
Automated Design of Affine Maximizer Mechanisms in
Dynamic Settings

Michael J. Curry∗
University of Zurich & ETH AI Center

curry@ifi.uzh.ch

Vinzenz Thoma∗
ETH Zurich & ETH AI Center
vinzenz.thoma@ai.ethz.ch

Darshan Chakrabarti
Columbia University

Stephen McAleer
Carnegie Mellon University

Christian Kroer
Columbia University

Tuomas Sandholm
Carnegie Mellon University

Niao He
ETH Zurich

Sven Seuken
University of Zurich & ETH AI Center

Abstract

Dynamic mechanism design is a challenging extension to ordinary mechanism
design in which the mechanism designer must make a sequence of decisions over
time in the face of possibly untruthful reports of participating agents. Optimizing
dynamic mechanisms for welfare is relatively well understood. However, there
has been less work on optimizing for other goals (e.g. revenue), and without
restrictive assumptions on valuations, it is remarkably challenging to characterize
good mechanisms. Instead, we turn to automated mechanism design to find mecha-
nisms with good performance in specific problem instances. We extend the class
of affine maximizer mechanisms to MDPs where agents may untruthfully report
their rewards. This extension results in a challenging bilevel optimization problem
in which the upper problem involves choosing optimal mechanism parameters,
and the lower problem involves solving the resulting MDP. Our approach can find
truthful dynamic mechanisms that achieve strong performance on goals other than
welfare, and can be applied to essentially any problem setting—without restrictions
on valuations—for which RL can learn optimal policies.

1 Introduction

Dynamic mechanism design studies sequential decision-making problems, where decisions are based
on the self-reported preferences of agents. A typical model is that the environment consists of a
Markov decision process (MDP), and the mechanism controls the process given reported utilities by
the agents. This has important applications, such as ad auctions or more generally online pricing (e.g.
Bergemann and Välimäki 11) but also problems of decentralised decision making in RL (e.g. Chang
et al. 15).

Much work in dynamic mechanism design has focused on maximizing welfare [6, 42, 37] subject to
strategyproofness (there should be no incentive for untruthful reports by agents). Some other work
considers different goals, notably revenue [10, 30, 27, 28] but needs to make restrictive assumptions
about the space of agent types. Work on dynamic mechanism design, for general goals and for broad
spaces of agent types, is much more limited.
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Dynamic mechanism design includes as a special case static mechanism design, and here the situation
is similar. To maximize welfare while ensuring strategyproofness, one can use the celebrated and
well-understood Vickrey-Clarke-Groves (VCG) mechanism [59, 16, 26]. For optimizing revenue,
Myerson [40] completely settles the question under the restrictive assumption that agents’ types
are single-dimensional (essentially, that there is only one type of item up for sale); beyond this
there has been little progress except for very specific problem instances [62]. But for static settings,
automated mechanism design (AMD) [18, 49, 21] has been used: this is a data-driven search through
some class of mechanisms in order to find one that performs well while satisfying the constraints of
strategyproofness and individual rationality. Automated mechanism design has in some cases found
the highest-performing mechanisms known so far, and can recover optimal mechanisms in special
cases where they are known [25, 29, 54].

Given the successes of automated mechanism design for static problems, it is surprising that its use
for dynamic problems is relatively underexplored.

1.1 Our Contributions

Our present paper develops automated dynamic mechanism design techniques which can be applied
to a very broad range of problems. In particular, we consider mechanism design on general MDPs.
Our model works with many loss functions (including revenue but also other domain-specific loss
functions), not just the easier goal of welfare, and we do not assume one-dimensional agent types. Our
assumptions are sufficiently general to capture essentially all of static multi-parameter mechanism
design as a special case2.

Optimal mechanism design over all possible mechanisms entails the very difficult problem of
computing equilibria in imperfect information games, to understand whether or not any agent has
any incentive to deviate from truthful reporting. Inspired by prior work for static mechanism design,
we sidestep this issue by focusing on the class of affine maximizers (AMAs), which we define on
MDPs.3 These mechanisms are always strategyproof.

We justify this restriction in two ways. First, as mentioned, our problem assumptions capture multi-
parameter mechanism design—but finding optimal mechanisms in this setting has proven extremely
difficult, so it makes sense to search within a more tractable class of mechanisms. Second, our framing
of the problem is broad enough that it captures problem instances where Roberts’ theorem [48] applies,
which states that under general agent type spaces, only affine maximizers can be strategyproof.

We frame the search for a high-performing dynamic affine maximizer mechanism as a bilevel
optimization problem, where the outer problem consists of choosing weights and (possibly state-
dependent) boosts—the AMA parameters—to minimise a given loss function. The inner problem
consists of learning to control an MDP to maximise affinely-transformed social welfare (the definition
of an affine maximizer), given the weights, boosts, and agents’ type reports (see equation 1 below).
The derivatives of this inner problem do not exist at many points: however, we show that for the
important case of revenue, the expected loss over the distribution (with a continuous density) of agent
valuations is differentiable.

We solve the inner problem via (possibly regularized) linear programming. We also propose a variety
of ways to solve the outer problem: by grid search, by differentiating through the regularized LP, or
by using zeroth-order methods to approximate the LP gradient. These latter two approaches explicitly
or implicitly smooth the objective and avoid the problem of nonexistent derivatives. In experiments
on several dynamic mechanism design settings, such as sequential auctions, task scheduling and
navigating a gridworld, our approaches result in truthful mechanisms that outperform the VCG
baseline.

2If we restrict the MDP to have a single state, then we recover ordinary mechanism design, with each possible
action corresponding to an outcome.

3The acronym AMA refers to “affine maximizer auctions”. We consider affine maximizer mechanisms, but
we stick to the AMA acronym because it is widely used and to avoid confusion with AMM used to refer to
“automated market makers”.
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2 Related Work

Maximizing Welfare in Dynamic Mechanism Design Athey and Segal [6] consider a dynamic
mechanism design setting where agents update their beliefs over time, and where the goal is an
efficient and budget-balanced outcome. Parkes [43] describes a dynamic mechanism design setting
where the focus is on agents who may arrive and depart at different periods. Both of these approaches
simply assume an optimal policy is available. More recently, Lyu et al. [37] presents a model for
learning this policy in an offline RL setting; another work focuses on the online case [36]. Chang
et al. [15] consider a dynamic VCG mechanism for decentralised RL where agents bid on the MDP
transitions. Bergemann and Välimäki [10] presents a VCG-like “dynamic pivot mechanism”.There
are different modeling choices and goals in each of these approaches, but the common theme is that
the allocation problem involves making decisions on some MDP after observing agent reports. All
of these papers consider a dynamic analogue to the VCG mechanism, i.e. the mechanism designer
acts according to the welfare-optimal policy and charges agents their externalities to ensure incentive
compatibility. This is in contrast to our work, where we are concerned with goals beyond welfare.

