, 9(10):617–621, 1979.

Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found. Trends
Theor. Comput. Sci., 9(3-4):211–407, 2014.

Salvador Garcı́a, Sergio Ramı́rez-Gallego, Julián Luengo, José Manuel Benı́tez, and Francisco Her-
rera. Big data preprocessing: methods and prospects. Big Data Analytics, 1(1), November 2016.

Matt Haberland, 2023. URL https://github.com/scipy/scipy/pull/18852#
issuecomment-1657858886. Accessed: September 29, 2024.

R. J. Howarth and S. A. M. Earle. Application of a generalized power transformation to geochemical
data. Journal of the International Association for Mathematical Geology, 11(1):45–62, February
1979.

11

https://github.com/scipy/scipy/pull/18852#issuecomment-1657858886
https://github.com/scipy/scipy/pull/18852#issuecomment-1657858886

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ruei-Hau Hsu and Ting-Yun Huang. Private data preprocessing for privacy-preserving federated
learning. In 5th IEEE International Conference on Knowledge Innovation and Invention, ICKII
2022, Hualien, Taiwan, July 22-24, 2022, pp. 173–178. IEEE, 2022.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun
Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael
G. L. D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Gar-
rett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. Foundations and Trends® in Machine Learning, 14
(1–2):1–210, 2021.

Zohar S. Karnin, Kevin J. Lang, and Edo Liberty. Optimal quantile approximation in streams. In
IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October
2016, Hyatt Regency, New Brunswick, New Jersey, USA, pp. 71–78. IEEE Computer Society,
2016.

Ahmed M. Khedr. Learning k-nearest neighbors classifier from distributed data. Comput. Informat-
ics, 27(3):355–376, 2008.

Elies Kouider and Hanfeng Chen. Concavity of box-cox log-likelihood function. Statistics & Prob-
ability Letters, 25(2):171–175, November 1995.

Yehuda Lindell. Secure multiparty computation. Communications of the ACM, 64(1):86–96, De-
cember 2020.

Yang Liu, Tao Fan, Tianjian Chen, Qian Xu, and Qiang Yang. Fate: an industrial grade platform for
collaborative learning with data protection. J. Mach. Learn. Res., 22(1):1–6, jan 2021.

Tanguy Marchand, Boris Muzellec, Constance Béguier, Jean Ogier du Terrail, and Mathieu An-
dreux. Securefedyj: a safe feature gaussianization protocol for federated learning. In Advances in
Neural Information Processing Systems, volume 35, pp. 36585–36598. Curran Associates, Inc.,
2022.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-Efficient Learning of Deep Networks from Decentralized Data. In Proceedings
of the 20th International Conference on Artificial Intelligence and Statistics, volume 54 of Pro-
ceedings of Machine Learning Research, pp. 1273–1282. PMLR, 20–22 Apr 2017.

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman, Davies Liu,
Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin, Reynold Xin, Michael J.
Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar. Mllib: machine learning in apache
spark. J. Mach. Learn. Res., 17(1):1235–1241, jan 2016.

Daniele Micci-Barreca. A preprocessing scheme for high-cardinality categorical attributes in clas-
sification and prediction problems. SIGKDD Explor., 3(1):27–32, 2001.

S. Moro, P. Rita, and P. Cortez. Bank Marketing. UCI Machine Learning Repository, 2012. DOI:
https://doi.org/10.24432/C5K306.

Kenta Nakai. Ecoli. UCI Machine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5388M.

Petteri Nurmi, Michael Przybilski, Greger Lindén, and Patrik Floréen. An Architecture for Dis-
tributed Agent-Based Data Preprocessing, pp. 123–133. Springer Berlin Heidelberg, 2005.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake VanderPlas,
Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Edouard Duch-
esnay. Scikit-learn: Machine learning in python. J. Mach. Learn. Res., 12:2825–2830, 2011.

The DataSketches Authors. The apache datasketches library for python, 2023. URL https:
//github.com/apache/datasketches-python. Accessed: September 29, 2024.

The SecretFlow Authors. Secretflow, 2022. URL https://github.com/secretflow/
secretflow. Accessed: September 29, 2024.

Michael E. Tipping. Sparse bayesian learning and the relevance vector machine. J. Mach. Learn.
Res., pp. 211–244, 9 2001.

Olga G. Troyanskaya, Michael N. Cantor, Gavin Sherlock, Patrick O. Brown, Trevor Hastie, Robert
Tibshirani, David Botstein, and Russ B. Altman. Missing value estimation methods for DNA
microarrays. Bioinform., 17(6):520–525, 2001.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Courna-
peau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der
Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nel-
son, Eric Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore,
Jake VanderPlas, Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero,
Charles R. Harris, Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mul-
bregt, and SciPy 1.0 Contributors. SciPy 1.0: Fundamental algorithms for scientific computing in
python. Nature Methods, 17(3):261–272, February 2020.

