Is Parameter Learning via Weighted Model Integration Tractable?
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Abstract

Weighted Model Integration (WMI) is a recent and
general formalism for reasoning over hybrid con-
tinuous/discrete probabilistic models with logical
and algebraic constraints. While many works have
focused on inference in WMI models, the chal-
lenges of learning them from data have received
much less attention. Our contribution is twofold.
First, we provide novel theoretical insights on the
problem of estimating the parameters of these mod-
els from data in a tractable way, generalizing pre-
vious results on maximum-likelihood estimation
(MLE) to the broader family of log-linear WMI
models. Second, we show how our results on WMI
can characterize the tractability of inference and
MLE for another widely used class of probabilistic
models, Hinge Loss Markov Random Fields (HL-
MRFs). Specifically, we bridge these two areas of
research by reducing marginal inference in HL-
MRFs to WMI inference, and thus we open up new
interesting applications for both model classes.

1 INTRODUCTION

Solving many complex Al tasks require both logical and
numerical reasoning in uncertain environments. Probabilis-
tic inference in hybrid continuous/discrete settings pose
significant challenges, in particular when logical and alge-
braic constraints are considered, such as laws of physics or
safety requirements. In many discrete probabilistic models,
reducing marginal inference to Weighted Model Counting
(WMCO) [Sang et al.|, |2005] is a state-of-the-art technique,
thanks to its support for arbitrary propositional logic con-
straint. Recently, Weighted Model Integration (WMI) [Belle
et al., 2015] emerged as a generalization of WMC to hy-
brid domains. By extending propositional logic with alge-
braic relations over continuous variables and generalizing

the weight function to piecewise densities, WMI unifies
marginal inference in a large class of probabilistic models
under the same formalism.

WDMI-based inference has been receiving increasing inter-
est in recent years, with advancements both on practical
algorithms [Morettin et al., |2021] and on theoretical as-
pects [Zeng et al.,2020a]]. While its theoretical groundwork
was initially developed to address inference and parameter
learning in hybrid Markov Random Fields, over the last
five years it has been shown that a much larger class of
problems can be reduced to WMI, such as marginal in-
ference in Mixed Sum-Product Networks [[Morettin et al.,
2020], or verification of fairness properties in probabilistic
programs [Albarghouthi et al.,|2017]]. Yet, many questions
related to learning this class of distributions from data are
still open.

In this paper, we investigate weight learning for WMI mod-
els in a principled way. First, we show under which condi-
tions weight learning can be done in a tractable way and
by doing this we greatly extend the class of WMI models
amenable to efficient learning. Additionally, we show how
a popular class of probabilistic models, namely Hinge Loss
Markov Random Fields (HL-MRFs) [Bach et al., 2017, fall
into this class by reducing marginal inference in HL-MRFs
to WMI. Leveraging recent results on the tractability of
WDMI-based inference, we then characterize a subclass of
HL-MRFs that admit tractable maximum likelihood estima-
tion of their parameters and marginal inference.

2 BACKGROUND

Notation. Uppercase letters denote random variables
(X, B) and lowercase letters denote their assignments (z, b).
We use bold for sets of variables (X, B), and their joint
assignments (x, b). We use capital Greek letters for logi-
cal formulas (I', A). Literals are atomic formulas or their
negation, and are denoted using either ¢ or lowercase Greek
letters (v,d). We let & = A denote the satisfaction of a
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formula A by an assignment x. Its corresponding indicator
function is [x = A].

A state-of-the-art approach for answering probabilistic
queries in many discrete models reduces the problem to
weighted model counting (WMC), i.e. the task of computing
the weighted sum of the models (solutions) of a proposi-
tional formula A:

WMC(A,W) = >~ W(u) (1
rEA

Typically, it is assumed that the weight of a model factorizes
as the product of non-negative constant weights associated
with each literal (an atom or its negation) in the solution, i.e.
W) =T, wg”héﬂ, where [.] : B — {0, 1} is the indi-
cator function, £ = Atoms(A) U {-A | A € Atoms(A)}
denotes the set of all the literals and w, € R is the positive
weight of a literal £ (unweighted literals are assumed to have
weight 1).