Dynamic Mechanism Design for Goals Other Than Welfare There is some existing work in this
direction as well, with a particular focus on revenue. Pavan et al. [45] and Kakade et al. [30] both
consider cases where the private information about the value of the item is 1-dimensional. This allows
for a Myerson-style analysis of the actual profit-maximizing mechanism. Other work considers
optimal selling of items to agents who arrive and depart over time from the perspective of optimal
stopping, but again considers single-parameter item valuations [27, 28, 31]. Bergemann and Välimäki
[11] surveys other results that make similar assumptions for tractability. Pai and Vohra [44] considers
a similar setting and finds the optimal Bayes-Nash incentive compatible mechanism. Still other work
considers settings where the mechanism designer may update the mechanism online over time (e.g.
by changing reserve prices) [53] and where bidders may even strategically attempt to manipulate the
learning process [4]. Overall, these approaches are restrictive in terms of their assumed value model
and frequently focus on analytic results, while our computational approach allows more general
values and loss functions.

Preference Elicitation from Multiple Agents and Multistage Mechanisms Another line of work
considers iterative preference elicitation [17, 50]: based on past agent reports, the mechanism can
query what preference information it needs most. Existing approaches make use of an analogy to
query learning [63, 13, 33], or leverage machine learning [56, 61, 14]. In this context, Sandholm
et al. [52] use automated mechanism design to first find good mechanisms (for general type spaces)
and then convert them into multistage mechanisms. While these approaches are typically focused on
making a single final decision, but eliciting agent’s preferences over multiple stages, our automated
dynamic mechanism design approach is concerned with making a sequence of decisions over time,
while eliciting preferences once.

Static Automated Mechanism Design Due to the difficulty of analytically finding optimal mecha-
nisms, a number of works have instead attempted to treat static mechanism design as a computational
optimization problem, starting with Conitzer and Sandholm [18] and Sandholm [49], and learn
good mechanisms from samples, starting with Likhodedov and Sandholm [34]. One line of work
makes use of static affine maximizers and achieves good performance in multi-item multi-bidder
auctions [51, 21, 23]. There is also a line of learning theory research on choosing the AMA pa-
rameters given samples from the valuation distribution [9, 7, 8]. Another direction is to start with
a potentially non-strategyproof mechanism and iteratively modify it to improve strategyproofness.
This is known as incremental mechanism design [19]. One line of work in this direction makes use
of rich function approximators to learn mechanisms. Duetting et al. [25] presents one influential
direction, which uses neural networks to optimize revenue and a penalized loss to approximately
enforce strategyproofness, with many followups [22, 20, 29, 47, 46]. Shen et al. [54] presents an
alternative approach for single-bidder settings which can cope with broader classes of utility functions.
As mentioned above, the success of these techniques in static settings is our motivation to develop
such approaches for the dynamic case.
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3 Preliminaries

Below, we describe our mechanism design problem. The nature of the problem and our mechanism
design desiderata motivate our choice to restrict attention to affine maximizer mechanisms. We then
describe in more detail how these mechanisms work in a dynamic setting.

3.1 Formal Model of Problem Setting

Environment and policy/allocation rule Consider some MDPM = (S,A, P ) (with reward not
yet specified), where S is a set of states, A is a set of actions, and P is a transition function. There are
n agents, each with their own reward function ri : S×A→ R drawn from a distribution with density
fi. We emphasize that these agents are not themselves taking actions in the MDP—this is done by
the mechanism. Their only choice will be which rewards to report to the mechanism. We assume the
mechanism designer wants to minimize some loss function (which will often be the negative of some
objective to be maximized) L in expectation over the fi, which in general depends on the chosen
policy π on the MDP, which corresponds to the allocation rule in traditional mechanism design.

3.2 Mechanism Design Desiderata

Incentive compatibility and payments In order to achieve its goal, the mechanism will need
access to the true ri(s, a). However, in general, we should expect the agents to misreport their reward
function if they think it will benefit them. Thus, we will allow for some side payments to be made
based on the MDP’s solution and the agents’ reports, in order to ensure that there is no incentive to
misreport, that is, making the mechanism incentive compatible (IC) or strategyproof. (Such payments
only exist for some choices of π.) We assume agent utility is quasilinear, that is, positive payments
just correspond to negative reward.

Individual rationality We also want to guarantee individual rationality (IR), meaning that agents
should not be charged so much that they receive negative utility and would be better off not partici-
pating in the mechanism.

Remark. The mechanism designer’s goal may also relate to the payments. For example, a canonical
mechanism design goal is to maximize revenue—in our setting, choose a policy π∗ such that payments
can be made as high as possible while still ensuring IC and IR.

3.3 Background on Affine Maximizers

As motivated above our goal is to choose some π such that IC/IR side payments can be constructed,
while also performing as well as possible on the mechanism designer’s higher-level objective.

Unlike prior work (e.g., Kakade et al. 30, Bergemann and Välimäki 10), we do not make any
assumptions about the structure of the reward functions. Our setting is therefore general enough
to incorporate many hard problems such as optimal multi-item mechanism design, and is thus at
least as hard as those. Therefore hoping to get the truly best-performing π, even only in an infinite-
sample/asymptotic sense, is too much. Thus it is appropriate to restrict attention to a more tractable
class of mechanisms.

Also, our problem setting is general enough to include situations where a result known as Roberts’
theorem applies [48]. It states that under certain conditions (arbitrary rewards, at least 3 outcomes),
the only allocation rules that can possibly have IC payments take the form of affine maximizers.

Below, we give the standard definition of affine maximizer mechanisms in terms of the allocation and
payment rules, modified for our dynamic problem setting.