Kilian Q. Weinberger, Anirban Dasgupta, John Langford, Alexander J. Smola, and Josh Attenberg.
Feature hashing for large scale multitask learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009,
volume 382 of ACM International Conference Proceeding Series, pp. 1113–1120. ACM, 2009.

William Wolberg, Olvi Mangasarian, Nick Street, and W. Street. Breast Cancer Wisconsin (Diag-
nostic). UCI Machine Learning Repository, 1995. DOI: https://doi.org/10.24432/C5DW2B.

I-Cheng Yeh. Blood Transfusion Service Center. UCI Machine Learning Repository, 2008. DOI:
https://doi.org/10.24432/C5GS39.

I.-K. Yeo. A new family of power transformations to improve normality or symmetry. Biometrika,
87(4):954–959, December 2000.

In-Kwon Yeo. A new family of power transformations to reduce skewness or approximate normality.
PhD thesis, The University of Wisconsin-Madison, 1997.

Isabella Zwiener, Barbara Frisch, and Harald Binder. Transforming rna-seq data to improve the
performance of prognostic gene signatures. PLoS ONE, 9(1):e85150, January 2014.

13

https://github.com/apache/datasketches-python
https://github.com/apache/datasketches-python
https://github.com/secretflow/secretflow
https://github.com/secretflow/secretflow

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PREPROCESSORS IN Scikit-learn

A.1 SCALING

Scaling each feature of the data is a common preprocessing step before training machine learning
models, referred to as normalization or standardization, usually involving a linear transformation.
Different scalers employ various strategies to transform data into predefined ranges. MaxAbsScaler
ensures that the maximal absolute value equals 1, MinMaxScaler confines data between a given
minimum and maximum value, and StandardScaler ensures that transformed data have a zero mean
and unit variance. However, these methods are sensitive to outliers, as the scaling factor depends on
them. For more robust scaling, RobustScaler transforms data into a preset quantile range, typically
quantiles 0.25 to 0.75 of the data, making it less susceptible to outliers. Notably, Normalizer applies
scaling to each data sample instead of each feature, ensuring individual samples have a unit norm,
such as l1 (absolute), l2 (euclidean), and max (infinity) norms.

A.2 ENCODING

Data may contain features represented using strings, necessitating encoding into numeric values.
OneHotEncoder encodes them as a one-hot array, and OrdinalEncoder uses an ordinal encoding
scheme. They can also ignore infrequent items below a preset threshold of frequency and limit the
maximum number of output categories. An alternative approach is the hash trick (Weinberger et al.,
2009), exemplified by FeatureHasher, which computes encoding representation based on hash func-
tions. TargetEncoder (Micci-Barreca, 2001) utilizes target mean and the target mean conditioned
on the categorical value for encoding, often combined with cross-validation (CV) techniques or ad-
ditional smoothing parameters to prevent overfitting due to incorporating target information. The
default smoothing parameter is set by empirical Bayes estimation, blending the global target vari-
ance and the target variance conditioned on the category value. In supervised learning, label encod-
ing might be necessary if labels are strings, addressed by LabelBinarizer for one-vs-all binarization,
particularly useful in multiclass classification, and MultiLabelBinarizer in multilabel learning, trans-
forming targets into a multilabel format. LabelEncoder encodes target labels into ordinal numbers,
typically used in classification tasks.

A.3 TRANSFORMATION

Feature transformation is another type of data preprocessing that applies a certain function, typically
non-linear, to the features. FunctionTransformer applies a user-defined function to the data, making
it useful for tasks like log transformation. PowerTransformer is a parametric method that maps data
into a Gaussian distribution, supporting both Box-Cox and Yeo-Johnson transformations. After-
ward, the user has the option to apply StandardScaler to the transformed data. QuantileTransformer
is a non-parametric method capable of transforming arbitrary data into Gaussian or Uniform dis-
tributions. It estimates the cumulative probability distribution function, using quantiles, then maps
the data to desired output distributions. SplineTransformer generates univariate B-spline (de Boor,
1978) bases for each feature, particularly useful in time-related feature engineering. It requires
setting uniformly distributed knots between the min and max values or along the quantiles.

A.4 DISCRETIZATION

For continuous features, discretization provides a way to transform them into discrete values, also
known as quantization or binning. While it may result in a loss of information, it simplifies the data,
making it easier to use and understand. Binarizer uses a threshold to binarize the data. In contrast,
KBinsDiscretizer can transform continuous data into k bins using various strategies. It can generate
intervals with equal width for each bin or ensure an equal frequency of data samples in each bin.
Alternatively, it can employ k-means, an unsupervised learning algorithm, to generate k clusters.

