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Abstract

We present SignCLIP, which re-purposes CLIP001
(Contrastive Language-Image Pretraining) to002
project spoken language text and sign language003
videos, two classes of natural languages of dis-004
tinct modalities, into the same space. SignCLIP005
is an efficient method of learning useful visual006
representations for sign language processing007
from large-scale, multilingual video-text pairs,008
without directly optimizing for a specific task009
or sign language which is often of limited size.010

We pretrain SignCLIP on Spreadthesign, a011
prominent sign language dictionary consisting012
of ∼500 thousand video clips in up to 44 sign013
languages, and evaluate it with various down-014
stream datasets. SignCLIP discerns in-domain015
signing with notable text-to-video/video-to-text016
retrieval accuracy. It also performs competi-017
tively for out-of-domain downstream tasks such018
as isolated sign language recognition upon es-019
sential few-shot prompting or fine-tuning.020

We analyze the latent space formed by the spo-021
ken language text and sign language poses,022
which provides additional linguistic insights.023
Our code and models are openly available1.024

1 Introduction025

Sign(ed) languages are the primary communication026

means for ∼70 million deaf people worldwide2.027

They use the visual-gestural modality to convey028

meaning through manual articulations in combina-029

tion with non-manual elements like the face and030

body (Sandler and Lillo-Martin, 2006). Sign lan-031

guage processing (SLP) (Bragg et al., 2019; Yin032

et al., 2021) is a subfield of natural language pro-033

cessing (NLP) that is intertwined with computer034

vision (CV) and sign language linguistics.035

SLP spans the tasks of sign language recogni-036

tion (Adaloglou et al., 2021), translation (De Coster037

et al., 2023), and production (Rastgoo et al., 2021).038

1The link is hidden for anonymous review.
2https://wfdeaf.org/our-work/
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Figure 1: Illustration of SignCLIP, comprising a text
encoder and a video encoder jointly trained on pairs
of text and multilingual signing examples. Every sign
is articulated in diverse languages and contexts with
subtle differences in hand shape, movement, place of
articulation, etc. The matrix part is taken from CLIP.

Typical datasets, equipped with spoken language 039

text and sign language glosses in addition to videos, 040

that support SLP research are RWTH-PHOENIX- 041

Weather 2014T, in German Sign Language (DGS), 042

introduced by Forster et al. (2014); Camgoz et al. 043

(2018); and CSL-Daily, in Chinese Sign Language 044

(CSL), introduced by Zhou et al. (2021). However, 045

advances on a specific task/dataset/language are 046

often limited and non-transferable to more generic 047

and challenging settings (Müller et al., 2022, 2023) 048

due to the small, domain-specific vocabulary (1,066 049

and 2,000 signs, respectively) and data size (11 and 050

23 hours, respectively). Recent sign language cor- 051

pora of a thousand signing hours have emerged 052

for relatively high-resource sign languages, e.g., 053

BOBSL (Albanie et al., 2021) for British Sign 054

Language (BSL) and YouTube-ASL (Uthus et al., 055

2024) for American Sign Language (ASL). 056

In the meanwhile, outside the world of SLP, there 057

is great progress in deep pretrained models of differ- 058

ent modalities, GPT (Achiam et al., 2023) for text, 059

masked autoencoders (He et al., 2022) for images, 060

and wav2vec 2.0 (Baevski et al., 2020) for speech, 061
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to name a few. They are commonly pretrained on a062

huge amount of data (e.g., over 15 trillion tokens063

for Llama 3, Touvron et al. (2023)) with very little064

or weak supervision, but present striking multilin-065

gual and multi-task ability, for zero-shot prediction,066

fine-tuning, and representation learning.067

Ideally, the visual aspect of sign languages, i.e.,068

larger lexical similarity due to iconicity (Johnston069

and Schembri, 2007) (illustrated in Figure 1) and070

smaller grammatical variation (Sandler and Lillo-071

Martin, 2006) than spoken languages, makes trans-072

ferring between different sign languages easier073

than the text of different spoken languages or even074

scripts. The latter faces unfair tokenization issues075

(Petrov et al., 2024) and out-of-vocabulary errors.076

At the same time, unlike discrete text tokens (see077

the comparison in Table 1), the dense continuous078

video signal is expensive to process computation-079

ally and seems daunting for the above-mentioned080

self-supervised training approaches.081

Since SLP tasks and datasets usually involve082

both the text and visual/signed modalities, we take083

inspiration from OpenAI’s CLIP model (Radford084

et al., 2021) but use contrastive learning to connect085

text with sign language videos instead of images.086

For video understanding, follow-up work such as087

VideoCLIP (Xu et al., 2021) mainly deals with088

tasks including action recognition (Zhu et al., 2020)089

and VideoQA (Xu et al., 2016; Yu et al., 2018).090

However, both CLIP, VideoCLIP, and other existing091

multimodal models understand visual content on092

a coarse-grained level and generic domain and do093

not address the intricacy of sign language. We094

show the lack of sign language understanding in095

contemporary AI models both intuitively (Figure 3096

in Appendix A) and empirically (Table 2).097

This work uses sign-language-specific data to098

train a CLIP-like model for SLP. We first validate099

the approach’s feasibility on fingerspelling, a sub-100

system of sign language, by a model named Finger-101

CLIP (§4), which correctly understands the finger-102

spelling of individual letters. We then curate the103

Spreadthesign3 dictionary as a large-scale pretrain-104

ing dataset consisting of ∼500 hours of signing,105

as well as diverse public downstream task datasets106

to run comprehensive pretraining, fine-tuning, and107

evaluation on full-fledged sign languages. By con-108

trastive training on ∼500 thousand video-text pairs,109

we obtain a multimodal and multilingual model110

3https://www.spreadthesign.com/. The use of the
data is under a license granted by Spreadthesign.

named SignCLIP (§5), illustrated by Figure 1. Sign- 111

CLIP excels at various SLP tasks and datasets and 112

presents a compelling latent space for signed video 113

content aligned with spoken language text (§6). 114

2 Background: Sign Language 115

Representation 116

Representation is a key challenge for SLP. Unlike 117

spoken languages, sign languages have no widely 118

adopted written form. As sign languages are con- 119

veyed through the visual-gestural modality, video 120

recording is the most straightforward way to cap- 121

ture them. The final goal of SignCLIP is to rep- 122

resent a sign language video clip by an embed- 123

ding that aligns with a ubiquitous text encoder like 124

Sentence-BERT (Reimers and Gurevych, 2019). 125

Cheng et al. (2023), a work related to ours, uses a 126

combination of a domain-agnostic and a domain- 127

aware video encoder to address video-to-text re- 128

trieval. Generally, end-to-end training on the raw 129

videos is computationally costly, and various inter- 130

mediate representations alleviate this issue. 131

VideoCLIP and Video Encoders Our work 132

adapts VideoCLIP, which is pretrained by gen- 133

eral instructional videos from the HowTo100M 134

(Miech et al., 2019) dataset. We aim at replacing 135

HowTo100M with domain-specific sign language 136

videos, such as the dataset How2Sign (Duarte et al., 137

2021), albeit on a considerably smaller scale. 138

Videos are very dense temporally (frame rate) 139

and spatially (video resolution). A 3D-CNN-based 140

video encoder is often used to extract informative 141

features with reduced dimensionalities for down- 142

stream tasks. VideoCLIP uses an S3D (Zhang et al., 143

2018) model pretrained on HowTo100M that pro- 144

duces one video token (i.e., a video embedding for 145

the temporal window) per second. For SLP, it is 146

possible to use a video encoder pretrained specif- 147

ically on sign language videos. A prominent one 148

is the I3D (Carreira and Zisserman, 2017) model 149

pretrained on the BSL sign language recognition 150

task (Varol et al., 2021) with the BSK-1K dataset 151

(Albanie et al., 2020). A more recent approach to 152

simultaneously address temporal and spatial com- 153

plexity is the Video Swin Transformer proposed by 154

Liu et al. (2022), and Prajwal et al. (2022) trains 155

one such model for BSL fingerspelling recognition. 156

Pose Estimation A potentially more inter- 157

pretable and universal way of extracting sign 158

language-related features from videos is human 159
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pose estimation (Zheng et al., 2023), for example,160

