
Asynchrony Invariance Loss Functions for
Graph Neural Networks

Pablo Monteagudo-Lago * 1 Arielle Rosinski * 1 Andrew Dudzik 2 Petar Veličković 2 1

Abstract

A ubiquitous class of graph neural networks
(GNNs) operates according to the message-
passing paradigm, such that nodes systemati-
cally broadcast and listen to their neighbourhood.
Yet, these synchronous computations have been
deemed potentially sub-optimal as they could re-
sult in irrelevant information sent across the graph,
thus interfering with efficient representation learn-
ing. In this work, we devise self-supervised loss
functions biasing learning of synchronous GNN-
based neural algorithmic reasoners towards rep-
resentations that are invariant to asynchronous
execution. Asynchrony invariance could success-
fully be learned, as revealed by analyses exploring
the evolution of the self-supervised losses as well
as their effect on the learned latent embeddings.
Our approach to enforce asynchrony invariance
constitutes a novel, potentially valuable tool for
graph representation learning, which is increas-
ingly prevalent in multiple real-world contexts.

1. Introduction
Graph neural networks (GNNs) constitute deep learning
models for representation learning from graph-structured
data. Because graph-based abstractions apply to a wide
range of real-world domains, GNNs have proven powerful
in multiple scientific and industrial settings (Lam et al.,
2023; Wang et al., 2023; Veličković, 2023; Veličković et al.,
2020). A large class of GNNs operates according to the
message-passing framework (Gilmer et al., 2017), where the
representation vector of a node is updated based on recursive
aggregation and transformation of the neighbouring node
vectors.

*Equal contribution 1University of Cambridge 2Google
DeepMind. Correspondence to: Pablo Monteagudo-Lago
<pm797@cam.ac.uk>, Arielle Rosinski <ar2217@cam.ac.uk>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling at 41 st International Conference on
Machine Learning, Vienna, Austria. PMLR Vol Number, 2024.
Copyright 2024 by the author(s).

Traditionally, these GNN operations are performed in a syn-
chronous fashion, that is, nodes necessarily broadcast and
listen to their neighbours at every layer, which has been
deemed sub-optimal (Faber & Wattenhofer, 2022; Dudzik
et al., 2023). Indeed, systematic neighbourhood aggregation
can induce over-smoothing of the neighborhood features
(i.e., progressively more indistinguishable node represen-
tations) as the number of GNN layers increases (Li et al.,
2018). Moreover, for ubiquitous tree-based graphs, listening
to the complete neighbourhood can also imply that the node
receptive field grows exponentially with the number of lay-
ers. Yet information becomes compressed into a fixed-size
vector, incidentally resulting in information loss referred to
as over-squashing (Di Giovanni et al., 2024; Alon & Yahav,
2020). Finally, the representational capacity of GNNs is
upper bounded by the Weisfeiler-Lehman (WL; Weisfeiler
& Leman 1968) graph isomorphism test (Xu et al., 2018;
Morris et al., 2019), which has also been attributed to the
uniform treatment of nodes inherent to standard message-
passing (Faber & Wattenhofer, 2022). Importantly, these
GNN-associated limitations were mitigated by facilitating
asynchronous communication between nodes (Faber & Wat-
tenhofer, 2022; Finkelshtein et al., 2023).

In addition to potential expressivity gains, promoting asyn-
chrony in GNNs could be beneficial from an algorithmic
alignment perspective. Xu et al. (2019) proposed that neural
network architectures whose sub-parts, or modules, align
with the sub-routines of the correct reasoning process for a
given task will generalise better. Specifically, these authors
established a parallel between the computational structure
of GNNs and that of the Bellman-Ford algorithm, which
could account for better in- and out-of-distribution (OOD)
generalisation performance on shortest path-based tasks for
GNNs (Dudzik & Veličković, 2022; Xu et al., 2019). Yet,
an important caveat remains. For algorithmic tasks such as
Bellman-Ford, only a handful of updates would need to be
sent at each step. Dynamic programming-aligned reasoning
might thus still be hindered by the synchronous nature of
GNN computations.

This possibility was explored by Dudzik et al. (2023), who
devised synchronous GNNs whose layers were provably
invariant to asynchrony (i.e., asynchronous execution would

1



Asynchrony Invariance Loss Functions for Graph Neural Networks

have produced analogous latent node embeddings). The
authors distinguished between increasingly strict levels of
asynchrony, which progressively improved OOD perfor-
mance on the CLRS-30 Algorithmic Reasoning Benchmark
(Veličković et al., 2022a).

However, Dudzik et al. (2023) implemented asynchrony
invariance axiomatically, deriving conditions that could
be met through specific GNN architectural choices. The
present study aims at leveraging the asynchrony invariance-
associated benefits in Dudzik et al. (2023), while permitting
to increase the design space, and hence the expressivity
of possible GNN architectures. To this end, we evaluate
whether asynchrony invariance can be enforced through
self-supervised loss functions.

2. Neural Algorithmic Reasoning
This work focuses on asynchrony invariance-related benefits
in a neural algorithmic reasoning (NAR) context (though
a broader range of applications is possible). NAR aims
at neuralising classical algorithms. Because deep learning
networks are more malleable, novel, potentially optimised
versions of the initial algorithms can be learned (Veličković
& Blundell, 2021; Xu et al., 2019). NAR can also be viewed
as being concerned with designing deep learning architec-
tures capable of solving classical algorithmic tasks, thereby
enhancing the generalisability and tractability of neural net-
works.

