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ABSTRACT

Learning neural subset selection tasks, such as compound selection in AI-aided
drug discovery, have become increasingly pivotal across diverse applications. The
existing methodologies in the field primarily concentrate on constructing models
that capture the relationship between utility function values and subsets within
their respective supersets. However, these approaches tend to overlook the valuable
information contained within the superset when utilizing neural networks to model
set functions. In this work, we address this oversight by adopting a probabilistic
perspective. Our theoretical findings demonstrate that when the target value is
conditioned on both the input set and subset, it is essential to incorporate an
invariant sufficient statistic of the superset into the subset of interest for effective
learning. This ensures that the output value remains invariant to permutations of
the subset and its corresponding superset, enabling identification of the specific
superset from which the subset originated. Motivated by these insights, we propose
a simple yet effective information aggregation module designed to merge the
representations of subsets and supersets from a permutation invariance perspective.
Comprehensive empirical evaluations across diverse tasks and datasets validate the
enhanced efficacy of our approach over conventional methods, underscoring the
practicality and potency of our proposed strategies in real-world contexts.

1 INTRODUCTION

The prediction of set-valued outputs plays a crucial role in various real-world applications. For
instance, anomaly detection involves identifying outliers from a majority of data (Zhang et al., 2020),
and compound selection in drug discovery aims to extract the most effective compounds from a given
compound database (Gimeno et al., 2019). In these applications, there exists an implicit learning of
a set function (Rezatofighi et al., 2017; Zaheer et al., 2017) that quantifies the utility of a given set
input, where the highest utility value corresponds to the most desirable set output.

More formally, let’s consider the compound selection task: given a compound database V , the goal is
to select a subset of compounds S∗ ⊆ V that exhibit the highest utility. This utility can be modeled
by a parameterized utility function Fθ(S;V ), and the optimization criteria can be expressed as:

S∗ = argmax
S∈2V

Fθ(S;V ). (1)

One straightforward method is to explicitly model the utility by learning U = Fθ(S;V ) using
supervised data in the form of {(Si, Vi), Ui}Ni=1, where Ui represents the true utility value of subset
Si given Vi. However, this training approach becomes prohibitively expensive due to the need for
constructing a large amount of supervision signals (Balcan & Harvey, 2018).

To address this limitation, another way is to solve Eq.1 with an implicit learning approach from
a probabilistic perspective. Specifically, it is required to utilize data in the form of {(Vi, S

∗
i )}Ni=1,

where S∗
i represents the optimal subset corresponding to Vi. The goal is to estimate θ such that
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Figure 1: (Left): The DeepSet-style models only focus on processing the subset S. (Right): In
contrast, INSET not only identifies the subset S but also takes the identification of V into account,
which parameterizes the information that S is a subset of V during the training process.

Eq. 1 holds for all possible (Vi, Si). During practical training, with limited data (S∗
i , Vi)

N
i=1 sampled

from the underlying data distribution P (S, V ), the empirical log likelihood
∑N

i=1[log pθ(S
∗|V )] is

maximized among all data pairs {S, V }, where pθ(S|V ) ∝ Fθ(S;V ) for all S ∈ 2V . To achieve this
objective, Ou et al. (2022) proposed to use a variational distribution q(Y |S, V ) to approximate the
distribution of P (S|V ) within the variational inference framework, where Y ∈ [0, 1]|V | represents
a set of |V | independent Bernoulli distributions, representing the odds or probabilities of selecting
element i in an output subset S. (More details can be found in Appendix D.1.) Thus, the main
challenge lies in characterizing the structure of neural networks capable of modeling hierarchical
permutation invariant conditional distributions. These distributions should remain unchanged under
any permutation of elements in S and V while capturing the interaction between them.

However, the lack of guiding principles for designing a framework to learn the permutation invariant
conditional distribution P (Y |S, V ) or F (S, V ) has been a challenge in the literature. A commonly
used approach in the literature involves employing an encoder to generate feature vectors for each
element in V . These vectors are then fed into DeepSets (Zaheer et al., 2017), using the corresponding
supervised subset S, to learn the permutation invariant set function F (S). However, this procedure
might overlook the interplay between S and V , thereby reducing the expressive power of models.
See Figure 1 for an illustrative depiction of this concept.

To address these challenges, our research focuses on the aggregation of background information from
the superset V into the subset S from a symmetric perspective. Initially, we describe the symmetry
group of (S, V ) during neural subset selection, as outlined in Section 3.2. Specifically, the subset S
is required to fulfill permutation symmetry, while the superset V needs to satisfy a corresponding
symmetry group within the nested sets scheme. We denote this hierarchical symmetry of (S, V )
as G. Subsequently, we theoretically investigate the connection between functional symmetry and
probabilistic symmetry within F (S, V ) and P (Y |S, V ), indicating that the conditional distribution
can be utilized to construct a neural network that processes the invariant sufficient representation
of (S, V ) with respect to G. These representations, defined in Section 3.3, are proven to satisfy
Sufficiency and Adequacy, which means such representations retain the information of the prediction
Y while disregarding the order of the elements in S or V . Building upon the above theoretical
results, we propose an interpretable and powerful model called INSET (Invariant Representation of
Subsets) for neural subset selection in Section 3.4. INSET incorporates an information aggregation
step between the invariant sufficient representations of S and V , as illustrated in Figure 1. This
ensures that the model’s output can approximate the relationship between Y and (S, V ) while being
unaffected by the transformations of G. Furthermore, in contrast to previous works that often disregard
the information embedded within the set V , our exceptional model (INSET) excels in identifying the
superset V from which the subset S originates.