using MediaPipe Holistic (Lugaresi et al., 2019;161

Grishchenko and Bazarevsky, 2020). Each video162

frame is converted into the location (X, Y, Z) of163

543 full body keypoints in a 3D space. However,164

the immediate applicability of the pose estimation165

systems for SLP is questionable (Moryossef et al.,166

2021), and known issues such as the lack of accu-167

rate depth information are presented (Holmes et al.,168

2024). Generally, there is a trade-off between user-169

friendliness and accuracy for pose estimation tools170

and SLP researchers often prefer MediaPipe Holis-171

tic for the former (Selvaraj et al., 2022) over others172

like OpenPose (Cao et al., 2019) and AlphaPose173

(Fang et al., 2022). An even more universal alter-174

native approach to track keypoints named Tracking175

Everything Everywhere All at Once is proposed by176

Wang et al. (2023). Sevilla et al. (2024) uses a177

similar CoTracker (Karaev et al., 2023) model to178

study sign language prosody. Such models produce179

smoother signals than traditional pose estimation.180

Discrete Representation Non-standard written181

forms of sign language, including SignWriting182

(Sutton, 1990), HamNoSys (Prillwitz and Zienert,183

1990), and glosses (Johnston, 2008), offer the pos-184

sibility to incorporate sign language content into a185

text-based NLP pipeline (Jiang et al., 2023). How-186

ever, a good segmentation (Moryossef et al., 2023)187

and transcription model to process raw video input188

is first required, which is not well-researched and189

is not part of this paper.190

Recently, vector quantization (VQ) approaches191

(Van Den Oord et al., 2017) such as SignVQNet192

(Hwang et al., 2023) demonstrate the ability to con-193

vert the continuous signal of videos/poses to dis-194

crete tokens similar to spoken language sub-words195

(Sennrich et al., 2016), which might be a promising196

direction to pursue in future work.197

Comparison In this work, we only empirically198

experiment with the video encoder and pose-based199

methods since there are not yet mature and open so-200

lutions for the others at the time of writing. Given201

a hypothetical 10-second, 30 FPS, 480p (640×480),202

RGB (3 channels) video of 12 consecutive signs,203

we compare the dimensionalities of the most com-204

mon representations in Table 1. These approaches205

compress the raw videos to a sequence of video206

tokens compatible with a Transformer (Vaswani207

et al., 2017) or a pretrained language model for208

further training and processing (Gong et al., 2024).209

Representation Temporal Spatial Interpretable

Original video 10x30 640×480×3 –

S3D (HowTo100M) 10 512 no

I3D (BSL-1K) 10 1024 no

MediaPipe Holistic 10×30 543×3 yes

VQ (e.g., SignVQNet) 10 1024* no

SignWriting/HamNoSys/gloss 12 1024* yes

Table 1: Temporal and spatial dimensions of different
sign language representations for a 10-second, 30 FPS,
480p (640×480), RGB (3 channels) video consisting of
12 signs. In the parentheses are the datasets on which
the models are pretrained. For discrete representations,
we assume the embedding size to be 1024, marked with
an asterisk (*), but this can be chosen arbitrarily.

3 Model Architecture 210

We follow the setups in VideoCLIP and reuse their 211

codebase4. The most essential model architecture 212

with minor modifications to adapt our experiments 213

is described here. We take pairs of video and text 214

samples (v, t) as inputs, where for each video clip, 215

cv is a sequence of continuous video frames and 216

is processed by a video encoder fθve . This is then 217

followed by a trainable MLP projection layer, fθvp , 218

to project the embedding to the same dimension, 219

d = 768, as the word embedding on the text side: 220

xv = fθvp(stopgrad(fθve(cv)) (1) 221

The frozen video encoder fθve is by default a 222

3D-CNN network but can be replaced by any other 223

visual backbone or a black-box pose estimation 224

system as summarized in Table 1. Likewise, text 225

token vectors xt are acquired through embedding 226

lookup from a frozen BERT model (Devlin et al., 227

2019). Then xv and xt are fed into two separate 228

trainable Transformers, fθv and fθt , followed by 229

average pooling over the sequence of the tokens to 230

obtain the temporally aggregated embeddings: 231

zv = Avg(fθv(xv)), zt = Avg(fθt(xt)) (2) 232

We optionally add two linear multimodal projec- 233

tion layers on top of zv and zt, which are missing 234

in VideoCLIP but present in CLIP (see Figure 3 235

of the CLIP paper). Finally, we employ the In- 236

foNCE loss (Oord et al., 2018) as the contrastive 237

objective to discern the relationship between the 238

embedded N video-text pairs in each mini-batch 239

and run contrastive training over the whole dataset. 240

4https://github.com/facebookresearch/fairseq/
tree/main/examples/MMPT
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4 FingerCLIP241

As a proof of concept, we first apply this contrastive242

training approach to Fingerspelling (Battison, 1978;243

Wilcox, 1992; Brentari and Padden, 2001), a sub-244

system of sign languages heavily influenced by the245

surrounding spoken languages. For concepts that246

do not (yet) have associated signs (names of people,247

locations, organizations, etc.), sign language users248

borrow a word of a spoken language by spelling it249

letter-by-letter with predefined signs for that lan-250

guage’s alphabet. Isolated fingerspelling recogni-251

tion5 can therefore be considered a toy task simi-252

lar to the MNIST (Deng, 2012) handwritten digits253

classification task in CV. We name the model Fin-254

gerCLIP, a mini-version of SignCLIP (§5).255

Dataset We start with the RWTH German Finger-256

spelling Database (Dreuw et al., 2006), containing257

∼1400 videos of 35 DGS fingerspelling and num-258

ber signs, five of which contain inherent motion.259

We provide details and an illustration of the dataset260

in Appendix B. We split all examples randomly into261

training/validation/test sets at the ratio of 8:1:1.262

Training Details We adhere to most implementa-263

tion details outlined in VideoCLIP unless otherwise264

specified. The two trainable Transformers, fθv and265

fθt , are initialized with the pretrained bert-base-266

uncased weights. We train 25 epochs within two267

hours on a Tesla V100-SXM2-32GB GPU, vali-268

dated by loss on the validation set. For contrastive269

training, we construct each batch as a collection of270

35 different signs with corresponding text prompts271

“Fingerspell the letter <letter_name> in DGS.”. By272

optimizing the InfoNCE loss, we move the embed-273

ding of a sign closer to the paired text, and further274

away from the remaining 34 negative examples.275

We test different combinations of video en-276

coders: (a) S3D HowTo100M video features6; (b)277

I3D BSL-1K (M+D+A) video features7; (c) Medi-278

aPipe Holistic pose estimation, and training strate-279

gies: (a) zero-shot VideoCLIP (no training); (b)280

fine-tuning VideoCLIP; (c) training from scratch.281

MediaPipe Holistic runs offline on a low-end282

CPU device. Pose estimation is normalized to a283

consistent scale by setting the mean width of each284

person’s shoulders to 1, and the mid-point to (0, 0).285

5Continuous fingerspelling recognition is more complex
and is often solved by a CTC loss like speech recognition.

6https://github.com/antoine77340/S3D_HowTo100M
7https://www.robots.ox.ac.uk/~vgg/research/

bslattend/

The leg values are removed since they are irrele- 286

vant to signing. We further augment the data by 287

randomly rotating, shearing, and scaling the poses. 288

Evaluation We view fingerspelling understand- 289

ing as a text-to-video/video-to-text retrieval task. 290

The candidates are ranked for both directions by 291

a dot-product-based similarity score to each tex- 292

t/video query in the latent space. For the test text 293

prompt of each sign, there is possibly more than 294

one correct video (e.g., the same letter signed by 295

different signers) in the test video pool, and they 296

are all considered successful retrieval. We thus 297

evaluate the text-to-video retrieval task by preci- 298

sion@k, i.e., what percent of the top k candidates 299

are correct answers. Each test video query has 300

only one correct text prompt out of the 35 possible 301

prompts. We thus evaluate the video-text retrieval 302

task by recall@k, i.e., the chance to include the 303

only correct answer by taking the top k candidates. 304

precision@1 and recall@1 can be interpreted as the 305

retrieval accuracy. We also add the metric median 306

retrieval rank, i.e., the median value of the rank of 307

the first correct answer in the candidate lists. We 308

present the experimental results in Table 2. 309

Discussion FingerCLIP distinguishes itself from 310

the supervised baseline method (Dreuw et al., 2006) 311

in that it is not directly optimized for classification. 312

Instead, a contrastive objective ties positive pairs 313

of text and videos by learning meaningful embed- 314

dings, which are then used for similarity-based 315

retrieval. We find video-to-text retrieval reasonably 316

more challenging than text-to-video retrieval8 since 317

text-to-video retrieval is also often of less value, as 318

a trivial dictionary look-up does the job perfectly. 319

E1, zero-shot VideoCLIP, presenting random 320

guess results, shows that a common video under- 321

standing network pretrained on HowTo100M does 322

not necessarily address the nuance of sign language, 323

even simply as fingerspelling. Therefore, dedicated 324

training on sign language data is essential. Compar- 325

ing E1.1 and E1.2, neither is fine-tuning an existing 326

VideoCLIP checkpoint helpful, so in the rest of the 327

paper, models are trained from scratch. 328

In E2, I3D BSL-1K sign-language-specific fea- 329

tures outperform HowTo100M S3D video features 330

(E1.2), especially when downsampled to the same 331

dimension as S3D (E2.1). MediaPipe Holistic pose 332

estimation as a feature extractor (E3) works better 333

8Note that the relatively low precision@5/10 values are
uncomparable to the high recall@5/10 values, since the former
makes the task harder, while the latter simplifies the task.
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Text-to-video Video-to-text