Definition 3.1 (Affine maximizers). Given so-called weights w ∈ Rn
+ and boosts b ∈ R|S|×|A|, a

dynamic affine maximiser mechanism (AMA) takes reported reward functions r ∈ R|S|×|A|×n and
returns a policy π∗(w, b, r) on the MDP that maximizes the affine social welfare asw(π)(w, b, r)
where

asw(π)(w, b, r) = Eπ

[
T∑

t=0

(
n∑

i=1

wiri(st, at)

)
+ b(st, at)

]
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Defining asw(w, b, r) = asw(π∗(w,b,r))(w, b, r) as the maximum affine social welfare for reports r,
the resulting payment is then

pi(w, b, r) =
1

wi

asw(−i)(w, b, r)−

Eπ∗(w,b,r)

 T∑
t=0

∑
j ̸=i

wjrj(st, at)

+ b(st, at)


where asw(−i)(w, b, r) defined as maxπ Eπ

[∑T
t=0

(∑
j ̸=i wjrj(st, at)

)
+ b(st, at)

]
is the maxi-

mum affine social welfare, when disregarding i.

No matter the choice of weights and boosts, every resulting AMA is strategyproof ex-post — after
learning the rewards of the other agents, reporting truthfully is a dominant strategy — and IR in
expectation over the MDP trajectories. The proof can be found in Appendix A.

4 Dynamic Mechanism Design as Bilevel Optimisation

The problem of searching for a performant mechanism within the class of AMAs can be naturally
formulated as stochastic bilevel optimization as follows4:

(1)min
w,b

Er ∼f [L (π∗, w, b)] s.t. π∗ ∈ argmax
π

Est,at∼π

[
T∑

t=0

(
n∑

i=1

wiri(st, at)

)
+ b(st, at)

]
∀r

Given the bilevel structure, we can think of the problem as a game between a leader and a follower.

• The leader knows only the joint distribution f =
∏

i fi from which the set of reward
functions are drawn, and chooses weights wi and boosts b(s, a).

• For any draw of ri and the weights and boosts, the follower acts optimally (“best responds”)
in the MDP according to the AMA objective.

To clarify (and to contrast with many models of mechanism design where the agents making reports
are treated as followers): the leader and follower are only “notional”. In reality, there is only one
mechanism designer. We nevertheless speak in terms of a “leader” and “follower” because in order
for strategyproofness to be attained, some component of the system must successfully maximize
affine social welfare, which is a goal distinct from the true goal of the mechanism designer.

In general, the problem above—bilevel optimization, with stochasticity in the leader’s objective—is
quite difficult. Indeed, the case of revenue-maximisation in one-round auctions with multiple goods,
which is a very special case of our much more general problem, remains essentially unsolved beyond
a few very simple special cases [62]. Therefore finding a globally optimal solution to the above
problem is too much to hope for, but we show that derivatives exist for important expected loss
functions, which enables us to use gradient-based optimization techniques to find local optima.

We then consider three complementary methods for optimizing the AMA parameters: random grid
search, zeroth-order methods to approximate the derivatives, and differentiation through a smoothed
LP.

4.1 Existence of derivatives

So far, we have not made any assumptions about the loss function. A very natural desideratum would
be that L(π∗(w, b, r), w, b) is differentiable, so that we can perform stochastic gradient descent. As
we show later, this does not hold for the loss functions we consider and is unlikely to hold in general.
However, we prove that the relaxed condition that Er[L(π∗(w, b, r), w, b)] is differentiable holds
for revenue—arguably the most important loss function in mechanism design literature. Therefore,
for expected revenue (and other loss functions whose expected value is differentiable) we can

4We constrain the policy to be in the set of best responses, because there is a null set of possible r where π∗

is not unique. However, because it is a null set, the choice of π∗ does not influence the expected value in the
outer problem.
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approach locally optimal solutions by zeroth-order methods or differentiating through a regularized
LP formulation of the MDP.

The expected revenue of a dynamic AMA mechanism is given by

rev(w, b) = Er

[
n∑

i=1

pi(w, b, r)

]

= Er

[
−

n∑
i=1

(
1

wi
asw(w, b, r)) + sw(π∗(w,b,r))(r) +

n∑
i=1

1

wi
asw(−i)(w, b, r)

]

Here sw, the non-transformed social welfare, is just asw when weights are all 1 and boosts are all 0,
i.e. sw(π) = Eπ

[∑T
t=0

∑n
i=1 ri(st, at)

]
.

First we show that this is differentiable almost everywhere.

Theorem 4.1. The expected revenue in a dynamic AMA mechanism is continuous and differentiable
almost everywhere.

Proof Idea. The full proof is in Appendix B. In brief, it suffices to show asw and sw are locally
Lipschitz continuous. Affine social welfare is the maximum over a set of functions which are linear
in w and b, so bounding the change as a result of changing weights and boosts is straightforward.

Showing local Lipschitzness of expected social welfare is more involved. One can argue that, for
any w, b, the set of rewards for which two alternative policies give the same affine social welfare, lie
on a hyperplane. Changing the weights and boosts may change the optimal policy, and therefore
may result in differing social welfare for some subset of the rewards. We would like to bound the
probablility mass of the set of rewards where this can happen. Indeed, the rewards where the optimal
policy may change, all lie in between the aforementioned hyperplanes. The distance between these
depends linearly on the change in w and b, so the mass can be bounded—assuming the probability
density decays sufficiently fast.

4.2 Linear Programming Formulation

We now describe the linear-programming formulation for an MDP, which can be either infinite horizon
or episodic with states partially ordered by time (that is, the time step is encoded in the state) [3]. In
particular, we suppose the follower solves the following LP to find the optimal state-action occupancy
measure νπ∗(w,b,r),5 which determines the revenue (or whichever loss function is chosen):

max
∑

s∈S,a∈A

(∑
i

wiri(s, a) + b(s, a)

)
ν(s, a) s.t.

∑
a∈A

ν(s, a) =
∑
s′,a′

P (s|s′, a′)ν(s′, a′) + µ0(s) ∀s ∈ S

ν(s, a) ≥ 0 ∀s ∈ S, a ∈ A

(2)

As we argue in Appendix C, we have the exact form of∇w,basw(w, b, r) almost everywhere. Sim-
ilarly, it holds that ∇w,bsw

π∗(w,b,r)(r) = 0 a.e. However, swπ∗(w,b,r)(r) is discontinuous and the
gradient thus not defined at all r, where more than one policy is optimal. This prevents us from
estimating ∇w,brev(w, b) from samples as we cannot exchange the gradient and the expected value.
Indeed it seems that variations of this problem are likely to arise for most loss functions. When small
changes in the weights and boosts lead to jumps from one deterministic policy to another, it can
generally be expected that the loss function will exhibit these discontinuities as well. For this reason
we propose two techniques that allow us to calculate a smoothed approximation to the gradient:
zeroth-order methods, and differentiating through a regularized version of the linear program. Using
either of these approximate gradients we proceed as in Algorithm 1.

