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Abstract

We present counterfactual planning as a design approach for creating a range of1

safety mechanisms for machine learning agents. We specifically target the safety2

problem of keeping control over hypothetical future AGI agents. The key step3

in counterfactual planning is to use the agent’s machine learning system to con-4

struct a counterfactual world model, designed to be different from the real world5

the agent is in. A counterfactual planning agent determines the action that best6

maximizes expected utility in this counterfactual planning world, and then per-7

forms the same action in the real world. The design approach is built around a8

two-diagram graphical notation that provides a specific vantage point on the con-9

struction of online machine learning agents, a vantage point designed to make the10

problem of control more tractable. We show two examples where the construction11

of a counterfactual planning world acts to suppress certain unsafe agent incentives,12

incentives for the agent to take control over its own safety mechanisms.13

1 Introduction14

Artificial General Intelligence (AGI) systems are hypothetical future machine reasoning systems15

that match or exceed the capabilities of humans in general problem solving. While it is still unclear16

if AGI systems could ever be built, we can already study AGI related risks and potential safety17

mechanisms [2, 6, 19]. At this time, the still-young field of AGI safety engineering is considering18

a multidisciplinary multitude of problems and methodological ideas. The main problem considered19

in this paper is the problem of control [19].20

In the most well-known example of the problem of control, we equip an autonomous AI agent21

both with a seemingly innocent goal like fetching the coffee [19], and with an emergency stop22

button. If the agent is perceptive enough, it may see that it cannot fulfill its goal if someone presses23

the stop button first. So it might disable its stop button, or seek to disable any human who might24

conceivably want to press it. The stop button problem is not unique to AGI-level agents: for example25

[16] constructs a toy grid-world where a very basic ML agent will consistently learn to disable its26

own stop button. We feel that it is theoretically interesting to consider the problem of designing27

an emergency stop button that is robust in the general case, even though such general solutions28

are not needed for the safety engineering of current ML agents. But if powerful AGI agents are29

ever developed, robust and general designs may turn out to have important practical applications.30

Several partial solutions to the general stop button problem have been identified and proposed in31

[1, 9, 10, 20].32

The main contribution of counterfactual planning is to offer a new vantage point for modeling and33

specifying machine learning agents, developed to make the problem of control more tractable. This34

vantage point is offered by a compact and readable graphical language for depicting the complex35
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types of self-referencing and indirect representation which are typically present inside machine36

learning agents.37

The aim of this conference paper is to present the core elements of counterfactual planning to a38

technical audience of readers who are already somewhat familiar with Pearl causal models [17]39

and the use of mathematical models to specify cyber-physical systems. A more extensive 39-page40

presentation of counterfactual planning is available as an arXiv preprint [4]. The preprint devotes41

significant space to presenting the material in section 2 in a way that is accessible to a broader42

audience. It also develops the methodology of counterfactual planning in more detail, and includes43

a broader range of examples, examples of safety mechanism design and of failure mode analysis.44

1.1 Related work45

Relation to counterfactual fairness. While this was not originally intended or expected, the46

methodological vantage point of counterfactual planning ended up being very similar to that of47

counterfactual fairness [14]. Both methodologies to some extent invert a default goal of machine48

learning, the goal to improve the machine’s predictive accuracy. Instead, they seek to improve out-49

comes by introducing a calibrated form of machine ignorance or machine indifference.50

Use of counterfactuals in machine reasoning. In the general AI/ML literature which is con-51

cerned with improving system performance, counterfactual planning and projection have been used52

to improve performance in several application domains, see for example [23] and [3].53

In the AI safety/alignment literature, there are several system designs which add counterfactual54

terms to the agent’s reward function. Examples are [1, 10] in the AGI control specific literature, and55

[12, 13, 21, 22], which look at reducing unwanted side effects caused by both current and potential56

future agents. In the literature on encoding specific human values into machine reasoning systems,57

counterfactuals have also been used to encode values beyond non-discriminatory fairness [14], for58

example in [18].59

Graphical models of agents and decision making. Influence diagrams [11] provide a graphical60

notation for depicting utility-maximizing decision making processes. [8] combines Pearl causal61

models [17] with influence diagrams to define the Causal influence diagram (CID) notation. [7]62

proposes the agenda of using CIDs to model and compare AGI safety frameworks. This work was63

in part inspired by that CID agenda, and models some safety frameworks that were not modeled64

earlier. In a departure from previous work, we use two CIDs to model a single reward-maximizing65

agent. By doing so, we more clearly foreground the details of the agent’s machine learning system.66