Experiment P@1↑ P@5↑ P@10↑ MedianR↓ R@1↑ R@5↑ R@10↑ MedianR↓

E0 Dreuw et al. (2006) (supervised HMM, appearance-based features) – – – – 0.64 – – –

Explore training strategy
E1 VideoCLIP zero-shot (+ S3D HowTo100M video features) 0.03 0.02 0.03 22 0.02 0.14 0.28 18
E1.1 VideoCLIP fine-tuned (+ S3D HowTo100M video features) 0.40 0.36 0.30 2 0.31 0.75 0.89 2
E1.2 VideoCLIP trained from scratch (+ S3D HowTo100M video features) 0.54 0.35 0.28 1 0.28 0.69 0.87 3

Explore video-based (I3D) features
E2 FingerCLIP trained from scratch (+ I3D BSL-1K video features) 0.63 0.47 0.37 1 0.37 0.78 0.91 2
E2.1 E2 + feature dimension average pooled from 1024 to 512 0.74 0.56 0.44 1 0.47 0.82 0.94 2

Explore pose-based features
E3 FingerCLIP trained from scratch (MediaPipe Holistic pose features) 0.89 0.67 0.42 1 0.68 0.97 1.00 1
E3.1 E3 + dominant hand features only (26 times less keypoints) 1.00 0.72 0.42 1 0.82 0.99 1.00 1
E3.2 E3.1 + 2D augmentation on pose features (σ = 0.2) 0.91 0.74 0.43 1 0.93 1.00 1.00 1

Table 2: FingerCLIP experimental results evaluated on the test set. P@k denotes precision@k, R@k denotes
recall@k, and MedianR denotes the median retrieval rank. The best score of each column is in bold. E0 is taken
from Dreuw et al. (2006) as a baseline (R@1 derived from the best error rate 35.7%).

than 3D-CNN-based video encoders, presumably334

because it is more universal than an I3D model pre-335

trained on a particular dataset and sign language.336

For fingerspelling understanding, focusing on the337

dominant hand (E3.1) is beneficial9, which dras-338

tically reduces the number of keypoints from 543339

to 21. 2D data augmentation further improves the340

overall performance. Since MediaPipe Holistic as341

features perform the best and are more interpretable342

and operable for potential data normalization and343

augmentation, we decide to use it as the frozen344

video encoder fθve for the rest of the paper10.345

5 SignCLIP Pretraining346

To fully realize the power of contrastive learning,347

we train and evaluate SignCLIP on larger and more348

diverse sign language datasets. For efficient experi-349

menting, we start exploring datasets consisting of350

relatively short-duration sign language video ex-351

amples, e.g., for the task of isolated sign language352

recognition (ISLR) instead of machine translation.353

In Table 3, we summarize recent large-scale sign354

language datasets in this context, focusing on ASL,355

one of the highest-resourced languages in SLP.356

5.1 Spreadthesign Pretraining Dataset357

Spreadthesign is used as the pretraining dataset358

for its large-scale and multilingual nature11. In359

this work, we limit the text translations to English360

9Note that the DGS finger alphabet is one-handed.
10An S3D/I3D model fine-tuned end-to-end may overcome

some limitations of pose estimation and yield superior per-
formance for specific tasks. In this work, we trade pursuing
state-of-the-art numbers for the universality, interpretability,
and cheap computation of pose estimation.

11https://www.spreadthesign.com/en.us/about/
statistics/. The data used in this work was crawled in
2023 and might differ slightly from the official statistics.

only to avoid a cartesian product number of data 361

points, for the pretraining to be economical and 362

sign-language-focused. After filtering English text, 363

our dataset consists of 18,423 concepts in 41 sign 364

languages, resulting in 456,913 video-text pairs 365

with a total duration of ∼500 hours. The data dis- 366

tribution is presented in Appendix C in detail. We 367

split all examples randomly into training, valida- 368

tion, and test sets at the ratio of 98:1:1. A caveat of 369

this dataset is that there is normally only one sign- 370

ing example per text concept per sign language, 371

which means the pretraining is prone to overfitting 372

the exact signs by particular signers. We still be- 373

lieve that the diverse text-signing pairs will guide 374

the model to learn a useful visual representation. 375

We add the Spreadthesign data scale and that of 376

CLIP and VideoCLIP to Table 3 for comparison. 377

CLIP was trained on 400 million text-image pairs 378

collected from the Internet (500K queries and up 379

to 20K pairs per query); VideoCLIP was pretrained 380

on 1.2 million videos from HowTo100M (each lasts 381

∼6.5 minutes with ∼110 clip-text pairs). We addi- 382

tionally add ImageNet (Deng et al., 2009), which 383

has a relatively close scale to Spreadthesign. 384

5.2 Training and Evaluation Details 385

Most implementation details and evaluation proto- 386

cols in FingerCLIP (§4) are reused for SignCLIP. 387

The text prompts now consist of the text content 388

prepended with a spoken and a sign language tag, 389

inspired by multilingual machine translation in 390

Johnson et al. (2017). For example, the text prompt 391

for signing the phrase “Hello, can I help you?” 392

in ASL is “<en> <ase> Hello, can I help you?”, 393

tagged by the ISO 639-3 language code. Fitting 394

most examples, we limit the context length of the 395
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Dataset Language Type/Task #examples #signs/#classes #signers

RWTH German Fingerspelling (Dreuw et al., 2006) DGS Isolated Fingerspelling 1,400 35 20

ChicagoFSWild (Shi et al., 2018) ASL Continuous fingerspelling 7,304 – 160
ChicagoFSWild+ (Shi et al., 2019) ASL Continuous fingerspelling 55,232 – 260
Google – American Sign Language Fingerspelling Recognition ASL Continuous fingerspelling 67,208 – 100

Google – Isolated Sign Language Recognition (i.e., asl-signs) ASL ISLR 94,477 250 21
WLASL (Li et al., 2020) ASL ISLR 21,083 2,000 100
ASL Citizen (Desai et al., 2023) ASL ISLR 83,399 2,731 52
Sem-Lex (Kezar et al., 2023) ASL ISLR 91,148 3,149 41

How2Sign (Duarte et al., 2021) ASL Continuous signing 35,000 16,000 11

ASL-LEX (Sehyr et al., 2021) ASL Dictionary (phonological) 2,723 2,723 (unknown)
Spreadthesign (SignCLIP, our filtered version) Multilingual Dictionary 456,913 18,423* (unknown)

ImageNet (Deng et al., 2009) – Image classification 1,431,167 1,000 –
HowTo100M (Miech et al., 2019) (VideoCLIP) – Video understanding 136,000,000 – –
CLIP (Radford et al., 2021) – Contrastive learning 400,000,000 – –

Table 3: Summarization of datasets consisting of relatively short-duration video examples, compared with Spreadthe-
sign and common CV datasets. SignCLIP has been tested with the datasets marked with a checkmark. asl-signs is
part of PopSign ASL (Starner et al., 2024), full data not released yet. #signs/#classes for Spreadthesign is marked
with an asterisk (*) since the signs of a concept across different sign languages are barely classified as one sign.

video Transformer fθv to 256 tokens, equivalent396

to a 10-second, 25 FPS video clip; and that of the397

text Transformer fθt to be 64. Both Transformers398

are initialized with the pretrained bert-base-cased399

weights and trained on an NVIDIA A100-SXM4-400

80GB GPU to maximally afford a batch size of401

44812. We also measure the training efficiency by402

the number of parameters and the training time.403

For evaluation, we include the same video-to-404

text metrics used in FingerCLIP and omit text-to-405

video for simplicity, as the latter correlates with and406

is more trivial than the former. We additionally test407

the models with three ASL ISLR datasets in a zero-408

shot way to evaluate out-of-domain generalization.409

We perform the following text preprocessing to410

mitigate the effect of shifted text distribution when411

building text prompts from the raw gloss labels:412

(1) lowercasing the glosses; (2) removing the gloss413

index for different variants of a sign; (3) filtering414

their test sets by known text labels in Spreadthesign,415

which reduces the total number of signs/classes.416

Starting from a baseline setup that resembles E3417

in FingerCLIP, we increase the video Transformer418

layers from 6 to 12 and add linear multimodal pro-419

jection layers after temporal pooling. For pose data,420

we always simplify the face by using the contour421

keypoints only, resulting in 203 keypoints. We fur-422

ther experiment with the following modifications:423

Pose Data Preprocessing Before the regular nor-424

malization, Dshoulders = 1,mid–point = (0, 0),425

as performed in all experiments, we further try426

12For reference, CLIP was trained with batch size 32,768
and VideoCLIP was trained with batch size 512.