5This corresponds to the optimal policy by π∗(a|s) = νπ∗(w,b,r)(s,a)∑
a νπ∗(w,b,r)(s,a)

.
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Algorithm 1 Gradient-based Dynamic Mechanism Design
Input: MDPM, number of agents n, loss L

1: Initialize: w ∈ Rn, b ∈ R|S|×|A|

2: (wi, bi)1≤i≤10← grid search(M,L)
{Multiple starting points to avoid local minima}

3: for 1 ≤ i ≤ n do
4: for 1 ≤ j ≤ m do
5: (wi, bi)← (wi, bi) + γ gradientstep(M, wi, bi) {Zeroth or first order gradient estimate}
6: end for
7: end for
8: return argmini∈{1,...,10} E[L(wi, bi)]

4.2.1 Zeroth-order methods

For bilevel problems, Sow et al. [57] present a zeroth-order approach, which we adapt to our own
setting. The key observation of their approach is that the derivative of the leader’s objective is the sum
of two partial derivatives. One of these, the derivative of the leader’s objective with respect to their
own solution, is usually easy to evaluate. The other requires differentiating through the follower’s
best-response map and inverting a Jacobian, which is challenging—and this second portion can be
separately estimated using zeroth-order perturbations.

Zeroth-order methods, due to the use of random perturbations, also implicitly smooth the function [24],
so that when using them there is no further need for regularization to ensure that derivatives can be
estimated. 6

4.2.2 Regularized linear program

As an alternative method, we propose regularizing our problem to get a smooth surrogate of the
derivative. We add a small entropy regularizer to the follower’s objective. 7 The result is now a
convex program (see 13 in the appendix): When the objective is strongly convex, the solution map
ν∗r : (w, b) 7→ νπ∗(w,b,r) is smooth. Therefore, derivatives of revenue can now be estimated from the
gradients at sampled type profiles, calculated using reverse-mode automatic differentiation [2, 1].

Adding a small amount of regularisation does not change the follower’s problem significantly. As has
been shown by Weed [60], the distance between the solutions to the regularized and unregularized
inner problem decays exponentially fast in the regularisation constant α, for sufficiently small α.

For expected revenue we claim this convergence translates to the outer problem, so that choosing a
small α ensures the objective is not disturbed too much.

Theorem 4.2 (Pointwise convergence of regularised revenue). Let revα(w, b) denote the revenue
achieved with the optimal policy πα(w, b, r) for the regularised problem (see equation 13 in Appendix
E). Assume that E[∥r∥∞] exists, then limα→0 revα(w, b) = rev(w, b).

The proof of the Theorem can be found in Appendix D.

5 Experiments

5.1 Methods

We optimize AMAs in dynamic mechanism design settings on tabular MDPs. We compare three
different mechanism design settings with different reward distributions, across our three proposed
methods for optimizing AMA parameters.

6They have been proposed in certain related (static) settings [12, 38] to cope with similar problems related to
nonexistence of derivatives.

7A technique equivalent to such regularization has also been used to deal with a similar issue in first-order
computation of equilibria of non-truthful static auctions [32].
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Table 1: Results for optimizing auction revenue in a sequential sales setting (n agents, m sales) with
symmetric uniformly-distributed types. Standard errors were < 0.007. Runtime was < 31 hours for
grid search, < 0.2 hours for zeroth-order and < 1.1 hours for first order.

n m VCG Grid 0-order reg. LP Best imp.

2 2 0.0000 0.4902 0.4939 0.4893 N/A
3 2 0.4999 0.6079 0.6777 0.6755 35.56%
4 2 0.8000 0.7977 0.8783 0.8328 9.79%
5 2 0.9996 1.0050 1.0078 0.9967 0.83%
2 3 0.0000 0.4715 0.3825 0.4168 N/A
3 3 0.0000 0.6107 0.6446 0.7240 N/A
4 3 0.6007 0.7323 0.8875 0.9104 51.54%
5 3 0.9988 0.7142 1.0631 1.0743 7.56%

Implementation Details

Grid search As a benchmark, we implement a naïve grid search algorithm. We sample 10000
different weights and boosts from a Sobol sequence [55]. For each draw we evaluate its expected
performance by solving the corresponding dual LP for 2000 different random reward draws.

Zeroth-order methods We estimate derivatives using 20 perturbations, sampled from a Gaussian
distribution with standard deviation 0.05 per estimate on 20 sampled type profiles. We use a learning
rate of 0.1.

Regularized LP. We compute derivatives with respect to social welfare using the regularized LP,
with smoothing parameter 10−2 except where mentioned. We solve the regularized program using
MOSEK [5] and use the DiffOpt package within JuMP [35] to differentiate. As a computational
heuristic, we do not compute full derivatives for asw when calculating revenue. Instead, we simply
compute exact derivatives in the form given in Appendix C. For each stochastic gradient step, we
sample 20 type profiles and optimize with learning rate 10−2.

In all cases, when evaluating the objective, we sample 10000 type profiles and do not use regu-
larization. Thus at evaluation time, the LP solution is exactly correct, ensuring strategyproofness.
Computational details and hyperparameters are described in appendix F.

5.2 Environments and Results

Sequential Sales We begin with a simple setting in which identical items are sold sequentially
to unit-demand bidders. The states consist of a record of who has received the item; the allowed
actions are to sell the item to some bidder, or to no one. The welfare-maximizing mechanism thus
involves giving the items to the highest bidder, but by altering the boosts, revenue can be increased by
sometimes withholding the item. We consider a distribution of type profiles drawn uniformly from
[0, 1], with results in Table 1.

We observe that optimizing the boosts can consistently improve performance compared to VCG,
especially when there are no tight supply constraints. Intuitively, if there is a large supply of goods,
VCG revenue should be low, as agents do not cause much externality on other agents. By setting
boosts to effectively withhold goods (like a reserve price), revenue can be increased. We also consider
a distribution where agent i’s type is uniformly distributed on [0, i]. In this setting, we also allow
the bidder weights to vary, with results in Table 2. Again, we observe improved performance by
optimizing the AMA parameters.