A.5 IMPUTATION

Missing values are prevalent in real-world data for various reasons, posing a challenge for most
machine learning algorithms. One common strategy is to discard entire rows or columns containing

14

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.FunctionTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.SplineTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Binarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

missing values, but this approach may introduce bias and reduce the availability of data. Alterna-
tively, imputation strategies, such as SimpleImputer, offer a univariate method to fill missing values
with the mean, median, mode (most frequent item) of the respective feature, or a constant value.
In contrast, IterativeImputer (Buck, 1960; Buuren & Groothuis-Oudshoorn, 2011), a multivariate
imputation strategy, models missing values as a function of other features. It selects a specific fea-
ture column as the target and utilizes other features as inputs to fit a regression model, subsequently
using this model to predict the missing values. Another method, KNNImputer (Troyanskaya et al.,
2001), employs a weighted average of k-nearest neighbors for imputation.

B SUPPLEMENTAL TABLES

Below is the aggregated statistics and corresponding preprocessors, along with an analysis of the
communication cost from the client’s perspective. Assume each client has a dataset X containing
n examples (rows) and m features (columns), and the dataset X′ on which preprocessing steps
will be applied contains n′ examples and m′ features. For iterative processes or algorithms such
as k-Means, PowerTransformer, and IterativeImputer, we denote the number of iterations as t. In
the case of k-Means, k Nearest Neighbors, and frequent items sketch (with k bins), k represents
different values depending on the specific context in the communication cost analysis. For encoding
methods, we assume there are d distinct categories across n examples. Lastly, the KLL sketch
(Karnin et al., 2016) is employed as the default quantile sketch, and its communication cost (space
usage) is referenced from that work.

C FEDERATED K-MEANS

The k-Means clustering is a unsupervised algorithm, which find k cluster centroids {µ1, . . . , µk}.
It is an iterative algorithm that first computes distances between each data sample and each cluster
centroid. Afterwards, it assign each data sample xi to its closest cluster Sj . Finally, each cluster
centroid is updated by the mean of data samples in each cluster, i.e., µj =

∑
xi∈Sj

xi/nj . For
horizontal federated k-Means, see Algorithm 1, the server needs to first broadcast the cluster cen-
troids to all clients, then compute the global mean of data samples in each cluster to update new
cluster centroids. The colored steps indicate communication between the server and clients, with
blue indicating receiving and orange indicating sending actions.

Algorithm 1: Horizontal Federated k-Means (Server)

Input: Client c has data {x(c)i }
1 Initialize clustering centroids {µ1, . . . , µk}
2 repeat
3 Broadcast clustering centroids {µ1, . . . , µk} to all clients

// Each client assign each data sample x
(c)
i to its closest

cluster Sj

4
Collect the local sums in each cluster {s(c)1 , s

(c)
2 , . . . , s

(c)
k } where s(c)j =

∑
x
(c)
i ∈Sj

x
(c)
i

and the number of data samples in each cluster {n(c)1 , . . . , n
(c)
k }

Set new clustering centroids µj =
∑
c s

(c)
j /

∑
c n

(c)
j

5 until Convergence or reach the max iteration;
Output: Clustering centroids {µ1, . . . , µk}

D FEDERATED BAYESIAN LINEAR REGRESSION

Bayesian Linear Regression adopts a probabilistic approach to define the model parameters. Typ-
ically, the model parameters are assumed to follow a zero-mean isotropic Gaussian distribution
Tipping (2001); Bishop (2006) as given by:

p(ω) = N (ω|0, α−1I) (10)

15

https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 4: Aggregated statistics and associated preprocessors.

Aggregated Statistics Associated Preprocessors Communication Cost (Client)

Min, Max

MaxAbsScaler* O(m)
MinMaxScaler O(m)

Normalizer (max norm)* O(n)
KBinsDiscretizer (strategy=uniform) O(m)

PowerTransformer O(m)
SplineTransformer (knots=uniform) O(m)

KNNImputer (Horizontal)† O(n′km)

Sum

Normalizer (l1 or l2 norm) O(n)
PowerTransformer O(m)

KNNImputer (Vertical) O(n′n)
IterativeImputer (Horizontal) O(tm2 min(n,m))

IterativeImputer (Vertical) O(tmnmin(n,m))

Mean

StandardScaler (with mean=True) O(m)
SimpleImputer (strategy=mean) O(m)

TargetEncoder O(dm)
PowerTransformer (standardize=True) O(m)
KBinsDiscretizer (strategy=kmeans) O(tkm)

KNNImputer (Horizontal) O(n′km)

Variance
StandardScaler (with std=True) O(m)

TargetEncoder O(dm)
PowerTransformer O(tm)

Quantiles

RobustScaler

O(1ϵ log
2 log 1

ϵ ·m)
KBinsDiscretizer (strategy=quantile)

QuantileTransformer
SplineTransformer (knots=quantile)
SimpleImputer (strategy=median)

Set Union

LabelBinarizer
O(d)MultiLabelBinarizer

LabelEncoder
OneHotEncoder

O(dm)OrdinalEncoder
TargetEncoder

Frequent items
OneHotEncoder (group infrequent categories)

O(km)OrdinalEncoder (group infrequent categories)
SimpleImputer (strategy=most frequent)

