
Toward Efficient and End-to-end Privacy-preserving
Distributed Gradient Boosting Decision Trees

Shuai Yuan∗, Hongwei Li(Corresponding author)∗, Xinyuan Qian∗, Meng Hao∗, Yixiao Zhai∗ and Xiaolong Cui†
∗ School of Computer Science and Engineering, University of Electronic Science and Technology of China, China

† School of Computer & Communication Engineering, University of Science and Technology Beijing

Abstract—Gradient Boosting Decision Trees (GBDTs) are pop-
ular machine learning models due to its simplicity, effective-
ness, and interpretability. Recently, to alleviate serious privacy
leakages in conventional centralized methods, researchers have
proposed several privacy-preserving distributed GBDT solutions.
However, those approaches still suffer from either insufficient
privacy protection or significant runtime and communication
overhead. In this paper, we propose an efficient and end-to-end
privacy-preserving distributed GBDT framework, called PPD-
GBDT, which uses differential privacy, polynomial approxima-
tion, and fully homomorphic encryption to achieve comprehen-
sive privacy protection. Specifically, during the boosting phase,
we design a novel model preparation method to improve the
efficiency of prediction with acceptably slight accuracy/RMSE
loss while preventing data owners’ corruption. On the other
hand, for the prediction phase, we propose a customized secure
prediction method, which effectively prevents the malicious server
from stealing private information. Besides, we conduct extensive
experiments on six datasets and compare with three prior
schemes. Evaluation results show that our privacy-preserving
scheme achieves lower runtime and up to 40× less communication
overhead compared to the state-of-the-arts.

Index Terms—Privacy-preserving machine learning, Gradient
Boosting Decision Trees, Homomorphic Encryption.

I. INTRODUCTION

Gradient Boosting Decision Trees (GBDTs) have widely
used in data mining and scientific research [1], due to its
high accuracy, stability, and interpretability. Recently, Machine
Learning as a Service (MLaaS) employed by many tech com-
panies like Google and Microsoft is highly popular to provide
automatic training and prediction services. As shown in Fig. 1,
we consider a typical MLaaS scenario, where the server wants
to build GBDTs using data provided by the data owner, and
provides prediction services for users. However, this paradigm
leads to serious privacy issues, such as leaking the sensitive
training data, query samples, and prediction results.

To mitigate such problems, several works have explored
designing privacy-preserving decision tree methods. On the
one hand, Akavia et al. [2] and Fang et al. [3] proposed
fully homomorphic encryption (FHE) based model evaluation,
in which the data owners and users send encrypted data to
the server for both training and prediction. Despite desirable
privacy guarantees, these methods result in significant runtime
and communication overhead, such as 20.3 hours for training
only a tree of depth 4. On the other hand, Li et al. [4]
studied a practical federated environment with relaxed privacy

!"#$%&' ()$)

*)$)+,-&". /".0". 1#".
2."(%3$%4&#

Fig. 1: An example of a MLaaS scenario.

constraints, but the scheme cannot be implemented if the
user’s instance lacks the ID attribute. Liu et al. [5] proposed a
federated extreme gradient boosting scheme supporting forced
aggregation by combining the advantages of secret sharing
and homomorphic encryption. However, this scheme only
considers the training phase, and there lacks a secure design
for the prediction phase. Aminifar et al. [6] proposed a privacy-
preserving distributed extremely randomized trees (ERT) ap-
proach for privacy-preserving utilization of the ERT algorithm
in a distributed setting. Each user can get the aggregated results
during the training phase, which is not secure. In general,
these cryptographic approaches did not provide comprehensive
privacy protection for both boosting and prediction phases
in terms of private data, intermediate values, and prediction
results. Therefore, it is urgent to design an efficient decision
tree scheme that enables comprehensive privacy conservation
for both training and prediction phases with low overhead.