Veličković & Blundell (2021) proposed a blueprint for NAR
based on the encode-process-decode paradigm (Hamrick
et al., 2018). An encoder function f maps inputs to high-
dimensional latent embeddings. These are then read out
by a processor neural network P , which learns to execute
the algorithmic task, typically by relying on supervised
signals promoting reproduction of the algorithmic output
and potentially of the intermediate algorithmic trajectory. P
generates output embeddings that are subsequently decoded
using a function g. Importantly, while the inputs would
typically be artificial during learning, f and g could later be
altered (while freezing parameters in P ), such that the model
would be capable of coping with natural inputs (Veličković
et al., 2022b).

Notably, NAR can be probed and compared across dis-
tinct GNN-based models in a systematic fashion using the
CLRS-30 Algorithmic Reasoning Benchmark introduced by
Veličković et al. (2022a). Using the encode-process-decode
approach, CLRS-30 implements a collection of algorithmic
tasks of differing nature (incl. dynamic programming, sort-
ing, greedy, searching). This benchmark was leveraged here,
using settings matching Dudzik et al. (2023) (see Section 4
for architectural details).

3. Self-supervised Asynchrony Invariance
Dudzik et al. (2023) define different forms of asynchrony in-
variance and identify increasingly tight sufficient conditions
for the message passing functions to enforce them. How-
ever, the authors acknowledge that these are not necessary
conditions. Therefore, the potential richness of the space of
functions implementing asynchrony invariance is not fully
exploited, which might lead to sub-optimal performance.
Moreover, although the node latent representations lie in
a high-dimensional space, it is possible that they are dis-
tributed in the vicinity of a lower-dimensional manifold (Fef-
ferman et al., 2016). Consequently, enforcing asynchrony
invariance in the entire high-dimensional space might not
be required, as long as the message passing functions satisfy
asynchrony invariance in the subspace where the data lives.

In this work, we study the possibility of weakly enforcing
the different forms of asynchrony invariance. To this end, a
self-supervised loss is added to the optimisation objective
to guide the training procedure towards networks exhibiting
asynchrony invariance. Our approach is similar to (Cohen-
Karlik et al., 2020), who include a loss term penalising
violations of subset-permutation invariance in a recurrent
network model, which does not exhibit this property by
design. Similarly, Ong & Veličković (2022) introduce a
regularisation term to enforce commutativity for a learnable
aggregator.

To define our augmented optimisation objective, we rely on
the notation and the mathematical foundations in Dudzik
et al. (2023). Their theory builds on the notion of monoid,
which corresponds to a set equipped with a non-invertible
operation. This mathematical structure allows to formally
describe how the messages act on the node states. Ad-
ditionally, the authors rely on 1-cocycles to formalise en-
forcement of invariance for argument generation. These
can be understood intuitively as mappings satisfying a
condition analogous to the Leibniz derivative rule, i.e.
D(fg) = D(f) · g + f ◦ D(g), where · and ◦ define a
right and a left action, respectively, over a given monoid.
For conciseness purposes, we omit the formal presentation
of these notions, and refer the reader to Dudzik et al. (2023,
Appendix A).

Equation 1 defines the transformation process of the node
embeddings {xu}u∈V ⊆ S at each message passing step

x′
u = ϕ

(
xu, ⊕

v∈N(u)
ψ(xu,xv)

)
(1)

The function ϕ : S ×M −→ S represents the node up-
date, and takes as input the node embeddings at a given
point of execution, as well as the aggregated messages from
the neighbours of the node. If the set of messages has a
monoidal structure (M,⊕, 1), the node update ϕ can be

2



Asynchrony Invariance Loss Functions for Graph Neural Networks

described in terms of a left action • : M × S −→ S, so
ϕ(s,m) := m • s. With this notation, two types of asyn-
chrony invariance arise:

1. Message aggregation asynchrony. If M is a commu-
tative monoid, the aggregated message does not depend
on the order in which the messages are received, as
illustrated in Figure 1. In Dudzik et al. (2023), this
level of asynchrony is enforced axiomatically, relying
on an aggregator such as sum, max or mean (though a
learnable commutative aggregator could be used; see
Ong & Veličković 2022).

2. Node update asynchrony. If ϕ is a left action, it
verifies the associativity axiom i.e. ϕ(s, n ⊕ m) =
ϕ(ϕ(s,m), n). Therefore, upon message reception, the
node can be updated asynchronously without requiring
to aggregate all of the messages beforehand (Figure 2).

(a) mba

mbb mb

mbc

⊕

(b) mba

mbb mb{a,b} mb

mbc

⊕

⊕

Figure 1. (a) Messages from nodes {a, b, c} to node b are aggre-
gated synchronously to obtain the message mb that updates the
embeddings of node b. (b) For a commutative aggregator ⊕, the
resulting message is the same as when the messages from nodes
{a, b} are first aggregated to obtain mb{a,b}, and then aggregated
with mbc.