~

Example 1 Consider the formula A = (A — B) and
weights wy = 2,w-4 = 3,wp = 5, then:

W(AAB) W(-AAB)

= ~= N

WMCA W)= 2-5 + 35 4+ 3-1

W(-AA-B)
= 28.
The pair (A, W) encodes an unnormalized joint distribu-
tions over the propositional variables in A, thus the normal-
ized probability of a formula A given evidence expressed
as another formula A g is computed as:
WMC(AANAG AAE,W)
WMC(A A Ag, W)
Algorithmic advances in both exact and approximate WMC

motivated its generalization to hybrid continuous/discrete
settings [Belle et al., [2015]].

Priawy(Aq|Ag) =

@

Given a set of continuous random variables X and a set of
Boolean variables A, the support of the joint probability
Pr(X, A) is encoded by means of a satisfiability modulo
theories (SMT) [Barrett et al., 2010] formula, i.e. a (typ-
ically quantifier-free) expression containing both proposi-
tional and theory atoms connected with the usual logical
connectives. Specifically, the theory atoms encode algebraic
constraints over X, often restricted to the theory of /lin-
ear algebra over reals (LR.A), where atoms have form
(cTX <b).

Example 2 The following SMT-LR.A formula:
A:(OSXl)/\<X1Sl)/\(0<X2)/\(X2§1)
has 3 satisfying truth assignments (X7, Xo € [0,1] are

always true):
M1 H2

{ANXT+ X <AL, ANXI + X <1 AL

K3

SAAN(X1+ X <1 ALLY

for a total (unweighted) volume

X of %
-4
I . ‘ a
[Tre e we(ze) == is a piece-
wise function, associating an
unnormalized density to each solution p | A. In this
context £ denotes the set of weighted literals, which
doesn’t necessarily have to appear in A. Intuitively, a truth
assignment to the literals £ univocally defines a region of
the piecewise distribution. Similarly to WMC, the weighted
model integral is computed by summing over the solutions
of the SMT formula and, additionally, by integrating the
density function in the continuous domain:

In addition to the usual con-
stant weights associated with
propositional literals, alge-
braic literals ¢ on variables
X¢ € X can be mapped to
functions over X,. Thus, the
weight function W(u, ) =

WMIA, W) = Y W(u, x) dz 3)

N

Piecewise polynomials, which admit closed-form solutions
when integrated over arbitrary polytopes, are the most in-
vestigated class of joint density in the WMI literature.

Example 3 Consider the formula in Ex.2 and a single
weighted literal £ = (X; + X5 < 1) with w(X7, Xo) =
X; + X, ie. W(X1, X2) = (X + Xo)IX1+X251] Then,
the weighted model integral is:

WMI(A, W) = X1+ XodX7 dXs

1258

+ Xi+ XodX; dXs

12

+/ 1dX,dX, =2 =+
M3

W =
N =

X2 X2

X1

K1 2

A -A

W.l.o.g., for notational convenience from here on we will
focus on WMI problems on continuous variables only. This
is possible since any WMI problem on continuous and
Boolean variables can be reduced in polytime to a new
WMI problem on continuous variables only, without chang-
ing its inference complexity class, by properly introducing



A W(X)

Figure 1: Graphical representation of the parameter estima-
tion task considered in this work.

auxiliary variables to account for Boolean variables [Zeng
and Van den Broeckl, [2019]]. We remark that the results on
parameter learning reported in the following sections hold
for hybrid distributions too. In fact, weighted propositional
variables would contribute with piecewise constant factors
only, a subcase of our generalized theory that was previously
investigated by |Belle et al.[[2015]. We define the normalized
density of any data point x as:

e W(w)[[w\=€ﬂ
Pla) = ZVV[:MI(A,W) ’

zEA @)

Characterizing the dependency structure among the vari-
ables in a model is crucial for characterizing the tractability
of probabilistic inference. This structure can be captured
with the notion of primal graph.

