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Abstract

We study the strategic interaction between a customer (or user) and an Al agent
in product recommendation. The user conveys preferences through a costly, noisy
message, incurring cognitive communication cost. The agent interprets this signal
to form a posterior belief and provides a set of recommendations that balances
the diversity in the recommendation with the search cost incurred by the user to
evaluate the recommendations. The objective is to optimally trade off the utility
the user derives from the best recommendation against communication and search
costs, modeled through a rational inattention framework. Our main contribution
is a formal characterization of the optimal interaction strategy, derived through a
high-dimensional approximation that yields the near-optimal trade-off between
utility and costs. We show how the optimal strategy depends on feature-space
dimension and cost parameters, and we identify distinct regimes where the balance
between communication and search shifts sharply. A key insight from our result
is that, even in high dimensional setting, the optimal strategy cannot rely only on
communication or search in isolation. Instead, both mechanism must be jointly
optimized to achieve high utility.

1 Introduction

On e-commerce platforms such as Amazon, customers are often confronted with an overwhelming
number of options when searching for a category product. A single query, for instance headphones,
can yield thousands of results, and evaluating product specifications and reviews quickly becomes
a tedious task [Oulasvirta et al.,[2009]. Modern Al agents can process vast amounts of product
information (e.g., descriptions, reviews, specifications) at a scale and speed far beyond human
capability, enabling them to identify and recommend items with exceptional efficiency. Despite their
capabilities, Al agents typically lack comprehensive knowledge of user preferences. To compensate,
they rely on short interactions with the user to infer likely needs. Yet customers themselves may
struggle to clearly articulate their preference, or may be unaware of features worth considering.

Despite these strengths, the effectiveness of user—agent interactions in recommendation systems is
fundamentally limited by two user-side bottlenecks: the ability to communicate preferences and
the capability to evaluate recommended items. The customer seeks to maximize utility from the
chosen item but incurs costs both for signaling preferences and for evaluating the recommendations.
This paper develops a theoretical framework to study and offer insights into optimizing Human-AlI
interaction based decision-making in e-commerce setting under cognitive constraints. The core
mechanism is twofold: user communication sharpens the recommendation quality, while the agent’s
provision of multiple recommendations diversifies the set to account for preference uncertainty.

Our model is grounded in the framework of Rational Inattention (RI) [Sims} 2003]], which models the
cost of information acquisition. Our primary contribution is to analyze the user-agent interaction in a
high-dimensional setting, where the number of product features is large. We characterize the optimal
information exchange from the user and the optimal recommendation set size from the agent as a
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function of the dimension of the feature space and the system’s cost parameters. Our results reveal
that for many practical settings, an optimal strategy does not rely on preference communication or
recommendation diversification in isolation, but rather requires the joint optimization of both.

Related Work: The literature on the implication of human-Al interaction in decision making is
growing [[Agarwal et al.,|2023| |/Angelova et al., 2023]. [Kleinberg et al.l | 2018]] show how predictions
from machine learning can augment human judgments in socially sensitive contexts, while [Boyaci
et al., 2024] analyze the interplay between human decision makers and machine-provided input
under bounded rationality. Closest to our work is [[Castro et al.| 2023]], who study the trade-off
between output fidelity and communication cost under single-output recommendations, showing that
preference heterogeneity can introduce substantial bias. [Liang} 2025] considers delegation to an Al
clone, finding that noise in high dimensions degrades performance and humans may outperform. In
contrast, we show providing multiple outputs lets users select the best fit, yielding significant gains,
and that in high dimensions users provide richer information to ensure credible recommendations.

From an economic and information-theoretic perspective, our model builds on the rational inattention
(RI) framework [Sims} [2003} [2005]. RI has been applied extensively to understand decision-making
under costly information acquisition|Zhong| [2022], Miao et al.|[2022], |Sims|[2006]. We also refer
the reader to the review [Mackowiak et al.,[2023|] for more details. Closely related are approaches
in information theory, such as rate—distortion methods [[Tishby and Polani| 2010], which also study
trade-offs between informativeness and cost. While most prior work applies RI to single-agent
decision problems, we extend this line of inquiry to human—Al interaction, characterizing the joint
optimization of user communication and search effort.

2 Modeling the interaction and obtaining optimal strategy

We consider a market with a continuous space of products, each represented by a feature vector
0 €S 1:={0 cR?: |02 = 1}. Customers (or users) are similarly characterized by a preference
vector h € S9~1, which encodes their most preferred product profile or true preferences. We assume
customer preferences are uniformly distributed over the sphere, h ~ p(h) = Uniform(S?~1).