In order to enforce node update asynchrony invariance, one
possibility is to set ϕ = ⊕, such that associativity follows
from that of ⊕ (Dudzik et al., 2023). However, this choice
can potentially limit the expressivity of the GNN. It is there-
fore desirable to guide the learnable node update towards
asynchrony invariance during training rather than enforcing
associativity axiomatically. Specifically, the violation of the
associativity constraint can be measured in terms of the l2

distance between the node embeddings resulting from updat-
ing after having processed all messages, and those obtained

(a) mba xb

mb x′b

mbb

⊕ ϕ

(b) xb

mba x′b{a}

mbb x′b

ϕ

⊕

ϕ

Figure 2. (a) Node b embeddings are updated upon reception of the
message obtained after synchronously aggregating the messages
from its neighbours. (b) If ϕ is a left-action, this transformation
yields the same embeddings as updating b with the message mba

and then with mbb.

after successive updates with the individual messages

RL2 = E

[∥∥∥∥ |ϕ(s, n⊕m)− ϕ(ϕ(s,m), n)|
∥∥∥∥
2

]
(2)

where the expectation is taken with respect to the messages
m,n ∈ M and the node embeddings s ∈ S. Therefore, it
can be estimated from samples during training in a Monte-
Carlo fashion. The pseudocode enforcing RL2 can be found
in Appendix D (computations for the upcoming, additional
penalty terms are analogous).

If the node update implements a left action, RL2 trivially
vanishes. Yet, the converse only holds in the support of
the message and node embeddings distributions, which is a
strength of this method. Indeed, enforcing associativity for
all elements of the sets S and M is not strictly required, as
it is only necessary for this property to hold in the subset in
which the data lives.

Thus far, the discussion on how the messages are generated
has been intentionally omitted. From Equation 1, the ar-
guments to the message function are the node embeddings
themselves, obtained after processing all of the messages
from the previous message-passing step. Still, for promot-
ing a higher level of asynchrony, each node should be able
to prepare its arguments for the message function without
requiring to process all of its incoming messages before-
hand. In this regard, Dudzik et al. (2023) define an argument
generation function δ :M × S −→ A, where (A,+, 0) de-
notes the argument monoid, thus explicitly distinguishing
the argument generation from the node update. With this
notation, a further level of asynchrony can be defined:

3



Asynchrony Invariance Loss Functions for Graph Neural Networks

3. Argument generation asynchrony. If δ verifies that
δ1(s) = 0 and δn⊕m(s) = δn(m • s) + δm(s), then δ
supports argument generation asynchrony, as it is illus-
trated in Figure 3. This is equivalent to enforcing the
1-cocycle condition for the function D : m ∈M −→
D(m) := δm(·) ∈ [S,A], as proved by Dudzik et al.
(2023).

(a) mba xb

mb a′b

mbb

⊕ δ

(b) mba x′b{a}, a
′
b{a} xb

mbb x′b, a
′
b{ab} a′b

ϕ,δ
+

ϕ,δ

Figure 3. (a) Node update and argument generation at node b upon
reception of the message obtained after synchronously aggregating
the messages from its neighbours. (b) The 1-cocycle condition for
δ ensures that the aggregated partial arguments, generated after
processing mba and then mbb, are identical to those generated
by the invocation of the argument generation function with the
aggregated messages mb.

Assuming S = A and δ = ϕ, if the 1-cocycle condition is
satisfied, A is an idempotent monoid (Dudzik et al., 2023),
which limits the choices for the argument aggregation. Alter-
natively, the constraint δ = ϕ can be lifted and the cocycle
condition weakly enforced by including an additional regu-
larisation term in the loss, as defined by Equation 3

(3)RCO
L3 = E

[∥∥∥∥δn⊕m(s)− (δn(ϕ(s,m)) +A δm(s))

∥∥∥∥
2

]

A final, related, level of asynchrony posits that the message
resulting from successive processing of partial arguments is
equivalent to that resulting from aggregated arguments:

4. Message generation asynchrony. If ψ : A×A −→
M is a monoid multimorphism, i.e. a monoid homor-
morphism in each individual component, the message
function can be invoked even when its arguments are
not fully ready, as shown in Figure 4. Therefore,
ψ(au1

+ au2
, av) = ψ(au1

, av) ⊕ ψ(au2
, av), and

ψ(au, av1 + av2) = ψ(au, av1) ⊕ ψ(au, av2) need to
be satisfied, so that ψ is bi-linear.

(a) a′b{a} a′c

a′b{a,b} a′b m′
bc

+ ψ

(b) a′b{a} m′
bc{a}

a′c

a′b{a,b} m′
bc{a,b} m′

bc

⊕

ψ

ψ

Figure 4. Comparison of the message generation procedure when
the arguments are aggregated before the invocation of the message
function (a), with the generation of the message from the partial
arguments a′b{a,b} and a′b{a} (b). For a monoid multimorphism ψ,
both operations yield the same message m′

bc.

Message generation asynchrony can be enforced axiomat-
ically, for instance by implementing ψ as a log-semiring
bilinear layer (Dudzik et al., 2023). Alternatively, the ex-
pectation shown in Equation 4 can be used as an additional
regularisation term to ensure that ψ is linear in both vari-
ables

RMULT
L3 = E

[∥∥∥∥ψ(δnu
(ϕ(su,mu)), sv)⊕ ψ(δmu

(su), sv)

− ψ(δnu(ϕ(su,mu)) +A δmu(su), sv)

∥∥∥∥
2

]

+ E

[∥∥∥∥ψ(su, δnv
(ϕ(sv,mv)))⊕ ψ(su, δmv

(sv))

− ψ(su, δnv
(ϕ(sv,mv)) +A δmv

(sv))

∥∥∥∥
2

]
(4)

The regularisation terms in Equations 2, 3, and 4 can be
used to augment the optimisation objective, as shown in
Equation 5

LAUG(w) = L(w) + λL2RL2 + λL3
(
RCO

L3 +RMULT
L3

)︸ ︷︷ ︸
RL3

(5)

where L(w) represents the quality loss, and λL2, λL3 are
hyperparameters that define the weight given to each regu-
larisation component in the augmented loss.