In summary, we makes the following contributions. Firstly, we approach neural set selection from a
symmetric perspective and establish the connection between functional symmetry and probabilistic
symmetry in P (Y |S, V ), which enables us to characterize the model structure. Secondly, we
introduce INSET, an effective and interpretable approach model for neural subset selection. Lastly,
we empirically validate the effectiveness of INSET through comprehensive experiments on diverse
datasets, encompassing tasks such as product recommendation and set anomaly detection.
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2 RELATED WORK

Encoding Interactions for Set Representations. Designing network architectures for set-structured
input has emerged as a highly popular research topic. Several prominent works, including those
(Ravanbakhsh et al., 2017; Edwards & Storkey, 2016; Zaheer et al., 2017; Qi et al., 2017a; Horn et al.,
2020; Bloem-Reddy & Teh, 2020) have focused on constructing permutation equivariant models
using standard feed-forward neural networks. These models demonstrate the ability to universally
approximate continuous permutation-invariant functions through the utilization of set-pooling layers.
However, existing approaches solely address the representation learning at the set level and overlook
interactions within sub-levels, such as those between elements and subsets.

Motivated by this limitation, subsequent studies have proposed methods to incorporate richer inter-
actions when modeling invariant set functions for different tasks. For instance, (Lee et al., 2019b)
introduced the use of self-attention mechanisms to process elements within input sets, naturally
capturing pairwise interactions. Murphy et al. (2018) proposed Janossy pooling as a means to encode
higher-order interactions within the pooling operation. Further improvements have been proposed
by (Kim, 2021; Li et al., 2020), among others. Additionally, Bruno et al. (2021); Willette et al.
(2022) developed techniques to ensure Mini-Batch Consistency in set encoding, enabling the provable
equivalence between mini-batch encodings and full set encodings by leveraging interactions. These
studies emphasize the significance of incorporating interactions between different components.

Information-Sharing in Neural Networks. In addition to set learning tasks, the interaction between
different components holds significance across various data types and neural networks. Recent
years have witnessed the development of several deep neural network-based methods that explore
hierarchical structures. For Convolutional Neural Networks (CNNs), various hierarchical modules
have been proposed by Deng et al. (2014); Murthy et al. (2016); Xiao et al. (2014); Chen et al. (2020);
Ren et al. (2020; 2019) to address different image-related tasks. In the context of graph-based tasks,
(Defferrard et al., 2016; Cangea et al., 2018; Gao & Ji, 2019; Ying et al., 2018b; Huang et al., 2019;
Ying et al., 2018a; Jin et al., 2020; Han et al., 2022), and others have put forth different methods
to learn hierarchical representations. The focus of these works lies in capturing local information
effectively and integrating it with global information.

However, the above works ignore the symmetry and expressive power in designing models. Motivated
by this, Maron et al. (2020); Wang et al. (2020) proposed how to design linear equivariant and
invariant layers for learning hierarchical symmetries to handle per-element symmetries. Moreover,
there are some works proposed for different tasks considering symmetry and hierarchical structure,
e.g., (Han et al., 2022; Ganea et al., 2022). Our method differs from previous work by focusing on
generating a subset S ∈ V as the final output, rather than output the entire set V . Besides, INSET
embraces a probabilistic perspective, aligning with the nature of the Optimal Subset (OS) oracle.

3 METHOD

3.1 BACKGROUND

Let’s consider the ground set composed of n elements, denoted as xi, i.e., V = {x1, x2, ..., xn}. In
order to facilitate the proposition of Property 3.1, we describe V as a collection of several disjoint
subsets, specifically V = {S1, . . . , Sm}, where Si ∈ Rni×d. Here, ni represents the size of subset
Si, and each element xi ∈ X is represented by a d-dimensional tensor. It is worth noting that,
without loss of generality, we can treat Si as individual elements, i.e., ni = 1. As an example of
neural subset selection, the task involves encoding subsets Si into representative vectors to predict the
corresponding function value Y ∈ Y , as discussed in the introduction section. Existing methods such
as (Zaheer et al., 2017) and (Ou et al., 2022) directly select Si from the encoding embeddings of all
elements in V , and then input Si into feed-forward networks. However, these methods approximate
the function F (Si, V ) using only the explicit subsets Si, which can be suboptimal since the function
also relies on information from the ground set V . Furthermore, this approach leads to a conditional
distribution P (Y |S) instead of the desired P (Y |S, V ). Throughout this study, we assume that all
random variables take values in standard Borel spaces, and all introduced maps are measurable.

In this section, we introduce a principled approach for encoding subset representations that leverages
background information from the entire input set V to achieve better performance. Additionally,
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our theoretical results naturally align with the task of neural subset selection in OS Oracle, as they
focus on investigating the probabilistic relationship between Y and (S, Y ), which also establishes a
connection between the conditional distribution and the functional representation of both S and V . By
linking the functional representation to the conditional distribution, our results also provide insights
into constructing a neural network that effectively approximates the desired function F (S, V ).

3.2 THE SYMMETRIC INFORMATION FROM SUPERSETS

When considering the invariant representation of S alone, we can directly utilize DeepSets with a max-
pooling operation. However, incorporating background information from V into the representations
poses the challenge of determining the appropriate inductive bias for the modeling process. One
straightforward approach is to assume the existence of two permutation groups that act independently
on V and S. However, this assumption is impractical since S is a part of V . If we transform S,
the corresponding adjustments should also be made to V . From the perspective of the interaction
between subsets and supersets, a natural consideration is to view the supersets as a nested set of
sets, i.e., V = S1 ∪ S2 ∪ · · · ∪ Sm, where Si ∩ Sj = ∅ if i ̸= j. In this perspective, the symmetric
properties will become more evident.