To address the above issues, we propose an end-to-end
privacy-preserving distributed GBDT framework, called PPD-
GBDT, which exploits differential privacy (DP), polynomial
approximation (PA), and fully homomorphic encryption (FHE)
techniques. The PPD-GBDT effectively provides comprehen-
sive privacy guarantees for both boosting and prediction
phases. Specifically, during the boosting phase, data owners
train DP-protected GBDTs to hide the private information
of training data. Afterward, the GBDTs are converted into
polynomial approximation trees (PATs) by our PA method to
boost efficiency of the prediction phase. Compared to FHE-
based alternatives that train GBDT over encrypted samples,
our method achieves significant efficiency improvement with
provably quantifiable privacy guarantees. On the other hand,
for the prediction phase, we design a secure prediction method
to efficiently implement expensive comparison operations
without sacrificing model performance, thereby combining
FHE to obtain prediction results on PATs. The testing data

2023 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

978-1-5386-7462-8/23/$31.00 ©2023 IEEE 1566

IC
C

20
23

 -
IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 C
om

m
un

ic
at

io
ns

 |
 9

78
-1

-5
38

6-
74

62
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
C4

50
41

.2
02

3.
10

27
91

89

Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 18,2024 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

and prediction results can be hidden from the cloud server at
this stage. We summarize our contributions as follows:
• We propose an efficient and end-to-end distributed GBDT

framework (PPD-GBDT) that provides comprehensive
privacy protection for both boosting and prediction
phases.

• We design a novel model preparation method for the
boosting phase to improve the efficiency of prediction
while preventing model owners’ corruption. For the pre-
diction phase, we propose a customized secure prediction
method to prevent the malicious server from stealing
private information.

• We conduct extensive experiments on six datasets. Com-
pared to state-of-the-art schemes, our privacy-preserving
approach achieves up to 6× less runtime and 40×
less communication overhead with slight accuracy/RMSE
loss.

The remaining parts of this paper are organized as follows.
In Section II, some background knowledge is briefly intro-
duced. In Section III, we describe the details of our scheme.
In Section IV, we conduct extensive experiments to evaluate
the performance. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Gradient Boosting Decision Trees
The GBDT is an ensemble ML algorithm training decision

trees sequentially. The algorithm consists of two main steps:
training decision trees one by one, with each tree attempting
to reduce the residuals of previous trees; and then summing
the outputs of all trees as the final result.

Given a training dataset T = {(x1, y1), ..., (xN , yN)} where
xi ∈ X ⊆ Rn and yi ∈ Y ⊆ R, and a certain loss function
L(y, f(x)), the goal of GBDT is to find an estimation function
f̂(x) that maps every vector xi to label yi to minimize the
expected value of the loss function L. The essence of boosting
is to approximate the residual yi by the negative gradient of the
loss function, i.e., −[∂L(y,f(xi))

∂f(xi)
]f(x)=fm−1(x). We can regard

the training of each ordered weak learner as an iteration. In
each iteration, we first estimate the residual using the above
loss function, then use the approximated residual to train the
decision tree. In the prediction phase, the GBDT sums up the
predicted values of all trees as the final prediction.

B. Differential Privacy
Differential privacy proposed by Dwork et al. [7] is a wildly

used approach to prevent data leakage in ML. The central
idea is to obfuscate personal information when an adversary
attempts to obtain it from databases. As a result, an adversary
cannot infer sensitive information at the individual level from
normal query results. Here is the formal definition:

Definition 1: (ε, δ)-Differential Privacy. Let ε be a privacy
budget, δ be a failure probability, and f be a randomized
function. The function f is said to provide (ε, δ)-Differential
Privacy, if for any two datasets D and D′ that differ in a single
record and any output O of function f ,

Pr[f(D) ∈ O] ≤ eε · Pr[f(D′) ∈ O] + δ.

Here ε is a positive real number. (ε, δ)-Differential privacy is
usually achieved by adding noise calibrated to the sensitivity
of a function using two main methods, Laplace Mechanism
and Exponential Mechanism.

C. Fully Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is a public-key cryp-
tosystem that allows computing and evaluating an arithmetic
circuit over encrypted data. The standard definition for FHE
[8] is given as follows:

Definition 2: Let M be the message space, and λ be
the security parameter. A public-key FHE scheme consists of
four probabilistic polynomial time (PPT) algorithms FHE =
(FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval).
• Key Generation: (pk, evk, sk)← FHE.KeyGen(1λ), out-

puts a public encryption key pk, a evaluation key evk,
and a secret decryption key sk.

• Encryption: c ← FHE.Enc(pk, µ), using the public key
pk, encrypts a message µ ∈M into a ciphertext c.