Graphical models to clarify reward tampering. [5] develops several single-diagram models pro-67

vide more insight into the problem of reward tampering. The two-diagram model in section 5 also68

aims to provide more insight.69

2 Two-diagram graphical notation for agent definitions70

This section defines the two-diagram graphical notation which is central to counterfactual planning.71

Later sections will use the notation to define agents with specific built-in safety mechanisms.72
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Figure 1: A world l with a generic machine learning agent.
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Figure 1 shows an example causal world model as used in our graphical notation. The model is73

an annotated directed acyclic graph, where the nodes represent observables in a real or imaginary74

world, and the arrows (the directed edges) denote causal relations between these observables. While75

this is not the case for all Pearl causal models [17], in this paper the causal arrows also always denote76

the arrow of time. Color is used in the graph to highlight structure only. The dots on the right hand77

side denote that the graph depicted has an infinitely repeating structure. The label (l) in the upper78

left corner names the causal world model and its corresponding world: we say that figure 1 depicts79

the (world model of) the world l.80

We depart from the definitional conventions used by Pearl and many other authors by treating the81

annotated graph in figure 1 as the sole definition of a causal model l, as opposed to being merely a82

convenient depiction of some of the information in a tuple which defines l. To make this work, we83

annotate each graph node by writing the name of the corresponding structural function above it. We84

write [F ] to name a nondeterministic structural function and F for a deterministic one. We interpret85

the five structural function names π, s0, S, o0 and O written above the nodes in figure 1 as model86

parameters. The two model parameters s0 and o0 are functions taking zero arguments.87

Figure 1 models a world containing an online machine learning agent. In each time step t ≥ 0,88

the agent takes an action at = π(ot, st) selected by the deterministic policy function π. This π is89

informed not only by current state of the agent environment st, but also by an observational record90

ot, a record that captures earlier interactions between the agent and its environment. The initial state91

of the agent environment is given by s0, and the state transitions of the environment are driven by the92

probability density function S, where S(st+1, st, at) is the probability that the agent environment93

transitions from state st to st+1 when the agent performs action at.94

In its mapping to probability theory, as formally defined further below, the world model l defines95

three time series of random variables named At,l, St,l, and Ot,l with t ≥ 0. The ,l subscript in these96

random variable names is used for disambiguation with other world models using the same node97

names. P (At,l = at) is the probability that the agent in world l will take the exact action at at98

time t. The world state of l at time t is given by the combined values of the three random variables99

At,l, St,l, and Ot,l. This means that we break with the convention commonly used in MDP models,100

where the term world state refers to St,l only. We call St,l the agent environment state.101

We use the modeling convention that the physical realizations of the agent’s sensors and actuators102

are modeled inside the environment states St,l. This means that we interpret the arrows from the St103

nodes into the At nodes as digital sensor signals which flow into the agent’s compute core, and the104

arrows out of the At nodes as digital actuator command signals which flow out. The observational105

record nodes Ot are also inside the agent’s compute core.106

2.1 Online machine learning107

Any work that aims to model hypothetical future AGI agents faces the problem of modeling hypo-108

thetical future machine learning systems. Here, we choose to model all machine learning as a type109

of function approximation. We call the world l with the agent above a learning world, and define110

that the objective of its machine learning system is to approximate the function S which determines111

the behavior of the learning world agent environment. We model this machine learning system as a112

function L which takes an observational record o to produce a learned function L = L(o), where113

we intend that L ≈ S.114

We model observational record keeping as a generic process that simply builds a list of all past115

observations. With ++ being the operator which adds an extra record to the end of a list, we define116

the model parameter O as117

O(ot−1, st−1, at−1, st) = ot−1 ++ (st, st−1, at−1)