Definition 2.1. (Primal Graph) Given a model (A, W), its
primal graph G ywy = (V, &) is the undirected graph
whose vertex set V is the index set of variables in formula
A and L, and whose edge set £ has edge i — j iff variable
X and variable X appear together in one clause I' € A
or in one weighted literal { € L.

3 MAXIMUM LIKELIHOOD
ESTIMATION OF WEIGHTED MODEL
INTEGRATION PARAMETERS

We now consider the problem of estimating the parameters
of a structured, piecewise distribution from data. Specif-
ically, we are concerned with learning the parameters in
the literal weights wy for £ € L as illustrated in Figure
assuming that the SMT formula A and the literal set £ is
fixed and that a dataset consisting of i.i.d. fully observed
samples is provided.

We adopt the canonical parameter estimation approach, max-
imum likelihood estimation (MLE), which gives estimation
for parameters by solving the optimization problem below,

0" = argmgXL(@) )

where L(@) is the log-likelihood of the dataset, i.e.,

L(®) =log [] p(z;©).

xecD

Plugging in the point-wise density p in Eq. [ we get:

L(©) =Y ) loguw(a)==1 6)

zeDLeLl
— |D| - log WMI(A, W; ©)).

3.1 CONVEXITY OF MLE

In general, the optimization problem in Equation [5]does not
have a closed form solution. For this reason, we consider
optimizing our objective via iterative methods. Before that,
we are interested in analyzing the convexity property of the
log-likelihood ag((;a) for characterizing convergence of the
optimization problem. Given the SMT formula A and the
set of weighted literals £, we explore under what conditions
the log-likelihood objective is concave, which guarantees
convergence to the global optimum when iterative methods
such as gradient ascent are used [Nesterov and Nemirovskiil
1994]).

As reported in the original WMI paper [Belle et al., 2015]],
MLE of the parameters in weight functions can be solved
optimally using standard convex optimization tools for con-
stant weight functions, that is, when the function wy () is
constant for any ¢ € £. We generalize this result to weight
functions that are log-linear with respect to their parameters.
Specifically, the weight functions take their form as

wy(e; ©p) = exp{©, fy(xe)}

where f,(-) = (f}(-),-++, fE(:))T is a vector of features
defined over variable subset X . Log-linear functions are
an expressive weight family that generalizes many functions
adopted in previous works. Some example choices for fea-
ture functions f(-) could be 1) constant functions, in which
case the WMI problem has constant weights, 2) monomials,
in which case the WMI problem has exponentiated polyno-
mial weights, 3) log-polynomials, in which case the WMI
problem has polynomial weights.

Notice that when the weight functions are log-linear, the
first term in the log-likelihood in Equation [¢] is a linear
combination of parameters, i.e.,

DD loguw(@)ET = X N o = 4] - 6/ fol(@e).
xeD el xeD el

We thus investigate the convexity of the log-partition func-
tion term Z(©) = WMI(A, W; ©).

Proposition 3.1. The log-partition function log Z(©) is
convex if the weight functions are log-linear in their param-
eters.



Sketch of Proof Denote the i-th parameter in weight
function wy as ©f. The first-order derivative of the log-
partition function log Z (@) with respect to a parameter ©¢
is as follows.

0 0 x=L
@mgm@) :Em[@logw(m)ﬂ =4

_0_
BEY:
ther, the second-order derivative of the log-partition function
with respect to parameters ©F and O is as follows.

For brevity, denote -2 log wy () [*=I by notation a. Fur-

82 /

Consider af as random variables distributed according to
distributions defined by parameter ®. Then the Hessian
matrix of log Z(@®) is the co-variance matrix of random
variables af which is positive definite. Therefore the log-
partition function log Z(®) is a convex function in parame-
ters ©. O

Proposition 3.2. The log-likelihood function L(®;D) is
concave if the weight functions are log-linear in their pa-
rameters.