We assume the presence of an outer permutation πm ∈ Sm that maps indices of the subsets to new
indices, resulting in a reordering of the subsets within V . Furthermore, within each subset Si, there
exists a permutation group denoted by hi ∈ Hi, which captures the possible rearrangements of
elements within that specific subset. Each element of hi represents a distinct permutation on the
elements of Si. The symmetry of nested sets of sets, referred to as R, can be defined as the wreath
product of the symmetric group Sm (representing outer permutations on the m subsets) and the direct
product of the permutation groups associated with each subset (G1 × G2 × · · · × Gm). Formally,
R = Sm ≀ (G1 × G2 × · · · × Gm). Therefore, for any transformation r ∈ R acting on V , there must
exist a corresponding h ∈ H acting on S. Keeping this in mind, we define the conditional distribution
P (Y |S, V ) to adhere to the following property:

Property 3.1. Let S ∈ S, V ∈ V and Y ∈ Y, where H and R act on S and V, respectively. Then,
the conditional distribution P (Y |S, V ) of Y give (S, V ) is said to be invariant under a group H and
R if and only if:

P (Y | S, V ) = P (Y | g · (S, V )) = P (Y | h · S, r · V ) for any h ∈ H and r ∈ R .

In this context, we denote the composite group G = H×R, which acts on the product space S × V .
We have now clarified the specific inductive bias that should be considered when characterizing
neural networks. In the subsequent subsection, we will delve into the exploration of constructing
neural networks that fulfill this property.

3.3 INVARIANT SUFFICIENT REPRESENTATION

Functional and probabilistic notions of symmetries represent two different approaches to achieving
the same goal: a principled framework for constructing models from symmetry considerations. To
characterize the precise structure of the neural network satisfying Property 3.1, we need to use a
technical tool, that transfers a conditional probability distribution P (Y |S, V ) into a representation of
Y as a function of statics of (S, V ) and random noise, i.e., f(ξ,M(S, V )). Here, M are maps, which
are based on the idea that a statistic may contain all the information that is needed for an inferential
procedure. There are mainly two terms as Sufficiency and Adequacy. The ideas go hand-in-hand
with notions of symmetry: while invariance describes information that is irrelevant, sufficiency and
adequacy describe the information that is relevant.

There are various methods to describe sufficiency and adequacy, which are equivalent under some
constraints. For convenience and completeness, we follow the concept from (Halmos & Savage,
1949; Bloem-Reddy & Teh, 2020). We begin by defining the sufficient statistic as follows, where BX
represents the Borel σ-algebra of X :

Definition 3.2. Assume M : S × V → M a measurable map and there is a Markov kernel
k : BX × S × V → R+ such that for all X ∈ X and m ∈ M, P ( • | M(S, V ) = m) = k( • ,m).
Then M is a sufficient statistic for P (S, V ).

4



Published as a conference paper at ICLR 2024

This definition characterizes the information pertaining to the distribution of (S, V ). More specifically,
it signifies that there exists a single Markov kernel that yields the same conditional distribution of
(S, V ) conditioned on M(S, V ) = m, regardless of the distribution P (S, V ). It is important to note
that if S ⊈ V , the corresponding value of M(S, V ) would be zero, which is an invalid case. When
examining the distribution of Y conditioned on S and V , an additional definition is required:
Definition 3.3. Let M : S × V → M be a measurable map and assume M is sufficient for P (S, V ).
If for all s ∈ S, v ∈ V and y ∈ Y,

P (Y ∈ • | S = s, V = v) = P (Y ∈ • | M(S, V ) = m) . (2)
Then, M serves as an adequate statistic of (S, V ) for Y , and also acts as the sufficient statistic.

Actually, Equation (2) is equivalent to conditional independence of Y and (S, V ), given M(S, V ),
i.e., Y⊥⊥M(X)X, This is also called M d-separates (S, V ) and Y. In other words, if our goal is
to approximate the invariant conditional distribution P (Y |S, V ), we can first seek an invariant
representation of (S, V ) under G, which also acts as an adequate statistic for (S, V ) with respect to
Y . Consequently, modeling the relationship between (S, V ) and Y directly is equivalent to learning
the relationship between M(S, V ) and Y , which naturally satisfies Property 3.1.

With the given definitions, it becomes evident that we can discover an invariant representation of
(S, V ) with respect to the symmetric groups G. This representation is referred to as the Invariant
Sufficient Representation, signifying that an invariant effective representation should eliminate the
information influenced by the actions of G, while preserving the remaining information regarding its
distribution. This concept is also referred to as Maximal Invariant in some previous literature, such
as (Kallenberg et al., 2017; Bloem-Reddy & Teh, 2020).
Definition 3.4. (Invariant Sufficient Representation) For a group G of actions on any (s, v) ∈ S×V
, we say M : S × V → M is a invariant sufficient representation for space S × V , if it satisfies: If
M(s1, v1) = M(s2, v2), then (s2, v2) = g · (s1, v1) for some g ∈ G; otherwise, there is no such g
that satisfies (s2, v2) = g · (s1, v1).

Clearly, the invariant sufficient representation M serves as the sufficient statistic for (S, V ). Fur-
thermore, if the conditional distribution P (Y |S, V ) is invariant to transformations induced by the
group G, we can establish that M(S, V ) is an adequate statistic for (S, V ), as stated in Corollary 3.6.
In other words, M(S, V ) can be considered to encompass all the relevant information for predict-
ing the label given (S, V ) while eliminating the redundant information about G. Hence, we can
construct models that learn the relationship between M(S, V ) and Y , ultimately resulting in an
invariant function Y = f(S, V ) under the group G. From a probabilistic standpoint, this implies that
P (Y |S, V ) = P (Y |M(S, V )).