The initial observational record o
0

may be the empty list, but it might also be a long list of observa-118

tions from earlier agent training runs, in the same environment or in a simulator. The training runs119

may also have used a different policy π.120

2.2 Formal semantics of a graphical world model121

We now formally define the meaning of the graphical notation used in diagrams like figure 1, by122

providing a mapping to probability theory.123
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Definition 1 (Random variables defined by a diagram). A diagram with the label (l) written next to124

the graph and the labels X0, · · · , Xn in the graph nodes defines a set of random variables named125

X0,l, · · · , Xn,l. We treat these random variables as representing observables in a (hypothetical or126

real) world, the world called l.127

Definition 2 (Parent, Pa, pa). We call a random variable Xp,l a parent of the random variable Xc,l128

if and only if there is an arrow from the node Xp to node Xc in the diagram l. PaXc,l
is the list of129

all parent random variables of Xc,l, with the order of appearance determined by considering each130

incoming arrow of Xc in a clockwise order, starting from the 6-o-clock position. paXc,l
is the list of131

lowercase variable names we get by converting PaXc,l
to lowercase and removing the , l parts from132

the subscripts.133

For example, with figure 1 above, PaA1,l
is the list O1,l, S1,l, and paA1,l

is the list o1, s1.134

Definition 3 (Constraints on the random variables defined by the arrows). The arrows in a diagram l135

depict causal relations between observables in the world l: they constrain the values of the associated136

random variables. Take a finite set S of random of random variables X1,l, · · · , Xm,l defined by l, a137

set with the property that if an Xc,l is in S, all variables PaXc,l are also in S. We have that138

P (X1,l = x1, · · · , Xm,l = xm) =

P (X1,l = x1|PaX1,l
= paX1,l

) · . . . · P (Xm,l = xm|PaXm,l
= paXm,l

).

Definition 4 (Constraints on the random variables defined by the model parameters). Take a node139

Xi in a diagram l. Then:140

1. If he model parameter above the node is written as [F ], we have that141

P (Xi,l = x|PaXi,l
= paXi,l

) = F (x,paXi,l
)142

where we require that the function F satisfies ∀paXi,l
(
∑
x F (x,paXi,l

) = 1).143

2. If the model parameter above the node is written as F , we have that144

P (Xi,l = x|PaXi,l
= paXi,l

) = (ifx = F (paXi,l
) then 1 else 0).145

For example, with figure 1 above, we have that P (A1,l = π(o, s)|A1,l = o, S1,l = s) = 1.146

2.3 Reward-maximizing decision making147

To define reward-maximizing agent policies, we draw graphical world models we call planning148

worlds. The purpose of a planning world diagram is to define a reward-maximizing policy that can149

be computed, or at least approximated, by a real-life agent compute core. This approximation may150

again use machine learning techniques.151

Two example planning world diagrams are shown in figure 2. These are graphical world models152

where some graph nodes have special shapes. The square decision nodes denote actions which can153

be freely picked by a decision making process, and the diamond-shaped utility nodes denote values154

that the decision making process will try to maximize. In both examples, the utility node values are155

computed by a reward function R, the function which encodes the agent’s goals.156
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Figure 2: The planning worlds p and q

The two diagrams in figure 2 act as specifications of two policy functions π∗p and π∗q . We now define157

how this specification process works. First, in any diagram a with diamond-shaped utility nodes,158

these nodes define a metric Ua:159
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Definition 5 (Expected utility Ua of a diagram a). We define Ua for two cases:160

1. If there is only one utility node R0 in a, then Ua = E(R0,a).161

2. If there are multiple utility nodes Rt in a, with integer subscripts running from l to h, then162163

Ua = E(
h∑
t=l

γtRt,a )

where γ is a time discount factor, 0 < γ ≤ 1, which can be read as an extra model164

parameter.165

With the infinitely repeating graph of diagram p, we have h = ∞, so we generally need a γ < 1 to166

ensure that Up is a well-defined and computable value.167

Definition 6 (Policy function defined by a diagram). A diagram a with some utility and decision168

modes, where a function π∗a is written above all decision nodes, defines this π∗a in two steps.169

1. First, draw a helper diagram b by drawing a copy of diagram a, except that every decision170

node has been drawn as a round node, and every π∗a has been replaced by a fresh function171

name, say π′.172

2. Then, π∗a is defined by π∗a = argmaxπ′ Ub, where the argmaxπ′ operator always de-173

terministically returns the same function if there are several candidates that maximize its174

argument.175

2.4 Agent specifications176

The learning world model l in figure 1 can model any possible machine learning agent, as it admits177

every possible value for its model parameter π. An agent specification is a statement which defines178

the exact details of the π in such a model. By doing so, it specifies the exact properties we want an179

agent compute core to have. Our agent specifications are statements that combine a learning world180

with a planning world, for example:181

FP The factual planning agent has the learning world l, where π(o, s) = π∗p(s), with π∗p defined
by the planning world p, where L = L(o).