(1) removing redundant keypoints and reposition- 427

ing the wrist to the hand model’s prediction (E6); 428

(2) standardizing the keypoints by subtracting the 429

mean pose values of all examples from Spreadthe- 430

sign and dividing by the standard deviation (E6.1); 431

(3) anonymizing by removing the appearance from 432

the first frame then adding the mean pose (E6.2). 433

Pose Data Augmentation After data normaliza- 434

tion, we also employ data augmentation (Boháček 435

and Hrúz, 2022) at training time to improve the 436

models’ robustness, including (1) randomly flip- 437

ping the poses horizontally; (2) 2D spatial augmen- 438

tation as done in FingerCLIP; (3) temporal augmen- 439

tation of the signing speed by linear interpolation 440

between frames; (4) Gaussian noise on keypoints. 441

5.3 Experimental Results and Discussion 442

We present the experimental results in Table 4. In 443

this scenario, an accurate retrieval is harder than 444

FingerCLIP because there are 3,939 unique text 445

prompts in the test set of 4,531 examples. The 446

in-domain results, E6.1 at the top (attained with in- 447

creased video layers and keypoint standardization), 448

are impressive given the challenging nature. We at- 449

tribute it to (1) the hypothesized multilingual trans- 450

fer effect thanks to sign language iconicity; and 451

(2) the broader supervision signal of contrastive 452

learning than fixed labels, coming from example 453

phrases consisting of individual signs (Figure 1). 454

On the other hand, zero-shot performance on 455

out-of-domain data is deficient. We posit that to 456

reach noticeable performance on out-of-domain 457

data, few-shot learning or fine-tuning (§6.1) is es- 458

sential given the current scale of pretraining. Nev- 459
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Video-to-text (In-domain) Video-to-text (out-of-domain) Efficiency

Experiment R@1↑ R@5↑ R@10↑ MedianR↓ AS MedianR↓ AC MedianR↓ SL MedianR↓ #Params↓ Time↓

E4 Baseline 0.33 0.64 0.77 3/3939 103/213 253/1625 455/1967 175M 29h

Initial architectural changes
E5 E4 + six more video layers 0.37 0.68 0.80 2 104 192 382 217M 28h
E5.1 E5 + multimodal projection layer 0.38 0.69 0.80 2 104 216 418 218M 15h

Pose data preprocessing
E6 E5 + keypoint reduction & reposition 0.37 0.68 0.80 2 105 230 665 217M 32h
E6.1 E6 + keypoint standardization 0.40 0.71 0.83 2 99 273 551 217M 14h
E6.2 E6.1 + pose anonymization 0.37 0.68 0.79 2 101 251 577 217M 40h

Pose data augmentation
E7 E5 + pose random flipping (p = 0.2) 0.36 0.67 0.79 2 105 200 435 217M 29h
E7.1 E5 + spatial 2D augmentation (σ = 0.2) 0.35 0.65 0.78 3 102 219 377 217M 39h
E7.2 E5 + temporal augmentation (σ = 0.2) 0.39 0.69 0.80 2 104 187 372 217M 62h
E7.3 E5 + Gaussian noise (σ = 0.001) 0.37 0.68 0.80 2 104 198 364 217M 29h

Test-time-only normalization
E8* E7.2 + flipping to right-handed 0.39 0.69 0.80 2 103 187 359 – –
E8.1* E8 + pose anonymization (zero-shot-only) – – – – 101 214 380 – –

Table 4: SignCLIP experimental results evaluated on the test set. R@k denotes recall@k, and MedianR denotes the
median retrieval rank as well as the total number of unique signs/classes. AS = asl-signs, AC = ASL Citizen, SL =
Sem-Lex. Experiments marked with an asterisk (*) are test-time only. The best score of each column is in bold.

ertheless, starting from E7, we experiment with460

a few data augmentation techniques to increase461

data variation since the previous standardization462

benefits in-domain results but hurts out-of-domain463

results. We then attempt test-time-only normaliza-464

tion to shift the test distribution of the poses closer465

to training. As a result, we manage to gradually466

fight against overfitting and improve the overall467

zero-shot performance by temporal augmentation468

(E7.2) and test-time pose flipping if the right hand469

is not present (E8). The former provides robustness470

to signing speed change, and the latter is helpful for471

unseen test examples signed by left-handed signers.472

6 Downstream Tasks and Analysis473

In this section, we evaluate SignCLIP on several474

downstream tasks and datasets, and we discuss the475

ideas for further enhancement and evaluation in §8.476

6.1 Isolated Sign Language Recognition477

We provide a comprehensive evaluation for the478

three ASL ISLR datasets in Table 5. For zero-479

shot prediction, we follow the optimal setups in480

E8/E8.1 but skip any text preprocessing on raw481

glosses for a fairer comparison. For few-shot learn-482

ing, we randomly sample 10 example videos for483

each class from training data and use a nonparamet-484

ric k-nearest neighbors (KNN) algorithm to infer485

test labels based on pose embedding similarity. We486

additionally train a supervised logistic regression487

classifier by scikit-learn on top of the embedded488

poses, also known as linear probe (Alain and Ben-489

gio, 2016). We also train SignCLIP models from490

scratch or fine-tune them from the E7.2 checkpoint491

with the three datasets for 25 epochs with batch size 492

256. Outliers longer than 256 frames are removed. 493

Data Model R@1↑ R@5↑ R@10↑ MedianR↓

AS

SignCLIP (E8.1) zero-shot 0.01 0.03 0.05 118/250
SignCLIP (E8.1) 10-shot 0.01 0.03 0.06 109
SignCLIP (E8.1) + linear 0.12 0.30 0.41 17

SignCLIP train from scratch 0.74 0.91 0.94 1
SignCLIP fine-tuned 0.74 0.91 0.94 1
SignCLIP fine-tuned + linear 0.78 0.92 0.94 1

SOTA PopSign ASL 0.84* – – –
SOTA Kaggle competition 0.89* – – –

AC

SignCLIP (E8) zero-shot 0.00 0.00 0.00 1296/2731
SignCLIP (E8) 10-shot 0.05 0.16 0.23 56
SignCLIP (E8) + linear 0.23 0.47 0.57 7

SignCLIP train from scratch 0.39 0.71 0.80 2
SignCLIP fine-tuned 0.46 0.77 0.84 2
SignCLIP fine-tuned + linear 0.60 0.84 0.89 1

SOTA ASL Citizen 0.63 0.86 0.91 –

SL

SignCLIP (E8) zero-shot 0.01 0.02 0.03 853/3837
SignCLIP (E8) 10-shot 0.02 0.06 0.10 235
SignCLIP (E8) + linear 0.15 0.29 0.36 38

SignCLIP train from scratch 0.14 0.30 0.38 32
SignCLIP fine-tuned 0.16 0.34 0.42 22
SignCLIP fine-tuned + linear 0.30 0.48 0.55 6

SOTA Sem-Lex 0.67* – – –
SOTA + auxiliary phonology 0.69* – – –

Table 5: Comprehensive evaluations of SignCLIP on the
test set of three ASL ISLR datasets. AS = asl-signs, AC
= ASL Citizen, SL = Sem-Lex. The best score SignCLIP
achieves on each dataset is in bold. SOTA numbers
marked with an asterisk (*) are not directly compara-
ble to ours. SOTA PopSign ASL and SOTA Kaggle are
trained with asl-signs but tested on a private test set;
SOTA Sem-Lex is tested with a reduced test set of 2,731
classes that are aligned with ASL Citizen/ASL-LEX.

In general, proper zero-shot prediction is hin- 494

dered by distribution shift on both modalities: 495

(1) for asl-signs dataset, zero-shot prediction is 496

flawed because we only have pose data normalized 497

in an unknown way from Kaggle instead of the 498

7



raw videos13; (2) ASL Citizen uses all upper case499

glosses while Sem-Lex uses snake case glosses,500

both unseen during training. For asl-signs, we find501

pose anonymization eases the domain shift issue in502

zero-shot (E8.1) and other settings. Besides, pose-503

based few-shot KNN greatly improves the deficient504

zero-shot results, bypassing the influence of out-505

of-domain glosses. Finally, fine-tuning SignCLIP506

with a pretrained checkpoint, compared to training507

from scratch, yields closer results to the state-of-508

the-art (SOTA) reported in the three papers.509

6.2 Sign Language Identification510

Sign language identification (Gebre et al., 2013)511

can be achieved by simply ranking text prompts512

of different sign languages without actual content,513

e.g., “<en> <ase>” for ASL. We evaluate the best514

checkpoint E6.1 for in-domain test data and obtain515

0.99 recall@1, which solves the task perfectly with-516

out any direct supervision. However, the identifica-517

tion task is ill-defined in that the model can learn518

to identify signers for particular sign languages.519

6.3 Latent Space Exploration520

We make SignCLIP accessible via a RESTful API521

and perform analysis in a Colab notebook14.522

Distributional Hypothesis for Sign Language523

We revisit the distributional hypothesis (Lenci and524

Sahlgren, 2023) in a sign language context based525

on the pose/sign embeddings instead of text/word526

(Mikolov et al., 2013). As illustrated by Figure 2,527

unlike a word with a discrete, unique text token,528

each sign has multiple realizations scattered in a529

continuous space. By aligning pose representation530

to text with contrastive learning, we have realized531

distributional semantics in sign language, reflected532

by the cluster center of each sign, while maintain-533

ing individual variance.534

What Is the Most Iconic Sign Crosslingually?535

Iconicity is one of the key motivations for training536

a multilingual SignCLIP (Figure 1), and now we537

ask this linguistic question back to the model. We538

rank a sampled subset of 302 signs from Spreadthe-539

sign based on the variance of the pose embeddings540

across 20+ different sign languages. As a result,541

the sign for “scorpion” with a universal hook hand542

shape ranks at the top, and the motivational exam-543

ple “house” sign also ranks high (51/302). On the544

13The authors of PopSign ASL promise to release the full
data, then we can do a fairer and more meaningful evaluation.