3.4 CHARACTERIZING THE MODEL STRUCTURE

Hence, by computing the invariant sufficient representations of (S, V ), we can construct a G-invariant
layer. This idea can give rise to the following theorem:
Theorem 3.5. Consider a measurable group G acting on S × V . Suppose we select an invariant
sufficient representation denoted as M : S ×V → M. In this case, P (Y |S, V ) satisfies Property 3.1
if and only if there exists a measurable function denoted as f : [0, 1] × S × V → Y such that the
following equation holds:

(S, V, Y ) =a.s.

(
S, V, f(ξ,M(S, V ))

)
where ξ ∼ Unif[0, 1] and ξ⊥⊥(S, V ); . (3)

In this context, the variable ξ represents generic noise, which can be disregarded when focusing solely
on the model structure rather than the complete training framework (Bloem-Reddy & Teh, 2020;
Ou et al., 2022). Consequently, the theorem highlights the necessity of characterizing the neural
networks in the form of f(M(S, V )). Moreover, Theorem 3.5 implies that the invariant sufficient
representation M(S, V ) also serves as an adequate statistic. This can be illustrated as follows:
P (Y ∈ • |S = s, V = v) = P (Y ∈ • |S = s, V = v,M(S, V ) = m) = P (Y ∈ • |M(S, V ) = m).

To provide additional precision and clarity, we present the following corollary, which demonstrates
that M(S, V ) is an adequate statistic of (S, V ) for Y.
Corollary 3.6. Let G be a compact group acting measurably on standard Borel spaces S × V , and
let M be another Borel space. Then Any invariant sufficient representation M : S × V → M under
G is an adequate statistic of (S, V ) for Y.
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3.5 IMPLEMENTATION

In theory, invariant sufficient representations can be computed by selecting a representative element
for each orbit under the group G. However, this approach is impractical due to the high dimensions of
the input space and the potentially enormous number of orbits. Instead, in practice, a neural network
can be employed to approximate this process and generate the desired representations (Zaheer et al.,
2017; Bloem-Reddy & Teh, 2020), particularly in tasks involving sets or set-like structures.

However, the approach to approximating such a representation for (S, V ) under G remains unclear.
To simplify the problem, we can divide the task of finding the invariant sufficient representation of
S and V under H and R, respectively, as defined in Section 3.2. This concept is guaranteed by the
following proposition:
Proposition 3.7. Assuming that Ms : S → S1 and Mv : V → V1 serve as invariant sufficient
representations for S and V with respect to H and R, respectively, then there exist maps f :
S1 × V1 → M that establish the invariant sufficient representation of M .

Proposition 3.7 specifically states that we can construct the invariant sufficient representations for
S and V individually, as they are comparatively easier to construct compared to M(S, V ). In the
work of (Bloem-Reddy & Teh, 2020), it is demonstrated that for S under H , the empirical measure
Ms(S) =

∑
si∈S δ(si) can be chosen as a suitable invariant sufficient representation. Here, δ(si)

represents an atom of unit mass located at si, such as one-hot embeddings. Additionally, leveraging
the proposition established by Zaheer et al. (2017), we can employ ρ

∑
s∈S ϕ(s) to approximate the

empirical measure. This approximation offers a practical and effective approach to constructing the
invariant sufficient representation.
Proposition 3.8. If f is a valid permutation invariant function on S, it can be approximated
arbitrarily close in the form of f(S) = ρ

(∑
s∈S ϕ(s)

)
, for suitable transformations ϕ and ρ.

During the implementation, an encoder ϕ is utilized to generate embeddings for each element. For
example, when dealing with sets of images, ResNet can be employed as the encoder. On the other
hand, ρ can represent various feedforward networks, such as fully connected layers combined with
nonlinear activation functions. Similarly, for the symmetric group R acting on V , Maron et al. (2020)
has demonstrated that the universal approximators of the invariant sufficient representations are∑

S∈V

∑
s∈S ϕ(s), which is equivalent to

∑
xj∈V ϕ(xj). Hence, for neural subset selection tasks,

when considering a specific subset S ∈ V , The neural network construction is outlined as follows:

θ(S, V ) = σ

(
θ1(

ni∑
i=1

ϕ(xi)) + θ2

( n∑
i=1

ϕ(xj)

))
, (4)

Here, the feed-forward modules θ1 and θ2 are accompanied by a non-linear activation layer denoted
by σ. Intuitively, the inherent simplicity of the structure enables us to utilize the DeepSet module
to process all elements in V and integrate them with the invariant sufficient representations of S.
In practice, there are different ways to integrate the representation of V into the representation of
S, such as concatenation (Qi et al., 2017a) or addition (Maron et al., 2020). Although this idea is
straightforward, in the following section, we will demonstrate how this modification significantly
enhances the performance of baseline methods. Notably, this idea has been empirically utilized in
previous works, such as (Qi et al., 2017a;b). However, we propose it from a probabilistic invariant
perspective. A corresponding equivariant framework was also introduced in Wang et al. (2020),
which complements our results in the development of deep equivariant neural networks.

4 EXPERIMENTS

The proposed methods are assessed across multiple tasks, including product recommendation, set
anomaly detection, and compound selection. To ensure robustness, all experiments are repeated
five times using different random seeds, and the means and standard deviations of the results are
reported. For additional experimental details and settings, we provide comprehensive information in
Appendix E.

Evaluations. The main goal of the following tasks is to predict the corresponding S⋆ given V.
Therefore, we evaluate the methods using the mean Jaccard coefficient (MJC) metric. Specifically,
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Table 1: Product recommendation results on all categories.

