
Interaction-based Retrieval-augmented Diffusion Models
for Protein-specific 3D Molecule Generation

Zhilin Huang * 1 2 Ling Yang * 3 Xiangxin Zhou 4 Chujun Qin 5 Yijie Yu 1 2

Xiawu Zheng 2 6 Zikun Zhou 2 Wentao Zhang 3 Yu Wang 2 Wenming Yang 1 2

Abstract
Generating ligand molecules that bind to spe-
cific protein targets via generative models holds
substantial promise for advancing structure-
based drug design. Existing methods generate
molecules from scratch without reference or tem-
plate ligands, which poses challenges in model
optimization and may yield suboptimal outcomes.
To address this problem, we propose an inno-
vative interaction-based retrieval-augmented 3D
molecular diffusion model named IRDIFF to fa-
cilitate target-aware molecule generation. IRDIFF
leverages a curated set of ligand references, i.e.,
those with desired properties such as high bind-
ing affinity, to steer the diffusion model towards
synthesizing ligands that satisfy design crite-
ria. Specifically, we design a geometric protein-
molecule interaction network (PMINet), and pre-
train it with binding affinity signals to: (i) re-
trieve target-aware ligand molecules with high
binding affinity to serve as references, and (ii)
incorporate essential protein-ligand binding struc-
tures for steering molecular diffusion generation
with two effective augmentation mechanisms,
i.e., retrieval augmentation and self augmenta-
tion. Empirical studies on CrossDocked2020
dataset show IRDIFF can generate molecules with
more realistic 3D structures and achieve state-
of-the-art binding affinities towards the protein
targets, while maintaining proper molecular prop-
erties. The codes and models are available at
https://github.com/YangLing0818/IRDiff.
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Figure 1. Interaction-based Retrieval-augmentation SBDD with
the ligands with high binding affinities towards target protein.

1. Introduction
Designing ligand molecules that can bind to specific protein
targets and modulate their function, also known as structure-
based drug design (SBDD) (Anderson, 2003; Batool et al.,
2019), is a fundamental problem in drug discovery and
can lead to significant therapeutic benefits. SBDD requires
models to synthesize drug-like molecules with stable 3D
structures and high binding affinities to the target. Neverthe-
less, it is challenging and involves massive computational
efforts because of the enormous space of synthetically feasi-
ble chemicals (Ragoza et al., 2022a) and freedom degree of
both compound and protein structures (Hawkins, 2017).

Recently, several new generative methods have been pro-
posed for the SBDD task (Li et al., 2021; Luo et al.,
2021; Peng et al., 2022; Powers et al., 2022; Ragoza et al.,
2022b; Zhang et al., 2023), which learn to generate ligand
molecules by modeling the complex spatial and chemical
interaction features of the binding site. For instance, some
methods adopt autoregressive models (ARMs) (Luo & Ji,
2021; Liu et al., 2022; Peng et al., 2022) and show promising
results in SBDD tasks, which generate 3D molecules by it-
eratively adding atoms or bonds based on the target binding
site. However, ARMs tend to suffer from error accumula-
tion, and it is difficult to find an optimal generation order,
which are both nontrivial for 3D molecular graphs. Aiming
to address these limitations of ARMs, recent works (Guan
et al., 2023a; Schneuing et al., 2022; Lin et al., 2022) adopt
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diffusion models (Ho et al., 2020) to model the distribution
of atom types and positions from a standard Gaussian prior
with a post-processing to assign bonds. These diffusion-
based SBDD methods develop SE(3)-equivariant diffusion
models (Hoogeboom et al., 2022) to capture both local and
global spatial interactions between atoms and have achieved
more promising performance compared with previous au-
toregressive models. Despite achieving state-of-the-art per-
formance, it is still difficult for existing diffusion-based
methods to generate molecules that satisfies biological met-
rics such as binding affinity. This difficulty mainly arises
from the extensive search space of poses within and between
molecules. Moreover, generating molecules from scratch
makes the generation process more challenging to optimize
and may lead to suboptimal performance.

To overcome these challenges, we propose a novel
Interaction-based Retrieval-augmented Diffusion model
(IRDIFF) for SBDD task as in Figure 1. IRDIFF is in-
spired by the recent significant advancement in machine
learning particularly in generative modeling, called retrieval-
augmented generation or in-context learning (Liu et al.,
2023; Gu et al., 2022; Rubin et al., 2022), which enables
(large) models (Brown et al., 2020; OpenAI, 2023) to gen-
eralize well to previously-unseen tasks with proper task-
specific references. Herein, unlike previous methods that
solely depend on the generalization capacity of generative
models for new target proteins, IRDIFF explicitly utilizes a
small set of target-aware molecular ligand references with
high binding affinity to the specific protein. By leveraging
the protein-molecule interaction information between ref-
erences and the given protein to steer the diffusion model
toward generating ligands, our IRDIFF is capable of gener-
ating molecules that bind tightly to the target pocket. Specif-
ically, we introduce a protein-molecule interaction network
named PMINet and pre-train it with binding affinity signals,
which is parameterized with SE(3)-equivariant and attention
layers to capture interaction information between protein-
molecule pairs. Then we utilize the pre-trained PMINet
to (1) retrieve protein-aware ligand molecules with high
binding affinity to serve as molecular references, and (2)
incorporate essential protein-molecule binding structures
for steering molecular diffusion generation with two effec-
tive augmentation mechanisms, i.e., retrieval augmentation
and self augmentation, conditioned on both the molecular
ligand reference set and target protein. Significantly, our
IRDIFF effectively leverages the protein-molecule interac-
tions modeled by PMINet for 3D protein-specific molecule
generation, even when PMINet solely focuses on modeling
sequence-level interactions between proteins and molecu-
lar ligands. This capability enhances the potential for our
method to be widely applicable and scalable. Extensive
experiments on CrossDocked2020 dataset demonstrate the
effectiveness of our IRDIFF, achieving new state-of-the-art

performance regarding binding-related metrics.

We highlight our main contributions as follows: (i): We pro-
pose an interaction-based retrieval-augmented 3D molecular
diffusion model named IRDIFF for SBDD tasks. This model
guides 3D molecular generation using informative external
target-aware references, bridging the binding affinity predic-
tion task and its inverse problem. (ii): We design two novel
augmentation mechanisms, i.e., retrieval augmentation and
self augmentation, to incorporate essential protein-molecule
binding structures for target-aware molecular generation.
(iii): Our IRDIFF can generate ligands that not only bind
tightly to target pockets but also maintain proper molecu-
lar properties. Empirical results on the CrossDocked2020
dataset show that our model achieves -6.03 Avg. Vina Score
and 0.53 Avg. QED score, indicating a prominent trade-off
between binding- and property-related metrics.