4



Asynchrony Invariance Loss Functions for Graph Neural Networks

4. Architectures
Based on the definitions in Section 3, Dudzik et al. (2023)
define three levels of asynchrony invariance for a GNN:

• Level 1: The GNN satisfies message aggregation
asynchrony. As in Dudzik et al. (2023), this level of
asynchrony is enforced axiomatically by relying on a
commutative aggregator such as max or sum.

• Level 2: The GNN satisfies Level 1, as well as node
update asynchrony. Dudzik et al. (2023) enforce this
level by setting ϕ = ⊕ = max.

• Level 3: The GNN satisfies Level 2, along with ar-
gument and message generation asynchrony. To
enforce this level axiomatically, Dudzik & Veličković
(2022) set ϕ = ⊕ = max and use a log-semiring bilin-
ear layer for the message function ψ.

These increasingly strict levels of asynchrony invariance
can be weakly enforced using the augmented loss in Equa-
tion 5. The present work examines whether a GNN can
robustly learn to implement asynchrony invariance through
self-supervision.

Moreover, we build upon Dudzik et al. (2023), explicitly
distinguishing the argument generation function δ and the
node update ϕ, thereby promoting better exploration of the
model design space. Additionally, we allow the argument
monoid operation + to be different from that of the message
monoid ⊕. Specific architectures evaluated in the follow-
ing sections are summarised in Table 1 (see Table B.1 for
complete version).

Table 1. GNN architectures. The prefix in the architecture name
indicates the level of asynchrony invariance that the network imple-
ments by design. In the main text, max-based architectures (e.g.,
L1-max) are analogous except for ⊕ and, if applicable, +.

L1-SUM L2 L1-δ-SUM L3

⊕ SUM MAX SUM MAX
ϕ LINEAR + RELU MAX LINEAR + RELU MAX
δ ϕ ϕ LINEAR + RELU ϕ
+ - - SUM MAX
ψ LINEAR LINEAR LINEAR LOG-SEMIRING BILINEAR

5. Results
5.1. Quantitative Analyses

Table 2 displays test performance for GNN architectures
described in Section 4 (see Table C.3 for full range of archi-
tectures). In CLRS-30, training and validation performance,
which assess generalisation inside the support of the training
data, are distinguished from test performance, which evalu-
ates OOD extrapolation by varying the problem size. That

is, input graphs of 16 nodes are presented during training
and validation, while 64 nodes are used at test time. All
models generally exhibited perfect or near-perfect validation
performance (see Table C.2). Yet, this was not the case for
OOD generalisation.

The L1-sum GNN was largely outperformed by the L2
model (Table 2), thereby replicating Dudzik et al. (2023).
In these cases, high validation performance for L1-sum thus
appears to have partly been due to overfitting to the statistics
of the training graphs, as opposed to truly having learned
the algorithm. Notably, this large performance difference
was reduced when using the L1-max architecture (Table 2),
which complements previous findings that the max aggre-
gator improves OOD generalisation relative to summation
(Veličković et al., 2020; Veličković et al., 2022a; Xu et al.,
2020). This result can be understood in terms of algorith-
mic alignment, since max-aggregation is better aligned to
the discrete decisions over neighbourhoods inherent to var-
ious algorithms such as Bellman-Ford (Veličković et al.,
2020). Further focusing on Bellman-Ford, it was noted
that, while the ReLU MLP modules of a GNN can demon-
strate learning of nonlinear functions when interpolating
(Cybenko, 1989), their predictions become linear outside
the support of the training data (Xu et al., 2020). This does
not fit well with sum-aggregation, where a nonlinear func-
tion must be learned to simulate the algorithm. Conversely,
max-aggregation restricts learning to a linear function (Xu
et al., 2020), thus promoting better generalisation.

While performance was largely determined by structural ar-
chitectural properties (e.g., form of ⊕), in some cases (e.g.,
Dijkstra, activity selector, MST Prim), enforcing L2 asyn-
chrony through self-supervision (i.e., λL2 > 0) improved
OOD performance for the L1-sum architecture (Table 2).
Additional analyses enforcing L3 asynchrony (i.e., L1-based
architecture with λL{2,3} > 0; see Table C.3) also revealed
improvements.

Table 2. Test (OOD) results for CLRS-30 algorithmic tasks across
different GNN architectures. Mean scores across 3 random seeds
are displayed, with standard deviations indicated. λL2 > 0 denotes
regularised architecture (= 0 otherwise). For regularised models,
the hyperparameter settings yielding the highest performance are
displayed.

ALGORITHM L1-SUM L1-MAX L1-SUM L2
λL2 > 0

BELLMAN FORD 0.65 ± 0.00 0.98 ± 0.00 0.67 ± 0.04 0.97 ± 0.01
DIJKSTRA 0.41 ± 0.17 0.77 ± 0.16 0.53 ± 0.07 0.96 ± 0.01
TASK SCHEDULING 0.82 ± 0.01 0.68 ± 0.24 0.81 ± 0.02 0.92 ± 0.03
MST PRIM 0.37 ± 0.10 0.69 ± 0.07 0.45 ± 0.08 0.71 ± 0.04
BFS 0.92 ± 0.04 1.00 ± 0.00 0.87 ± 0.09 1.00 ± 0.00
ACTIVITY SELECTOR 0.56 ± 0.06 0.85 ± 0.04 0.77 ± 0.00 0.69 ± 0.08
TOPOLOGICAL SORT 0.26 ± 0.14 0.68 ± 0.12 0.31 ± 0.11 0.47 ± 0.03

Importantly, even in situations where the effects of asyn-
chrony invariance were difficult to infer from OOD perfor-

5



Asynchrony Invariance Loss Functions for Graph Neural Networks

mance, this does not imply that it was not learned. This was
verified by the qualitative analyses in Sections 5.2 and 5.3.