Proof. This result directly follows from the linearity of the
first term and the convexity of log Z(©) (Prop.3.1). O

The concavity of the log-likelihood function allows the prob-
lem of computing the maximum likelihood to be formulated
as a convex minimization problem and optimally solved
with gradient descent methods.

3.2 TRACTABILITY OF GRADIENTS

The next question that naturally follows is how is the
tractability of gradient computation. The partial derivative
of the log-likelihood with respect to a parameter @’g is:

0
oy 1(®) —Ea-olle - (@) ™

- Ewwp(X;@) [[[Il? ': f]] . ff(:}ﬂ)]

Notice that the first expectation is a weighted count of the
dataset D and thus can be computed in time complexity
O(|D|). The second expectation requires the computation
of the partition function, i.e., a WMI problem, which is
intractable in general, and therefore, approximation algo-
rithms are needed to compute the gradient updates. Recently,
Zeng et al.|[2020a]] characterized the tractable class of WMI
problems in terms conditions on both their structure and in
the form of the weight functions [Zeng et al., 2020b]]. A fam-
ily of weight functions satisfies tractable weight conditions
(TWC) iff:

i) itis closed under product;
i) it admits efficient computation of antiderivatives;
iii) it is closed under definite integration over each vari-
ables.

Some examples when the weight function families sat-
isfy TWCs include the cases where the features functions
are constants, linear functions or log-polynomial functions.
Next we present the previous result on the tractability of
WMI problems which is necessary to the tractability of the
partial derivatives in MLE.

Proposition 3.3. [Zeng et al| |2020a] Let
WMI(Q,log(n), tr) be the class of WMI problems
with primal graph G with diameter of size O(log(n))
and treewidth tr. When WMI(Q2,log(n), tr) has para-
metric weight function family § satisfies the TWCs,
WMI(Q2,log(n), tr) is a tractable WMI class for inference
if-and-only-if treewidth tr = 1.

Theorem 3.4. If the WMI problem WMI(A, W) is in the
tractable WMI problem class WMI(€2,1log(n), 1) and the
feature functions flf“(a:) are in function family that satisfies
TWCs, then the partial derivative in Equation [?] can be
tractably computed.

Proof. Given that the first term in Equation[7]can be com-
puted linearly in |D|, it suffices to show that the second term
is a ratio of two tractable WMI problem:s:

Eyopx;o) [z €] fr(@)] = V\W’

where for all ¢*, w). € W', wp= € W, if {* # U,
weight function wz* = wy~; otherwise, the weight func-
tion is defined as w. (x) = wy-(x)fF(z). The tractabil-
ity of WMI(A A £, W) follows from the tractability of
WMI(A, W), given that they have the same primal graph
and that wy. (z) is the product of two functions that satisfies
the TWC. Therefore, the partial derivative in Equation|/|can
be efficiently computed. O

With the results above, we characterized which families
of distributions that are amenable to WMI-based inference
admit both tractable and exact MLE of their parameters.
In the following, we present a novel reduction of marginal
inference in HL-MRFs to WMI and generalize these results
to this popular class of models.

4 MARGINAL INFERENCE FOR
HL-MRFS VIA WMI

Hinge-loss Markov Random fields (HL-MRFs) [Bach et al.,
2017] are a recently proposed statistical relational learning
framework used to model highly structured data. This family
of models allows tractable and exact MAP inference when



weighted constraints are defined using Lukasiewicz logic, a
fuzzy relaxation of Boolean logic. However, exact marginal
inference for HL-MRFs is intractable in general [Embar
et al., 2019]. Therefore, the weight learning via MLE for
HL-MRFs approximates expectations with MAP states. We
investigate the connection between HL-MRFs and WMI
problems and propose a reduction from HL-MRFs to WMI
models. This reduction is profound in two senses. Firstly, it
makes the HL-MRFs amenable to the MLE-based param-
eter learning approach as proposed in Section 3} Secondly,
it allows the characterization of tractability of marginal
inference for HL-MRFs with the conditions reported in
Prop.[3.3] To the best of our knowledge, this is the first class
of tractable HL-MRFs for exact marginal inference.