2. Related Work
Structure-Based Drug Design As the increasing avail-
ability of 3D-structure protein-ligand data (Kinnings et al.,
2011), structure-based drug design (SBDD) becomes a hot
research area and it aims to generate diverse molecules with
high binding affinity to specific protein targets (Luo et al.,
2021; Yang et al., 2022; Schneuing et al., 2022; Tan et al.,
2022). Early attempts learn to generate SMILES strings or
2D molecular graphs given protein contexts (Skalic et al.,
2019; Xu et al., 2021a). However, it is uncertain whether
the resulting compounds with generated strings or graphs
could really fit the geometric landscape of the 3D structural
pockets. More works start to involve 3D structures of both
proteins and molecules (Li et al., 2021; Ragoza et al., 2022b;
Zhang et al., 2023; Zhang & Liu, 2023). Luo et al. (2021),
Liu et al. (2022), and Peng et al. (2022) adopt autoregressive
models to generate 3D molecules in an atom-wise manner.
Recently, powerful diffusion models (Sohl-Dickstein et al.,
2015; Song & Ermon, 2019; Ho et al., 2020) begin to play
a role in SBDD, and have achieved promising generation
results with non-autoregressive sampling (Lin et al., 2022;
Schneuing et al., 2022; Guan et al., 2023a). TargetDiff
(Guan et al., 2023a), DiffBP (Lin et al., 2022), and DiffS-
BDD (Schneuing et al., 2022) utilize E(n)-equivariant GNNs
(Satorras et al., 2021) to parameterize conditional diffusion
models for protein-aware 3D molecular generation. Despite
progress, existing methods mainly generate molecules from
scratch without informative template or reference ligands
for unseen target proteins, which may lead to hard optimiza-
tion and poor binding affinity. In this paper, IRDIFF for
the first time utilize the external ligands with high binding
affinity to steer molecular diffusion generation.

Retrieval-Augmented Generation The concept of retrieval
augmentation has been well studied for exploiting the gen-
eralization ability of generative models, including natural
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language processing (Liu et al., 2023; Siriwardhana et al.,
2023; Rubin et al., 2022; Yang et al., 2023), and computer
vision (Alayrac et al., 2022; Gan et al., 2022; Jia et al., 2022;
Sheynin et al., 2022; Blattmann et al., 2022). Numerous
works have explored techniques to adapt models to novel
tasks using a few examples as references. Some methods
(Chen et al., 2022; Rubin et al., 2022) take input as reference
and retrieve similar examples for further augmentation. For
example, EPR (Rubin et al., 2022) utilizes a dense retriever
to retrieve training examples as references for sequence-to-
sequence generation. Recently, in the field of drug discovery,
RetMol (Wang et al., 2022) employ a retrieval-based frame-
work to control 2D molecule generation for ligand-based
drug design (LBDD) (Bacilieri & Moro, 2006). In contrast,
our pioneering contribution is to discover proper protein-
aware 3D molecule references for the purpose of addressing
SBDD tasks, which is the first to incorporate complex cross-
modal (protein-molecule) interactions in reference design,
thereby introducing a new dimension to the field.

3. Preliminary
Notations The SBDD task from the perspective of gener-
ative models can be defined as generating ligand molecules
which can bind to a given protein binding site. The tar-
get (protein) and ligand molecule can be represented as
P = {(x(i)

P ,v
(i)
P )}NP

i=1 and M = {(x(i)
M ,v

(i)
M )}NM

i=1 , re-
spectively. Here NP (resp. NM ) refers to the number
of atoms of the protein P (resp. the ligand molecule
M). x ∈ R3 and v ∈ RK denote the position and type
of the atom respectively. In the sequel, matrices are de-
noted by uppercase boldface. For a matrix X, xi denotes
the vector on its i-th row, and X1:N denotes the subma-
trix comprising its 1-st to N -th rows. For brevity, the
ligand molecule is denoted as M = [XM ,VM ] where
XM ∈ RNM×3 and VM ∈ RNM×K , and the protein
is denoted as P = [XP ,VP ] where XP ∈ RNP×3 and
VP ∈ RNP×K . The task can be formulated as modeling
the conditional distribution p(M|P).

DDPMs in SBDD Denoising Diffusion Probabilistic Mod-
els (DDPMs) (Ho et al., 2020) equipped with SE(3)-
invariant prior and SE(3)-equivariant transition kernel have
been applied on the SBDD task (Guan et al., 2023a; Schneu-
ing et al., 2022; Lin et al., 2022). More specifically, types
and positions of the ligand molecule are modeled by DDPM,
while the number of atoms NM is usually sampled from an
empirical distribution (Hoogeboom et al., 2022; Guan et al.,
2023a) or predicted by a neural network (Lin et al., 2022),
and bonds are determined as post-processing.

Target-aware Molecular Diffusion In the forward diffu-
sion process, a small Gaussian noise is gradually injected
into data as a Markov chain. Because noises are only added

on ligand molecules but not proteins in the diffusion pro-
cess, we denote the atom positions and types of the ligand
molecule at time step t as Xt and Vt and omit the subscript
M without ambiguity. The diffusion transition kernel can
be defined as follows:

q(Mt|Mt−1,P) =

NM∏
i=1

N (xi,t;
√

1− βtxi,t−1, βtI)·

C(vi,t|(1− βt)vi,t−1 + βt/K),

(1)

where N and C stand for the Gaussian and categorical distri-
bution respectively, βt is defined by fixed variance schedules.
The corresponding posterior can be analytically derived as
follows:

q(Mt−1|Mt,M0,P) =

NM∏
i=1

N (xi,t−1; µ̃(xi,t,xi,0), β̃tI)·

C(vi,t−1|c̃(vi,t,vi,0)),
(2)

where µ̃(xi,t,xi,0) =
√
ᾱt−1βt

1−ᾱt
xi,0 +

√
αt(1−ᾱt−1)

1−ᾱt
xi,t,

β̃t = 1−ᾱt−1

1−ᾱt
βt, αt = 1 − βt, ᾱt =

∏t
s=1 αs,

c̃(vi,t,vi,0) =
c∗∑K

k=1 c∗k
, and c∗(vi,t,vi,0) = [αtvi,t+(1−

αt)/K]⊙ [ᾱt−1vi,0 + (1− ᾱt−1)/K].

In the approximated reverse process, also known as the
generative process, a neural network parameterized by θ
learns to recover data by iteratively denoising. The reverse
transition kernel can be approximated with predicted atom
types v̂i,0 and atom positions x̂i,0 as follows:

pθ(Mt−1|Mt,P) =

NM∏
i=1

N (xi,t−1; µ̃(xi,t, x̂i,0), β̃tI)·

C(vi,t−1|c̃(vi,t, v̂i,0)).

(3)

4. Methods
We propose IRDIFF, a novel interaction-based retrieval-
augmented diffusion framework (as demonstrated in Fig-
ure 2) for target-aware 3D molecule generation. We first
introduce the pre-trained binding-affinity models as PMINet
which is fully modelling complex interaction information
between proteins and ligands and can be used as a retriever
to discover protein-aware ligand references in the molecu-
lar database (Section 4.2). Finally, we propose exemplar
augmentation and self augmentation to utilize the ligand ref-
erences with the pre-trained PMINet for facilitating protein-
aware 3D molecular generation (Section 4.3).
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Figure 2. The overall schematic diagram of IRDIFF. It first utilizes the pre-trained PMINet (in Section 4.1) to retrieve binding-aware
molecule references (in Section 4.2), and then steers the target-aware 3D molecular diffusion generation with retrieval and self
augmentation (in Section 4.3).