5.2. Loss Analyses

To gain further insight into the results in Section 5.1, we
examined whether RL2 and RL3 effectively decreased when
λL{2,3} > 0 , which would be indicative of learned asyn-
chrony invariance. These analyses focused on the Bellman-
Ford (Bellman, 1958) algorithm, which computes shortest
paths from a source node by relaxation. That is, at each
step the distances from each node to the source are updated
with better approximations until convergence. Focusing
on Bellman-Ford was motivated by its alignment with the
computation structure of GNNs (see Xu et al. 2019).

The evolution of the quality loss (i.e., L(w)) as well as of
the regularised losses are displayed in Figures 5 (for RL2),
and 6 (for RL3). For illustration purposes, the results shown
are restricted to comparing non-regularised with regularised
versions of the L1-δ-sum architecture, since this model in-
corporated both RL2 and RL3. Yet, analogous loss patterns
were observed for the broader range of GNNs described in
this work.

Notably, without self-supervision, RL2 and RL3 do not de-
crease throughout training. This supports the absence of an
inductive bias for asynchrony invariance in the GNN archi-
tecture, thereby suggesting that potential asynchrony-related
effects would arise from the self-supervised procedure. This
is reinforced by the decrease in RL2 and RL3 when enforc-
ing asynchrony invariance. Crucially, the network appeared
to leverage asynchrony invariant transformations in both
in- and out-of-distribution settings. Indeed, RL2 and RL3
were also associated with low (i.e., < 10−1) values at test
time. Therefore, overall, these findings indicate that Level
2 (Figure 5) and Level 3 (Figure 6) asynchrony invariance
(Dudzik et al., 2023) can be learned in a self-supervised
fashion.

5.3. Latent Space Representations

To further probe the putative influence of learned asynchrony
invariance, we examined the latent space representations
of the neural processor at test time. Specifically, we lever-
aged the fact that the three regularisation terms in Section 3
are expressed in terms of the distance between embedding
pairs. For instance, the regularisation term RL2 in Equation
2 involves the difference between the node embeddings af-
ter the update with the aggregated messages ϕ(s, n ⊕m)
and the embeddings after subsequent updates ϕ(ϕ(s,m), n).
Therefore, we retrieved the trajectories of these embedding
pairs across message passing steps, and jointly represented
their evolution by applying PCA and keeping the two most
dominant directions at each computation step. We filtered
the graphs terminating at the same step T , and aggregated

Figure 5. Loss evolution for L(w) (training) as well as for RL2 at
training, validation and test time for L1-δ-sum without (upper) and
with (lower) self-supervised asynchrony invariance enforcement
(λL2 = λL3 = 0.5). For illustration purposes, training losses
elements have been grouped in 50-iteration bins (i.e., means are
displayed, with standard deviations indicated by the fill). Similarly,
2-iteration bins are displayed for the validation loss. The mean
loss is shown for test.

the trajectories across the node dimensions using max (see
Mirjanić et al. 2023 for a similar approach). This yielded
embeddings of shape N ×D × T , where N is the number
of sampled execution graphs and D is the dimensionality of
the latent representations (set to D = 128).

For the L1-δ-sum architecture, if λL2 = 0, the embeddings
for each loss component grouped in clearly distinct clus-
ters, as shown in Figure 7 (upper). This demonstrates that
the node embeddings under asynchronous execution will
necessarily diverge from those obtained by synchronously
performing the message passing steps, thus possibly leading
to a misalignment with the underlying algorithm. This was
not the case with regularisation (λL2 > 0), as evidenced by
the node embeddings for synchronous and asynchronous
execution clustering together (Figure 7; lower). Analogous
results were obtained for the Level 3 asynchrony invariance
regularisation terms, as shown in Figures 8 and 9. Indeed,
for the regularised model (λL3 > 0), the gap between syn-

6



Asynchrony Invariance Loss Functions for Graph Neural Networks

Figure 6. Same as Figure 5 but for RL3.

chronous and asynchronous trajectories was reduced relative
to the non-regularised model.

Analogous analyses for the L1-δ-max architecture can be
found in Appendix A. In that case, the two clusters grouped
together almost perfectly at every step, as shown in Figures
A.1, A.2 and A.3.

Regularisation towards asynchrony invariance therefore ap-
peared to alter the structure of the processor computations,
a phenomenon also observed through tracking the global
execution trajectory of the node embeddings (see Figure
E.4).

6. Conclusion & Future Work
This work has designed self-supervised, asynchrony
invariance-enforcing loss functions for GNNs. Notably,
asynchrony-related benefits had already been demonstrated.
Indeed, altering the standard message-passing scheme to
facilitate asynchronous communication enhanced GNN
expressivity and mitigated GNN-associated limitations
(Finkelshtein et al., 2023; Faber & Wattenhofer, 2022).
Yet, asynchronous execution implied reduced scalability
relative to synchronous alternatives (Dudzik et al., 2023).

Figure 7. Step-wise PCA visualisations of the node embeddings
ϕ(s, n⊕m) (red) and ϕ(ϕ(s,m), n) (blue) used to compute the
associativity regularisation term RL2 (Equation 2) during Bellman-
Ford execution at test time. The architecture L1-δ-sum was used,
as defined in Table B.1 with no regularisation (upper) and λL2 =
λL3 = 0.5 (lower).