Cust. (h) - p,{(m|h)‘ Al agent O oOn Cust > 0*
. Ll Ll ust. >
Communication | 2=(B/m) [Recommendation Selection

Communication: The interaction starts with the customer transmitting a message (or context) m to
the agent, where the message m is a noisy representation of the true preferences h. We model m as
drawn from the von-Mises Fisher (vMF) distribution p, (m|h) o exp (x(h, m)), where £ denotes
the message precision. Higher values of « imply that m is more closely aligned with h, which leads
to more accurate recommendations. We assume that customers can choose the precision of their
message, but they also incur a cost that increases with precision. We model this cost using the RI
framework, which posits that the cost of information is proportional to the information gain measured
by the KL divergence between the prior belief and posterior distribution induced by the information
exchange. In our case, the agent’s prior over customer preferences is h ~ p(h), which is updated to
the posterior g,;(h|m) upon receiving message m. The communication cost is therefore defined as
AeDxkr, (¢ (hjm)|p(h)), where . is the communication cost parameter.

Recommendation: To generate recommendations, the agent forms a posterior ¢, (h|m) using the
prior p(h) and the customer’s message m. A key feature of our model is the practical constraint that
the agent cannot analytically compute this posterior. Instead, it can only generate samples from it. As
such, the recommendation menu {6+, ..., 6, } is constructed by generating n independent samples
from the posterior 8; ~ ¢, (h|m) being an independent draw.

Selection (or Search): For any product 0, the utility is determined by its match with the cus-
tomer’s true preferences, measured by the dot product (h, ). After receiving the recommendations
{01,...,0,}, the user evaluates each option and chooses the best item 8* = argmax; (h,6;),
receiving the utility max;(h, 6;). We make the assumption that this is a noise-free selection process,
meaning the user perfectly identifies and chooses the recommendation that maximizes the utility.

The search cost represents the effort a customer expends to find the best product among a set of n
recommendations. Initially, the customer views all n recommendations as equally likely to be the



best (uniform prior), and after search, the belief collapses to certainty. The total information gain is
same as the entropy of uniform distribution over the set [n], i.e., log n. Consequently, using the RI
framework, we model the search cost as \s log n, where A is the search cost parameter.

Objective: The overall objective of an average customer is given by
’P(K, ’I”L) = Ehfvp(h)Empr(m\h)EGiqu(h\m) [mftx <h, 0L> — )\s 10g n — )\CDKL (q,g(h|m)||p(h))]

Our central objective is to maximize the objective P (k, n) by jointly optimizing the two key decision
variables: the message precision « and the recommendation set size n.

2.1 Main Result

In general, the problem of finding the optimal values of the control variables x and n that solve
the optimization problem max,, ,, P(x,n) is analytically intractable. To gain insights, we use a
high-dimensional approximation of the problem and solve it to obtain near-optimal solution. Our
main result is as follows.

Theorem 2.1. Suppose cs := dAs and c. := d)\.. Consider the following optimization problem.

OPT := max pw++/1—p?V1—w?x — csa+ %log(l —p%) st L(w,z)=—a, (1)

py0,W,Y

where p € [0,1), « > 0 and I,(w, z) := p(qugf) + 2log(1—w?) + 1log(1 — x2~) — Llog(1 - p?).
Suppose p and & are the solution of the optimization problem OPT, and i = 2= d, and 7 = %9,

1—p2
then, we have the following result

IP(s*,n) — P 71)| < o(%),

where k* and n* are the optimal solution of max,, , P(k,n).

Theorem [2.1] provides a high-dimensional approximation OPT (Eq. (1)) of the optimization problem
maxy_ , P(k,n), and implies that max,, , P(x,n) = OPT + O (1/\/&) A crucial part of the result
in Theorem [2.1]is that, in high-dimensional setting, one can approximate the utility that a customer
receives (i.e., E[max;(h, 6;])), by establishing a Large Deviation Principle on the set of observed
utilities {(h, ;) } ;<[ Essentially, the LDP allows us to replace the complex stochastic optimization
over the randomly generated recommendation set with a simpler, deterministic optimization problem

that can be solved analytically. Mathematically, for given ~ and n such that o = 105", and p satisfies

r = 1L d, the achieved utility satisfies E[max;(h,8;)] = fy.a(p) + O(1/Vd), where
fra(2) :=max zw+ /1 —22y/1— w2z suchthat [,(w,z) = —a,
w,T

where I,,(w, x) is the rate function of suitably constructed random variables. In order to establish
the result, we use a change of variable by decomposing the posterior on customer preferences as
h =Wm + +1— W?2Y, where Y represents the uncommunicated information and satisfies the
orthogonality condition (Y, m) = 0. Similarly, we write 8; = W;m + /1 — W2Y,. Afterwards,
we have (h,0;) = WW,; + 1 —W2,/1 - W2X; where X; = (Y,Y;). The LDP establishes
that as the dimension grows, the set of points {(Wj, X;)}ic[n), With high probability, fall within an
observable region, whose boundary is defined by the level sets of the rate function I,(w, ).