In both settings, our gradient-based approaches outperform random grid search in terms of results and
runtime, in particular for the larger settings, which makes sense given the high number of dimensions.

Dynamic truthful task scheduling The next setting we consider is a dynamic version of the classic
truthful task scheduling problem [41]. In the static problem, workers report the time it takes them to

8



Table 2: Results for optimizing auction revenue in a sequential sales setting (n agents, m sales) with
asymmetric uniformly-distributed types. Standard errors were < 0.004. Runtime was < 32 hours for
grid search, < 0.2 hours for zeroth-order and < 1.1 hours for first order.

n m VCG Grid 0-order reg. LP Best imp.

2 2 0.0000 0.3327 0.3302 0.3665 N/A
3 2 0.2348 0.3217 0.4123 0.4116 75.55%
4 2 0.3089 0.3328 0.4021 0.4508 45.95%
5 2 0.3350 0.3355 0.4348 0.4645 38.65%
2 3 0.0000 0.3208 0.2544 0.3202 N/A
3 3 0.0000 0.3304 0.3556 0.4354 N/A
4 3 0.2276 0.3431 0.4263 0.4751 108.77%
5 3 0.3193 0.2713 0.3770 0.4976 55.85%

Table 3: Results for minimizing makespan in the dynamic truthful task scheduling setting (n agents,
m sales) with symmetric uniformly-distributed types. Standard errors were < 0.02. Runtime was
< 16 hours for grid search, < 0.1 hours for zeroth-order and < 4.1 hours for first order. AMA
outperforms VCG because the makespan is smaller.

n m VCG Grid 0-order reg. LP Best imp.

2 4 1.0336 1.0326 0.9132 0.9288 -11.65%
2 5 1.0116 1.0142 0.8820 0.9286 -12.81%
3 4 0.6111 0.6196 0.5967 0.6184 -2.36%
3 5 0.5662 0.5632 0.5429 0.5538 -4.12%

complete certain tasks. A mechanism then has to assign the tasks and give payments8 to incentivize
truthful reports with the goal of minimizing the makespan of all jobs.

We formulate a dynamic version of the above problem. There are n workers and T tasks. Each round,
one of the tasks arrives and has to be assigned. Each worker has a cost vector θi = (ti,1, . . . , ti,T )
distributed according to a prior fi, which consists of the times they take to finish each task. Each
round τ the mechanism designer takes an allocative action xτ ∈ {0, 1}n, s.t.

∑n
i=1 xτ,i = 1. At

time τ , this causes agent i to receive reward ri,τ = −xτ,iti,τ .

The objective of the leader is to minimise total makespan. For this define t̃i as the time i has already
worked on its jobs, when the last task has been assigned in round T . The leader’s loss is then given
by maxi∈{1,...,n}

((∑T
τ=1 xτ,iti,τ

)
− t̃i

)
.

As a benchmark, we consider a dynamic VCG mechanism that chooses the solution which minimizes
the total work done by the agents—an objective which is not the same as minimizing makespan. (It
can been shown, however, that VCG is an n-approximation of the optimal static mechanism [41].)

8This in contrast to the auction environment where the mechanism could charge payments, because here
agents suffer costs for which they need to be compensated.

Table 4: Results for minimizing makespan in the dynamic truthful task scheduling setting (n agents,
m sales) with asymmetric uniformly-distributed types. Standard errors were < 0.03. Runtime
was < 17 hours for grid search, < 0.1 hours for zeroth-order and < 4 hours for first order. AMA
outperforms VCG because the makespan is smaller.

n m VCG Grid 0-order reg. LP Best imp.

2 4 1.8312 1.8260 1.5978 1.6121 -12.75%
2 5 1.9651 1.9837 1.6347 1.6886 -16.81%
3 4 1.4299 1.4426 1.3242 1.3243 -7.39%
3 5 1.4644 1.4729 1.3256 1.3629 -9.48%
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Table 5: Results for maximising revenue in the gridworld environment (n agents, m × m grid).
Standard errors were < 0.05. Runtime was < 30 hours for grid search, < 0.1 hours for zeroth-order
and < 0.1 hours for first order.

n m VCG Grid 0-order reg. LP Best imp.

2 3 0.7547 1.0607 1.3486 1.5464 104.90%
3 3 1.2812 1.4348 1.5575 1.9251 50.25%
4 3 1.8683 1.8729 1.8853 2.3009 23.15%
5 3 2.3563 2.3689 1.9951 2.5989 10.30%
2 4 1.0402 1.0446 1.4935 1.6134 55.11%
3 4 1.4898 1.4904 1.6821 2.0171 35.40%
4 4 1.8610 1.8757 1.9427 2.3413 25.81%
5 4 2.2472 2.2133 2.0256 2.5911 15.30%

For a symmetric valuation distribution (uniform on [0, 3]), results are in Table 3. We also consider
an asymmetric distribution with disutilities distributed on [0, 3i] for bidder i, with results in Table 4.
Across all environments, we see an improvement in makespan for the best AMAs. In both settings,
gradient-based approaches outperform the naïve grid search in terms of results and runtime.

Navigating a grid with multiple tasks One of the most canonical environments in RL is
the gridworld, where an agent deterministically navigates a two-dimensional grid with rewards
for reaching certain states [58]. We consider the following variant: the mechanism moves
("up","down","left","right") in a grid with n agents observing the trajectories. It starts in state
s0. Each agent i draws a goal state si ∈ S \ {s0} and a reward ri ∼ U(0, 1), which they receive
when the mechanism reaches si. Given (w, b), the mechanism finds a policy to maximize affine
social welfare π∗ ∈ argmaxπ Eπ [

∑∞
t=0 γ

t (
∑n

i=1 wiri(st, at) + b(st, at))] where γ is the discount
factor to account for the infinite time horizon. One way to interpret this is an auctioneer navigating
an environment with different replenishing goods, which agents wish to collect. The agents now bid
to influence trajectories, and the auctioneer tries to maximize revenue. The results are in Table 5
and show that we can increase revenue by at least 10% in every setting considered. Moreover, the
gradient-based approaches are an order of magnitude faster and achieve better results than grid search.
We further observed that the optimized boosts correspond to a preference of the mechanism for
staying close to s0. This can be roughly interpreted as a counterpart to a reserve price in an auction.