• Decryption: µ ← FHE.Dec(sk, c), using the secret key
sk, decrypts a ciphertext c to recover the message µ ∈
M.

• Homomorphic Evaluation: ĉ← FHE.Eval(C, (c1, · · · , cl
), pk, evk), using the public key pk and the evaluation
key evk, applies a circuit C: Ml → M to [c1], ..., [cl]
and outputs a ciphertext ĉ.

III. METHODOLOGY

A. Threat model

Our system architecture is illustrated in Fig. 2. In the
proposed system, there are three kinds of entities: the data
owner (DO), the cloud server (CS), and the querying user
(QU). The DOs want to learn GBDTs without sharing local
data with any entity in the framework. The CS collects models
to predict encrypted data sent by the QU . We consider the
following threat model:
• Malicious CS: Consistent with prior work [2], we assume

that the CS is malicious and may follow any arbitrary
attack strategy to get sensitive data.

• Honest-but-curious and colluding DOs: We assume that
DOs may collude to try to acquire private information
from other DOs.

• Honest-but-curious QU : Similar to most of the existing
works on privacy-preserving machine learning, we as-
sume that the QU correctly follows the algorithm and
protocols, but may try to learn the secret model in the
process.

We also assume that secure channels are used in all commu-
nications, thus, man-in-the-middle and trivial snooping attacks
are prevented. Moreover, we believe that there is no corruption
between different entities. Based on the threat model above,
our PPD-GBDT can ensure that (i) the malicious CS cannot
learn additional information except for the expected output and
polynomial approximation trees, and (ii) the colluding DOs
cannot get the parameters of other honest DOs.

2023 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

1567
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 18,2024 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

!"# $%&'()*

!"#$%& ' ()*+ ,"- #./ !"#$%&0 + #$123

!"#" $%&'(!"#" $%&')

!+# ,-- $./0123%

41&56 78$9 45
67 41&56 78$9 48

67 41&56 78$9 49
67

:;
< = :5

<> = :8
<>8 =?:9

<>9

01-%:

@;
< = @5

<> = @8
<>8 =?@9

<>9

01-%:

A;
< = A5

<> = A8
<>8 =?A9

<>9

01-%:

!;# <10=%'* 78$9>*1>BCDE

!?# @%0- BCDE

!A# <166%&* BBCDE C

!!

!"#$%&'()*#$

+#*,&'(-.,.

!D# @%*E)

!F# @%0- !GHIJ):#

!"#$%&0 ' *0<2!5 / F / *0<2!933

*/

0/

!K# *0< !E G #"-$H"

IH"JK-&KLM $#KMN

> / OBCDEP/ QRS TU

123"- 4#$5#$

!"#" $%&'&

63-#2

7$#0.$.,&3'

4#8"$#

7$#-&8,&3'

Fig. 2: System Overview.

B. General Idea

In many distributed works based on tree models, encrypted
data needs to be uploaded during the training phase to protect
privacy, or techniques such as secure multi-party computation
are used, which unfortunately result in large amounts of time
and communication overhead. Many efforts do not implement
comprehensive privacy protection and fail to defend against
malicious servers. To solve these problems, we propose an
end-to-end privacy-preserving distributed GBDT framework,
called PPD-GBDT.

From a high-level perspective, our scheme consists of two
phases: (1) model preparation; (2) secure prediction. The
purpose of the model preparation is to protect the local data
of DOs and to improve the efficiency of the model prediction.
Every DO trains the GBDT on local data and performs distinct
transformations on GBDTs. The secure prediction phase refers
to the process of securely obtaining the models’ outputs. The
CS implements the customized secure prediction method to
get the outputs of all models with encrypted testing data. The
predictions are sent to the QU , who decrypts and sums them
to get the true results. We present the details of each phase as
follows.

C. Model Preparation

Firstly, we need to protect the DOs’ local data during
the boosting phase. Many schemes choose to encrypt the
local data and train the model on the server side, but this
places a huge burden on the server and causes significant
communication overhead. To address this issue, we design
the model preparation method to improve the efficiency of
prediction while keeping training data secure. Specifically, we
decide to have DOs train models locally and convert the DP-
protected models to polynomial approximation trees (PATs)

which are shared to CS instead of transmitting encrypted
datasets.