4.1. Modeling Protein-Ligand Interactions with PMINet

To capture the interactions between proteins and ligand
molecules, we introduce a protein-ligand interaction net-
work (namely PMINet) to model the binding affinity of
protein-ligand pairs, consisting of SE(3)-equivariant neural
networks (Satorras et al., 2021) and cross-attention layers
(Borgeaud et al., 2022; Hou et al., 2019). Two shallow
SE(3)-equivariant neural networks are applied on the fully-
connected graphs of the protein GP and ligand molecule GM

to model the inner-molecule interactions. Given a ligand
graph GM , the l-th graph attention layer works as follows:

hl+1
M,i = hl

M,i +
∑

j∈NM (i)

f l
M,h

(∥∥∥∆xl
M,ij

∥∥∥ ,hl
M,i,h

l
M,j

)
, (4)

xl+1
M,i = xl

M,i +
∑

j∈NM (i)

∆xl
M,ijf

l
M,x

(∥∥∥∆xl
M,ij

∥∥∥ ,hl+1
M,i,h

l+1
M,j

)
(5)

where ∆xl
M,ij := xl

M,i−xl
M,j , hl+1

M,i ∈ Rd and xl+1
M,i ∈ R3

are the SE(3)-invariant and SE(3)-equivariant hidden states
of the atom i of the ligand after the l-th SE(3)-equivariant
layer, respectively. NM (i) stands for the set of neighbors of
atom i on GM , and the initial hidden state h0

M,i is obtained
by an embedding layer that encodes atoms. Given a protein
graph GP , hl

P,i and xl
P,i can be derived in the same way.

And then, an atom-wise cross-attention based interaction
layer is proposed to learn the inter-molecule interactions
between protein-ligand pairs, which essentially accounts for

the binding affinity. Finally, the SE(3)-invariant features
HL

M ∈ RNM×d and HL
P ∈ RNP×d (whose i-th rows are

hL
M,i and hL

P,i respectively) are used as inputs to the cross-
attention (Vaswani et al., 2017) layer for extracting binding-
aware interactive representations:

IntM = softmax((WQH
L
M )(WKHL

P )
T )WV H

L
P , (6)

IntP = softmax((WQH
L
P )(WKHL

M )T )WV H
L
M , (7)

where WQ,WK ,WV are learnable projection matrices.
The enhanced features of the protein and molecule (i.e.,
IntP and IntM ) are further aggregated into a global fea-
tures to predict the binding affinity: SAff(M,P) :=
PMINet(M,P). Please refer to Appendix B.1 for details.

4.2. Constructing Target-Aware Ligand References

Inspired by the recent success of retrieval-augmented gen-
eration (Yang et al., 2023), we hope to design an effective
retrieval augmentation strategy for structure-based drug de-
sign to guide the generation of target-aware ligands with
desired properties. Hence, we utilize the structure-based
protein-molecule interaction prior learned by PMINet to
identify the top candidates (i.e., molecular ligands with high-
binding affinity), which are most suitable for enhancing the
subsequent target-aware molecule design.

More concretely, given a target P and an external database
of molecular ligands D := {Mi}Ni=1, we use the pre-
trained PMINet(·, P) introduced in Section 4.1 to scan
the database and retrieve the molecular ligands with top-k
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high predicted binding affinity to this target as references:

D(P, k) := topk({Mi}Ni=1,PMINet(·, P)). (8)

Here we denote the reference pool as D(P, k), the size of
reference pool are denoted as N . The ligand molecules in
the external database are real, so they are expected to provide
some valid substructures as references and thus promote the
validity of the generated ligand molecules. For example,
the ligands in the reference pool can be viewed as probes
to explore how the target interacts with ligands, which is
supposed to offer useful clues for molecule generation. Due
to their high binding affinity, they can potentially reveal
the critical locations (e.g., promising hydrogen donors or
acceptors) to support strong inter-molecular forces. At time
step t, we extend the reference pool to {Mpred

t+1 } ∪D(P, k),
where Mpred

t+1 denotes predicted atom positions and types
(i.e., estimated [X̂0, V̂0]) at time step t + 1. This can be
regarded as self augmentation which will be described next.

4.3. Interaction-based Retrieval-augmented 3D
Equivariant Molecular Diffusion

In this subsection, we describe how to introduce the
bingding-aware ligand references into the design of the neu-
ral network ϕθ which predicts (i.e., reconstructs) [X0,V0]
in the reverse generation process (we highlight the critical
parts of our augmentation mechanisms in violet):

[X̂0, V̂0] = ϕθ([Xt,Vt], t,P, {Mpred
t+1 } ∪ D(P, k)). (9)

Self Augmentation We first extract atom-wise embed-
dings HM ∈ RNM×d and HP ∈ RNP×d of the ligand
molecule being generated and target protein, respectively.
The molecule being generated, Mpred

t+1 , itself is supposed
to be a candidate ligand with high binding affinity to the
target, especially when t is large (i.e., the generative process
nearly ends). To maximize the exploitation of protein-ligand
interaction prior emerged in the reverse diffusion trajecto-
ries, we leverage the enhanced molecular atom embedding
IntMpred

t+1
and protein atom embedding IntP produced by the

interaction layer of PMINet(Mpred
t+1 ,P) to self augment the

generative process as follows:

H′
M = MLP

(
[HM , IntMpred

t+1
]
)
, (10)

H′
P = MLP ([HP , IntP ]) . (11)

In training, due to the inaccessibility of Mpred
t+1 , we directly

use ground truth molecule M to substitute it in a teacher-
forcing fashion. We illustrate more insights about self aug-
mentation in Appendix A.

Retrieval Augmentation We further propose retrieval
augmentation to leverage the reference ligands for steer-
ing the reverse generation process. The pre-trained PMINet

is reused here to extract interactive structural context infor-
mation between the target protein P and ligands in reference
pool D(P, k) to enhance the protein representations:

H′′
P = Pool({MLP([H′

P , IntiP ])}ki=1) (12)

where k is the number of candidate ligands with top-k high-
est binding affinities, IntiP is the binding-aware protein fea-
ture produced by the interaction layer of PMINet(Mi,P)
(as Equation (7)) and Mi is the i-th exemplar ligand in
the reference pool D(M, k). Besides, in order to augment
the molecular diffusion generation with possible binding
structures in exemplar ligands, we merge the enhanced em-
beddings of exemplar ligands and generated molecules with
a trainable cross attention mechanism:

H
′′
M = Pool({softmax((WQH

′
M )(WK IntMi

)
T
)WV IntMi

}ki=1) (13)

where IntMi
is the binding-aware exemplar ligand feature

produced by the interaction layer of PMINet(Mi,P) (as
Equation (6)). Our IRDIFF uses retrieval and self augmen-
tation to sufficiently leverage both the informative binding
prior in external ligands and the protein-aware interaction
context for 3D equivariant molecular diffusion generation.