*Max only, †Min only

The posterior distribution of the parameters takes the form of a Gaussian distribution:

p(ω|X,Y, β) = N (ω|ω̂,Σ) (11)

where:

ω̂ = βΣ−1XTY (12)

Σ = αI+ βXTX (13)

The hyperparameters α and β can be modeled using Gamma distributions as hyperpriors:

p(α) = Gamma(α|a1, a2) (14)
p(β) = Gamma(β|b1, b2) (15)

16

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MaxAbsScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MinMaxScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.SplineTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.Normalizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.IterativeImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PowerTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.RobustScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.KBinsDiscretizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.QuantileTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.SplineTransformer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelBinarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.LabelEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.TargetEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OrdinalEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

An iterative process is used to re-estimate the hyperparameters α and β, followed by updates to ω̂
and Σ:

α =
n− γ + 2a1
ε+ 2a2

(16)

β =
γ + 2b1
∥ω̂∥22 + 2b2

(17)

γ =
∑
i

αΛi

β + αΛi
(18)

ε = ∥Y −Xω̂∥22 (19)
To compute the matrix inverse in Equation 13 efficiently, Singular Value Decomposition (SVD) is
applied:

Σ−1 = V(
1

α
I+

1

β
Λ−1)VT (20)

where U,S,VT = SVD(X) and S2 = Λ.

In Horizontal Bayesian Linear Regression, since the data is partitioned by examples, the server can
aggregate the terms XTX from each client:

XTX =
[
X(1)T X(2)T . . .

]X
(1)

X(2)

...

 = X(1)TX(1) +X(2)TX(2) + . . . (21)

Algorithm 2: Horizontal Federated Bayesian Linear Regression (Server)

Input: Client c has data X(c) and Y(c)

1 Initialize α and β

2 Compute global sum XTY =
∑
cX

(c)TY(c)

3 Compute global sum XTX =
∑
cX

(c)TX(c)

4 Compute eigenvalues Λ and eigenvectors V of XTX
5 repeat
6 Compute Σ−1 = V(1

αI+
1
βΛ

−1)VT

7 Compute ω̂ = βΣ−1XTY

8 Broadcast the model parameter ω̂ to all clients

9 Compute the global error ε
10 Update α and β
11 until Convergence or reach the max iteration;

Output: model parameter ω̂

For Vertical Bayesian Linear Regression, where data is split by features, the formulas are adjusted
as follows:

ω̂ = βXTΣ−1Y (22)

Σ = αI+ βXXT (23)
Here, the server sums over the feature matrices:

XXT =
[
X(1) X(2) . . .

] 
X(1)T

X(2)T

...

 = X(1)X(1)T +X(2)X(2)T + . . . (24)

To compute the matrix inverse in Equation 23, SVD can again be employed:

Σ−1 = U(
1

α
I+

1

β
Λ−1)UT (25)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Algorithm 3: Vertical Federated Bayesian Linear Regression (Server)

Input: Client c has data X(c) and only one client has Y
1 Initialize α and β
2 Receive Y from the client who has target

3 Compute global sum XXT =
∑
cX

(c)X(c)T

4 Compute eigenvalues Λ and eigenvectors U of XXT

5 repeat
6 Compute Σ−1 = U(1

αI+
1
βΛ

−1)UT

7 Broadcast βΣ−1Y to all clients

// Each client compute ω̂(c) = X(c)TβΣ−1Y

8 Compute the global prediction Ŷ =
∑
cX

(c)ω̂(c)

9 Compute the error ε = ∥Y − Ŷ∥22
10 Compute the global sum ∥ω̂∥22 =

∑
c ∥ω̂(c)∥22

11 Update α and β
12 until Convergence or reach the max iteration;

Output: model parameter ω̂

E FEDERATED K NEAREST NEIGHBORS REGRESSION

The k Nearest Neighbors (kNN) regression is a non-parametric algorithm that identifies the k closest
examples to a given point x and then averages the target values y of these neighbors. A commonly
used distance metric is the Euclidean distance. The averaging can be done using either the ordinary
mean or a weighted mean, where the weights are the reciprocals of the distances.

For horizontal federated kNN regression (Khedr, 2008), each client computes its local top-k mini-
mum distances and sends these distances to the server, as illustrated in Algorithm 4. The server then
determines the global k nearest neighbors and retrieves their corresponding target values to compute
the average.