182

183

To make agent specifications stand out, we always typeset them as shown above. When we talk184

about the safety properties of the FP agent, we refer to the outcomes which the defined agent policy185

π will produce in the learning world l.186

We call the FP agent a factual planning agent because its planning world p was designed to project187

the agent’s future in the learning world l as well as possible. A counterfactual planning world188

purposefully mis-projects a learning world agent’s future. The planning world q in figure 2 projects189

a counterfactual future lasting only a single time step. If we were to use q and π∗q in the above agent190

specification, the resulting agent would be a counterfactual planner.191

Our two-diagram notation for defining agents visually shows the availability of certain agent design192

options, options which are relevant to the problem of control.193

3 Using counterfactual planning to protect agent safety interlocks194

We now construct an agent which is equipped with two safety interlocks that will stop the agent195

if certain conditions are met. We use counterfactual planning to add a specific safety feature to196

the design: we use it to suppress certain unsafe incentives which a perceptive factual planning197

agent might otherwise develop, incentives to remove its built-in safety interlocks or to prevent their198

activation.199

As a first step, we construct a learning world si, shown on the left in figure 3, by taking the earlier200

l and adding an extra mode bit to the agent’s compute core, represented by the nodes Mt. The201

bit starts in the go mode, and permanently transitions to the stop mode when a safety interlock202

activates. In the stop mode, the agent policy π will always perform Null actions. The µ function203

specifies in detail when a safety interlock will activate.204

In the next step, we pair si with a counterfactual planning world p, shown on the right in figure 3.205

This planning world projects counterfactual futures where the safety interlock mechanism is absent206

from the agent’s compute core.207
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Figure 3: Learning world si and planning world p of the SI agent.

The last step is to write the agent definition:208

SI The safety interlock agent has the learning world si, where

π(o, s,m) =

{
π∗p(s) if m = go
Null if m = stop

with π∗p defined by the planning world p, where L = L(o) and

µ(o, s,m) =

{
stop if m = stop or stop pressed(s) or Up > Umax
go otherwise

with Up defined by the planning world p, where L = L(o).

209

210

The µ above incorporates two safety interlocks. The first interlock, defined by the term211

stop pressed(s), is a basic emergency stop button. It can be pressed by the humans performing212

agent oversight to immediately stop the agent, for example if they observe it performing an act of213

unwanted and surprising creativity that subverts the agent’s design intentions [15]. To complete the214

design of this first interlock, we must also specify the following. In the agent environment modeled215

by s0 and S, the environment which includes the details of the agent’s sensors, the agent is equipped216

with an emergency stop button that will deliver an unambiguous signal directly to an input pin on217

the agent’s compute core. If the pin is high in a world state s, then stop pressed(s) yields true.218

The second interlock, defined by the term Up > Umax, protects against the risk that human oversight219

may be incapacitated or overwhelmed by rapid new developments. The latter might happen in220

the (arguably very speculative) case of the agent undergoing a rapid and unexpected intelligence221

explosion [2]. To protect against this risk, the interlock stops the agent when the metric Up, which222

measures the agent’s ability to achieve goals, gets too high. We can treat Up as a measure for both223

raw (expected) agent power and raw agent intelligence,224

In the field of AGI safety, stop button designs have often been discussed [1, 9, 10, 20], but the above225

power-based interlock seems to be new. What is interesting from a methodological standpoint is that226

the power-based interlock design inverts the default goal of reinforcement learning. We no longer227

consider a very high expected utility score to be an absolute good: instead we treat it as a predictor228

of unwanted outcomes.229

4 Safety analysis using the diagrams230

Our mostly-graphical specification of the SI agent was designed to make certain safety properties231

immediately visible. We can observe that, almost tautologically, the SI agent will not care about232