3D Equivariant Molecular Diffusion We then apply an
SE(3)-equivariant neural network on the k-nn graph of the
protein-ligand complex (denoted as C = JM,PK, where
J·K denotes concatenation along the first dimension) to learn
the atom-wise protein-molecule interactions in generative
process. The SE(3)-invariant hidden state HC and SE(3)-
equivariant positions XC are updated as follows:

h
l+1
C,i =

∑
j∈NC (i)

f
l
C,h

(∥∥∥∆x
l
C,ij

∥∥∥ ,h
l
C,i,h

l
C,j , eC,ij

)
+ h

l
C,i, (14)

x
l+1
C,i =

∑
j∈NC (i)

∆x
l
C,ij · fl

C,x

(∥∥∥∆x
l
C,ij

∥∥∥ ,h
l+1
C,i ,h

l+1
C,j , eC,ij

)
· 1mol

+ x
l
C,i

(15)

where ∆xl
C,ij := xl

C,i − xl
C,j , NC(i) stands for the set of

k-nearest neighbors of atom i on the protein-ligand com-
plex graph, eC,ij indicates the atom i and atom j are both
protein atoms or both ligand atoms or one protein atom
and one ligand atom, and 1mol is the ligand atom mask
since the protein atom coordinates are known and thus
supposed to remain unchanged during this update. We
let H0

C := JH′′
M ,H′′

P K to incorporate the information con-
tained in the reference pool {M∗

t+1}∪D(P, k). Finally, we
use V̂0 = softmax(MLP(HL

C,1:NM
)) and X̂0 = XL

C,1:NM

as the final prediction. Shifting the Center of Mass (CoM)
of protein atoms to zero (Xu et al., 2021b; Hoogeboom et al.,
2022; Guan et al., 2023a) and the design of EGNN (Satorras
et al., 2021) ensure SE(3)-equivariance of the reverse transi-
tion kernel pθ(Xt−1|Xt,XP ). Augmenting the generative
process only augments the SE(3)-invariant hidden states
without breaking SE(3)-equivariance.
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Training and Sampling To train IRDIFF (i.e., optimize
the evidence lower bound induced by IRDIFF), we use the
same objective function as Guan et al. (2023a). The atom
position loss and atom type loss at time step t−1 are defined
as follows respectively:

L
(x)
t−1 =

1

2β̃2
t

NM∑
i=1

∥µ̃(xi,t,xi,0)− µ̃(xi,t, x̂i,0)∥2

= γt

NM∑
i=1

∥xi,0 − x̂i,0∥;

(16)

L
(v)
t−1 =

NM∑
i=1

K∑
k=1

c̃(vi,t,vi,0)k log
c̃(vi,t,vi,0)k
c̃(vi,t, v̂i,0)k

; (17)

where X̂0 and V̂0 are predicted from Xt and Vt, and
γt =

ᾱt−1β
2
t

2β̃2
t (1−ᾱt)2

. Kindly recall that xi,t, vi,t, x̂i,0, and

v̂i,0 correspond to the i-th row of Xt, Vt, X̂0, and V̂0,
respectively. The final loss combines the above two losses
with a hyperparameter λ as: L = L

(x)
t−1 + λL

(v)
t−1. We sum-

marize the training procedure of IRDIFF in Algorithm 1 and
highlight the differences from its counterpart, TargetDiff
(Guan et al., 2023a), in violet.

Algorithm 1 Training Procedure of IRDIFF

Input: Protein-ligand binding dataset {P,M}Ni=1, neural
network ϕθ, external database D, pre-trained PMINet,
number of exemplar ligands in each retrieval pool k

1: Screen {P,M}Ni=1 and retrieve ligands with top-k
high binding affinity from D using PMINet to obtain
{P,M,D(P, k)}Ni=1 as described in Section 4.2

2: while ϕθ not converge do
3: Sample diffusion time t ∈ U(0, . . . , T )
4: Move the complex to make CoM of protein atoms

zero
5: Perturb [X0,V0] to obtain [Xt,Vt]
6: Embed Vt into H0

M , and embed VP into H0
P

7: Obtain features H′
M and H′

P with self augmenta-
tion based on [X0,V0] (Equation (10))

8: Obtain enhanced protein atom feature H′′
P aug-

mented by D(P, k) (Equation (12))
9: Obtain enhanced ligand atom feature H′′

M aug-
mented by D(P, k) (Equation (13))

10: Predict [X̂0, V̂0] from [Xt,H
′′
M ] and [XP ,H

′′
P ]

(Equations (14) and (15))
11: Compute loss L with [X̂0, V̂0] and [XM ,VM ]

(Equations (16) and (17))
12: Update θ by minimizing L
13: end while

Given a protein P , the molecules can be sampled as Algo-
rithm 2. The differences from previous molecular diffusion
models, are highlighted in violet.

Algorithm 2 Sampling Procedure of IRDIFF

Input: The protein binding site P , the learned model ϕθ,
external databse D, pre-trained PMINet, the number of
exemplar ligands in each reference pool k

Output: Generated ligand molecule M that binds to the
protein pocket P

1: Sample the number of atoms NM of the ligand molecule
M as described in Section 3

2: Move CoM of protein atoms to zero
3: Sample initial ligand atom coordinates xT and atom

types vT

4: Let M∗ := [0,0]
5: Embed VP into HP

6: for t in T, T − 1, . . . , 1 do
7: Embed Vt into HM

8: Obtain H′
M , H′

P with self augmentation (Eq. 10)
9: Obtain H′′

M , H′′
P augmented by D(P, k) (Eq. 12)

10: Predict [X̂0, V̂0] from [Xt,H
′′
M ] and [XP ,H

′′
P ]

(Eqs. 14 and 15)
11: Sample Xt−1, Vt−1 from the posterior pθ (Eq. 3)
12: Let M∗ := [X̂0, V̂0]
13: end for

5. Experiments
Datasets and Baseline Methods To pretrain PMINet with
binding affinity signals, we use the PDBbind v2016 dataset
(Liu et al., 2015), which is most frequently used in binding-
affinity prediction tasks. Specifically, 3767 complexes are
selected as training set, and the other 290 complexes are
selected as testing set. As for molecular generation, follow-
ing the previous work (Luo et al., 2021; Peng et al., 2022;
Guan et al., 2023a), we train and evaluate IRDIFF on the
CrossDocked2020 dataset (Francoeur et al., 2020). We fol-
low the same data preparation and splitting as (Luo et al.,
2021), where the 22.5 million docked binding complexes
are refined to high-quality docking poses (RMSD between
the docked pose and the ground truth < 1Å) and diverse
proteins (sequence identity < 30%). This produces 100, 000
protein-ligand pairs for training and 100 proteins for testing.

We randomly choose 128 ligands from training set for re-
trieval, and select the ligand of top-1 predicted binding affin-
ity as reference for each protein. We compare our model
with recent representative methods for SBDD. LiGAN
(Ragoza et al., 2022a) is a conditional VAE model trained
on an atomic density grid representation of protein-ligand
structures. AR (Luo et al., 2021) and Pocket2Mol (Peng
et al., 2022) are autoregressive schemes that generate 3D
molecules atoms conditioned on the protein pocket and pre-
vious generated atoms. TargetDiff (Guan et al., 2023a) and
DecomposeDiff (Guan et al., 2023b) are recent state-of-the-
art non-autoregressive diffusion-based SBDD models.
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Evaluation We comprehensively evaluate the generated
molecules from three perspectives: molecular structures,
target binding affinity and molecular properties. In terms
of molecular structures, we calculate the Jensen-Shannon
divergences (JSD) in empirical distributions of atom/bond
distances between generated molecules and ground-truth
ones provided in the test set. To estimate the target binding
affinity, following previous work (Luo et al., 2021; Ragoza
et al., 2022b; Guan et al., 2023a), we adopt AutoDock
Vina (Eberhardt et al., 2021) to compute and report the
mean and median of binding-related metrics, including Vina
Score, Vina Min, Vina Dock and High Affinity. Vina Score
directly estimates the binding affinity based on generated 3D
molecules; Vina Min performs a local structure minimiza-
tion before estimation; Vina Dock involves an additional
re-docking process and reflects the best possible binding
affinity; High affinity measures the ratio of how many gener-
ated molecules binds better than the ground-truth molecule
per test protein. To evaluate molecular properties, we
utilize the QED, SA, Diversity as metrics following (Luo
et al., 2021; Ragoza et al., 2022a). QED is a simple quantita-
tive estimation of drug-likeness combining several desirable
molecular properties; SA is a measurement of the difficulty
of synthesizing ligands; Diversity is computed as average
pairwise dissimilarity between all generated ligands.