Algorithm 4: Horizontal Federated kNN Regression (Server)

Input: Client c has data {x(c)i , y
(c)
i }, data xp need to be predicted

1 Broadcast data xp to all clients

2 Collect local top-k minimum distances {d(c)1 , . . . , d
(c)
k } between xp and each client’s data

3 Compute the global top-k minimum distances {d1, . . . , dk} and their indices
4 Send the indices of k nearest neighbors to their corresponding clients

5 Compute (weighted) mean µ of the target y based on the indices
Output: (Weighted) mean µ

For vertical federated kNN regression, described in Algorithm 5, the distance cannot be directly
computed since clients possess different features. In this case, each client computes one segment
of the distance and sends it to the server. The server sums over each distance segment to identify
the global k nearest neighbors. Finally, the server sends the indices of these neighbors to the client
requesting the prediction.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 5: Vertical Federated kNN Regression (Server)

Input: Client c has data {x(c)i , y
(c)
i }, data x(c)p need to be predicted

// Each client compute the local distance between x
(c)
p and each

data sample

1 Compute the global distance between xp and each data sample
2 Select the global top-k minimum distances {d1, . . . , dk} and their indices
3 Send the indices of k nearest neighbors to client whose data contain target
// The client compute (weighted) mean µ of the target y based

on the indices
Output: (Weighted) mean µ

F CORRECTION OF THE EXPUPDATE ALGORITHM

The original ExpUpdate algorithm proposed in (Marchand et al., 2022) contains a typo that causes
the algorithm to update in the opposite direction. We present the corrected version below, with the
modified part highlighted in red.

Algorithm 6: ExpUpdate
Input: λ, λ+, λ−,∆ ∈ {−1, 1}

1 if ∆ = −1 then
2 λ− ← λ
3 if λ+ <∞ then
4 λ← (λ+ + λ)/2
5 else
6 λ← max(2λ, 1)
7 end
8 else
9 λ+ ← λ

10 if λ− > −∞ then
11 λ← (λ− + λ)/2
12 else
13 λ← min(2λ,−1)
14 end
15 end

Output: Updated λ, λ+, λ−

G LOG SPACE COMPUTATION VIA THE LSE TRICK

The LSE trick is defined as follows:

LSE(x1, . . . , xn) = ln
∑

exp(xi)

= ln
∑

exp(xi − c) + c

where c = maxxi

(26)

As illustrated by (Haberland, 2023), this trick enables the computation of the logarithmic mean and
variance, mitigating potential numerical overflow issues. For instance, Equation 27 employs LSE to
compute the logarithmic mean term.

lnµ = ln
∑

xi/n

= ln
∑

xi − lnn

= LSE(lnx1, . . . , lnxn)− lnn

(27)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

The logarithmic variance term, as outlined in Equation 29, involves the LSE first applied to the
logarithms of the squared differences, preventing numerical overflow in comparison to standard
linear space computations.

ln(xi − µ) = ln[exp(lnxi) + exp(lnµ+ πi)]

= LSE(lnxi, lnµ+ πi)

where πi is the imaginary part.
(28)

lnσ2 = ln
∑

(xi − µ)2 − lnn

= LSE[2 ln(x1 − µ), . . . , 2 ln(xn − µ)]− lnn
(29)

H PROPERTIES OF THE BOX-COX TRANSFORMATION FUNCTION

The Box-Cox transformation function has properties similar to Yeo-Johnson, as described in (Yeo,
1997; 2000).

Lemma H.1. The transformation function ψ(λ, x) defined in Equation 1 satisfies the following:

(i) ψ(λ, x) ≥ 0 for x ≥ 1, and ψ(λ, x) < 0 for x < 1.

(ii) ψ(λ, x) is convex in x for λ > 1 and concave in x for λ < 1.

(iii) ψ(λ, x) is a continuous function of (λ, x).

(iv) If ψ(k) = ∂kψ(λ, x)/∂λk then, for k ≥ 1.

ψ(k) =

{
[xλ(lnx)k − kψ(k−1)]/λ if λ ̸= 0,

(lnx)k+1/(k + 1) if λ = 0.

ψ(k) is continuous in (λ, x) and ψ(0) ≡ ψ(λ, x).

(v) ψ(λ, x) is increasing in both λ and x.

(vi) ψ(λ, x) is convex in λ for x > 1 and concave in λ for 0 < x < 1.

Proof. (i) For x ≥ 1, we have {
xλ − 1 ≥ 0 if λ > 0,

xλ − 1 ≤ 0 if λ < 0.

When λ = 0, ln(x) ≥ 0 for x ≥ 1. Hence ψ(λ, x) ≥ 0 for all λ whenever x ≥ 1. Similarly,
for 0 < x < 1, we have {

xλ − 1 < 0 if λ > 0,

xλ − 1 > 0 if λ < 0.

When λ = 0, ln(x) < 0 for 0 < x < 1. Hence ψ(λ, x) < 0 for all λ whenever 0 < x < 1.

(ii) The second order partial derivative of ψ respect to x is

∂2ψ(λ, x)

∂x2
=

{
(λ− 1)xλ−2 if λ ̸= 0,

−1/x2 if λ = 0.

Therefore, ∂
2ψ(λ,x)
∂x2 > 0 when λ > 1 and ∂2ψ(λ,x)

∂x2 < 0 when λ < 1.