14The link is hidden for anonymous review.

Figure 2: King – Man + Woman = Queen analogy re-
visited. 14 video examples of each sign are randomly
sampled from the ASL Citizen dataset, embedded by a
fine-tuned SignCLIP pose encoder, and then visualized
by t-SNE (perplexity=15) with different shapes and col-
ors. Cluster centers are represented with a big symbol.

opposite, the signs for numbers tend to rank low 545

due to the diverse signing styles across languages. 546

We append the full rank in Appendix D. 547

7 Conclusion: Where Are We for SLP? 548

This work involves SLP, an interdisciplinary field 549

that suffers from low-resourceness compared to 550

mainstream NLP and CV. To overcome the non- 551

generalizability of a specific dataset/task/language, 552

we adapt (Video-)CLIP and propose SignCLIP. 553

SignCLIP is trained on Spreadthesign, a multilin- 554

gual, generic sign language dictionary consisting 555

of ∼500 hours of signing in 41 sign languages, and 556

is evaluated extensively for various purposes. 557

SignCLIP demonstrates excellent in-domain per- 558

formance but falls short of immediate zero-shot 559

prediction on downstream ISLR tasks. This finding 560

is consistent with previous CV studies (Li et al., 561

2017) before CLIP reached its scale. Similar mod- 562

els trained on smaller datasets close to an ImageNet 563

scale performed much worse than supervised base- 564

lines on common benchmarks. However, a super- 565

vised approach usually requires meticulous, task- 566

specific data collection. This is more demanding 567

for SLP, a niche domain lacking human experts. 568

As a middle ground between full zero-shot pre- 569

diction and full supervision, few-shot learning or 570

fine-tuning is essential to tackle domain shift and 571

is more realistic given the present methodology 572

and data scale. The cross-lingual transfer effect is 573

prospective for sign language due to iconicity and 574

smaller grammatical discrepancies. With no sur- 575

prise, under a sensible data condition, the universal 576

pretraining paradigm that is transforming NLP and 577

CV is also a promising research direction for SLP. 578
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8 Limitations579

The main limitation of this work is the data scale,580

which interestingly is the primary breakthrough of581

the original CLIP work. Apart from the inherent582

data scarcity issue in SLP research, the concrete583

limitations of SignCLIP come in a few aspects.584

First, to be not dataset/task/language-specific585

while possibly large-scale, we choose Spreadthe-586

sign as our pretraining dataset (§5.1), which is in-587

deed highly multilingual and untied to any SLP588

task. However, we are unable to release the dataset589

publicly, and future researchers who are interested590

in it have to first resolve or purchase the license591

from Spreadthesign. Fortunately, it is possible to592

augment or replace Spreadthesign with recently re-593

leased public datasets of comparable or larger size,594

which should increase data density and variation595

sign-wise, but with potentially decreased diversity596

and balance among different sign languages.597

Secondly, training large models on video data598

is very costly. The principle of this work is to fin-599

ish every training process in less than three days600

on a single Nvidia A100 GPU, and we managed601

this goal (Table 4) by using pose-based models, a602

moderate context length of 256 frames, and lim-603

iting spoken language to English only. To scale604

up, multiple GPU training can be exploited, and ar-605

chitectural modifications that reduce the sequence606

length must be employed, for which we refer to607

several techniques discussed in §2.608

As a result of the above-mentioned optimiza-609

tions, we will be able to remove the limitation of610

the relatively short context, and then train and eval-611

uate for longer-range tasks such as machine transla-612

tion and sign language production. This will make613

SignCLIP more versatile and generalizable, as well614

as support other types of deep pretrained networks615

for SLP, such as large language models.616
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A An Intuitive Test on ChatGPT’s Sign Language Understanding Ability1035

Figure 3: Screenshot of prompting ChatGPT 4o to sign “house” in ASL, which lacks sign language knowledge and
tries to sketch a picture of a house on the open palm, tested in June 2024.
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B Introduction of the RWTH German Fingerspelling Database 1036

RWTH German Fingerspelling Database contains ∼1400 videos of 20 different signers. Each video was 1037

recorded by one webcam named cam1, recording the dominant hands only with a resolution of 320x240 1038

at 25 FPS; and one camcorder named cam2, recording the whole body with a resolution of 352x288 at 25 1039

FPS. We exclude all cam1 videos for pose-based models since we assume that the pose estimation system 1040

expects whole-body input. 1041

Figure 4: Examples of the German finger-alphabet taken from the RWTH gesture database recorded with the
webcam showing the letters A-Z, Ä, Ö, Ü, SCH, and the numbers 1 to 5. Note that J, Z, Ä, Ö, and Ü are dynamic
gestures. Figure taken from https://www-i6.informatik.rwth-aachen.de/aslr/fingerspelling.php.
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C Extended Spreadthesign Data Analysis1042

Following the data statistics presented in §5.1, Figure 5 illustrates the distribution of the video examples1043

in 41 sign languages we use from Spreadthesign.1044

Figure 5: Sign language distribution of video examples in Spreadthesign, using the ISO 639-3 language codes.

Figure 6 illustrates the distribution of pose/video length in Spreadthesign, depending on which we1045

decide the pretraining context length to be 256.1046

Figure 6: Pose length distribution of video examples in Spreadthesign. The two red vertical lines denote the 1st and
99th percentile of the number of frames.

Figure 7 illustrates the distribution of the number of video examples for 18,423 cross-lingual concepts1047

in Spreadthesign. Most concept has only one video example, or one video example per sign language, and1048

very few concepts have more than one video example for one specific sign language.1049
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Figure 7: Concept distribution of video examples in Spreadthesign.
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D Full Rank of the Signs for Iconicity Study1050

1 ( ' s c o r p i o n ' , 1 8 0 . 4 4 4 1 7 )1051
2 ( ' r e d u c t i o n ' , 1 8 1 . 4 0 4 2 4 )1052
3 ( ' i l l u s t r a t i o n ' , 1 8 2 . 5 8 5 0 4 )1053
4 ( ' e n v e l o p e ' , 1 8 2 . 6 3 1 2 4 )1054
5 ( ' o b s e r v e ' , 1 8 3 . 6 6 7 8 5 )1055
6 ( ' go ld ' , 1 8 4 . 1 5 1 8 4 )1056
7 ( ' t e l e p h o n e ' , 1 8 4 . 3 6 6 7 9 )1057
8 ( ' e m a i l ' , 1 8 5 . 0 5 3 5 )1058
9 ( ' c e n t e r ' , 1 8 5 . 3 5 8 7 3 )1059