5.1. Main Results

Generated Molecular Structures We compare our
IRDIFF and the representative methods in terms of molecu-
lar structures. We plot the all-atom pairwise distance distri-
bution of the generated molecules in Figure 3. IRDIFF
achieves JSD 0.08 to ground-truth molecules in the
all-atom pairwise distance distribution of the generated
molecules, which is better than two strong baseline meth-
ods Pocket2Mol and TargetDiff, indicating it effectively
captures real atomic distances. We compute different bond
distributions of the generated molecules and compare them
against the corresponding ground-truth empirical distribu-
tions in Table 1. Our model has a comparable performance
with DecompDiff and substantially outperforms other base-
lines across most major bond types, indicating the great
potential of IRDIFF for generating stable molecular struc-
tures. We attribute this to our augmentation mechanisms
which directly provides realistic 3D ligand templates for
steering molecule generation.

Target Binding Affinity and Molecule Properties We
evaluate the effectiveness of IRDIFF in terms of binding
affinity. We can see in Table 2 that our IRDIFF outperforms
baselines in binding-related metrics. Specifically, IRDIFF
surpasses strong autoregressive method Pocket2Mol by a
large margin of 17.3% and 46.6% in Avg. and Med. Vina
Score, and surpasses strong diffusion-based method Decom-

Figure 3. Comparing the distribution for distances of all-atom for
ground-truth molecules in the test set (blue) and model generated
molecules (color). Jensen-Shannon divergence (JSD) between two
distributions is reported.

Table 1. Jensen-Shannon divergence between bond distance distri-
butions of the ground-truth molecules and the generated molecules,
and lower values indicate better performances. “-”, “=”, and “:”
represent single, double, and aromatic bonds, respectively.

Bond liGAN AR Pocket2
Mol

Target
Diff

Decomp
Diff ours

C−C 0.601 0.609 0.496 0.369 0.359 0.439
C=C 0.665 0.620 0.561 0.505 0.537 0.272
C−N 0.634 0.474 0.416 0.363 0.344 0.302
C=N 0.749 0.635 0.629 0.550 0.584 0.255
C−O 0.656 0.492 0.454 0.421 0.376 0.371
C=O 0.661 0.558 0.516 0.461 0.374 0.361
C:C 0.497 0.451 0.416 0.263 0.251 0.214
C:N 0.638 0.552 0.487 0.235 0.269 0.209

pDiff by 6.3% and 14.1% in Avg. and Med. Vina Score.
In terms of high-affinity binder, we find that on average
67.4% of the IRDIFF molecules show better binding affin-
ity than the ground-truth molecule in the test set, which
is significantly better than other baselines. These gains
demonstrate that the IRDIFF effectively utilizes the external
protein-ligand interactions to enable generating molecules
with higher target binding affinity.

Ideally, using whole training set for retrieval can signifi-
cantly improve the both binding- and property-related met-
rics as demonstrated in Table 4, but it would increase compu-
tational burden. Thus we randomly choose 128 molecules
for retrieval in all experiments. Moreover, we can see a
trade-off between property-related metrics (QED and SA)
and binding-related metrics in previous methods. TargetDiff
and DecompDiff perform better than AR and Pocket2Mol
in binding-related metrics, but fall behind them in QED and
SA scores. In contrast, our IRDIFF not only achieves the
state-of-the-art binding-related scores but also maintains
proper QED score, achieving a better trade-off than Target-
Diff and DecompDiff. Nevertheless, we put less emphasis
on QED and SA because they are often applied as rough
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Table 2. Summary of different properties of ground-truth molecules in the test set and molecules generated by our model and other
non-diffusion and diffusion-based baselines. n and k denote the size of reference pool and the number of utilized references, respectively.
(↑) / (↓) denotes a larger / smaller number is better. Top 2 results are highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

Ground Truth -6.36 -6.46 -6.71 -6.49 -7.45 -7.26 - - 0.48 0.47 0.73 0.74 - -

Compare with
Non-Diffusion

LiGAN - - - - -6.33 -6.20 21.1% 11.1% 0.39 0.39 0.59 0.57 0.66 0.67
GraphBP - - - - -4.80 -4.70 14.2% 6.7% 0.43 0.45 0.49 0.48 0.79 0.78

AR -5.75 -5.64 -6.18 -5.88 -6.75 -6.62 37.9% 31.0% 0.51 0.50 0.63 0.63 0.70 0.70
Pocket2Mol -5.14 -4.70 -6.42 -5.82 -7.15 -6.79 48.4% 51.0% 0.56 0.57 0.74 0.75 0.69 0.71

IRDIFF (n=128, k=1) -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58 0.72 0.72
IRDIFF (n=128, k=3) -6.03 -6.89 -7.27 -7.37 -8.42 -8.42 67.4% 72.7% 0.53 0.54 0.59 0.58 0.72 0.72

Compare with
Diffusion

TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71
DecompDiff -5.67 -6.04 -7.04 -7.09 -8.39 -8.43 64.4% 71.0% 0.45 0.43 0.61 0.60 0.68 0.68

IRDIFF (n=128, k=1) -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58 0.74 0.72
IRDIFF (n=128, k=3) -6.03 -6.89 -7.27 -7.37 -8.42 -8.42 67.4% 72.7% 0.53 0.54 0.59 0.58 0.72 0.72

4yhj

QED: 0.72
SA: 0.73
Vina: -9.47

QED: 0.92
sa: 0.73
Vina: -9.37

QED: 0.80
SA: 0.65
Vina: -9.67

QED: 0.33
SA: 0.36
Vina: -8.33

QED: 0.72
SA: 0.60
Vina: -7.97

QED: 0.38
SA: 0.68
Vina: -6.84

QED: 0.28
SA: 0.62
Vina: -6.69

QED: 0.21
SA: 0.57        Vina: -9.47

QED: 0.45
SA: 0.64        Vina: -9.97

QED: 0.31
SA: 0.51        Vina: -8.83

QED: 0.46
SA: 0.59        Vina: -9.61

QED: 0.87
SA: 0.70 Vina: -10.30

QED: 0.68
SA: 0.71        Vina: -10.75

QED: 0.68
SA: 0.69        Vina: -10.18

3daf
Ground-truth               TargetDiff  IRDiff

Figure 4. Ground-truth ligands and generated ligand molecules of TargetDiff (Guan et al., 2023a) and IRDIFF for 3daf (top row) and 4yhj
(bottom row). We report QED, SA, and Vina Dock score for each molecule.

screening metrics in real drug discovery scenarios, and it
would be fine as long as they are within a reasonable range.
Figure 4 shows some examples of generated molecules and
their properties. The molecules generated by our model
have valid structures and reasonable binding poses to the tar-
get, which are supposed to be promising candidate ligands.
More visualization are provided in Appendix D.

5.2. Model Analysis

Influence of Self and Retrieval Augmentation We in-
vestigate the impact of self augmentation and retrieval aug-
mentation of IRDIFF. We showcase the efficacy of self
augmentation and retrieval augmentation in our IRDIFF,
and put results in Table 3. In particular, we remove our aug-
mentation mechanisms from IRDIFF and use it as baseline.