This was addressed in Dudzik et al. (2023), who built syn-
chronous GNN architectures provably asynchrony invariant
rather than asynchronous. Yet, while these authors imple-
mented axiomatically-defined asynchrony invariance using
specific architectural settings, GNNs under our proposed
self-supervised approach span a broader design space.

It should still be noted that learning asynchrony invariant
embeddings did not appear to systematically improve OOD
performance on all of the algorithmic tasks evaluated here.
In the future, greater OOD difficulty (e.g., problem size >
64) could be explored. This could increase the window for
potential asynchrony-related performance improvements.
Beyond problem size (Veličković et al., 2020), extrapola-
tion could be investigated on graphs with unseen structure,
edge weights, as well as node features (Xu et al., 2020), as
different tasks could benefit from asynchrony to differing
extents.

Still, overall, the present work yields novel insights regard-
ing the ability of GNNs to converge towards asynchrony
invariant embeddings. To our knowledge, this had not yet
been achieved in a self-supervised fashion.

References
Alon, U. and Yahav, E. On the bottleneck of graph neural

networks and its practical implications. arXiv, 2020.

7



Asynchrony Invariance Loss Functions for Graph Neural Networks

Figure 8. Same as Figure 7 but for the argument embeddings
δn⊕m(s) (red) and δn(m • s) + δm(s) (blue) used to compute
the 1-coycle regularisation term RCO

L3 (Equation 3).

Bellman, R. On a routing problem. Quarterly of applied
mathematics, 16(1):87–90, 1958.

Cohen-Karlik, E., Ben David, A., and Globerson, A. Regu-
larizing towards permutation invariance in recurrent mod-
els. Advances in Neural Information Processing Systems,
33:18364–18374, 2020.

Cybenko, G. Approximation by superpositions of a sig-
moidal function. Mathematics of control, signals and
systems, 2(4):303–314, 1989.

Di Giovanni, F., Rusch, T. K., Bronstein, M. M., Deac, A.,
Lackenby, M., Mishra, S., and Veličković, P. How does
over-squashing affect the power of gnns? arXiv, 2024.

Dudzik, A., von Glehn, T., Pascanu, R., and Veličković,
P. Asynchronous algorithmic alignment with cocycles.
arXiv, 2023.

Dudzik, A. J. and Veličković, P. Graph neural networks are
dynamic programmers. Advances in Neural Information
Processing Systems, 35:20635–20647, 2022.

Faber, L. and Wattenhofer, R. Asynchronous neural net-
works for learning in graphs. arXiv, 2022.

Fefferman, C., Mitter, S., and Narayanan, H. Testing the
manifold hypothesis. Journal of the American Mathemat-
ical Society, 29(4):983–1049, 2016.

Finkelshtein, B., Huang, X., Bronstein, M., and Ceylan, İ. İ.
Cooperative graph neural networks. arXiv, 2023.

Figure 9. Same as Figure 7 but for the message embeddings
ψ(au1 + au2 , av) (red) and ψ(au1 , av)⊕ψ(au2 , av) (blue) used
to compute the multimorphism regularisation term RMULT

L3 (Equa-
tion 4).

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning,
pp. 1263–1272. PMLR, 2017.

Hamrick, J. B., Allen, K. R., Bapst, V., Zhu, T., McKee,
K. R., Tenenbaum, J. B., and Battaglia, P. W. Relational
inductive bias for physical construction in humans and
machines. arXiv, 2018.

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger,
P., Fortunato, M., Alet, F., Ravuri, S., Ewalds, T., Eaton-
Rosen, Z., Hu, W., et al. Learning skillful medium-range
global weather forecasting. Science, 382(6677):1416–
1421, 2023.

Li, Q., Han, Z., and Wu, X.-M. Deeper insights into graph
convolutional networks for semi-supervised learning. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 32, 2018.

Mirjanić, V. V., Pascanu, R., and Veličković, P. Latent space
representations of neural algorithmic reasoners. 2023.

Morris, C., Ritzert, M., Fey, M., Hamilton, W. L., Lenssen,
J. E., Rattan, G., and Grohe, M. Weisfeiler and leman
go neural: Higher-order graph neural networks. In Pro-
ceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 4602–4609, 2019.

Ong, E. and Veličković, P. Learnable commutative monoids

8



Asynchrony Invariance Loss Functions for Graph Neural Networks

for graph neural networks. In Learning on Graphs Con-
ference, pp. 43–1. PMLR, 2022.

Veličković, P. Everything is connected: Graph neural net-
works. Current Opinion in Structural Biology, 79:102538,
2023.

Veličković, P. and Blundell, C. Neural algorithmic reasoning.
Patterns, 2(7), 2021.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Ban-
ino, A., Dashevskiy, M., Hadsell, R., and Blundell, C.
The clrs algorithmic reasoning benchmark. In Inter-
national Conference on Machine Learning, pp. 22084–
22102. PMLR, 2022a.

Veličković, P., Bošnjak, M., Kipf, T., Lerchner, A., Hadsell,
R., Pascanu, R., and Blundell, C. Reasoning-modulated
representations. In Learning on Graphs Conference, pp.
50–1. PMLR, 2022b.

Veličković, P., Ying, R., Padovano, M., Hadsell, R., and
Blundell, C. Neural execution of graph algorithms. In
International Conference on Learning Representations,
2020.