10 ( ' k n i f e ' , 1 8 5 . 7 0 1 2 3 )1060
11 ( ' f a k e ' , 1 8 5 . 7 0 7 9 )1061
12 ( ' f r o z e n ' , 1 8 6 . 3 4 8 7 4 )1062
13 ( ' h igh ' , 1 8 6 . 4 0 5 4 6 )1063
14 ( ' consume ' , 1 8 6 . 4 2 8 0 5 )1064
15 ( ' c r o c o d i l e ' , 1 8 6 . 8 2 1 9 6 )1065
16 ( ' t o o t h b r u s h ' , 1 8 6 . 8 3 4 2 7 )1066
17 ( ' Youtube ' , 1 8 6 . 8 7 5 3 8 )1067
18 ( ' e a r a c h e ' , 1 8 6 . 9 7 0 3 )1068
19 ( ' Mexico ' , 1 8 6 . 9 8 8 7 8 )1069
20 ( ' e a r ' , 1 8 7 . 1 1 5 8 8 )1070
21 ( ' Remind ' , 1 8 7 . 2 9 9 2 6 )1071
22 ( ' Notepad ' , 1 8 7 . 3 8 8 6 6 )1072
23 ( ' Pu t ' , 1 8 7 . 4 1 4 6 7 )1073
24 ( ' p o t a t o ' , 1 8 7 . 4 2 6 3 )1074
25 ( ' c o n c e i t ' , 1 8 7 . 4 3 4 0 2 )1075
26 ( ' t hong ' , 1 8 7 . 4 9 2 )1076
27 ( ' s a u c e ' , 1 8 7 . 5 0 0 9 2 )1077
28 ( ' o b s e s s e d ' , 1 8 7 . 5 7 2 8 5 )1078
29 ( ' drum ' , 1 8 7 . 8 5 2 6 )1079
30 ( ' Cuba ' , 1 8 8 . 0 0 4 1 8 )1080
31 ( ' g e n e r a t i o n ' , 1 8 8 . 1 6 4 1 5 )1081
32 ( ' g r i e f ' , 1 8 8 . 4 4 3 1 )1082
33 ( ' g u i l l o t i n e ' , 1 8 8 . 5 9 8 4 8 )1083
34 ( ' t o ' , 1 8 8 . 6 2 2 8 5 )1084
35 ( ' b ind ' , 1 8 8 . 6 3 6 0 8 )1085
36 ( ' u m b r e l l a ' , 1 8 8 . 8 1 3 5 8 )1086
37 ( ' omi t ' , 1 8 9 . 2 0 4 9 3 )1087
38 ( ' Superman ' , 1 8 9 . 2 0 7 8 2 )1088
39 ( ' a d v i c e ' , 1 8 9 . 4 8 6 4 7 )1089
40 ( ' Refuse ' , 1 8 9 . 5 2 5 0 2 )1090
41 ( ' speed ' , 1 8 9 . 6 8 2 7 )1091
42 ( ' diamond ' , 1 8 9 . 7 6 1 5 4 )1092
43 ( ' c u t e ' , 1 8 9 . 8 2 4 8 6 )1093
44 ( ' headache ' , 1 9 0 . 2 4 9 2 4 )1094
45 ( ' j e a l o u s y ' , 1 9 1 . 1 7 3 4 3 )1095
46 ( ' f l a g ' , 1 9 1 . 1 8 7 5 3 )1096
47 ( ' banana ' , 1 9 1 . 2 0 3 4 6 )1097
48 ( ' Wait ! ' , 1 9 1 . 3 6 2 1 7 )1098
49 ( ' y e t ' , 1 9 1 . 7 5 4 0 7 )1099
50 ( ' t h e f t ' , 1 9 1 . 7 5 7 3 4 )1100
51 ( ' house ' , 1 9 1 . 7 9 7 1 2 )1101
52 ( ' p e r c e n t a g e ' , 1 9 1 . 8 0 0 0 8 )1102
53 ( ' eye ' , 1 9 1 . 8 4 5 8 4 )1103
54 ( ' u n d e r s t a n d i n g ' , 1 9 1 . 9 5 7 1 5 )1104
55 ( ' b a d l y ' , 1 9 2 . 0 2 9 5 9 )1105
56 ( ' s k i n ' , 1 9 2 . 0 4 2 9 4 )1106
57 ( ' dvd ' , 1 9 2 . 0 5 6 9 5 )1107
58 ( ' u n t i l ' , 1 9 2 . 0 8 8 4 7 )1108
59 ( ' Denmark ' , 1 9 2 . 2 8 4 6 5 )1109
60 ( ' f l o w e r ' , 1 9 2 . 2 8 5 2 )1110
61 ( ' sew ' , 1 9 2 . 4 1 8 8 )1111
62 ( ' a r r e s t ' , 1 9 2 . 5 5 3 2 5 )1112
63 ( ' p r e v i o u s ' , 1 9 2 . 5 5 6 2 1 )1113
64 ( ' n e i g h b o r ' , 1 9 2 . 5 9 9 7 3 )1114
65 ( ' spoon ' , 1 9 2 . 7 8 3 1 3 )1115
66 ( ' b e l l ' , 1 9 2 . 8 2 6 6 6 )1116
67 ( ' c l i c k ' , 1 9 2 . 8 6 9 5 7 )1117
68 ( ' v a c c i n a t i o n ' , 1 9 2 . 9 0 3 9 9 )1118
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69 ( ' l e a d i n g ' , 1 9 3 . 0 4 1 0 3 ) 1119
70 ( ' t o t a l ' , 1 9 3 . 0 7 9 3 ) 1120
71 ( ' i n t e r n e t ' , 1 9 3 . 2 6 0 2 2 ) 1121
72 ( ' sandwich ' , 1 9 3 . 2 7 3 9 4 ) 1122
73 ( ' e r e c t ' , 1 9 3 . 3 1 7 4 4 ) 1123
74 ( ' s i g n a t u r e ' , 1 9 3 . 4 0 7 9 6 ) 1124
75 ( ' s i x ' , 1 9 3 . 4 3 2 8 9 ) 1125
76 ( ' s t r a n g e ' , 1 9 3 . 5 1 5 3 8 ) 1126
77 ( ' boy ' , 1 9 3 . 5 3 1 9 4 ) 1127
78 ( ' F a r e w e l l ! ' , 1 9 3 . 8 6 5 3 4 ) 1128
79 ( ' c a f e ' , 1 9 3 . 8 6 9 6 9 ) 1129
80 ( ' t w i c e ' , 1 9 3 . 9 1 4 5 2 ) 1130
81 ( ' f o u r ' , 1 9 3 . 9 6 5 0 9 ) 1131
82 ( ' s i l v e r ' , 1 9 3 . 9 7 3 1 1 ) 1132
83 ( ' China ' , 1 9 4 . 0 3 8 7 4 ) 1133
84 ( ' c e r t i f y ' , 1 9 4 . 0 6 5 3 8 ) 1134
85 ( ' soup ' , 1 9 4 . 0 8 8 5 6 ) 1135
86 ( ' r a p e ' , 1 9 4 . 0 9 2 4 4 ) 1136
87 ( ' n e c e s s a r y ' , 1 9 4 . 1 4 7 5 ) 1137
88 ( ' c u r i o u s ' , 1 9 4 . 2 7 0 7 2 ) 1138
89 ( ' t a l l ' , 1 9 4 . 3 7 1 8 ) 1139
90 ( ' b a t t l e ' , 1 9 4 . 4 5 6 2 2 ) 1140
91 ( ' p romise ' , 1 9 4 . 5 1 1 0 5 ) 1141
92 ( ' d e a d l i n e ' , 1 9 4 . 6 1 0 5 5 ) 1142
93 ( ' c e r t i f i c a t e ' , 1 9 4 . 7 3 6 ) 1143
94 ( ' g e n u i n e ' , 1 9 4 . 7 9 2 5 6 ) 1144
95 ( ' b lood ' , 1 9 4 . 8 2 9 5 9 ) 1145
96 ( ' ban ' , 1 9 4 . 8 4 7 0 5 ) 1146
97 ( ' u n c l e ' , 1 9 4 . 8 5 6 8 9 ) 1147
98 ( ' q u a r a n t i n e ' , 1 9 4 . 9 0 2 4 7 ) 1148
99 ( ' s a l a d ' , 1 9 5 . 1 9 2 5 ) 1149