We observe that simply applying augmentation mechanism
without our pre-trained PMINet even hurt the generation per-
formance, because it does not include informative protein-
ligand interactions for self refinement. In contrast, our
self augmentation significantly improve both binding- and
property-related metrics due to the informative interaction
knowledge brought by our pre-trained PMINet. Besides, our

retrieval augmentation also has a notable improvement over
baseline, revealing that the external target-aware references
indeed provide a suitable reference and facilitate the opti-
mization for molecular generation. Retrieval augmentation
does not help much in property-related metrics, because we
only focus on useful binding structures in exemplars.

0.0 0.2 0.4 0.6 0.8 1.0

All    (mean:0.25)
Refs.  (mean:0.30)

Figure 5. The distributions of Tanimoto similarity between gener-
ated ligands and (a) all ligands in database, and (b) corresponding
references.
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QED: 0.79
SA: 0.66
Vina: -9.05

2z3h

Target-aware  Refs.  (Exemplar  Ligand) Generated  Ligand

Figure 6. Example of a generated ligand molecule and its corre-
sponding reference. Important substructures shared by these two
molecules are highlighted in the same colors.

Table 3. Ablation studies of self augmentation and retrieval aug-
mentation in IRDIFF (n=128, k = 1). Please refer to the Table 9
for the complete results.

Methods
Vina Score (↓) Vina Min (↓) High Affinity (↑) QED (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 54.2% 54.1% 0.46 0.46
augmentation without PMINet -4.14 -5.64 -6.11 -6.36 54.9% 57.5% 0.47 0.48
+ self augmentation -4.91 -6.03 -6.53 -6.82 61.5% 64.4% 0.52 0.53
+ retrieval augmentation -5.39 -6.28 -6.40 -6.67 64.0% 71.5% 0.51 0.52
+ both augmentations -5.86 -6.51 -7.14 -7.27 66.8% 73.9% 0.53 0.54

Furthermore, using both retrieval and self augmentation
achieves the best binding-related metrics, demonstrating
the effectiveness of the two complementary augmentation
mechanisms in IRDIFF. Figures 5 and 6 provide both quan-
titative and qualitative analyses of the similarity between
the generated ligands and their corresponding references,
indicating that the references indeed serve as exemplars and
guide the generation. More specifically, Figure 6 shows the
model may automatically select critical substructures for
high binding affinity to the target from reference ligands and
reassemble them in proper positions to generate molecules.

Effect of Molecule Retrieval Database We investigate
the influence of the 3D molecule database for retrieval in
IRDIFF through ablation study on two variables n and k,
where n denotes the size of the molecule database and k de-
notes the number of reference exemplars. From the results
in Table 4, we observe that larger n can benefit IRDIFF in
terms of binding-related metrics, because higher diversity
allows for more binding-related cues (substructures) that
can augment the generation process. Simply increasing k
does not have an obvious improvement because leverag-
ing more molecule references would also introduce more
noises into generation process. Kindly note that the retrieval
database is fixed during both training and testing, and we
further evaluate the robustness of our model to the choices
of retrieval database in Appendix C.

Table 4. The effect of hyper-parameter n and k. (↑) / (↓) denotes a
larger / smaller number is better. Top 2 results are highlighted with
bold text and underlined text, respectively. Please refer to the 11
for the complete results.

Methods
Vina Score (↓) Vina Min (↓) High Affinity (↑) QED (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med.

n = 32 -5.67 -6.21 -7.01 -7.13 65.2% 72.0% 0.51 0.52
n = 64 -5.74 -6.39 -7.07 -7.19 65.9% 72.8% 0.52 0.53
n = 128 -5.86 -6.51 -7.14 -7.27 66.8% 73.9% 0.53 0.54

k = 1 -5.86 -6.51 -7.14 -7.27 66.8% 73.9% 0.53 0.54
k = 2 -5.88 -6.62 -7.25 -7.29 66.6% 74.4% 0.53 0.54
k = 3 -6.03 -6.89 -7.27 -7.37 67.4% 72.7% 0.53 0.54

Effectiveness of Interaction-based Retrieval We investi-
gate the impact of the reference ligands’ binding affinity on
the generation performance of IRDIFF. In our experiments,
we choose ligands with the highest (i.e., k=1) target binding
affinity as references, and we set the size n of reference
pool to 128. Here, the reference ligand is replaced by the
one with the lowest binding affinity based on the ranking
list provided by PMINet. The experiments are conducted
on the IRDIFF without utilizing self augmentation mech-
anism. As indicated in Table 5, utilizing low-affinity ref-
erences (with an average predicted binding affinity of 3.95
by PMINet between the reference molecule and the corre-
sponding protein pocket) in the molecule database results
in poorer performance on binding-related metrics compared
to using high-affinity references (with an average binding
affinity of 7.24). This demonstrates the effectiveness of
our designs for interaction-based retrieval and reference
utilization in IRDIFF.

Table 5. The impact of molecule database with different properties.
(↑) / (↓) denotes a larger / smaller number is better. Top 2 results
are highlighted with bold text and underlined text, respectively.

Methods Avg. Affinity
of Ref. (↑)

Vina Score (↓) Vina Min (↓) Vina Dock (↓) QED (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline - -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 0.46 0.46
low-affinity ref. 3.95 -4.12 -5.58 -6.09 -6.52 -7.84 -7.91 0.48 0.47
high-affinity ref. 7.24 -5.39 -6.28 -6.40 -6.67 -8.14 -8.37 0.51 0.52

6. Conclusion
In this work, we for the first time propose a interaction-
based retrieval-augmented 3D molecular diffusion model
IRDIFF for SBDD. We leverage the target-aware reference
ligands to enhance the 3D molecular diffusion generation
with effective self augmentation and retrieval augmentation
mechanisms, significantly improving the binding affinity
measured by Vina while maintaining proper molecular prop-
erties. For future work, we will incorporate other binding-
related information into the generation process.
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A. Self Augmentation
Here we offer more insights about self augmentation. During sampling, at time step t, we utilize the protein-ligand
interaction information embedded in PMINet(Mpred

t+1 ,P) to guide the generative process itself. For efficient training, given
a protein-ligand pair (P,M), due to inaccessibility of Mpred

t+1 , we directly replace it with the ground truth ligand molecule
M.

Because the training objective is to generate M given P , a straightforward question is whether using M as input would
provide a shortcut signal for the model and lead to its training collapse. Thanks to the design of PMINet, the model cannot
naively rely on the input M to generate M. More specifically, in PMINet, M and P are first input into two separate
EGNNs, and only the produced SE(3)-invariant features, which are agnostic to the coordinate systems, are further input
in the cross-attention layer to capture the protein-ligand interaction information. Thus, in the output produced by the
cross-attention layer of PMINet, the relative positions and poses between the protein and ligand molecule in the physical
world are eliminated, and only the protein-ligand interaction information in the feature space is kept. This means no shortcut
signal is left for the model during training and the model still needs to normally learn from the protein context to generate
the ligand molecule.

B. Implementation Details
B.1. Details of PMINet

Input Initialization To represent each protein atom, we use a one-hot element indicator {H, C, N, O, S, Se} and one-hot
amino acid type indicator (20 types). Similarly, we represent each ligand atom with a one-hot element indicator {C, N, O, F,
P, S, Cl}. Additionally, we introduce a one-dimensional flag to indicate whether the atoms belong to the protein or ligand.
Two 1-layer MLPs are used to map the input protein and ligand into 128-dim latent spaces respectively.