Categories Random PGM DeepSet Set Transformer EquiVSet INSET

Toys 0.083 0.441 ± 0.004 0.421 ± 0.005 0.625 ± 0.020 0.684 ± 0.004 0.769 ± 0.005
Furniture 0.065 0.175 ± 0.007 0.168 ± 0.002 0.176 ± 0.008 0.162 ± 0.020 0.169 ± 0.050

Gear 0.077 0.471 ± 0.004 0.379 ± 0.005 0.647 ± 0.006 0.725 ± 0.011 0.808 ± 0.012
Carseats 0.066 0.230 ± 0.010 0.212 ± 0.008 0.220 ± 0.010 0.223 ± 0.019 0.231 ± 0.034

Bath 0.076 0.564 ± 0.008 0.418 ± 0.007 0.716 ± 0.005 0.764 ± 0.020 0.862 ± 0.005
Health 0.076 0.449 ± 0.002 0.452 ± 0.001 0.690 ± 0.010 0.705 ± 0.009 0.812 ± 0.005
Diaper 0.084 0.580 ± 0.009 0.451 ± 0.003 0.789 ± 0.005 0.828 ± 0.007 0.880 ± 0.007

Bedding 0.079 0.480 ± 0.006 0.481 ± 0.002 0.760 ± 0.020 0.762 ± 0.005 0.857 ± 0.010
Safety 0.065 0.250 ± 0.006 0.221 ± 0.004 0.234 ± 0.009 0.230 ± 0.030 0.238 ± 0.015

Feeding 0.093 0.560 ± 0.008 0.428 ± 0.002 0.753 ± 0.006 0.819 ± 0.009 0.885 ± 0.005
Apparel 0.090 0.533 ± 0.005 0.508 ± 0.004 0.680 ± 0.020 0.764 ± 0.005 0.837 ± 0.003
Media 0.094 0.441 ± 0.009 0.426 ± 0.004 0.530 ± 0.020 0.554 ± 0.005 0.620 ± 0.023

for each data sample (S⋆, V ) if the model’s prediction is S′, then the Jaccard coefficient is given as:
JC(S⋆, S′) = |S⋆∩S′|

|S⋆∪S′| . Therefore, the MJC is computed by averaging JC metric over all samples in
the test set.

Baselines. To show our method can achieve better performance on real applications, we compare it
with the following methods:

• Random. The results are calculated based on random estimates, which provide a measure of how
challenging the tasks are.

• PGM (Tschiatschek et al., 2018). PGM is a probabilistic greedy model (PGM) solves optimization
Problem 1 with a differentiable extension of greedy maximization algorithm. In our paper, we
leverage the results of PGD conducted on various datasets as reported in the study by (Ou et al.,
2022).

• DeepSet (Zaheer et al., 2017). Here, we use DeepSet as a baseline by predicting the probability
of which instance should be in S⋆, i.e., learn an invariant permutation mapping 2V 7→ [0, 1]|V |. It
serves as the backbone in EquiVSet to learn set functions, and can also be employed as a baseline.

• Set Transformer (Lee et al., 2019a). Set Transformer, compared with DeepSet, goes beyond by
incorporating the self-attention mechanism to account for pairwise interactions among elements.
This will make models to capture dependencies and relationships between different elements.

• EquiVSet (Ou et al., 2022). EquiVSet uses an energy-based model (EBM) to construct the
set mass function P (S|V ) from a probabilistic perspective, i.e, they mainly focus on learning a
distribution P (S|V ) monotonically growing with the utility function F (S, V ). This requires to
learn a conditional distribution P (Y |S, V ) as approximation distribution. Actually, their framework
is to approximate symmetric F (S) instead of symmetric F (S, V ).

4.1 PRODUCT RECOMMENDATION

The task requires models to recommend the most interested subset for a customer given 30 products
in a category. We use the dataset (Gillenwater et al., 2014a) from the Amazon baby registry for
this experiment, which includes many product subsets chosen by various customers. Amazon
classifies each item on a baby registry as being under one of several categories, such as “Health”
and “Feeding”. Moreover, each product is encoded into a 768-dimensional vector by the pre-trained
BERT model based on its textual description. Table 1 reports the performance of all the models
across different categories. Out of the twelve cases evaluated, INSET performs best in ten of them,
except for Furniture and Safety tasks. The discrepancy in performance can be attributed to the fact
that our method is built upon the EquiVSet framework, with the main modification being the model
structure for modeling F (S, V ). Consequently, when EquiVSet performs poorly, it also affects
the performance of INSET. Nonetheless, it is worth noting that INSET consistently outperforms
EquiVSet and achieves significantly better results than other baselines in the majority of cases. The
margin of improvement is substantial, demonstrating the effectiveness and superiority of INSET.
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Table 2: Set anomaly detection and compound selection results

ANOMALY DETECTION COMPOUND SELECTION
Double MNIST CelebA F-MNIST PDBBind BindingDB