Inspired by DPBoost [9], we add DP noises during the
training process to protect the node privacy of each decision
tree. Because the runtime of GBDTs is prohibitively high
when predicting under ciphertext, DOs cannot upload the DP-
protected GBDTs directly to the CS. The main reason for
this is the comparison function on non-leaf nodes. In many
distributed efforts, the processing of comparison functions
is done using secure multi-party computation, but this not
only introduces extra non-colluding servers but also leads to
significant additional overhead. Thus we explore converting
the comparison function to crypto-friendly polynomials.

First of all, we assume that the data are normalized to the
interval [−1, 1]. Here, we consider the comparison function
I0 : R → {0, 1} with threshold zero, defined by: I0(x) = 1
if x ≥ 0 and I0(x) = 0 otherwise. The polynomial function
would be the solution to the following optimization problem:

φ = min
p∈Pn

∫ 2

−2
(I0(x)− p(x))2dx,

where Pn is the set of polynomial functions of degree at most
n over the reals. We assume that the polynomial approximation
function for I0(x) is as follows:

y = β0 + β1x+ β2x
2 + ...+ βn−1x

n

where βi is the coefficient of the polynomial, and n is the
degree of the polynomial. For m samples, we can write m of
the above system of linear equations (m ≥ n). So the final
matrix expression can be formalized as:
φ = min ‖Xβ − Y ‖22 ;X ∈ R

m×n, β ∈ Rn×1, Y ∈ Rm×1

where X is the sample matrix, β is the parameter matrix, and
Y represents the true value. The solution of the above equation

2023 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

1568
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 18,2024 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

leads to:
‖Xβ − Y ‖22 = βTXTXβ − 2βTXTY + Y TY

Then, use the above equation to derive the vector β:
∂(‖Xβ − Y ‖22)

∂β
= 2(XTXβ −ATY)

Let the result of the above equation equal 0, and we get:
β = (XTX)−1XTY

The above equation is the analytical solution of the minimum
mean-square method, which is a globally optimal solution. We
have used L2 regularization to turn the analytic solution into
the following form:

β = (XTX + λE)−1XTY

where λ is the canonical parameter, and E is an n × n-
dimensional identity matrix. Finally, we obtain the coefficients
of the approximate polynomial. We use the coefficients as an
attribute of the node and remove the threshold information of
the node. By applying the low degree polynomial approxima-
tion to non-leaf nodes, we can convert GBDTs into PATs,
which is highly useful in the subsequent secure prediction
approach.

Algorithm 1 Secure Prediction

Input: The testing data x; the degree n; public key pk; secret
key sk

Output: The encrypted result enc result
1: function Enc(x, pk)
2: [x]← FHE.Enc(pk, x)
3: return ([x], pk)
4: function PAT Predict(node, [x], pk)
5: if node is a leaf then
6: return node.leaf value

7: result← the approximate coefficients of node and
[x] do polynomial operations

8: l res← PAT Predict(node.left, [x], pk)
9: r res← PAT Predict(node.right, [x], pk)

10: return result × l res + (1 - result) × r res

11: enc result← []
12: for each PATi in DO do
13: result ← PAT Predict(PATi.root, [x], pk))
14: enc result.append(result)

D. Secure Prediction

In our PPD-GBDT, after these DOs upload PATs, the
CS can predict the results for testing data. The PATs can
effectively combine with FHE and implement the comparison
function of nodes. However, for the prediction process, we
need to determine the true prediction path, so we design
the customized secure prediction method. Since we assume
that the CS is malicious, the QU cannot send plaintext
directly to the CS. As we mentioned in Section II-C, the QU
needs to generate the public/private key pair (pk, sk) using
FHE.KeyGen(1λ), encrypts testing data using Enc(x, pk) in
Algorithm 1, and finally sends ([x], pk) to the CS. In our

PPD-GBDT, after sending his/her query, the QU can be offline
until receiving the encrypted classification results. Currently,
the CS does not have access to the local data used by the
DOs for training and QU ’s testing data for prediction.