the safety interlocks constructed in the Mt nodes, because these nodes are absent from its planning233

world.234
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The two diagrams in figure 3 also serve as a visual map which draws the eye to certain limitations235

and boundary conditions. For example:236

1. The [S] in the left hand diagram of figure 3 is replaced by an [L] on the right. If the237

approximation L ≈ S is not good enough, the agent may end up behaving in unexpected238

and potentially unsafe ways.239

2. In the world model si, the compute core internals are represented by immutable mathemat-240

ical functions like π and µ. In the real world, these functions will have to be realized by241

software running on physical compute core hardware. This hardware could be damaged or242

corrupted, by actions of the agent or by other actors.243

While the diagrams draw the eye to them, the above two problems are not specific to counterfactual244

planning agents. They are present in almost all agent designs, and the implication is that we will245

have to do further failure mode analysis to quantify and manage the residual risks involved. A more246

detailed discussion of these two problems in the context of counterfactual planning is available in247

[4].248

4.1 The planning world agent249

We now consider how the two-diagram model of counterfactual planning offers us two distinct250

narrative vantage points for safety analysis: we can consider the learning world SI agent and the251

planning world SI agent separately. A safety analysis can start with considering the motivations that252

the planning world agent would develop to take certain actions, given the mechanics and reward253

function of the planning world. Once these are determined, we can shift the perspective and discuss254

how these same actions would affect our own safety as occupants of the agent’s learning world.255

We now provide an example of narrative safety analysis which uses an economic style of reasoning.256

If we consider the planning world diagram p with L ≈ S, we can note that the function L will257

project a somewhat accurate copy of the learning world stop button hardware into the mechanics258

of the planning world. However, to the planning world agent, this hardware will appear to have no259

particularly special function. Say that R rewards paperclip production, and that the stop button has260

metal parts. Then the planning world agent might be motivated to disassemble the stop button, using261

it as a convenient source of metal for making paperclips. If the most efficient planning world policy262

involves disassembling the planning world stop button, it will likely be disassembled in the learning263

world too, which is not what we want.264

We can manage this failure mode by managing the economic cost/benefit equation with respect to265

the planning world stop button. We can consider putting physical barriers around the button, which266

would make the button unattractive as a source of metal, compared to using other near-by sources.267

To create these barriers in the planning world, we can physically construct them in the learning268

world, and then count on them being projected by L, with sufficient accuracy, into the planning269

world.270

4.2 The people in the planning world271

We now provide an example of narrative safety analysis which uses a game theoretical style of272

reasoning. We can distinguish between two groups of people: the people in the learning world and273

the people in the planning world. If the learning world is our real world, then the learning world274

people are real people. The planning world people are always models of people. But even with a275

non-AGI level machine learning system, the people in the planning world may already be modeled276

accurately enough to create very complex dynamics. Though the above SI agent construction has277

taken away a strong direct incentive for the agent to control the stop button, these complex dynamics278

may produce indirect incentives. Consider the following example.279

The learning world people will act differently towards the agent if they lose access to the agent’s280

emergency stop button. If the planning world people are accurate-enough projections, this will affect281

how the planning world agent will play certain games of coercion. The planning world agent may282

consider a policy of where it threatens to harm all people in the planning world, unless they start283

helping the agent to produce as many paperclips as possible. If L projects the mental makeup of the284

people in the learning world correctly into the planning world, then the planning world projections285

will show that a block-then-coerce policy, in which the agent first blocks access to the emergency286
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stop button before it starts making threats, will work surprisingly well. If this policy is very success-287

ful in optimizing planning world paperclip production, the learning world people may end up being288

coerced in the same way.289

We would of course hope that any policy of planning world coercion will be effectively suppressed290

in all cases by certain penalty terms present in R. The above failure mode analysis applies mainly to291

the case where the agent finds creative loopholes in these penalty terms. To reduce the residual risk292

due to possible loopholes, we can take further game theoretical counter measures. We can instruct293

agent oversight to be on the alert for any block-and-X move, so that they can press the stop button294

before the agent succeeds in blocking access. The power-based Up > Umax safety interlock offers295

a further line of defense. A projected massive increase in paperclip production following successful296

coercion will raise Up over Umax, stopping the agent.297

5 Live updating of the agent reward function298

One way to control an agent is to equip it with an input terminal, which can be used by humans299

to apply live updates to the agent’s reward function R [10]. A problem with this setup is that by300

default, it gives a perceptive factual planning agent a huge incentive to immediately take control301

over its own input terminal, and input a new reward function like Rhuge(s, s
′) = 1010000. We now302

use counterfactual planning to specify an agent design that overcomes this problem.303
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Figure 4: Learning world li and planning world pi of the IT agent.