RANDOM 0.0816 0.2187 0.193 0.099 0.009

PGM 0.300 ± 0.010 0.481 ± 0.006 0.540 ± 0.020 0.910 ± 0.010 0.690 ± 0.020

DEEPSET 0.111 ± 0.003 0.440 ± 0.006 0.490 ± 0.020 0.901 ± 0.011 0.710 ± 0.020

SET TRANSFORMER 0.512 ± 0.005 0.527 ± 0.008 0.581 ± 0.010 0.919 ± 0.015 0.715 ± 0.010

EQUIVSET 0.575 ± 0.018 0.549 ± 0.005 0.645 ± 0.010 0.924 ± 0.011 0.721 ± 0.009

INSET 0.707 ± 0.010 0.580 ± 0.012 0.721 ± 0.021 0.935 ± 0.008 0.734 ± 0.010

4.2 SET ANOMALY DETECTION

We conduct set anomaly detection tasks on three real-world datasets: the double MNIST (Sun, 2019),
the CelebA (Liu et al., 2015b) and the F-MNIST (Xiao et al., 2017). Each dataset is divided into
the training, validation, and test sets with sizes of 10,000, 1,000, and 1,000, respectively. For each
dataset, we randomly sample n ∈ {2, 3, 4} images as the OS oracle S∗. The setting is followed by
(Zaheer et al., 2017; Ou et al., 2022). Let’s take CelebA as an example. In this case, the objective is
to identify anomalous faces within each set solely through visual observation, without any access to
attribute values. The CelebA dataset comprises 202,599 face images, each annotated with 40 boolean
attributes. When constructing sets, for every ground set V , we randomly choose n images from the
dataset to form the OS Oracle S∗, ensuring that none of the selected images contain any of the two
attributes. Additionally, it is ensured that no individual person’s face appears in both the training
and test sets. Regarding Table 2, it is evident that our model demonstrates a substantial performance
advantage over all the baselines. Specifically, in the case of Double MNIST, our model shows a
remarkable improvement of 23% compared to EquiVSet, which itself exhibits the best performance
among all the baselines considered. This significant margin of improvement highlights the superior
capabilities of our model in tackling the given task.

4.3 COMPOUND SELECTION IN AI-AIDED DRUG DISCOVERY

The screening of compounds with diverse biological activities and satisfactory ADME (absorption,
distribution, metabolism, and excretion) properties is a crucial stage in drug discovery tasks (Li et al.,
2021; Ji et al., 2022; Gimeno et al., 2019). Consequently, virtual screening is often a sequential
filtering procedure with numerous necessary filters, such as selecting diverse subsets from the highly
active compounds first and then removing compounds that are harmful for ADME. After several
filtering stages, we reach the optimal compound subset. However, it is hard for neural networks to
learn the full screening process due to a lack of intermediate supervision signals, which can be very
expensive or impossible to obtain due to the pharmacy’s protection policy. Therefore, the models are
supposed to learn this complicated selection process in an end-to-end manner, i.e., models will predict
S∗ only given the optimal subset supervision signals without knowing the intermediate process.
However, this is out of the scope of this paper, since the task is much more complex and requires
extra knowledge, and thus we leave it as future work.

Table 3: Ablation Studies on CelebA with differ-
ent parameters

MJC Parameters

Random 0.2187 -
EquiVSet 0.549±0.005 1782680
EquiVSet (v1) 0.554±0.007 2045080
EquiVSet (v2) 0.560±0.005 3421592

INSET 0.580±0.012 2162181

To simulate the process, we only apply one filter:
high bioactivity to acquire the optimal subset of
compound selection following (Ou et al., 2022).
We conduct experiments using the following
datasets: PDBBind (Liu et al., 2015a) and Bind-
ingDB (Liu et al., 2007). Table 2 shows that
our method performs better than the baselines
and significantly outperform the random guess,
especially on the BindingDB dataset. Differ-
ent from the previous tasks, the performance of
these methods is closer to each other. That is
because the structure of complexes (the elements in a set) can provide much information for this
task. Thus, the model could predict the activity value of complexes well without considering the
interactions between the optimal subset and the complementary. However, our method can still
achieve more satisfactory results than the other methods.
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Figure 2: Left: A sample from the Double MNIST dataset, comprising |S∗| images displaying the
same digit (indicated by the red box). Right: The two figures on the right display the validation
performance plotted against the number of epochs for Toys and Diaper datasets, respectively. The
x-axis represents the epochs.

4.4 COMPUTATION COST

The main difference between INSET and EquiVSet is the additional information-sharing module to
incorporate the representations of V . A possible concern is that the better performance of INSET
might come from the extra parameters instead of our framework proposed. To address this concern,
we conducted experiments on CelebA datasets. We add an additional convolution layer in the encoders
to improve the capacity of EquiVSet. According to the location and size, we propose two variants of
EquiVSet, details can be found in the appendix. We report the performance of models with different
model sizes in Table 3. It is evident that INSET surpasses all the variants of EquiVSet, clearly
demonstrating superior performance. Notably, the improvement achieved through the parameters
is considerably less significant when compared to the substantial improvement resulting from the
information aggregation process. This highlights the crucial role of information aggregation in driving
the overall performance enhancement of INSET.

4.5 PERFORMANCE VERSUS TRAINING EPOCHS

In addition to the notable improvement in the final MJC achieved by INSET, we have also observed
that incorporating more information from the superset leads to enhanced training speed and better
overall performance. To illustrate this, we present two figures depicting the validation performance
against the number of training epochs for the Toys and Diaper datasets. It is evident that INSET
achieves favorable performance in fewer training epochs. For instance, on the Toy dataset, INSET
reaches the best performance of EquiVSet, at approximately epoch 18. Furthermore, around epoch
25, INSET approaches its optimal performance, while EquiVSet and Set Transformer attain their
best performance around epoch 40. This highlights the efficiency and effectiveness of INSET in
achieving competitive results within a shorter training time.

5 CONCLUSION

In this study, we have identified a significant limitation in subset encoding methods, such as neural
subset selection, where the output is either the subset itself or a function value associated with the
subset. By incorporating the concept of permutation invariance, we reformulate this problem as
the modeling of a conditional distribution P (Y |S, V ) that adheres to Property 3.1. Our theoretical
analysis further reveals that to accomplish this objective, it is essential to construct a neural network
based on the invariant sufficient representation of both S and V . In response, we introduce INSET, a
highly accurate and theoretical-driven approach for neural subset selection, which also consistently
outperforms previous methods according to empirical evaluations.