6 Conclusion

In this paper, we have proposed an approach for automated dynamic mechanism design. In contrast
to earlier work, this formulation allows for a wide array of possible objectives (not just maximising
social welfare) and works without strong restrictions on the type space. In principle, it captures
essentially all problems of static mechanism design as a special case. By focusing on the class of
AMAs, we can frame the problem as stochastic bilevel optimization, where the mechanism designer
acting in the outer problem chooses parameters to maximize their objective in expectation over
possible rewards and the inner problem consists of optimally solving the MDP.

For the most prominent objective in mechanism design—expected revenue—we have further proven
differentiability, which allows for gradient-based optimisation approaches to converge to local optima.
By restricting to the class of AMAs, all these mechanisms are guaranteed to be exactly IC and IR. To
solve the bilevel problem, we have presented randomized grid search, as well as a zeroth and first
order gradient-based algorithm to find well-performing mechanisms, which can beat the benchmark
dynamic VCG mechanism across a broad range of environments. Our gradient-based methods also
consistently outperform naïve grid search, which suffers from the curse of dimensionality.

The method we have presented is appropriate for any problem that can be formulated as controlling an
MDP in the face of possibly untruthful preferences. This covers a wide range of interesting scenarios.
In particular, the use of affine maximizers and the bilevel problem formulation are applicable to a
broader range of settings, including those beyond the reach of tabular methods. Future work could
apply deep RL for both the leader and follower, enabling scaling to significantly larger and more
complicated problems, or apply our techniques to novel mechanism design settings.
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A Affine maximizers are incentive compatible

Theorem A.1. For any choice of fixed weights and boosts, affine maximizers are incentive compatible.

Proof. (Following the standard structure for truthfulness of VCG in the static case.) Consider player
i with true reward function ri and reported rewards r̃i, where other players have rewards r−i. Recall
that the payments charged for each agent can be written as

pi(r) =
1

wi

asw(−i)(w, b, r)−

Eπ∗(w,b,r)

 T∑
t=0

∑
j ̸=i

wjrj(st, at)

+ b(st, at)


=

1

wi

(
asw(−i)(w, b, r)− asw(w, b, r) +

T∑
t=0

wiEπ∗(w,b,r)[ri(st, at)]

)
where r = (ri, r−i). The true expected utility at the time they report, as a function of their true
reward function and a possible misreport r̃i, is

Ui(ri, r̂i) = Eπ∗(w,b,r̃i,r−i)

 T∑
t=0

ri(st, at)−
1

wi

asw(−i)(w, b, r)−

 T∑
t=0

∑
j ̸=i

wjrj(st, at)

+ b(st, at)


where the expectation is over the randomness in the MDP (note that it does not need to be over the
randomness in opponent types – IC should hold in dominant strategies considering the opponents).

In choosing a misreport r̃i, player i thus faces a maximization problem:

argmax
r̃i

Ui(ri, r̃i) = argmax
r̃i

Eπ∗(w,b,r̃i,r−i)

[
T∑

t=0

ri(st, at)−
1

wi

(
asw(−i)(w, b, r)

−

(
T∑

t=0

(∑
j ̸=i

wjrj(st, at)

)
+ b(st, at)

))]

= argmax
r̃i

Eπ∗(w,b,r̃i,r−i)

 T∑
t=0

ri(st, at) +
1

wi

 T∑
t=0

∑
j ̸=i

wjrj(st, at) + b(st, at)

− c

= argmax
r̃i

Eπ∗(w,b,r̃i,r−i)

 T∑
t=0

wiri(st, at) +

T∑
t=0

∑
j ̸=i

wjrj(st, at) + b(st, at)



where c is a constant. This is exactly the objective that the mechanism attempts to maximize if the
bidder reports truthfully, so the best choice they can make is to do so.

A.1 IR and IC guarantees

In mechanism design, there is often a distinction between:

• Ex post – properties that hold after all types have been reported and decisions have been
made

• Ex interim – properties that hold after a bidder has observed their own type, but before
seeing other types.

• Ex ante – properties that hold before types have been observed.

As far as the prior distribution of agent types is concerned, all our guarantees are ex post – i.e. we
ensure dominant-strategy incentive compatibility and ex-post IR.
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In our problem, we have an additional source of randomness, the inherent randomness in the MDP
itself. We thus refer to “in expectation” to refer to properties that hold when averaging over the
randomness in the MDP, but ex post in the types.

Given the above choices of terminology, and given a correct policy and value estimate, our chosen
mechanism and payment rules can guarantee in-expectation incentive compatibility and individual
rationality.

B Proofs of continuity and differentiability a.e. for revenue loss function.

In this proof, we identify boosts and agents’ rewards with vectors in R|S|×|A| and weights with
vectors in Rn

+. Moreover, we will assume that f is a continuous density function, according to which
r is distributed and that it is sufficiently well-behaved, such that Er[∥r∥∞] exists.

Recall that expected revenue is defined as

rev(w, b) = Er

[
n∑

i=1

pi(r)

]

= Er

[
−

(
n∑

i=1

(
1

wi
asw(w, b, r)

)
+ sw(π∗(w,b,r))(r) +

n∑
i=1

1

wi
asw(−i)(w, b, r)

]
In order to prove revenue is continuous and almost everywhere differentiable, it suffices to show that
Er [asw(w, b, r)] ,Er

[
sw(π∗(w,b,r))(r)

]
and Er

[
asw(−i)(w, b, r)

]
are locally Lipschitz continuous

in w, b. Differentiability almost everywhere then follows from Rademacher’s theorem. Further note
that the proofs for Er [asw(w, b, r)] and Er

[
asw(−i)(w, b, r)

]
are identical, since one is equivalent

to the other, when removing one agent. We thus restrict ourselves to proving Er [asw(w, b, r)] and
Er

[
sw(π∗(w,b,r))(r)

]
are locally Lipschitz continuous.

B.1 Affine social welfare is Locally Lipschitz continuous

Here we only show continuity in w, since the proof for b works analogous. Fix r ∈ R|S|×|A|×n and
let w, ŵ ∈ Rn

+, s.t. ∃! j : wj ̸= ŵj . We need to show that ∃Kr, s.t.