As shown in Algorithm 1, the CS receives the PATs
and encrypted testing data. The node.left and node.right
represent its left child and right child nodes, respectively,
and the PATi.root is the root node. For each PATi,
PAT Predict(PATi.root, [x], pk) is used to get the pre-
dicted result. If the current node is a leaf node, return the
leaf value, otherwise use the polynomial prediction circuit
under the ciphertext to get the result. The result requires
the parameter node.factor of this node polynomial, the
ciphertext enc data corresponding to the node features, and
the public key pk as input. It obtains the encrypted result
of computing a0 + a1 × enc data + ... + an × enc datan

with FHE, where (a0, a1, ..., an) is the coefficients of the
node after polynomial approximation. Because the input data
is encrypted, the polynomial prediction result is in the form
of ciphertext (approximately equal to 1 or 0 after decryption).

From the root node, we multiply the result with the
ciphertext going to the left subtree l res by recursively calling
PAT Predict, and then add (1− result) with the ciphertext
result going to the right subtree r res. When the last leaf node
is reached, the ciphertext is multiplied by the value of the leaf
node. By doing this above, only the predicted valid paths are
retained during decryption, and the rest of the invalid paths
are excluded because the decrypted values of the intermediate
nodes are close to zero. Finally, we get the prediction results
for all PATs. The output of each node is an encrypted value,
so the CS does not get any intermediate results.

Algorithm 2 The PPD-GBDT framework

Input: The testing data x; the degree n; public key pk; secret
key sk

Output: The predicted result final result
1: for each DOi do
2: train GBDT with DP on local dataset
3: convert decision trees in GBDT to PATs (degree n)
4: QU executes:
5: [x]← Enc(x, pk)
6: send [x] to the CS
7: CS executes:
8: total result← []
9: for each DOi do

10: result ← secure prediction using [x], PATs, pk
11: total result.append(result)
12: send total result to the QU
13: QU executes:
14: for each result in total result do
15: result ← FHE.Dec(sk,result)
16: final result ← total result.sum()

2023 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

1569
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 18,2024 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

E. Putting It All Together

We show the complete PPD-GBDT framework in Algorithm
2. At the beginning, each DO trains GBDT with DP using the
local dataset. After the training, the DOs need to convert the
GBDTs to PATs and submit them to the CS.

The testing data is encrypted by the locally-generated public
key of QU and then sent to the CS. The ciphertext [x]
is used as input to make a secure prediction on the PAT
(i.e., PAT Predict()) using FHE. After getting all encrypted
predictions, the CS sends them to the QU , who decrypts the
ciphertext and sums them up as the final prediction.

Each DO trains GBDT locally, without sharing local data
with any entity and having any interaction with each other.
Therefore, there is no access to any other valuable information
for colluding DOs. If the CS is malicious, not only does it
not have access to the training data of DOs, it also does not
know the testing data. Our secure prediction method protects
the intermediate results and predictions. So this can effectively
protect the privacy of DOs and QUs against privacy attacks
by a malicious CS.

IV. EVALUATION AND RESULTS

A. Experimental setup

To benchmark the effectiveness and efficiency of our
scheme, we compare PPD-GBDT with four approaches: 1)
PPCP: Giacomelli et al. [10] proposed the distributed privacy-
preserving framework using linearly-homomorphic encryp-
tion; 2) PPDE: Liu et al. [11] proposed the privacy-preserving
decision tree evaluation scheme, which combines additively
homomorphic cryptosystem and additive secret sharing. 3) D-
DPBoost: We implemented the DPBoost [9] and extended it
to distributed scenarios to test the fluctuations of accuracy or
RMSE; 4) PLAIN: This work refers to the secure prediction
of our scheme in plaintext after the DOs have uploaded PATs
and can help us test the time overhead of secure prediction.

We implement and evaluate our scheme to demonstrate its
practicality. All experiments are performed on an Intel Core i7
CPU@2.2GHz, ignoring network latency. The implementation
is in Python, using the DPBoost library [9] for differential
privacy, and the TenSEAL library [12] for fully homomorphic
encryption [13]. We use six datasets from the UCI machine
learning repository [14]. The settings of the various parameters
are indicated in the different experimental contents.