Limitations and Future Work. INSET is a simple yet effective method in terms of implementation,
indicating that there is still potential for further improvement by integrating additional information,
such as pairwise interactions between elements. Furthermore, our theoretical analysis is not limited to
set-based tasks; it can be applied to more general scenarios with expanded definitions and theoretical
contributions. We acknowledge that these potential enhancements and extensions are left as future
work, offering opportunities for further exploration and development.
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A APPENDIX

B PROOF OF THEOREM 3.5

B.1 THE CONNECTION BETWEEN FUNCTIONAL AND PROBABILISTIC SYMMETRIES

To prove Theorem 3.5, the main objective is to establish a relationship between the conditional
distribution P (Y |S, V ) and a functional representation of samples generated from P (Y |S, V ) in
terms of (S, V ) and independent noise ξ. This functional representation can be expressed as Y =a.s.

f(ξ, S, V ), where f captures the underlying relationship between the variables.

In order to achieve this goal, a valuable technique called the transducer (Kallenberg, 2002) or Noise
Outsourcing (Bloem-Reddy & Teh, 2020) comes into play. This technique allows us to effectively
connect the conditional distribution with the functional representation by leveraging the concept of
independent noise variables. By applying the transducer or Noise Outsourcing approach, we can
establish a clear mapping between the observed variables (S, V ), the independent noise ξ, and the
resulting output Y . More formally, we give the corresponding lemma as:

Lemma B.1 (Conditional independence and randomization). Let S, V, Y, Z be random elements in
some measurable spaces S,V,Y,Z , respectively, where Y is Borel. Then Y⊥⊥Z(S, V ) if and only if
Y =a.s. f(ξ, Z) for some measurable function f : [0, 1] × S × V → Y and some uniform random
variable ξ⊥⊥(S, V, Z).

In the main text, we put forth the idea of utilizing an invariant sufficient representation M(S, V ) as
an alternative to (S, V ) to ensure compliance with symmetry groups. This representation captures
the essential information while discarding unnecessary details, making it well-suited for addressing
the challenges posed by symmetry.

By employing the invariant sufficient representation M(S, V ), we can redefine and refine the afore-
mentioned lemma in a more concise and expressive manner. This approach allows us to establish
a direct connection between the conditional distribution P (Y |S, V ) and the functional represen-
tation f(ξ,M(S, V )), where ξ represents independent noise variables. The use of M(S, V ) as a
replacement for (S, V ) enables us to effectively model and analyze the relationship between the input
variables and the desired output.

Lemma B.2. Let S, V and Y be random variables with joint distribution P (S, V, Y ). Assume there
exists a mapping M : S × V → M, then M(S, V ) d-separates (S, V ) and Y if and only if there is a
measurable function f : [0, 1]× S × V → Y such that

(S, V, Y ) =a.s. (S, V, f(ξ,M(S, V ))) where ξ ∼ Unif[0, 1] and ξ⊥⊥X .

In particular, Y = f(ξ,M(S, V )) has distribution P (Y |S, V ).

This lemma implies that if the invariant sufficient representation is capable of d-separating (S, V )
and Y , it will yield the equation presented in Eq.3 of Theorem3.5. Subsequently, we must establish
why the conditional distribution P (Y |S, V ) remains invariant under the group G if and only if an
invariant sufficient representation M exists. This overarching concept can be succinctly summarized
in the following lemma:

Lemma B.3. Let S,V and Y be Borel spaces, G a compact group acting measurably on (S,V), and
M : S × V → Y a invariant sufficient representation on (S,V) under G. If (S, V ) is a random
element of (S,V), then its distribution P (S, V ) is G-invariant if and only if

P ((S, V ) ∈ • | M(S, V ) = m) = q( • ,m) , (5)

for some Markov kernel q : BS×V ×M → R+. If P (S, V ) is G-invariant and Y is any other random
variable, then P (Y |S, V ) is G-invariant if and only if Y⊥⊥M(S,V )(S, V ).

This lemma serves as a refined version of Lemma 20 presented in (Bloem-Reddy & Teh, 2020).
Proving this lemma involves a comprehensive set of definitions and notations, which are beyond the
scope of this paper. We encourage interested readers to refer to (Bloem-Reddy & Teh, 2020) for
detailed proof.
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By leveraging the insights and techniques established above, we are able to establish Theorem 3.5.
The theorem provides a formal characterization of the relationship between the invariance of the
conditional distribution P (Y |S, V ) under the group G and the existence of an invariant sufficient
representation M(S, V ).

Theorem 3.5. Consider a measurable group G acting on S × V . Suppose we select an invariant
sufficient representation denoted as M : S ×V → M. In this case, P (Y |S, V ) satisfies Property 3.1
if and only if there exists a measurable function denoted as f : [0, 1] × S × V → Y such that the
following equation holds:

(S, V, Y ) =a.s.

(
S, V, f(ξ,M(S, V ))

)
where ξ ∼ Unif[0, 1] and ξ⊥⊥(S, V ); . (3)

Proof. Lemma B.3 plays a crucial role in establishing the conditional independence relationship
between Y and (S, V ) based on the invariant sufficient representation M(S, V ). This lemma
demonstrates that when M(S, V ) is employed, the variables Y and (S, V ) become conditionally
independent, meaning that knowledge of M(S, V ) is sufficient to explain the relationship between Y
and (S, V ).