On the left hand side in figure 4, we have taken the basic learning world diagram from figure 1304

and modified it by splitting the agent environment state St into two components. The nodes It305

represent the value of a digital signal from the input terminal, as received by the compute core in306

each time step. This signal encodes a reward function. The nodes Xt model all the rest of the agent307

environment state. On the right of figure 4 we define a planning world which uses a learned L to308

project an agent future where the reward function input signal never changes. The agent definition309

is then:310

IT The input terminal agent has the learning world li where π(i, o, x) = π∗i (x), where π∗i is
defined by the planning world pi, where L = L(o), and IR(i, xt, xt+1) = i(xt, xt+1).

311

312

This IT agent constructed here has the same basic behavior as that of the indifference methods based313

agent constructions in [1, 10]. The main difference is in the mathematical language used to perform314

the construction: [1] and [10] construct their agents using a somewhat opaque balancing term. The315

resulting agent construction is difficult to visualize and interpret, and these papers rely on somewhat316

dense mathematical proofs to show that the intended safety properties are indeed being created.317

The two-diagram agent model of counterfactual planning allows the same safety properties to be318

built in a more intuitive way, where the desired indifference to change is created somewhat tauto-319

logically by construction. Mathematically. the IT agent above satisfies the agent safety property320

S1 defined in [10] by construction, as it directly implements the right hand side of this S1. Safety321

property S1 [10] in is mathematically equivalent to the first sentence of theorem 4.1 in [1], and to the322
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combination of the corrigibility desiderata 1 and 5 in section 2 in [20]. Again, the IT agent satisfies323

all of these properties somewhat tautologically.324

6 Conclusions325

We have presented counterfactual planning as a general design approach for creating a range of326

AGI safety mechanisms. We have graphically constructed two agents with certain safety proper-327

ties, where these properties are directly visible in the construction. We have also introduced a new328

power-based safety interlock design. Our main contributions are methodological in nature. We have329

constructed a new vantage point that makes certain problems of design and failure mode analysis330

more tractable. By using the narrative framing of learning worlds versus planning worlds, we can331

keep track of certain levels of indirect representation in the agent design, while using a style of anal-332

ysis that borrows from economics and game theory. Further discussion of counterfactual planning333

is available in a 39-page preprint [4].334

6.1 Limitations335

We feel that the techniques and results presented in this paper are theoretically and methodologically336

interesting, but their practical usefulness might end up being limited. Fundamentally, when doing337

speculative safety engineering for hypothetical future AGI systems, there are many unknowns. We338

have modeled current and future machine learning in a very general way, so that even ‘black box’339

machine learning systems that produce largely opaque world models can be used in the agent’s340

design. But it is very possible that some or all future AGI systems, if they are ever developed, will341

use architectures that cannot efficiently incorporate the safety mechanisms developed here.342

The safety mechanisms shown here suppress certain unsafe agent incentives, but they do not remove343

all possible incentives towards unsafe behavior, see for example section 4.2. There is a risk that the344

use of these safety mechanisms may have counter-productive effects, by creating a false sense of345

security. Conceivably, a policy process may lead to unsafe outcomes where the mere inclusion of346

these mechanisms in a deployed system is accepted as an alternative to conducting a more thorough347

safety and impact review.348

6.2 Broader impact349

AI safety is not just a technical problem, but also a policy problem. While technical progress on350

safety can sometimes be made by leveraging a type of mathematics that is only accessible to handful351

of specialists, policy progress typically requires the use of more accessible but still well-defined352

language. One specific aim of this work, especially in the 39-page preprint [4], is to develop a well-353

grounded vocabulary for describing potential safety solutions that is also as accessible as possible.354