B. Efficacy

Accuracy/RMSE Comparison with Prior Works. We
compare with other schemes according to the number of
boosting iterations, as shown in Fig. 4. It can be seen that PPD-
GBDT reduces the accuracy by less than 0.01 and increases the
RMSE by less than 0.04 compared with PLAIN. Both PPD-
GBDT and PLAIN do not fluctuate much with the number
of iterations. The GBDTs are overfitted gradually when the
number of iterations is greater than 40.

The Effect of Polynomial Degree. We study the effect of
polynomial degree n on our scheme. We set up 10 DOs, each
with 50 trees and 30 leaves per tree. As shown in Fig. 3, the

(a) Heart Disease (b) Abalone

Fig. 3: The impact of different degrees on the models with
two datasets. The solid line represents the Accuracy or

RMSE; the dashed line represents the runtime overhead.

(a) Adult (b) Wine Quality

Fig. 4: Accuracy/RMSE comparison with prior works.

results of PPD-GBDT are consistent with D-DPBoost, which
indicates that converting a decision tree to a PAT brings few
errors. The time overhead of PLAIN increases as the degree
gets larger because the complexity of the computation required
for each node also increases. Ultimately, we can conclude that
the results do not change much as n increases. However, the
time overhead becomes larger as the degree increase, so the
ideal choice is to set the degree to 3.

C. Efficiency

Efficiency Comparison with Prior Works. We compare
the efficiency of PPD-GBDT with previous works. Table I
summarizes the comparison result. It is observed that com-
pared with PPCP, our scheme has a significant advantage
in terms of communication overhead (40× less). This is
because PPCP needs to encrypt the tree before sending it to
the server, which results in extremely large ciphertext trees
in transmission. For PPDE, it has a larger overhead than
PPD-GBDT because of its used heavy cryptographic building

Table I: Efficiency comparison with prior works

Dataset Scheme
RunTime

Communication
Boosting Prediction Total

Spambase
PPCP 1.01s 45.00s 46.01s 12.35MB

Our 5.82s 27.82s 33.64s 314KB (40×)

Nursery
PPDE - - 66.29s 661.64KB

Our 1.92s 8.35s 10.27s 45KB (14 ×)

2023 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

1570
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 18,2024 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

blocks. Therefore, when applied to federated learning, PPD-
GBDT is still more practical than PPDE.

Next, we will test the two phases in PPD-GBDT separately
and discuss the experimental results on the effects of important
parameters involved.

Efficiency of Model Preparation. First, we conduct ex-
periments on the time overhead of model preparation. Similar
as [9], we consider the time overhead of converting GBDTs
to PATs. As shown in Fig. 5, the overhead of the conversion
process is mainly related to two parameters, the number of
nodes in a tree and the number of trees in GBDT. It is observed
that for a single tree, the time overhead increases linearly as the
number of nodes increases. We assume that the transformation
of each tree is performed sequentially rather than in parallel.
Therefore, as the number of trees increases, the time overhead
becomes larger.

(a) The impact of nodes (b) The impact of trees

Fig. 5: Runtime overhead of converting GBDTs to PATs.

Second, we examine the communication overhead of the
model preparation phase (i.e. the size of PATs). The transmis-
sion overhead of each DO is shown in Table II. The difference
in storage size between PATs and LGBM is only 13KB, which
is negligible. Therefore, our solution does not bring much
additional overhead and is more friendly to edge devices with
weak computation and storage capabilities.

Table II: Communication overhead for model preparation

Dataset GBDT Type Size

Adult
LGBM [15] 78KB
DPBoost [9] 82KB

PATs 91KB

Table III: Runtime overhead for secure prediction

Dataset Max Depth PLAIN PPD-GBDT

Spambase

2 0.28s 0.49s
3 0.58s 7.58s
4 1.06s 8.35s
5 1.85s 17.33s
6 2.20s 19.37s

Efficiency of Secure Prediction. We study the runtime of
secure prediction in Table III. Considering the practicalities
of application cryptography, the server will have strong com-
putational power so that secure prediction can be executed in
parallel. When the maximum depth of GBDT is greater than
3, the time will increase substantially. This is mainly because
our scheme needs to calculate the ciphertext of all nodes.