4.1 HINGE-LOSS MARKOV RANDOM FIELDS

Before describing the reduction to WMI, we provide the
main definitions in HL-MRFs. W.L.o.g, in the following we
assume that all the random variables are unobserved.

Definition 4.1. (potential) Let X = (X1, ---,X,,) be a
vector of n variables with joint domain D = [0,1]". Let
¢ = (¢1, -+, ¢m) be a vector of m continuous potentials
of the form

¢j(x) = (max{¢;(x),0})" (8)
where {; is a linear function of X and p; € {1,2}.

Typically, ¢; are interpreted as clauses in Lukasiewicz logic,
with ¢;(x) representing the (possibly squared) distance to
the satisfaction of the linear constraint £; < 0.

Definition 4.2. (constrained hinge-loss energy function)
For X € D, given a vector of m non-negative free parame-
ters, i.e., weights, @ = (a1, - , auy) € R™, a constrained
hinge-loss energy function f,, is defined as follows.

m

falz) = Z (). ©)

This energy function quantifies the (weighted) satisfaction
of the linear constraints above. These soft constraints are
complemented with a set of hard constraints (i.e. with infi-
nite weights) that are defined separately for convenience.

Definition 4.3. (feasible set) Let ¢ = (c1,- -+ , ¢,) be a vec-
tor of v linear constraint functions associated with index sets

denoting equality constraints £ and inequality constraints
1, which define the feasible set

= Vk e &, er(x) =0

D= {(“’) € PlvkeTep(m <o (- 1O
Then, the probability density function is defined over the
feasible set and is inversely proportional to the constrained
hinge-loss energy function.

Definition 4.4. (HL-MRF) A hinge-loss Markov random
Jfield p over random variables X is a probability density
defined as follows: if ¢ ¢ D, then p(x) = 0; ifx € D,
then

1
where Z (o) is the partition function, i.e.,
Z(a) = / _exp (—fa(z)) dz. (12)
z|eeD

The templated HL-MRFs can be similarly defined, where
the potentials are defined by the templates denoted by T~ =
(t1,- -+ ,ts) where each ¢ is the set of indices of the poten-
tials defined by the template. The templates are associated
with weights W = (W7, - -, Wg). Then the sum of poten-
tials defined by a template ¢ is ®(x) = >, ¢i(x). For
each potential ¢; () with its index i in ¢, they are assigned
weights to be the weight of the template, that is, o; = W.
Together, the constrained hinge-loss energy function of a
templated HL-MRF is as follows.

fw (@) = W d(x) (13)
where ®(x) = (®1(x), -, Pg(x)). The templated HL-
MRFs are often used in the parameter learning when the

weights are considered to be shared among potentials [Bach
et al.,[2017].

4.2 FROM HL-MRFS TO WMI

This section presents the reduction from HL-MRFs to WMI
models that bridge the two frameworks. It allows the infer-
ence on HL-MRFs to be amenable to the tractability results
on WMI problems as well as WMI solvers.

Theorem 4.5. For any HL-MRF p over random variables
X, there exists a WMI problem WMI(A, W) with per-
literal weights whose WMI density denoted by pa equals to
the HL-MRF p.

Proof. Given an HL-MRF p, construct an SMT(LR.A) for-
mula A in CNF form as follows.

A= /\(ngi)/\(xigl)

i€[n]

joint domain Ap

N (ex(@) = 0) /\ (cr(z) <0)

ke keZ

(14)

hard constraints Az

Then construct a set of per-literal weights YV with the set
of literals £ = {£;(x) > 0} je[m] as follows. For brevity,
here the per-literal weight is denoted by W; with subscript



being the index of the LR.A atom ¢; in its associated literal

W;j(z) = exp(—ozjf? (x)) (135)

With the above notations, the WMI density defined by Equa-
tiondlis as follows.

pa(x) = H W (

[[w\—é (ac)>0]} T ': A.
(16)
with

A(W) / (z)=FG @200 g (17)
EA

Moreover, the HL-MRF P in Definition .4] has an equiva-

lent formulation by using indicator function.

p(@) = ——[z e D]-[a € D] - exp(~falx)) (18)

1
Z (o)
Next we show that the un-normalized HL-MRF p is pro-
portional to the WMI density pa. Notice that [« € D] =

[z = Ap] and [z € D] = [z = Ap] hold. Moreover,

since sub-formula Ag is always SAT, it holds that

[z = Aplfe = Ap] = [= = AL
19)

Further since it holds that max{¢;(x),0} = [¢;(x) > 0] -

£i(x), we could rewrite the potentials in HL-MRF using

indicator functions.