Wang, H., Fu, T., Du, Y., Gao, W., Huang, K., Liu, Z.,
Chandak, P., Liu, S., Van Katwyk, P., Deac, A., et al.
Scientific discovery in the age of artificial intelligence.
Nature, 620(7972):47–60, 2023.

Weisfeiler, B. and Leman, A. A reduction of a graph to a
canonical form and an algebra arising during this reduc-
tion. Nauchno-Technicheskaya Informatsia, 2(9):12–16,
1968.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful
are graph neural networks? arXiv, 2018.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. What can neural networks reason about?
arXiv, 2019.

Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. How neural networks extrapolate: From
feedforward to graph neural networks. arXiv, 2020.

9



Asynchrony Invariance Loss Functions for Graph Neural Networks

A. Latent Space Representations (L1-δ-max)

Figure A.1. Step-wise PCA visualisations of the node embeddings ϕ(s, n ⊕m) (red) and ϕ(ϕ(s,m), n) (blue) used to compute the
associativity regularisation term RL2 (Equation 2) during Bellman-Ford execution at test time. The architecture L1-δ-max was used, as
defined in Table B.1 with no regularisation (left) and λL2 = λL3 = 0.5 (right).

Figure A.2. Same as Figure A.1 but for the argument embeddings δn⊕m(s) (red) and δn(m • s) + δm(s) (blue) used to compute the
1-coycle regularisation term RCO

L3 (Equation 3).

Figure A.3. Same as Figure A.1 but for the message embeddings ψ(au1 + au2 , av) (red) and ψ(au1 , av)⊕ ψ(au2 , av) (blue) used to
compute the multimorphism regularisation term RMULT

L3 (Equation 4).

10



Asynchrony Invariance Loss Functions for Graph Neural Networks

B. Architectures

Table B.1. GNN architectures (incl. those in Table 1). The prefix in the architecture name indicates the level of asynchrony invariance that
the network implements by design (Dudzik et al., 2023).

L1-SUM L1-MAX L2 L1-δ-SUM L1-δ-MAX L2-δ-SUM L2-δ-MAX L3

⊕ SUM MAX MAX SUM MAX MAX MAX MAX
ϕ LINEAR + RELU LINEAR + RELU MAX LINEAR + RELU LINEAR + RELU MAX MAX MAX
δ ϕ ϕ ϕ LINEAR + RELU LINEAR + RELU LINEAR + RELU LINEAR + RELU ϕ
+ - - - SUM MAX SUM MAX MAX
ψ LINEAR LINEAR LINEAR LINEAR LINEAR LINEAR LINEAR LOG-SEMIRING BILINEAR (DUDZIK ET AL., 2023)

C. Quantitative Results
C.1. Validation

Table C.2. Validation results for CLRS-30 algorithmic tasks across different GNN architectures. Mean scores across 3 random seeds are
displayed, with standard deviations indicated. λL{2,3} > 0 denotes regularised architectures (= 0 otherwise). For regularised models, the
λL2 and/or λL3 hyperparameter settings yielding the highest test performance are displayed.

ALGORITHM L1-SUM L1-MAX L1-SUM L1-MAX L2 L1-δ-SUM L1-δ-MAX L2-δ-SUM L2-δ-MAX L3
λL2 > 0 λL2 > 0 λL{2,3} > 0 λL{2,3} > 0 λL3 > 0 λL3 > 0

BELLMAN FORD 0.90 ± 0.02 0.99 ± 0.00 0.89 ± 0.02 0.98 ± 0.01 0.98 ± 0.00 0.87 ± 0.03 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.00 0.95 ± 0.02
DIJKSTRA 0.95 ± 0.01 0.98 ± 0.01 0.96 ± 0.01 0.97 ± 0.01 0.98 ± 0.00 0.95 ± 0.00 0.97 ± 0.00 0.97 ± 0.00 0.97 ± 0.01 0.96 ± 0.00
TASK SCHEDULING 0.99 ± 0.01 0.99 ± 0.01 0.98 ± 0.00 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 1.00± 0.00 0.98 ± 0.01 0.95 ± 0.03 0.85 ± 0.03
MST PRIM 0.92 ± 0.01 0.96 ± 0.00 0.92 ± 0.01 0.96 ± 0.01 0.93 ± 0.02 0.88 ± 0.02 0.95 ± 0.01 0.94 ± 0.01 0.94 ± 0.01 0.87 ± 0.01
BFS 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.00
ACTIVITY SELECTOR 0.93 ± 0.00 0.94 ± 0.02 0.93 ± 0.01 0.95 ± 0.03 0.89 ± 0.00 0.90 ± 0.03 0.91 ± 0.01 0.96 ± 0.01 0.94 ± 0.03 0.79 ± 0.06
TOPOLOGICAL SORT 0.97 ± 0.03 0.99 ± 0.00 0.99 ± 0.00 0.99 ± 0.00 0.83 ± 0.13 0.93 ± 0.02 0.98 ± 0.01 0.99 ± 0.00 0.95 ± 0.01 0.72 ± 0.11

C.2. Test

Table C.3. Test (OOD) results for CLRS-30 algorithmic tasks across different GNN architectures (incl. results from Table 2). Mean scores
across 3 random seeds are displayed, with standard deviations indicated. λL{2,3} > 0 denotes regularised architectures (= 0 otherwise).
For regularised models, the λL2 and/or λL3 hyperparameter settings yielding the highest test performance are displayed (for L1-sum
and L1-max: λL2 ∈ {0.05, 0.1, 0.5, 1} was implemented, for L2-δ-sum and L2-δ-max: λL3 ∈ {0.05, 0.1, 0.5, 1}, and for L1-δ-sum and
L1-δ-max: λL2 ∈ {0.05, 0.1, 0.5} and λL3 ∈ {0.05, 0.1, 0.5})