V. CONCLUSION AND FUTURE WORK

In this paper, we construct a privacy-preserving framework
for distributed gradient boosting decision trees, called PPD-
GBDT. The architecture addresses two key challenges of state-
of-the-arts, i.e., lack of comprehensive privacy protection, and
huge overhead. Extensive evaluations on six datasets shows
that PPD-GBDT can achieve privacy protection with low
overhead at only a slight performance reduction. In the future,
we will further investigate how to reduce the runtime overhead
of ciphertext prediction and improve the performance of the
model while ensuring privacy.

ACKNOWLEDGMENT

This work is supported by the National Key R&D Pro-
gram of China under Grant 2022YFB3103500, the Key-
Area Research and Development Program of Guangdong
Province under Grant 2020B0101360001, the National Nat-
ural Science Foundation of China under Grants 62020106013
and 61972454, the Sichuan Science and Technology Pro-
gram under Grants 2020JDTD0007, the Fundamental Re-
search Funds for Chinese Central Universities under Grant
ZYGX2020ZB027.

REFERENCES

[1] W. Fang, J. Zhou, X. Li, and K. Q. Zhu, “Unpack local model
interpretation for gbdt,” in Proceedings of DASFAA, 2018, pp. 764–775.

[2] A. Akavia, M. Leibovich, Y. S. Resheff, R. Ron, M. Shahar, and M. Vald,
“Privacy-preserving decision tree training and prediction against mali-
cious server,” Cryptology ePrint Archive, 2019.

[3] W. Fang, C. Chen, J. Tan, C. Yu, Y. Lu, L. Wang, L. Wang, J. Zhou
et al., “A hybrid-domain framework for secure gradient tree boosting,”
arXiv preprint arXiv:2005.08479, 2020.

[4] Q. Li, Z. Wen, and B. He, “Practical federated gradient boosting decision
trees,” in Proceedings of AAAI, vol. 34, no. 04, 2020, pp. 4642–4649.

[5] Y. Liu, Z. Ma, X. Liu, S. Ma, S. Nepal, R. H. Deng, and K. Ren,
“Boosting privately: Federated extreme gradient boosting for mobile
crowdsensing,” in Proceedings of ICDCS, 2020, pp. 1–11.

[6] A. Aminifar, F. Rabbi, K. I. Pun, and Y. Lamo, “Privacy preserving
distributed extremely randomized trees,” in Proceedings of SAC, 2021,
pp. 1102–1105.

[7] C. Dwork and J. Lei, “Differential privacy and robust statistics,” in
Proceedings of STOC, 2009, pp. 371–380.

[8] D. Benarroch, Z. Brakerski, and T. Lepoint, “Fhe over the integers:
Decomposed and batched in the post-quantum regime,” in IACR Inter-
national Workshop on Public Key Cryptography. Springer, 2017, pp.
271–301.

[9] Q. Li, Z. Wu, Z. Wen, and B. He, “Privacy-preserving gradient boosting
decision trees,” in Proceedings of AAAI, vol. 34, no. 01, 2020, pp. 784–
791.

[10] I. Giacomelli, S. Jha, R. Kleiman, D. Page, and K. Yoon, “Privacy-
preserving collaborative prediction using random forests,” AMIA sum-
mits on translational science proceedings, vol. 2019, p. 248, 2019.

[11] L. Liu, R. Chen, X. Liu, J. Su, and L. Qiao, “Towards practical privacy-
preserving decision tree training and evaluation in the cloud,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 2914–
2929, 2020.

[12] A. Benaissa, B. Retiat, B. Cebere, and A. E. Belfedhal, “Tenseal: A
library for encrypted tensor operations using homomorphic encryption,”
arXiv preprint arXiv:2104.03152, 2021.

[13] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption
for arithmetic of approximate numbers,” in Proceedings of ASIACRYPT,
2017, pp. 409–437.

[14] A. Asuncion and D. Newman, “Uci machine learning repository,” 2007.
[15] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-

Y. Liu, “Lightgbm: A highly efficient gradient boosting decision tree,”
Advances in neural information processing systems, vol. 30, pp. 3146–
3154, 2017.

2023 IEEE International Conference on Communications (ICC): Communication and Information System Security Symposium

1571
Authorized licensed use limited to: University of Electronic Science and Tech of China. Downloaded on January 18,2024 at 03:06:23 UTC from IEEE Xplore. Restrictions apply.