100 ( ' a n t ' , 1 9 5 . 3 1 8 8 8 ) 1150
101 ( ' t h i e f ' , 1 9 5 . 4 8 5 6 6 ) 1151
102 ( ' f a l l ' , 1 9 5 . 6 0 6 9 6 ) 1152
103 ( ' c h i l d l i k e ' , 1 9 5 . 6 4 3 7 ) 1153
104 ( ' J apan ' , 1 9 5 . 6 8 5 4 6 ) 1154
105 ( ' run ' , 1 9 5 . 7 0 0 1 3 ) 1155
106 ( ' book ing ' , 1 9 5 . 7 5 2 2 3 ) 1156
107 ( ' homesick ' , 1 9 5 . 8 6 0 8 6 ) 1157
108 ( ' advanced ' , 1 9 5 . 8 6 6 8 5 ) 1158
109 ( ' Where ? ' , 1 9 5 . 9 2 3 1 4 ) 1159
110 ( ' b r i d g e ' , 1 9 5 . 9 8 7 2 3 ) 1160
111 ( ' b e s i d e ' , 1 9 6 . 0 1 9 5 8 ) 1161
112 ( ' cup ' , 1 9 6 . 0 3 4 6 7 ) 1162
113 ( ' s p a g h e t t i ' , 1 9 6 . 0 4 3 3 3 ) 1163
114 ( ' d i z z i n e s s ' , 1 9 6 . 0 6 3 1 1 ) 1164
115 ( ' mixer ' , 1 9 6 . 1 0 7 3 5 ) 1165
116 ( ' Assessment ' , 1 9 6 . 1 4 0 8 1 ) 1166
117 ( ' amnes ia ' , 1 9 6 . 1 5 0 9 1 ) 1167
118 ( ' g i g a n t i c ' , 1 9 6 . 2 1 0 8 5 ) 1168
119 ( ' p r i e s t ' , 1 9 6 . 2 5 3 9 ) 1169
120 ( ' s o r r y ' , 1 9 6 . 3 1 0 9 3 ) 1170
121 ( ' i n v e s t m e n t ' , 1 9 6 . 3 5 5 7 1 ) 1171
122 ( ' b e l i e v e ' , 1 9 6 . 4 1 5 2 2 ) 1172
123 ( ' hang ' , 1 9 6 . 4 3 0 3 ) 1173
124 ( ' t h r e e ' , 1 9 6 . 4 3 7 6 7 ) 1174
125 ( ' h e a r i n g ' , 1 9 6 . 5 1 3 0 5 ) 1175
126 ( ' p r i n c i p a l ' , 1 9 6 . 6 3 1 3 2 ) 1176
127 ( ' p u n c t u a l ' , 1 9 6 . 7 0 6 2 4 ) 1177
128 ( ' a d u l t ' , 1 9 6 . 9 1 1 8 3 ) 1178
129 ( ' t h i n ' , 1 9 6 . 9 8 5 0 2 ) 1179
130 ( ' word ' , 1 9 7 . 0 5 3 4 ) 1180
131 ( ' arm ' , 1 9 7 . 1 1 9 6 6 ) 1181
132 ( ' c e n s o r s h i p ' , 1 9 7 . 1 3 4 9 3 ) 1182
133 ( ' s e v e r a l ' , 1 9 7 . 3 1 2 1 6 ) 1183
134 ( ' b e w i l d e r ' , 1 9 7 . 4 3 2 5 4 ) 1184
135 ( ' r e p l y ' , 1 9 7 . 4 6 0 2 4 ) 1185
136 ( ' s e r i o u s ' , 1 9 7 . 5 7 8 9 8 ) 1186
137 ( ' sewing ' , 1 9 7 . 6 2 8 4 8 ) 1187
138 ( ' do ' , 1 9 7 . 6 9 4 0 5 ) 1188
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139 ( ' t o g e t h e r ' , 1 9 7 . 8 3 0 9 3 )1189
140 ( ' h a i r g r o w t h ' , 1 9 7 . 8 5 4 2 5 )1190
141 ( ' b u l l ' , 1 9 7 . 9 8 5 7 5 )1191
142 ( ' honeymoon ' , 1 9 8 . 0 2 5 4 5 )1192
143 ( ' b a l l ' , 1 9 8 . 0 5 6 3 7 )1193
144 ( ' a n c i e n t ' , 1 9 8 . 1 4 4 4 4 )1194
145 ( ' s e l f i s h ' , 1 9 8 . 1 5 9 0 6 )1195
146 ( ' a r i s e ' , 1 9 8 . 1 7 1 9 8 )1196
147 ( ' wedding ' , 1 9 8 . 2 1 5 8 4 )1197
148 ( ' hour ' , 1 9 8 . 2 7 9 5 7 )1198
149 ( ' g r a n d d a u g h t e r ' , 1 9 8 . 2 9 3 1 5 )1199
150 ( ' c i r c l e ' , 1 9 8 . 3 2 2 7 5 )1200
151 ( ' couch ' , 1 9 8 . 3 8 3 8 5 )1201
152 ( ' s c i e n t i s t ' , 1 9 8 . 4 4 2 6 9 )1202
153 ( ' i m p o r t a n t ' , 1 9 8 . 5 2 5 9 9 )1203
154 ( ' h e l i c o p t e r ' , 1 9 8 . 6 1 2 1 8 )1204
155 ( ' born ' , 1 9 8 . 6 9 4 7 5 )1205
156 ( ' t r o u s e r s ' , 1 9 8 . 7 1 1 9 )1206
157 ( ' a c c e p t a b l e ' , 1 9 8 . 8 2 7 3 6 )1207
158 ( ' lamp ' , 1 9 8 . 8 6 0 0 2 )1208
159 ( ' a p p e t i t e ' , 1 9 8 . 8 6 9 9 5 )1209
160 ( ' a s s o c i a t i o n ' , 1 9 8 . 8 7 0 0 1 )1210
161 ( ' l e a v e ' , 1 9 8 . 9 5 5 9 3 )1211
162 ( ' d y s l e x i a ' , 1 9 8 . 9 8 0 1 3 )1212
163 ( ' tw in ' , 1 9 9 . 0 1 1 1 4 )1213
164 ( ' f o r c e ' , 1 9 9 . 0 4 5 4 1 )1214
165 ( ' i n s i s t ' , 1 9 9 . 0 6 2 3 6 )1215
166 ( ' va se ' , 1 9 9 . 0 8 4 6 6 )1216
167 ( ' e a s t e r ' , 1 9 9 . 2 3 8 4 6 )1217
168 ( ' p l a t e ' , 1 9 9 . 2 7 2 3 1 )1218
169 ( ' b e s t ' , 1 9 9 . 3 2 5 1 3 )1219
170 ( ' h e a l ' , 1 9 9 . 6 1 2 6 1 )1220
171 ( ' p e t r o l ' , 1 9 9 . 6 7 2 )1221
172 ( ' c l e a n e r ' , 1 9 9 . 6 9 0 7 7 )1222
173 ( ' pe pp e r ' , 1 9 9 . 9 2 5 1 7 )1223
174 ( ' economic ' , 1 9 9 . 9 7 2 5 3 )1224
175 ( ' y o g h u r t ' , 2 0 0 . 0 6 4 3 9 )1225
176 ( ' b r o t h e r ' , 2 0 0 . 0 6 8 9 )1226
177 ( ' u n p l e a s a n t ' , 2 0 0 . 1 3 5 6 2 )1227
178 ( ' g r a p e s ' , 2 0 0 . 1 4 9 8 1 )1228
179 ( ' buy ' , 2 0 0 . 2 9 6 6 9 )1229
180 ( ' 2 ' , 2 0 0 . 3 1 0 9 3 )1230
181 ( ' f r o g ' , 2 0 0 . 4 1 3 7 7 )1231
182 ( ' commi t t ee ' , 2 0 0 . 5 6 6 1 5 )1232
183 ( ' compla in ' , 2 0 0 . 5 7 2 9 8 )1233
184 ( ' 40 ' , 2 0 0 . 5 8 5 0 8 )1234
185 ( ' f a u l t l e s s ' , 2 0 0 . 5 9 1 6 7 )1235
186 ( ' l e t t e r ' , 2 0 0 . 6 3 2 5 2 )1236
187 ( ' a n g e l ' , 2 0 0 . 6 5 4 1 3 )1237
188 ( ' c o r r u p t i o n ' , 2 0 0 . 6 6 1 0 1 )1238
189 ( ' d i r e c t o r ' , 2 0 0 . 6 7 6 0 1 )1239
190 ( ' e x p o r t ' , 2 0 0 . 9 9 3 7 6 )1240
191 ( ' acne ' , 2 0 1 . 0 8 7 2 5 )1241
192 ( ' p a r t i c i p a t e ' , 2 0 1 . 1 4 1 5 7 )1242
193 ( ' i n j u r y ' , 2 0 1 . 1 9 5 1 8 )1243
194 ( ' o f f l i n e ' , 2 0 1 . 2 1 5 )1244
195 ( ' h u r t ' , 2 0 1 . 2 5 2 9 )1245
196 ( ' shy ' , 2 0 1 . 3 1 7 9 5 )1246
197 ( ' k i l o m e t e r ' , 2 0 1 . 3 2 1 1 7 )1247
198 ( ' i n a u g u r a t i o n ' , 2 0 1 . 3 3 9 9 7 )1248
199 ( ' t a l e ' , 2 0 1 . 4 1 5 2 )1249
200 ( ' ve ry ' , 2 0 1 . 4 5 9 0 8 )1250
201 ( ' law ' , 2 0 1 . 4 7 7 1 4 )1251
202 ( ' d ip loma ' , 2 0 1 . 5 6 8 0 1 )1252