(iii) It’s clear that ψ(λ, x) is continuous for λ and x except λ = 0. We just need to prove it’s
continuous at λ = 0. By L’Hopital’s rule, we have

lim
λ→0

xλ − 1

λ
= lim
λ→0

xλ lnx

1
= lnx

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

(iv) We prove this by induction. Let k = 1, then for λ ̸= 0

ψ(1) =
xλλ lnx− (xλ − 1)

λ2
=
xλ lnx− ψ(0)

λ

For λ = 0, by L’Hopital’s rule, we have

ψ(1)(0, x) = lim
λ→0

ψ(λ, x)− ψ(0, x)
λ

= lim
λ→0

ψ(1)(λ, x)

= lim
λ→0

xλλ lnx− xλ + 1

λ2

= lim
λ→0

xλ(lnx)2

2

= (lnx)2/2

Assume that this hold for k = n where n ≥ 1, then for k = n+ 1 and λ ̸= 0

ψ(n+1) =
∂

∂λ

xλ(lnx)n − nψ(n−1)

λ

=
[xλ(lnx)n+1 − nψ(n)]λ− [xλ(lnx)n − nψ(n−1)]

λ2

=
xλ(lnx)n+1 − (n+ 1)ψ(n)

λ

For λ = 0, by L’Hopital’s rule, we have

ψ(n+1)(0, x) = lim
λ→0

ψ(n)(λ, x)− ψ(n)(0, x)

λ

= lim
λ→0

ψ(n+1)(λ, x)

= lim
λ→0

xλ(lnx)n+1 − (n+ 1)ψ(n)

λ

= lim
λ→0

xλ(lnx)n+2 − (n+ 1)ψ(n+1)(λ, x)

= (lnx)n+2 − (n+ 1) lim
λ→0

ψ(n+1)(λ, x)

Therefore, ψ(n+1)(0, x) = limλ→0 ψ
(n+1)(λ, x) = (lnx)n+2/(n+ 2)

Thus, the recurrence relation holds for all k ≥ 1 and λ ̸= 0.

(v) The partial derivative of ψ respect to x is

∂ψ(λ, x)

∂x
=

{
xλ−1 if λ ̸= 0,

1/x if λ = 0.

so ∂ψ(λ,x)
∂x > 0. Therefore, ψ is increasing in x.

The partial derivative of ψ respect to λ is

∂ψ(λ, x)

∂λ
=

{
xλ(ln xλ−1)+1

λ2 if λ ̸= 0,

(lnx)2/2 if λ = 0.

Let y = xλ > 0 and f1(y) = y(ln y − 1) + 1, we have f ′1(y) = ln y, f ′′1 (y) = 1/y > 0.
Thus f1(y) has the unique minimum at y = 1 and f1(y) > f1(1) = 0. Thus ∂ψ(λ,x)

∂λ > 0.
Therefore, ψ is increasing in λ.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(vi) The second order partial derivative of ψ respect to λ is

∂2ψ(λ, x)

∂λ2
=

{
xλ[(ln xλ)2−2 ln xλ+2]−2

λ3 if λ ̸= 0,

(lnx)3/3 if λ = 0.

Let y = xλ > 0 and f2(y) = y[(ln y)2 − 2 ln y + 2] − 2, we have f ′2(y) = (ln y)2 > 0 and
f2(1) = 0. Thus f2(y) > 0 when y > 1 and f2(y) < 0 when y < 1 since f2(y) is increasing
in y.

The relationship between x, λ and y, f2(y) are as follows

x > 1, λ > 0 ⇒ y > 1, f2(y) > 0

x > 1, λ < 0 ⇒ y < 1, f2(y) < 0

}
⇒ f2(y)/λ

3 > 0

0 < x < 1, λ < 0 ⇒ y > 1, f2(y) > 0

0 < x < 1, λ > 0 ⇒ y < 1, f2(y) < 0

}
⇒ f2(y)/λ

3 < 0

Therefore, ∂
2ψ(λ,x)
∂λ2 > 0 when x > 1 and ∂2ψ(λ,x)

∂λ2 < 0 when 0 < x < 1.

I THE CONSTRAINED OPTIMIZATION FOR YEO-JOHNSON

Utilizing the properties of the Yeo-Johnson transformation function (refer to Lemma 1 in (Yeo,
2000)), the constrained optimization is similar to Equation 8, with a distinction at the point of sign
change at x = 0.

min
λ

− lnLYJ(λ, x)

s.t. if xmax > 0, λ ≤ ψ−1
YJ (xmax, ymax),

if xmin < 0, λ ≥ ψ−1
YJ (xmin,−ymax)

(30)

Using the Lambert W function, the inverse function to compute λ is defined as follows:

ψ−1
YJ (x, y) =

{
−1/y −W

(
− (x+1)−1/y ln(x+1)

y

)
/ ln(x+ 1) if x ≥ 0,

2− 1/y +W
((1−x)1/y ln(1−x)

y

)
/ ln(1− x) if x < 0.