¢j(x) = [z = £;(x) = 0] - £ (x) (20)

By Equations[I9]and Equation[20] the following equality on
un-normalized HL-MRF p holds for any & = A.

Z(a)p(z) = ] exp(—a;6,(@))

jelm]

H exp(—a; (7 ( 2))[eFt (@)20]
m]

H Wj(x)

jelm]

Thus it holds that p(x) « pa(x). By the same arguments,

it can be shown that HL-MRF p and WMI density p have
the same partition functions, which finishes the proof for

P =Dpa. O

[z € D]-[x € D] =

[[m\:z_,» @)20] — 7, W)pa(z)

What immediately follows the reduction is the tractability of
marginal inference on HL-MRFs. When the potentials in the
HL-MRF model is linear, the resulting WMI problem has
its weight function to be in the exponetiated linear function
family that satisfies the TWCs [Zeng et al., [2020a]. This
gives the first non-trivial class of tractable HL-MRFs for
exact marginal inference so far. Specifically, the tractability
of the HL-MRF model is characterized by model structures
in the form of primal graphs.

Definition 4.6. (Primal Graph of HL-MRF's) Given an HL-
MRF model p, its primal graph G = (V, £) is the undirected
graph, whose vertext set V is the index set of variables over
which p is defined, and whose edge set € has edge i — j iff
variables X; and variable X; appear together either in a
potential or in a constraint in the feasible set D.

Corollary 4.7. Given a HL-MRF p whose potentials are
as defined in Definition[d.1|\with p; = 1, if it has its primal
graph with tree-width one and with diameter of ©(log(n))
withn = | X|, then the marginal inference of p is tractable.

4.3 MLE FOR HL-MRFS

Besides the tractable marginal inference for HL-MRFs, what
follows the reduction is that the that the parameter learning
of WMI problems can be leveraged for the parameter learn-
ing of the HL-MRFs, and our analysis on the optimality
and the tractability of MLE approach naturally generalize
from WMI to HL-MRFs. To derive MLE-based parameter
learning, we first compute the partial derivative of the log-
likelihood for the templated HL-MRFs in Equation [I3] as
follows.

0
517 UO) = “Eeuslle F Ac bl ®@)]

+Em~pX@ [[[w':/\letg]] (I)( )]

In previous work, since the expectation over the templated
HL-MREFs is intractable in general, the MAP state is used to
approximate the expectation [Bach et al.l 2017]. However,
our HL-MRFs-to-WMI reduction provides an alternative
way to compute the expectation by using WMI solvers on
the reduced WMI problem. Specifically, the expectation
can be computed exactly and tractably when an exact WMI
solver is applicable [Morettin et al., | 2021]]. Moreover, if the
reduced WMI problem satisfies the assumptions in Theo-
rem [3.4] the partial derivative for the templated HL-MRFs
above can be computed exactly in tractable time. Below we
show one of such cases.

Proposition 4.8. Given a HL-MRF p with the same as-
sumptions as in Corollary[d.7] then the partial derivative in
Equation[21| can be tractably computed.

S RELATED WORK

Although most of the research output has focused on purely
continuous or purely discrete distributions, in recent years
probabilistic modelling for hybrid domains has received
increasing attention.