Model Architectures We aim to use PMINet to model the complex 3D interactions between the atoms of proteins
and ligands. To achieve this, we use two shallow SE(3)-equivariant neural networks for geometric message passing on
the fully-connected graphs of the protein and ligand, respectively. We then apply a cross attention layer to the paired
protein-ligand graph for learning the inter-molecule interactions. Finally, we use a sum-pooling layer to extract a global
representation of the protein-ligand pair by pooling all atom nodes. And a two-layer MLP is introduced to predict the
binding affinity SAff. More details about the model architecture are provided in Table 7.

Training Details During the training, we use the Mean Squared Error (MSE) loss with respect to the difference between the
predicted and ground truth binding affinity scores as the optimization objective. The binding affinity values of protein-ligand
pairs range from 2.0 to 11.92. For avoiding information leakage, we filter the training set by calculating the Tanimoto
similarity with the molecules in the testing set of CrossDocked2020, and the similarity threshold was set to 0.1. As a result,
there are 23 complexes filtered out from the training set. We train PMINet on a single NVIDIA V100 GPU, and we use the
Adam as our optimizer with learning rate 0.001, betas = (0.95, 0.999), batch size 16. The experiments are conducted on
PDBBind v2016 dataset as mentioned in the main text.

Evaluation of PMINet We evaluate PMINet’s effectiveness in predicting binding affinity, and compare it with a baseline
model which is specifically designed for binding affinity prediction, i.e., GraphDTA (Nguyen et al., 2021). Following Li
et al. (2021), we select Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson’s correlation coefficient (R)
and the standard deviation (SD) in regression to measure the prediction error. The testing results are present in Table 6,
indicating the rationality of our model design. In IRDIFF, we use PMINet to serve as a binding-aware ligand retriever and a
protein-ligand interaction information extractor.

B.2. Details of Interaction-based Retrieval-augmented Diffusion Model

Input Initialization For balancing the computational burden and the generation performance, we construct the retrieval
3D molecule database by randomly sampling 128 ligand molecules from the training set of CrossDocked2020, and the
database is fixed in both training and testing. Then for each target protein, we use PMINet to scan the retrieval database and
only select one ligand with the top-1 binding affinity predicted as the reference molecule. To represent each protein atom, we
use a one-hot element indicator {H, C, N, O, S, Se} and one-hot amino acid type indicator (20 types). Similarly, we represent
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Table 6. Performance of PMINet in binding affinity prediction. (↑) / (↓) denotes a larger / smaller number is better. Top 1 results are
highlighted with bold text.

Methods RMSE (↓) MAE (↓) SD (↓) R (↑)

GraphDTA 1.562 1.191 1.558 0.697
PMINet 1.554 1.193 1.520 0.716

each ligand atom using a one-hot element indicator {C, N, O, F, P, S, Cl}. Additionally, we introduce a one-dimensional flag
to indicate whether the atoms belong to the protein or ligand. Two 1-layer MLPs are introduced to map the inputs of protein
and ligand into 128-dim spaces respectively. For representing the connection between atoms, we introduce a 4-dim one-hot
vector to indicate four bond types: bond between protein atoms, ligand atoms, protein-ligand atoms or ligand-protein atoms.
And we introduce distance embeddings by using the distance with radial basis functions located at 20 centers between 0 Å
and 10 Å. Finally we calculate the outer products of distance embedding and bond types to obtain the edge features.

Model Architectures At the l-th layer, we dynamically construct the protein-ligand complex with a k-nearest neighbors
(knn) graph based on coordinates of the given protein and the ligand from previous layer. In practice, we set the number
of neighbors kn = 32. As mentioned in Section 4.3, we apply an SE(3)-equivariant neural network for message passing.
The 9-layer equivariant neural network consists of Transformer layers with 128-dim hidden layer and 16 attention heads.
Following Guan et al. (2023a), in the diffusion process, we select the fixed sigmoid β schedule with β1 = 1e−7 and
βT = 2e−3 as variance schedule for atom coordinates, and the cosine β schedule with s = 0.01 for atom types. The number
of diffusion steps are set to 1000.

Training Details We use the Adam as our optimizer with learning rate 0.001, betas = (0.95, 0.999), batch size 4 and
clipped gradient norm 8. We balance the atom type loss and atom position loss by multiplying a scaling factor λ = 100 on
the atom type loss. We train the parameterized diffusion denoising model of our IRDIFF on a single NVIDIA V100 GPU,
and it could converge within 200k steps.

Table 7. Details of both PMINet and Interaction-based Retrieval-augmented Diffusion Model in our IRDIFF

Network Module Backbone Input Dimensions Output Dimensions Blocks

PMINet
Protein Encoder EGNN NP × 128 NP × 128 2
Ligand Encoder EGNN NM × 128 NM × 128 2
Interaction Layer Graph Attention Layer (NP +NM )× 128 (NP +NM )× 128 1
Pooling Sum-pooling (NP +NM )× 128 1× 128 1

Sequence-based
PMINet

Protein Encoder Graph Attention Layer NP × 128 NP × 128 2
Ligand Encoder Graph Attention Layer NM × 128 NM × 128 2
Interaction Layer Graph Attention Layer (NP +NM )× 128 (NP +NM )× 128 1
Pooling Sum-pooling (NP +NM )× 128 1× 128 1

Interaction-based
Retrieval-augmented
Diffusion Model

Position Dynamics Transformer (NP +NM )× 3 (NP +NM )× 3 9
Atom Type Dynamics Transformer (NP +NM )× 128 (NP +NM )× 128 9
Protein Fusion Layer MLP NP × (128 + 128) NP × 128 1
Ligand Fusion Layer CrossAttention {NM × 128, Nref × 128} NM × 128 1

C. Ablation Study
C.1. Effectiveness of Interaction-based Retrieval

We investigate the impact of the reference ligands’ binding affinity on the generation performance of IRDIFF. In our
experiments, we choose ligands with the highest (i.e., k=1) target binding affinity as references, and we set the size n
of reference pool to 128. Here, the reference ligand is replaced by the one with the lowest binding affinity based on the
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ranking list provided by PMINet. The experiments are conducted on the IRDIFF without utilizing self augmentation
mechanism. As indicated in Table 8, utilizing low-affinity references (with an average predicted binding affinity of 4.63 by
PMINet between the reference molecule and the corresponding protein pocket) in the molecule database results in poorer
performance on binding-related metrics compared to using high-affinity references (with an average binding affinity of 7.24).
This demonstrates the effectiveness of our designs for interaction-based retrieval and reference utilization in IRDIFF.

Table 8. The impact of molecule database with different properties. (↑) / (↓) denotes a larger / smaller number is better. Top 2 results are
highlighted with bold text and underlined text, respectively.