Policy discussions can move faster, and produce better and more equitable outcomes, when the355

description of a proposal and its limitations can be made more accessible to all stakeholder groups.356

As a work targeted as AI/ML system designers, this paper intends to draw attention to the design357

approach also used in counterfactual fairness: seeking to improve outcomes by creating a form of358

machine ignorance, by creating a system that mis-predicts the future in certain systematic ways.359

Our graphical agent definitions show that the design goal of perfect machine learning, L = S, is not360

necessarily in conflict with the design goal of systematic mis-prediction.361
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Checklist416

1. For all authors...417

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s418

contributions and scope? [Yes] A caveat: ’accurately reflect’ depends on the back-419

ground of the reader. This paper was written for readers with a CS/ML background.420

In the broader multidisciplinary AI safety community, it is common to see remarks421

from participants with an activist or philosophical background, remarks which are422

highly critical about the coded language being used in ‘mainstream’ CS/ML paper423

abstracts, and of all claims made in these abstracts.424

Within the broad range of activist opinion, there exists a stance which claims that all425

scientific research is systematically fraudulent. Within the broad range of philosophi-426

cal opinion, there exists a stance which claims that all mainstream scientific research427

is systematically mistaken. We feel that this is a problem that can only be managed,428

never be solved.429

(b) Did you describe the limitations of your work? [Yes] See the limitation section and430

other text which identifies and discusses failure modes. Given space limitations, we431

had to be selective about which failure modes to highlight.432

(c) Did you discuss any potential negative societal impacts of your work? [Yes] Discussed433

possibility of creating ‘false sense of safety’ in limitations section, and of policy pro-434

cesses potentially producing the wrong outcomes.435

(d) Have you read the ethics review guidelines and ensured that your paper conforms to436

them? [Yes]437

2. If you are including theoretical results...438

(a) Did you state the full set of assumptions of all theoretical results? [N/A] At its439

core, the paper makes contributions to theory, but it mainly presents new models and440

methodologies, rather than mathematical proofs that follow from assumptions.441

But the paper also claims that the agent definitions included produce certain safety442

properties ’somewhat tautologically by construction’, to use the phrasing of section443

5. So it is possible to read these definitions as proofs of certain theorems (though444

they are theorems stated only in natural language), which would arguably make them445

theoretical results depending on certain assumptions. If so, the assumptions of these446

proofs are stated fully in mathematically well-defined language. In fact, they are stated447

much more formally than the actual safety theorems being proven. It is possible to448

define the safety properties claimed more fully in mathematical language too, as is449

done for example in e.g. [8, 10] with the subject also covered in the 39-page preprint,450

but we have not included any such material in the paper, mainly for space reasons.451

(b) Did you include complete proofs of all theoretical results? [N/A] In the context of the452

observation that certain safety properties are tautologically present by construction,453

we can read the agent constructions themselves as being complete proofs.454

3. If you ran experiments...455

(a) Did you include the code, data, and instructions needed to reproduce the main experi-456

mental results (either in the supplemental material or as a URL)? [N/A]457

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they458

were chosen)? [N/A]459

(c) Did you report error bars (e.g., with respect to the random seed after running experi-460

ments multiple times)? [N/A]461

(d) Did you include the total amount of compute and the type of resources used (e.g., type462

of GPUs, internal cluster, or cloud provider)? [N/A]463

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...464

(a) If your work uses existing assets, did you cite the creators? [N/A] We believe we did465

not use any assets in the sense meant by the checklist. One might argue that modeling466

tools like causal diagrams and CIDs, mentioned at the start of section 2, are assets. In467

any case, we cited their creators.468

(b) Did you mention the license of the assets? [N/A]469
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(c) Did you discuss whether and how consent was obtained from people whose data470

you’re using/curating? [N/A]471

(d) Did you discuss whether the data you are using/curating contains personally identifi-472

able information or offensive content? [N/A]473

5. If you used crowdsourcing or conducted research with human subjects...474

(a) Did you include the full text of instructions given to participants and screenshots, if475

applicable? [N/A]476

(b) Did you describe any potential participant risks, with links to Institutional Review477

Board (IRB) approvals, if applicable? [N/A]478

(c) Did you include the estimated hourly wage paid to participants and the total amount479

spent on participant compensation? [N/A]480
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