203 ( ' music ' , 2 0 1 . 5 7 0 7 4 )1253
204 ( ' war ' , 2 0 1 . 6 3 3 0 4 )1254
205 ( ' s c h o o l ' , 2 0 1 . 6 5 4 9 5 )1255
206 ( ' h o r s e ' , 2 0 1 . 7 4 6 )1256
207 ( ' h e a r t b u r n ' , 2 0 1 . 8 6 8 9 6 )1257
208 ( ' 21 ' , 2 0 1 . 9 0 6 6 6 )1258
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209 ( ' surname ' , 2 0 1 . 9 4 6 6 7 ) 1259
210 ( ' a d d i c t e d ' , 2 0 1 . 9 8 8 8 3 ) 1260
211 ( ' s u p p e r ' , 2 0 2 . 0 8 4 3 8 ) 1261
212 ( ' fun ' , 2 0 2 . 0 9 5 5 8 ) 1262
213 ( ' t e r r o r i s t ' , 2 0 2 . 2 2 5 0 4 ) 1263
214 ( ' nanny ' , 2 0 2 . 3 2 7 2 7 ) 1264
215 ( ' d e p a r t u r e ' , 2 0 2 . 3 4 7 8 7 ) 1265
216 ( ' 600 ' , 2 0 2 . 3 8 9 2 2 ) 1266
217 ( ' p e t ' , 2 0 2 . 4 6 8 0 6 ) 1267
218 ( ' t h o u s a n d ' , 2 0 2 . 5 4 2 2 ) 1268
219 ( ' i c e ' , 2 0 2 . 5 6 7 2 6 ) 1269
220 ( ' menu ' , 2 0 2 . 5 7 5 0 7 ) 1270
221 ( ' r e v i s e ' , 2 0 2 . 6 9 3 3 1 ) 1271
222 ( ' h a i r e d ' , 2 0 2 . 7 0 9 6 9 ) 1272
223 ( ' f e e l i n g ' , 2 0 2 . 8 2 6 3 7 ) 1273
224 ( ' d i v o r c e d ' , 2 0 2 . 8 5 4 0 3 ) 1274
225 ( ' p e r s o n ' , 2 0 3 . 0 2 7 9 ) 1275
226 ( ' dawn ' , 2 0 3 . 3 6 4 6 7 ) 1276
227 ( ' a n x i o u s ' , 2 0 3 . 4 6 1 1 2 ) 1277
228 ( ' a u t i s m ' , 2 0 3 . 4 8 0 3 8 ) 1278
229 ( ' d i s c u s s i o n ' , 2 0 3 . 5 6 6 1 3 ) 1279
230 ( ' a d o p t i o n ' , 2 0 3 . 5 8 8 2 4 ) 1280
231 ( ' t r u t h ' , 2 0 3 . 6 0 5 4 ) 1281
232 ( ' enemy ' , 2 0 3 . 6 1 2 7 ) 1282
233 ( ' m i d n i g h t ' , 2 0 3 . 6 3 3 1 6 ) 1283
234 ( ' p s y c h o l o g y ' , 2 0 3 . 7 0 6 7 1 ) 1284
235 ( ' p o s s i b l e ' , 2 0 3 . 8 5 4 2 ) 1285
236 ( ' p a l e ' , 2 0 3 . 8 5 9 9 5 ) 1286
237 ( ' cucumber ' , 2 0 3 . 8 7 3 2 8 ) 1287
238 ( ' f a v o u r i t e ' , 2 0 3 . 9 5 9 8 1 ) 1288
239 ( ' r i c e ' , 2 0 4 . 0 9 5 9 8 ) 1289
240 ( ' bedroom ' , 2 0 4 . 1 1 5 5 4 ) 1290
241 ( ' s e a ' , 2 0 4 . 1 8 8 8 1 ) 1291
242 ( ' shock ' , 2 0 4 . 2 1 6 ) 1292
243 ( ' Admi t ted ' , 2 0 4 . 2 2 2 2 7 ) 1293
244 ( ' a n x i e t y ' , 2 0 4 . 2 2 7 3 9 ) 1294
245 ( ' t e n ' , 2 0 4 . 2 8 0 9 4 ) 1295
246 ( ' i n t e r n a t i o n a l ' , 2 0 4 . 3 0 5 1 5 ) 1296
247 ( ' c u r l y ' , 2 0 4 . 3 2 3 6 4 ) 1297
248 ( ' a l a rm ' , 2 0 4 . 4 2 8 9 1 ) 1298
249 ( ' co rn ' , 2 0 4 . 5 7 6 8 7 ) 1299
250 ( ' u p s e t ' , 2 0 4 . 5 9 3 ) 1300
251 ( ' morning ' , 2 0 4 . 6 5 6 5 7 ) 1301
252 ( ' s p i n a c h ' , 2 0 4 . 6 5 6 6 ) 1302
253 ( ' c e l e b r a t e ' , 2 0 4 . 7 4 7 1 5 ) 1303
254 ( ' c o n f u s e d ' , 2 0 4 . 8 2 5 7 1 ) 1304
255 ( ' 25 ' , 2 0 4 . 8 7 2 0 6 ) 1305
256 ( ' a c h i e v e m e n t ' , 2 0 4 . 9 4 8 1 5 ) 1306
257 ( ' c l i m a t e ' , 2 0 5 . 0 2 1 0 7 ) 1307
258 ( ' communica t ion ' , 2 0 5 . 2 6 2 2 8 ) 1308
259 ( ' d e l e g a t e ' , 2 0 5 . 2 6 9 0 1 ) 1309
260 ( ' d o o r b e l l ' , 2 0 5 . 4 1 6 7 8 ) 1310
261 ( ' a n a e s t h e s i a ' , 2 0 5 . 6 6 0 4 6 ) 1311
262 ( ' wor ld ' , 2 0 5 . 8 6 3 4 2 ) 1312
263 ( ' t e l e v i s i o n ' , 2 0 6 . 1 1 9 5 ) 1313
264 ( ' i n f o r m a t i o n ' , 2 0 6 . 2 0 2 7 1 ) 1314
265 ( ' s t y l e ' , 2 0 6 . 2 8 0 7 8 ) 1315
266 ( ' c h i p ' , 2 0 6 . 3 1 6 1 6 ) 1316
267 ( ' anonymous ' , 2 0 6 . 4 1 8 0 3 ) 1317
268 ( ' f a s h i o n e d ' , 2 0 6 . 4 6 5 0 9 ) 1318
269 ( ' deve lopmen t ' , 2 0 6 . 4 6 6 0 5 ) 1319
270 ( ' s c a r f ' , 2 0 6 . 5 8 0 8 1 ) 1320
271 ( ' u p l o a d i n g ' , 2 0 6 . 9 3 1 8 2 ) 1321
272 ( ' 900 ' , 2 0 6 . 9 3 8 9 3 ) 1322
273 ( ' 500 ' , 2 0 7 . 1 2 5 3 ) 1323
274 ( ' camera ' , 2 0 7 . 1 5 2 0 7 ) 1324
275 ( ' homeless ' , 2 0 7 . 2 5 6 5 5 ) 1325
276 ( ' a u t o m a t i c ' , 2 0 7 . 2 9 5 7 8 ) 1326
277 ( ' 1000000 ' , 2 0 7 . 4 0 5 6 7 ) 1327
278 ( ' c h e f ' , 2 0 7 . 7 2 5 3 1 ) 1328
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279 ( ' 50 ' , 2 0 7 . 7 3 3 1 4 )1329
280 ( ' i n f a n t ' , 2 0 7 . 8 8 8 4 6 )1330
281 ( ' a c t r e s s ' , 2 0 7 . 9 7 6 4 6 )1331
282 ( ' n u r s e ' , 2 0 8 . 7 5 1 8 2 )1332
283 ( ' 800 ' , 2 0 8 . 8 0 1 7 )1333
284 ( ' s low ' , 2 0 8 . 9 3 7 4 1 )1334
285 ( ' c l i n i c ' , 2 0 8 . 9 3 7 5 3 )1335
286 ( ' a p a r t m e n t ' , 2 0 9 . 0 7 9 3 8 )1336
287 ( ' employed ' , 2 0 9 . 4 8 0 7 1 )1337
288 ( ' e l e c t r i c i a n ' , 2 0 9 . 5 4 4 1 4 )1338
289 ( ' p a i n t e r ' , 2 0 9 . 5 7 8 9 3 )1339
290 ( ' d e s e r t ' , 2 0 9 . 7 0 9 1 8 )1340
291 ( ' A u d i o l o g i s t ' , 2 0 9 . 9 7 5 5 9 )1341
292 ( ' e n g i n e ' , 2 1 0 . 5 3 7 4 5 )1342
293 ( ' b a r b e r ' , 2 1 0 . 7 6 9 7 1 )1343
294 ( ' ba throom ' , 2 1 0 . 7 7 3 7 7 )1344
295 ( ' d i a b e t i c ' , 2 1 1 . 6 6 0 9 2 )1345
296 ( ' 7 ' , 2 1 1 . 7 6 9 6 4 )1346
297 ( ' 27 ' , 2 1 1 . 8 3 7 9 2 )1347
298 ( ' d e p r e s s e d ' , 2 1 2 . 8 8 5 5 4 )1348
299 ( ' employee ' , 2 1 3 . 1 7 8 4 2 )1349
300 ( ' 8 ' , 2 1 3 . 5 9 4 7 6 )1350
301 ( ' f a r m e r ' , 2 1 6 . 9 7 7 9 2 )1351
302 ( ' 29 ' , 2 1 7 . 7 0 3 6 3 )1352
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