(31)

J THE CHOICE OF TWO REAL BRANCHES IN THE LAMBERT W FUNCTION

The constrained optimization relies on the inverse functions of Box-Cox (see Equation 9) and Yeo-
Johnson (see Equation 31) to determine the constrained value of λ. However, the Lambert W
function has two real branches: the k = 0 branch for W (x) ≥ −1 and the k = −1 branch for
W (x) ≤ −1 (Corless et al., 1996).

Here, we use the inverse function of Box-Cox to illustrate the choice of k; the Yeo-Johnson analysis
is analogous and thus omitted. When overflows occur during the transformation, and both y and xλ
approach the largest representable floating-point number, we can express Equation 9 differently:

W (−x−1/y lnx/y) = −(λ+ 1/y) lnx ≈ −λ lnx = − lnxλ ≪ −1 (32)

As a result, the k = −1 branch should be used for computing the upper and lower bounds for λ.

K FEDERATED POWER TRANSFORM

The FedPower, outlined in Algorithm 7, a federated algorithm designed for power transformations.
The algorithm comprises two primary steps: (1) Address numerical issues, as detailed in Section 5.2.
(2) Conduct minimization using Brent’s method.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

1. Compute the constraint for λ.
As depicted in Equation 8, constrained optimization ensures that the transformed data falls
within the representable range of floating-point numbers. Consequently, it is essential to
compute both the global minimum and maximum to establish upper and lower bounds for
λ.

2. Perform minimization via Brent’s method.
This step involves evaluating the negative log-likelihood function at various λ points. The
log-likelihood function can be divided into two parts. The summation part depends solely
on the data x, requiring a one-time computation that can be cached. However, the log-
variance part is λ-dependent, necessitating an iterative approach for aggregation. This
computation is also performed in the log space.

Algorithm 7: FedPower (Server)
Input: Data {xi} distributed at clients

1 Compute total data size n

2 Compute the global xmin and xmax

3 Compute the constraint [λL, λU] for λ

4 Compute the global sum:
∑n
i lnxi (BC) or

∑n
i sgn(xi) ln(|xi|+ 1) (YJ)

// Start Brent’s method
5 repeat
6 Broadcast the candidate λc to all clients

7 Compute the global log-variance lnσ2
ψ(λc,x)

8 Compute the negative log-likelihood − lnL(λc, x)
9 Continue Brent’s method

10 until Convergence or reach the max iteration;
Output: The constrained optimal λ∗

Compared to the exponential search used in Marchand et al. (2022), which exhibits a linear conver-
gence rate, our proposed method achieves superlinear convergence, a key benefit inherent to Brent’s
methods.

L SUPPLEMENTAL TABLES AND FIGURES FOR THE EFFECT OF DATA
PREPROCESSING

Table 5: Dataset information for the data preprocessing experiment.

Datasets # Train Instances # Test Instances # Features # Classes

Adult 32561 16281 14 2
Bank Marketing 31647 13564 16 2

Covertype 406708 174304 54 7

M SUPPLEMENTAL TABLES AND FIGURES FOR NUMERICAL EXPERIMENTS
ON POWER TRANSFORM

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

0 25 50 75 100
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Clients = 10

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Clients = 30

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Clients = 100

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Clients = 300

Raw data
+Scaling

(a) Logitstic Regression

0 25 50 75 100
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Clients = 10

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Clients = 30

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Clients = 100

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.4

0.5

0.6

0.7

0.8

0.9

Te
st

 a
cc

ur
ac

y

Clients = 300

Raw data
+Scaling

(b) Multi-Layer Perceptron

Figure 8: Test accuracy comparison of FedAvg on Raw vs. Preprocessed data using Logistic Re-
gression and Multi-Layer Perceptron on the Adult dataset.

0 25 50 75 100
Communication rounds

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 a
cc

ur
ac

y

Clients = 10

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 a
cc

ur
ac

y

Clients = 30

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 a
cc

ur
ac

y

Clients = 100

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 a
cc

ur
ac

y

Clients = 300

Raw data
+Scaling

(a) Logitstic Regression

0 25 50 75 100
Communication rounds

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 a
cc

ur
ac

y

Clients = 10

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 a
cc

ur
ac

y

Clients = 30

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 a
cc

ur
ac

y

Clients = 100

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Te
st

 a
cc

ur
ac

y

Clients = 300

Raw data
+Scaling

(b) Multi-Layer Perceptron

Figure 9: Test accuracy comparison of FedAvg on Raw vs. Preprocessed data using Logistic Re-
gression and Multi-Layer Perceptron on the Bank Marketing dataset.

Table 6: Dataset information for the numerical experiment.