ALGORITHM L1-SUM L1-MAX L1-SUM L1-MAX L2 L1-δ-SUM L1-δ-MAX L2-δ-SUM L2-δ-MAX L3
λL2 > 0 λL2 > 0 λL{2,3} > 0 λL{2,3} > 0 λL3 > 0 λL3 > 0

BELLMAN FORD 0.65 ± 0.00 0.98 ± 0.00 0.67 ± 0.04 0.97 ± 0.00 0.97 ± 0.01 0.56 ± 0.03 0.97 ± 0.01 0.97 ± 0.00 0.98 ± 0.00 0.90 ± 0.02
DIJKSTRA 0.41 ± 0.17 0.77 ± 0.16 0.53 ± 0.07 0.97 ± 0.01 0.96 ± 0.01 0.55 ± 0.04 0.95 ± 0.01 0.95 ± 0.01 0.94 ± 0.01 0.82 ± 0.01
TASK SCHEDULING 0.82 ± 0.01 0.68 ± 0.24 0.81 ± 0.02 0.71 ± 0.25 0.92 ± 0.03 0.80 ± 0.00 0.84 ± 0.00 0.88 ± 0.00 0.92 ± 0.02 0.63 ± 0.24
MST PRIM 0.37 ± 0.10 0.69 ± 0.07 0.45 ± 0.08 0.78 ± 0.01 0.71 ± 0.04 0.31 ± 0.07 0.80 ± 0.01 0.70 ± 0.01 0.75 ± 0.02 0.48 ± 0.11
BFS 0.92 ± 0.04 1.00 ± 0.00 0.87 ± 0.09 1.00 ± 0.00 1.00 ± 0.00 0.89 ± 0.05 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01
ACTIVITY SELECTOR 0.56 ± 0.06 0.85 ± 0.04 0.77 ± 0.00 0.88 ± 0.04 0.69 ± 0.08 0.74 ± 0.03 0.91 ± 0.01 0.88 ± 0.01 0.86 ± 0.01 0.56 ± 0.07
TOPOLOGICAL SORT 0.26 ± 0.14 0.68 ± 0.12 0.31 ± 0.11 0.64 ± 0.19 0.47 ± 0.03 0.35 ± 0.04 0.47 ± 0.18 0.48 ± 0.04 0.36 ± 0.06 0.64 ± 0.04

D. Pseudocode for RL2 penalty computation
The regularisation terms are expressed in terms of expectations, and thus they can approximated by uniformly sampling a
subset of node embeddings and messages at each training step. Note that if the sampling was not uniform, weaker types of
asynchrony invariance might be induced during training, e.g. the node update only behaving as a monoid action at a subset
of steps in the algorithm execution.

Note that computational cost of estimating the regularisation is proportional to the number of messages, nodes and arguments
sampled at each training step. For instance, here, asynchrony invariance was learned by sampling a small fraction of nodes
(≈ 0.2) and messages (≈ 0.1) at each training step, though alternative settings might prove more optimal for other problem
types.

11



Asynchrony Invariance Loss Functions for Graph Neural Networks

Algorithm 1 RL2 penalty computation
Require: Number of steps in algorithm execution T .
Require: Graph G = (V,E) with nodes V and edges E.
Require: Node features x(t)

u and messages m(t)
uv at each point of execution.

1: RL2 = 0
2: for t = 1 to T do
3: Sample a set of nodes S ⊆ V uniformly from V
4: for each node u ∈ S do
5: Sample a set of neighbours N ′(u) ⊂ N(u)
6: Aggregate messages from subset of neighbours:

m(t)
u = ⊕

v∈N ′(u)
m(t)
uv

7: Update node state with aggregated messages:

x(t)
u1

= ϕ
(
x(t)
u ,m(t)

u

)
8: Set x(t)

u2 = x
(t)
u

9: for each neighbour v ∈ N ′(u) do
10: Update partial node state with individual messages:

x(t)
u2

= ϕ
(
xu2

,m(t)
uv

)
11: end for
12: Update RL2 regularisation penalty:

RL2 = RL2 +
∣∣∣∣∣∣x(t)

u1
− x(t)

u2

∣∣∣∣∣∣
2

13: end for
14: end for
15: return RL2

12



Asynchrony Invariance Loss Functions for Graph Neural Networks

E. Step-wise PCA
We replicated the step-wise PCA visualisations in Mirjanić et al. (2023) to investigate how regularisation towards asynchrony
invariance modifies the global execution trajectory of the node embeddings. Again, this is shown for non-regularised and
regularised versions of L1-δ-sum (Figure E.4). In both cases, clearly defined computation steps can be observed. Yet, without
regularisation, the distances travelled by the node embeddings at each step tend to decrease, exhibiting convergence towards
a particular region of the space, in line with Mirjanić et al. (2023). On the other hand, with regularisation, the decrease
in the distances travelled at each computation step is not as dramatic. Additionally, the clusters at each computation are
more compact. Therefore, regularisation towards invariance appears to significantly change the structure of the processor’s
computations.

Figure E.4. Global step-wise PCA visualisations of the node embeddings for the architecture L1-δ-sum, as defined in Table B.1 with no
regularisation (left) and λL2 = λL3 = 0.5 (right).

13