Undirected hybrid models with potentials in the exponential
family have been investigated for pairwise distributions [Lee
and Hastie, 2015]] and more general cases [Yang et al.|
2014]. Density Estimation Trees (DETs) [Ram and Gray,



2011]] address the problem of learning a distribution with
axis-aligned piecewise constant components. Mixed Sum-
Product Networks (MSPNs) [Molina et al., [2018], |Vergari
et al 2019] learn mixtures of categorical and univariate
piecewise polynomial distributions. In contrast with our set-
ting, this line of research focuses on learning probabilistic
relationships and the proposed learning and inference tech-
niques disregard the algebraic and logical structures in the
distributions.

The maximum-likelihood estimation of the parameters of
piecewise distributions with logical and algebraic con-
straints, here investigated in the log-linear case, was initially
addressed for piecewise constants by Belle et al.| [2015]].
Constraint learning in SMT, which is closely related to the
problem of estimating the support of a structured hybrid dis-
tribution from data, was addressed in both supervised [Kolb
et al., [2018]] and unsupervised Morettin et al.[[2020] set-
tings. The latter work additionally propose LARIAT, a full
pipeline for learning hybrid structured distributions from
data by renormalizing DETs or MSPNs with the learned
constraints. This approach heavily relies on greedy proce-
dures for learning both the structure and the parameters of
the model, while we focus on a principled way of estimating
the parameters of these distributions via MLE.

While HL-MRFs were initially developed to efficiently an-
swer MAP queries, approximate marginal inference has
been investigated by Embar et al.|[2019]]. Besides approxi-
mating MLE with MAP states, parameter learning in these
models has been addressed using maximum pseudolikeli-
hood, large-margin estimation [Bach et al.,|2017] and, more
recently, with Bayesian optimization techniques [Srinivasan
et al.,[2020].

6 CONCLUSION

In this work we investigated in a rigorous and principled
manner the problem of estimating the parameters of hybrid
models that account for logical and algebraic relationships
among variables. We showed that MLE can be solved opti-
mally for piecewise distributions that are log-linear in their
parameters and, leveraging recent theoretical insights on
inference in this setting, is also tractable when the structure
of the model satisfy certain conditions.

We extended the above results to HL-MRFs by presenting a
novel reduction of marginal inference in HL-MRFs to WMI,
thus identifying a subclass of models that admit tractable
and exact marginal inference and MLE-based parameter
learning.

For future work, we aim at developing and evaluating prac-
tical algorithms for HL-MRFs based on the presented re-
duction. While we showed that log-linear weight functions
admit optimal MLE, whether it is a necessary condition
is still an open problem. In this work we focused on esti-

mating the parameters in the weight function, but we plan
to investigate the problem of estimating the coefficients
in the weighted literals, i.e. finding the optimal piecewise
decomposition of the joint probability.
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A PROOFS

Proof of Proposition - Denote the i-th parameter in
weight function wy: as @ . The first-order derivative of the
log-partition function log Z(©) with respect to a parameter
0% can be computed as

0 0
— log Z(® ——Z(0©

aor 8 ®)=Ze 90! ©)
1 0 /

_ o=t .9 oz
Z@)%gww e (@) da

matrix of log Z(®) is the covariance matrix of random
variables af which is positive semidefinite. Therefore, the
log-partition function log Z(®) is a convex function in ©,
which finishes our proof. O

I | 1 0 ,
e [[T\—é]] ) / [e=¢']
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Notice that the last equation follows from the fact that

W . dge’wf’( 2)lz=e1 = [[, log wp () l7=21,

Given the WMI den51ty of z in Equatlon M] we have that

10g Z(0) = Eqrp| -7 log wy () [7F]

0 0
8@’ ’ o0eY
For brevity, denote aief log wy () [®=4 by notation af. Fur-
ther, the second-order derivative of the log-partition function
with respect to parameters ©f and @§ is as follows.

P ez@ =2 9 ez
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where the first term can be rewritten as
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and the second term, given that the weight functions are
log-linear in the parameters, can be rewritten as

1 0? 7(©)
Z(©) 907067
1 o 0
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We can view a! as random variables distributed according

to distribution defined by parameters ®. Then the Hessian

0 _
@gl log wyr (1’)[ ¢ ]]] dx)
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