Datasets # Instances # Numeric Features # Strictly Positive Numeric Features

Blood Transfusion Service Center 748 5 3
Breast Cancer Wisconsin (Diagnostic) 569 31 25

Ecoli 336 7 4

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

0 25 50 75 100
Communication rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 a
cc

ur
ac

y

Clients = 10

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 a
cc

ur
ac

y

Clients = 30

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 a
cc

ur
ac

y

Clients = 100

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 a
cc

ur
ac

y

Clients = 300

Raw data
+Scaling

(a) Logitstic Regression

0 25 50 75 100
Communication rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 a
cc

ur
ac

y

Clients = 10

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 a
cc

ur
ac

y
Clients = 30

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 a
cc

ur
ac

y

Clients = 100

Raw data
+Scaling

0 25 50 75 100
Communication rounds

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Te
st

 a
cc

ur
ac

y

Clients = 300

Raw data
+Scaling

(b) Multi-Layer Perceptron

Figure 10: Test accuracy comparison of FedAvg on Raw vs. Preprocessed data using Logistic
Regression and Multi-Layer Perceptron on the Covertype dataset.

300 200 100 0 100
0

50000

100000

150000

200000

250000

300000

ln
(

,x
)

Box-Cox
log space
linear space

(a) Frequency (times)

100 0 100
0

50000

100000

150000

200000

250000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(b) Frequency (times)

100 50 0 50
0

20000

40000

60000

80000

100000

120000

ln
(

,x
)

Box-Cox
log space
linear space

(c) Monetary (c.c.
blood)

20 0 20 40

20000

40000

60000

80000

100000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(d) Monetary (c.c.
blood)

200 100 0 100
0

100000

200000

300000

ln
(

,x
)

Box-Cox
log space
linear space

(e) Time (months)

50 0 50 100
0

25000

50000

75000

100000

125000

150000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(f) Time (months)

200 100 0 100
0

50000

100000

150000

200000

250000

300000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(g) Recency (months)

1000 500 0 500
0

50000

100000

150000

200000

250000

300000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(h) whether he/she do-
nated blood in March
2007

Figure 11: Computation of the negative log-likelihood of Box-Cox and Yeo-Johnson as a function
of λ in log space vs. linear space. The figures use features in the Blood Transfusion Service Center
dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

20 0 20 40 60

10000

20000

30000

40000

50000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(a) area mean

25 0 25 50 75
0

20000

40000

60000

80000

100000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(b) area se

20 0 20 40

10000

20000

30000

40000

50000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(c) area worst

50 0 50 100
0

10000

20000

30000

40000

50000

60000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(d) texture mean

0 50
0

10000

20000

30000

40000

50000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(e) perimeter mean

25 0 25 50 75
0

10000

20000

30000

40000

50000

60000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(f) perimeter worst

50 0 50 100 150
0

10000

20000

30000

40000

50000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(g) radius mean

50 0 50 100
0

10000

20000

30000

40000

50000

60000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(h) radius worst

Figure 12: Computation of the negative log-likelihood of Yeo-Johnson as a function of λ in log
space vs. linear space. The figures use selected features in the Breast Cancer Wisconsin (Diagnostic)
dataset.

200 0 200 400 600
0

25000

50000

75000

100000

125000

150000

ln
(

,x
)

Box-Cox
log space
linear space

(a) gvh

500 0 500
0

20000

40000

60000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(b) gvh

200 0 200 400 600
0

25000
50000
75000

100000
125000
150000
175000

ln
(

,x
)

Box-Cox
log space
linear space

(c) alm1

1000 500 0 500
0

20000

40000

60000

80000

100000

120000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(d) alm1

500 0 500 1000
0

50000

100000

150000

200000

ln
(

,x
)

Box-Cox
log space
linear space

(e) chg

500 0 500 1000
0

50000

100000

150000

200000

ln
(

,x
)

Box-Cox
log space
linear space

(f) lip

1000 500 0 500
0

20000

40000

60000

80000

100000

120000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(g) mcg

1000 500 0 500
0

20000

40000

60000

80000

100000

120000

ln
(

,x
)

Yeo-Johnson
log space
linear space

(h) alm2

Figure 13: Computation of the negative log-likelihood of Box-Cox and Yeo-Johnson as a function
of λ in log space vs. linear space. The figures use the rest features in the Ecoli dataset.

26

	Introduction
	Motivation
	Preliminaries
	Data Preprocessing
	Federated Learning
	Aggregating Statistics
	Power Transform

	Federated Data Preprocessing
	Numerically Stabilized FedPower
	Understanding Numerical Instabilities
	Numerically Stabilized Power Transform

	Experimental Results
	Impact of Data Preprocessing in Federated Learning
	Numerical Experiments on Power Transform

	Related Works
	Conclusion
	Preprocessors in Scikit-learn
	Scaling
	Encoding
	Transformation
	Discretization
	Imputation

	Supplemental Tables
	Federated k-Means
	Federated Bayesian Linear Regression
	Federated k Nearest Neighbors Regression
	Correction of the ExpUpdate Algorithm
	Log Space Computation via the LSE Trick
	Properties of the Box-Cox Transformation Function
	The Constrained Optimization for Yeo-Johnson
	The Choice of Two Real Branches in the Lambert W Function
	Federated Power Transform
	Supplemental Tables and Figures for the Effect of Data Preprocessing
	Supplemental Tables and Figures for Numerical Experiments on Power Transform