Methods Avg. Affinity
of Ref. (↑)

Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline - -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1% 0.46 0.46 0.57 0.57 0.71 0.69
low-affinity references 3.95 -4.12 -5.58 -6.09 -6.52 -7.84 -7.91 59.3% 60.2% 0.48 0.47 0.58 0.59 0.73 0.71
high-affinity references 7.24 -5.39 -6.28 -6.40 -6.67 -8.14 -8.37 64.0% 71.5% 0.51 0.52 0.57 0.57 0.72 0.72

C.2. Reusing a Set of Reference Molecules During the Generation Process

Table 9 demonstrates that the diversity of our IRDIFF did not significantly decrease after the introduction of retrieval
augmentation. The reason for this phenomenon may be attributed to the fact that our retrieval augmentation primarily relies
on atom-wise cross-attention. Consequently, for the same protein pocket, we can repeatedly use the same reference molecule
and apply retrieval augmentation to improve the performance of the molecule generation in IRDIFF. This outcome indicates
that our method does not require the retrieval operation in the first stage in every generation process, thereby avoiding a
corresponding increase in the complexity of our algorithm with the addition of the retrieval process.

Table 9. The complete ablation study results of self augmentation and retrieval augmentation in IRDIFF (n=128, k = 1).

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1% 0.46 0.46 0.57 0.57 0.71 0.69
augmentation without PMINet -4.14 -5.64 -6.11 -6.36 -7.60 -7.67 54.9% 57.5% 0.47 0.48 0.57 0.57 0.70 0.70
+ self augmentation -4.91 -6.03 -6.53 -6.82 -7.95 -8.14 61.5% 64.4% 0.52 0.53 0.59 0.58 0.72 0.71
+ retrieval augmentation -5.39 -6.28 -6.40 -6.67 -8.14 -8.37 64.0% 71.5% 0.51 0.52 0.57 0.57 0.74 0.73
+ both augmentations -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58 0.74 0.72

C.3. Augmentation Position

We investigate what the best position of our augmentation mechanisms is in IRDIFF. early, middle, late and layer-
wise means we conduct augmentation in the first, middle, last and each layer of our diffusion denoising networks in
Equations (14) and (15), respectively. To simplify the experiments, we only use self augmentation. As presented in Table 10,
the augmentation position does not have much impact on property-related metrics, consistently improving the baseline.
Regarding binding-related metrics, the augmentation position plays a role in final performance. Thus, we select early
augmentation in practice for better trade-off between binding- and property-related metrics.

Table 10. The effect of augmentation position in IRDIFF.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1% 0.46 0.46 0.57 0.57 0.71 0.69
early augmentation -4.91 -6.03 -6.53 -6.82 -7.95 -8.14 61.5% 64.4% 0.55 0.57 0.62 0.61 0.72 0.71
middle augmentation -5.07 -6.05 -6.49 -6.64 -7.87 -7.97 62.2% 65.7% 0.51 0.52 0.60 0.59 0.74 0.72
late augmentation -4.90 -6.17 -6.57 -6.85 -7.79 -8.09 61.6% 64.0% 0.53 0.54 0.60 0.58 0.72 0.70
layer-wise augmentation -4.16 -5.78 -6.20 -6.56 -7.74 -7.97 60.0% 60.3% 0.53 0.55 0.61 0.59 0.73 0.73

C.4. Complete Results of the Ablation Study for Hyper-parameters n and k

We present the comprehensive results of the ablation study for hyper-parameters n and k in 11, where n and k denote the
size of reference pool and the number of utilized references, respectively.
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Table 11. The effect of the hyper-parameter n and k in IRDIFF, where n and k denote the size of reference pool and the number of
utilized references, respectively. (↑) / (↓) denotes a larger / smaller number is better. Top 2 results are highlighted with bold text and
underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

n = 32 -5.67 -6.21 -7.01 -7.13 -8.13 -8.30 65.2% 72.0% 0.51 0.52 0.56 0.57
n = 64 -5.74 -6.39 -7.07 -7.19 -8.21 -8.35 65.9% 72.8% 0.52 0.53 0.57 0.58
n = 128 -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58

k = 1 -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58
k = 2 -5.88 -6.62 -7.25 -7.29 -8.34 -8.42 66.6% 74.4% 0.53 0.54 0.57 0.56
k = 3 -6.03 -6.89 -7.27 -7.37 -8.42 -8.42 67.4% 72.7% 0.53 0.54 0.59 0.58

C.5. Sequence-based Protein-Molecule Interaction Networks

Significantly, our IRDIFF effectively leverages the protein-molecule interactions modeled by PMINet for 3D protein-specific
molecule generation, even when PMINet solely focuses on modeling sequence-level interactions between proteins and
ligands. This capability enhances the potential for our method to be widely applicable and scalable. For example, it
enables PMINet to utilize self-supervised learning techniques to capture interactions from a vast number of protein-molecule
sequence pairs without relying on labeled binding affinities in the future work. To verify it, we introduce the sequence-based
PMINet, denoted as PMINet-Seq in Table 7. PMINet-Seq consisting of graph attention layers (Velickovic et al., 2017) and
cross-attention layers (Borgeaud et al., 2022; Hou et al., 2019). Two graph attention layers are applied on the fully-connected
graphs of the protein GP and ligand molecule GM to model the inner-molecule interactions. Given a molecule graph GM ,
the l-th graph attention layer works as follows:

hl+1
M,i = hl

M,i +
∑

j∈NM (i)

f l
M,h

(
hl
M,i,h

l
M,j

)
(18)

where hl+1
M,i ∈ Rd is the SE(3)-invariant hidden states of the atom i of the ligand after the l-th layer. NM (i) stands for

the set of neighbors of atom i on GM , and the initial hidden state h0
M,i is obtained by an embedding layer that encodes

atom information. Given a protein graph GP and hl
P,i can be derived in the same way. Following the training procedure of

PMINet, we pre-train PMINet-Seq on PDBBind v2016 with the supervision of binding affinity to capture protein-molecule
interactions. Table 12 presents the result of replacing the PMINet with the PMINet-Seq in IRDIFF for 3D molecule
generation. It demonstrates that our IRDIFF is able to capture interaction hints from the pre-trained protein-molecule
interaction networks for 3D molecule generation, even when the protein-molecule interaction network solely focuses on the
sequence-level interactions between protein-molecule pairs.

Table 12. The performance of utilizing PMINet-Seq in IRDIFF. (↑) / (↓) denotes a larger / smaller number is better. Top 2 results are
highlighted with bold text and underlined text, respectively.

Methods
Vina Score (↓) Vina Min (↓) Vina Dock (↓) High Affinity (↑) QED (↑) SA (↑) Diversity (↑)
Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med. Avg. Med.

baseline -5.04 -5.75 -6.38 -6.52 -7.55 -7.72 54.2% 54.1% 0.46 0.46 0.57 0.57 0.71 0.69
TargetDiff -5.47 -6.30 -6.64 -6.83 -7.80 -7.91 58.1% 59.1% 0.48 0.48 0.58 0.58 0.72 0.71
IRDIFF with PMINet -5.86 -6.51 -7.14 -7.27 -8.33 -8.49 66.8% 73.9% 0.53 0.54 0.58 0.58 0.74 0.72
IRDIFF with PMINet-Seq -5.80 -6.61 -6.94 -7.09 -8.06 -8.14 62.1% 67.4% 0.51 0.52 0.58 0.57 0.71 0.70

D. More Visualization Results
We provide the visualization of more ligand molecules generated by IRDIFF, comparing to both reference and TargetDiff
(Guan et al., 2023a), as shown in Figure 7.
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Figure 7. Examples of generated ligands. Carbon atoms in grouth-truth ligands of test set, ligands generated by TargetDiff (Guan et al.,
2023a) and our model are visualized in green, cyan, and orange respectively. We report QED, SA, and Vina Dock score for each molecule.
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