3 Main Insights

We derive insights on the relationship between the optimal interaction strategy and the model
parameters using the analytic solution of OPT. The insights we derive are as follows.

Jointly optimizing message precision and recommendation set size: A key insight from our
analysis is that the optimal interaction requires balancing message precision x and recommendation
set size n, with the trade-off governed by the cost parameters A, and A;. Even in high dimensions,
communication and search cannot be treated as independent levers; they must be jointly optimized.



Even in scenarios where the users under-communicate, the Al agent can improve outcomes by
eliciting more precise information, thereby achieving a better utility—cost trade-off. Figure[T|provides
the incremental gain of using a joint optimization compared to best of the two benchmark strategies
(pure search or pure communication). The results reveal that the gains from joint optimization (over
 and p) are concentrated in a narrow band of intermediate cost regimes.

Balanced Regime: A central finding of this work

is the existence of a balanced regime, where both

message precision and recommendation set size ooe
play critical roles. This regime arises when the s

scaled cost parameters ¢, and ¢, in OPT (Eq. (I))) ocs
are comparable, which occurs when Ay ~ 1/d  ,,

and A\, ~ 1/d. In this case, the optimal interac- oo
tion strategy is a hybrid strategy: the user provides

partial preference information, with the informa- ”
tion gain from the message scaling linearly in d,

while the agent supplies a recommendation set "
whose size grows exponentially in d. .
The intuition is as follows. Since the prior p(h)

implies that total uncertainty about preferences 05 m " 20 25 30 oo

(entropy) scales linearly with d, any meaningful

communication must reduce uncertainty at a pro- Figure 1: Incremental payoff of the joint strategy
portional rate. Our results confirm that in the bal- relative to the best of the two benchmark strate-
anced regime, the user’s communicated informa- gies: pure search (x = 0, and optimal n) or pure
tion scales linearly with d. This is similar to a communication (n = 1 and optimal k).

scenario where the user effectively specifies a sub-

set of features while leaving others unspecified.

Further, the unspecified features define a large subspace of feasible products. Within this subspace,
the most preferred product differs along the uncommunicated dimensions. To account for this residual
uncertainty, the agent must provide multiple recommendations. In high dimensions, adequate cover-
age requires a recommendation set whose size grows exponentially with the number of unspecified
features, akin to providing a constant number of options for each feature left unspecified.

Search-only regime: When communication is highly expensive (A. > 1/d and A\ ~ 1/d), it results
in ¢. — oo in OPT (Eq. (I)). In this case, the optimal solution is achieved by setting p = 0, yielding
an optimal message precision of k* ~ K = 0. An example of this regime arises in the context of
window shopping, where users find it difficult, or even impossible, to articulate their preferences, as
they themselves are unsure of what they might like. Consequently, the cognitive burden shifts entirely
to exhaustive search, and the agent must provide an overwhelmingly large recommendation set. This
mirrors a brute-force search experience on a generic e-commerce platform with no Al-assistance,
where finding a suitable product depends solely on the user’s search effort.

Communication-only regime: When search is very expensive (A. ~ 1/d and As > 1/d), we obtain
cs — oo in OPT (Eq. (1)). The optimal solution in this regime requires v = 0, which implies that
the recommendation set size n remains O(1). A natural example is a deep research setting, where
the desired output is a long, detailed report. Here, it is prohibitively costly for the user to evaluate
multiple lengthy reports, so the strategic burden shifts entirely to communication. The optimal
approach is for the user to provide high-fidelity preference information upfront, enabling the agent
to tailor a single precise output. In practice, this corresponds to the agent asking targeted clarifying
questions to elicit detailed user preferences before undertaking the deep research task.

In the above three regimes (balanced, search-only and communication-only), the user’s payoff is a
non-zero fraction of the highest achievable payoff (max payoff under no costs). In a non-operational
regime, where both costs are very high (As > 1/d and A. > 1/d), any meaningful interaction is
too costly to be worthwhile. The optimal strategy degenerates to random selection, and the user’s
expected payoff consequently approaches zero. Alternatively, in a frictionless regime, where either
As € 1/dor A, < 1/d, the user’s payoff is highest achievable as this is similar to having no costs.
Here, A; < 1/d represents a scenario where the user can effortlessly evaluate all options to find the
perfect match, and A\, < 1/d represents a futuristic case where the user relegates the purchase task
to a perfect Al clone that already knows the user’s true preferences.
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