(3)

|

(
n∑

i=1

T∑
t=0

wiEst,at∼π[ri(st, at)]

)
+

T∑
t=0

Est,at∼π[b(st, at)]−

 n∑
i=1,i̸=j

T∑
t=0

wiEst,at∼π̂[ri(st, at)]


−

T∑
t=0

ŵjEst,at∼π̂[rj(st, at)]−
T∑

t=0

Est,at∼π̂[b(st, at)]|≤ Kr|wj − ŵj |

where π = π∗(w, b, r) and π̂ = π∗(ŵ, b, r). To perform our proof we need the following inequalities:

By optimality of π
n∑

i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

wjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]

≥
n∑

i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

wjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]

(4)

By optimality of π̂
n∑

i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]

≤
n∑

i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]

(5)
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By assumption on w, ŵj

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

wjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]

−

 n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]


≤ |wj − ŵj |

T∑
t=0

Est,at∼π[rj(st, at)]

(6)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

wjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]

−

 n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]


≤ |wj − ŵj |

T∑
t=0

Est,at∼π̂[rj(st, at)]

(7)

Now we have all the ingredients to show local Lipschitz continuity wrt to wi. Let Kr = ∥r∥∞T ≥
max(

∑T
t=0 Est,at∼π̂[rj(st, at)],

∑T
t=0 Est,at∼π[rj(st, at)]). Then we have

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

wjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)] +Kr|wj − ŵj |

≥
Eq.(4)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

wjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)] +Kr|wj − ŵj |

≥
Eq.(7)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π̂[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π̂[rj(st, at)] +

T∑
t=0

Est,at∼π̂[b(st, at)]

≥
Eq.(5)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

ŵjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]

≥
Eq.(6)

n∑
i=1,i̸=j

(

T∑
t=0

wiEst,at∼π[ri(st, at)]) +

T∑
t=0

wjEst,at∼π[rj(st, at)] +

T∑
t=0

Est,at∼π[b(st, at)]−Kr|wj − ŵj |

To conclude this proof, we note

Er[asw(w, b, r)− asw(ŵ, b, r)] ≤ TEr∼f [∥r∥∞]|wj − ŵj |

and Er∼f [∥r∥∞] is finite by assumption. Differentiability almost everywhere now follows from
Rademacher’s theorem.

B.2 Expected social welfare is Locally Lipschitz continuous

Unlike for affine social welfare, we cannot argue that social welfare is Lipschitz continuous. Indeed
changing the weights and boosts only slightly can cause a completely different policy to become
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optimal, leading to a discontinuous jump or drop in social welfare. Indeed this behaviour is generally
expected for any loss function. However, as we will show, when taking the expected value, these
discontinuities get smoothed out, guaranteeing local Lipschitz continuity and thereby differentiability
almost surely.

We will restrict to proving Lipschitz continuity of Er

[
sw(π∗(w,b,r))(r)

]
with respect to b, as the

proof with respect to w works similar.

In the proofs below we identify the reported reward functions of all agents with vectors r ∈ Rd,
where d = |S|×|A|×n.

Our first observation is that all vectors r for which two policies π1, π2 give the same affine social
welfare lie on a hyperplane. Indeed, let νi denote the induced state-action occupancy measure of
policy πi. Then∑

s,a

ν1(s, a)(wiri(s, a) + b(s, a)) =
∑
s,a

ν2(s, a)(wiri(s, a) + b(s, a))

is equivalent to∑
s,a,i

(ν1(s, a)− ν2(s, a))wiri(s, a) =
∑
s,a

(ν2(s, a)− ν1(s, a))(b(s, a))

Let ν1 = (w1ν1(s1, a1), w2ν1(s1, a1), . . . , wnν1(s1, a1), w1ν1(s2, a1), . . . , wnν1(s|S|, a|A|).
Then the above is equivalent to the following hyperplane:

H12(w, b) = {r : (ν1 − ν2)
Tr =

∑
s,a

(ν2(s, a)− ν1(s, a))(b(s, a))}

Let b, b̃ ∈ R|S|×|A|, s.t. ∃! (s′, a′) : b(s′, a′) ̸= b̃(s′, a′). b̃ gives us another hyperplane of equivalence
between π1, π2

H12(w, b̃) = {r : (ν1 − ν2)
Tr =

∑
s,a

(ν2(s, a)− ν1(s, a))(b̃(s, a))}

Note thatH12(w, b̃) andH12(w, b) are parallel with a distance |(ν2(s
′,a′)−ν1(s

′,a′))(b(s′,a′)−b̃(s′,a′))|
∥(ν1−ν2)∥

.

Moreover, for any given parameters (w, b) there are only |Π|2 planes of equivalence, where |Π| is the
number of deterministic policies.

When we change b(s′, a′) to b̃(s′, a′), then there can be rewards r, for which π∗(w, b̃, r) ̸=
π∗(w, b, r). For these rewards it follows that in general the social welfare sw(π∗(w,b̃,r))(r) is differ-
ent from sw(π∗(w,b,r))(r). Using the hyperplanes defined above, we know the set of all r, where
sw(π∗(w,b̃,r))(r) ̸= sw(π∗(w,b,r))(r) is contained in the set

U(w, b, b̃) =
⋃

πj ,πi∈Π

U(w, b, b̃)ij

where

U(w, b, b̃)ij = {r :|(νi − νj)
Tr −

∑
s,a

(νj(s, a)− νi(s, a))(b(s, a))|≤

|(νj(s′, a′)− νi(s
′, a′))(b̃(s′, a′)− b(s′, a′))|}

are the polytopes induced by the hyperplanesHij(w, b̃) andHij(w, b).

With this in mind let us make a first naive analysis of the difference of expected social welfare, when
changing b.
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|Er[sw
(π∗(w,b,r))(r)]− Er[sw

(π∗(w,b̃,r))(r)]| (8)

≤ Er[|sw(π∗(w,b,r))(r)− sw(π∗(w,b̃,r))(r)|] (9)

≤ 2Tn

∫
U(w,b,b̃)

∥r∥∞f(r)dr (10)

≤
∑

πi,πj∈|Π|

2Tn

∫
U(w,b,b̃)ij

∥r∥∞f(r)dr (11)

(12)

where for the second inequality we use sw(π)(r) =
∑n

i=1(
∑T

t=0 Est,at∼πri(st, at)) ≤ Tn∥r∥∞.
We want to show that the above can be bounded by L|b(s′, a′)− b̃(s′, a′)| for some L. For this we
need to get a better understanding of

∫
U(w,b,b̃)ij

∥r∥∞f(r)dr.

For the sake of simplicity, we assume now the probability density f has compact support on Rd, i.e.
there exists a K such that ∀r : ∥r∥2 ≥ K =⇒ f(r) = 0.9 Since the hyperplanes Hij(w, b̃) and

Hij(w, b) have dimension d− 1 and are parallel with distance |(ν2(s
′,a′)−ν1(s

′,a′))(b(s′,a′)−b̃(s′,a′))|
∥(ν1−ν2)∥

,

we can bound the integral by multiplying an upper bound of the volume of U(w, b, b̃)ij with the
maximum possible value of ∥r∥∞f(r) .

∫
U(w,b,b̃)ij

∥r∥∞f(r)dr ≤ (2K)d−1 |(ν2(s′, a′)− ν1(s
′, a′))(b(s′, a′)− b̃(s′, a′))|
∥(ν1 − ν2)∥

Kmax
r

f(r)

=L|(b(s′, a′)− b̃(s′, a′))|

for L = (2K)d |(ν2(s
′,a′)−ν1(s

′,a′))|
∥(ν1−ν2)∥ maxr f(r), which proves Lipschitz continuity and thereby dif-

ferentiability almost surely.

C Gradients of affine social welfare

We note that for asw(w, b, r) the gradients can be computed in a straight-forward manner.10 For this,
rewrite asw using the state-action occupancy measure νπ. 11 Let Π be the finite set of deterministic
policies.12 We have:

asw(w, b, r) = max
π∈Π

∑
s,a

νπ(s, a)(

n∑
i=1

wiri(s, a) + b(s, a))

As we are taking the maximum over a finite set of functions which are differentiable in w, b, we can
apply a multi-dimensional version of the envelope theorem [39] to get

∇w,basw(w, b, r) = ∇w,b

∑
s,a

νπ∗(w,b,r)(s, a)(

n∑
i=1

wiri(s, a) + b(s, a)) a.e.

and hence almost everywhere

∇wi
asw(w, b, r) =

∑
s,a

νπ∗(w,b,r)(s, a)ri(s, a) = Eπ∗(w,b,r)[

T∑
t=0

ri(s, a)]

9This assumption is not necessary. As long as f decays sufficiently quickly for large r, the proof still goes
through with some minor adjustments. However, we make the assumption here for streamlining our exposition
and highlighting the parts of our proof, which are non-standard.

10The analysis holds equivalently for asw−i(w, b, r)
11In general finite horizon MDPs this would be defined as νπ(s, a) =

∑T
t=1 Pπ(st = s, at = a). In our

experiments we always assume the states contain the current timestep such that this simplifies to νπ(s, a) =
Pπ(st = s, at = a)

12The optimal follower policy will always be deterministic.
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∇b(s,a)asw(w, b, r) = νπ∗(w,b,r)(s, a)

Boosting a state increases asw in relation to how often the state is visited under the optimal policy.
Similarly increasing the weight of an agent changes asw in proportion to the expected sum of rewards
the agent gets. In fact, νπ∗ is the solution to the linear programming formulation of the MDP.

D Convergence of regularised revenue

Proof. Fix w, b, r and denote by revα(w, b, r), rev(w, b, r) the regularised and unregularised revenue
for this specific choice of variables. We first show

lim
α→0

revα(w, b, r) = rev(w, b, r)

Note that since revenue is a linear combination of asw,asw−i and sw, it suffices WLOG to show
pointwise convergence of these terms. Here we restrict to proving this for asw.

Let ν∗, να be the corresponding state-action measures to π∗, πα—the optimal policies for the
unregularised and regularised LP—and define R(s, a) =

∑n
i=1 ri(s, a) + b(s, a). Then using

Corollary 9 of Weed [60], for sufficiently small α:

|asw(w, b, r, π∗(w, b, r))− asw(w, b, r, πα(w, b, r))|

=

∣∣∣∣∣∑
s,a

(ν∗(s, a)− να(s, a))

(
n∑

i=1

ri(s, a) + b(s, a)

)∣∣∣∣∣
= |⟨ν∗ − να, R⟩|
≤ ∥ν∗ − να∥1∥R∥∞

≤ 2T exp

(
−∆(r)

αR1
+

R1 +RH

R1

)
(∥w∥∞∥r∥∞ + ∥b∥∞)

where R1 is the l1 radius of all feasible solutions, RH is the entropic radius, and ∆ the suboptimality
gap [60]. For any fixed w, b we can now prove the statement of our theorem, by using the dominated
convergence theorem. Using the same argument as before we restrict to doing so for asw. Note that

asw(w, b, r, πα(w, b, r)) ≤ 2Tn(∥w∥∞∥r∥∞ + ∥b∥∞)

which by assumption is integrable and thus by dominated convergence it holds that

∀w, b : lim
α→0

revα(w, b) = rev(w, b)

E Regularized MDP Linear Program

Below we give the regularized form of the MDP linear program – it is now a convex (exponential
cone) program.

max
∑

s∈S,a∈A

(∑
i

wiri(s, a) + b(s, a)

)
ν(s, a)+

α
∑

s∈S,a∈A

ν(s, a) log ν(s, a) s.t.

∑
a∈A

ν(s, a) =
∑
s′,a′

P (s|s′, a′)ν(s′, a′) + µ0(s) ∀s ∈ S

ν(s, a) ≥ 0 ∀s ∈ S, a ∈ A

(13)
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F Computational Details and Hyperparameters

The grid search experiments and all experiments in the gridworld environment were run concurrently
on a server with 256 cores and 250GB of RAM, while restricting the number of threads in MOSEK
to 4. Other experiments were run on cluster nodes with 4 cores and 1GB or 2GB of RAM per core,
except that the task scheduling regularized LP jobs with 3 agents were run with 16 cores and 64GB
memory. During development we experimented with up to 1000 sampled valuation profiles, up to
2000 perturbations, learning rates ranging from 0.001 to 0.1, and regularization strengths up to 0.1;
we quickly settled on the chosen hyperparameters and did not do a more exhaustive search due to
computational constraints. For distributions where the bidder valuations are symmetric, we optimize
only boosts, fixing the weights to 1.
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