By leveraging the insights provided by Lemma B.3, we can derive the conclusion of Theorem 3.5
with the support of lemma B.2. Lemma B.2 further strengthens the link between the conditional
independence relationship and the existence of an invariant sufficient representation. It establishes
the notion that the invariance of the conditional distribution P (Y |S, V ) under the group G is directly
related to the presence of an invariant sufficient representation M(S, V ).

Given the established conditional independence relationship Y⊥⊥M(S,V )(S, V ) as demonstrated in
Lemma B.3, we can now proceed to prove the following corollary by examining the definition of
adequacy:

Corollary 3.6. Let G be a compact group acting measurably on standard Borel spaces S × V , and
let M be another Borel space. Then Any invariant sufficient representation M : S × V → M under
G is an adequate statistic of (S, V ) for Y.

This corollary follows directly from the nature of the conditional independence relationship and the
definition of adequacy. The fact that Y and (S, V ) are conditionally independent given M(S, V )
indicates that the representation M(S, V ) contains all the necessary information to explain the
relationship between Y and (S, V ). In other words, the representation M(S, V ) adequately captures
the relevant features and factors that influence the conditional distribution of Y given (S, V ).

B.2 SOME REMARKS

Throughout the course of our proof, it is possible that some points may cause confusion. To address
this, we present a set of remarks and additional propositions that aim to provide further clarity and
insights. Specifically, we address the question of why Eq 3 can lead to an invariant conditional
distribution, considering its nature as a joint distribution scheme.

In the probabilistic literature, it is often more convenient to establish the invariance of joint distri-
butions as a starting point. In our case, we focus on the joint distribution P (S, V, Y ), which can be
considered invariant under certain conditions. This joint distribution is invariant if and only if:

(S, V, Y )
d
= (g · (S, V ), Y ) for all g ∈ G .

These conditions ensure that the joint distribution P (S, V, Y ) possesses the desired invariance
properties required for the subsequent analysis. By establishing an invariant joint distribution, we
pave the way for investigating the properties of the conditional distribution P (Y |S, V ).

By leveraging the invariance of the joint distribution, we can derive the invariance of the conditional
distribution P (Y |S, V ). This arises from the fact that the joint distribution scheme inherently captures
the relationship between Y and (S, V ), allowing us to analyze their conditional distribution in an
invariant manner (Kallenberg et al., 2017; Bloem-Reddy & Teh, 2020):

Proposition B.4. Assume a group G acting on (S,V), and then P (Y |S, V ) is G-invariant if and only
if (S, V, Y )

d
= (g · (S, V ), Y ) for all g ∈ G.
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This proposition establishes a direct correspondence between the invariance of the conditional
distribution P (Y |S, V ) and the symmetry of the joint distribution (S, V, Y ) under the group action.
Specifically, it states that the conditional distribution remains invariant if and only if the joint
distribution exhibits the same structural patterns and properties when transformed by any element of
the group G.

To address another potential source of confusion, we delve into the distinction between f(ξ, S, V ) and
f(S, V ), where the former represents a stochastic function and the latter a deterministic functional
model. It is worth noting that deterministic functional models can be viewed as a special case of
stochastic functions. In the context of an invariant stochastic function Y = f(ξ, S, V ), we can
establish the following relationship:

E[Y | S, V ] =

∫
[0,1]

f(ξ, S, V ) dξ = h(S, V ) , (6)

Here, E[Y | S, V ] denotes the conditional expectation of Y given S and V . By integrating the
stochastic function f(ξ, S, V ) with respect to ξ over the range [0, 1], we arrive at the invariant
deterministic function h(S, V ). Equation 6 establishes a crucial connection between the invariant
stochastic function f(ξ, S, V ) and the corresponding invariant deterministic function h(S, V ). This
relationship highlights the interplay between stochasticity and determinism in modeling invariant
behavior.

C PROOF OF PROPOSITION 3.7

Definition 3.4. (Invariant Sufficient Representation) For a group G of actions on any (s, v) ∈ S×V
, we say M : S × V → M is a invariant sufficient representation for space S × V , if it satisfies: If
M(s1, v1) = M(s2, v2), then (s2, v2) = g · (s1, v1) for some g ∈ G; otherwise, there is no such g
that satisfies (s2, v2) = g · (s1, v1).

It is important to note that the definition of the invariant sufficient representation is formulated with
respect to the variables (S, V ). To facilitate comprehension, let us revisit the definition of the invariant
sufficient representation. Furthermore, to enhance clarity and ease of understanding, we will also
provide the corresponding invariant sufficient representation for the marginal distribution X , which
can represent either S or V .
Definition C.1. For a group G of actions on any x ∈ X , we say M : X → M is a invariant
sufficient representation for some space X , if it satisfies: If M(x1) = M(x2), then x2 = g · x1 for
some g ∈ G; otherwise, there is no such g that satisfies x2 = g · x1.
Proposition 3.7. Assuming that Ms : S → S1 and Mv : V → V1 serve as invariant sufficient
representations for S and V with respect to H and R, respectively, then there exist maps f :
S1 × V1 → M that establish the invariant sufficient representation of M .

Proof. For any (s, v) Consider the function f(Ms(s),Mv(v)), where Ms and Mv represent the
mappings from S and V to their corresponding invariant sufficient representations. We aim to show
that f(Ms(S),Mv(V )) serves as the invariant sufficient representation of (S, V ) under the group G.

First, let’s examine the three possible cases. If s1 ̸= s2 while v1 = v2, it is evident that if
f(Ms(s1),Mv(v2)) = f(Ms(s2),Mv(v2)), there must exist g = (h, e) ∈ G such that (s2, v2) =
g · (s1, v1), where e denotes the identity transformation. Similarly, if s1 = s2 but v1 ̸= v2, the same
argument holds.

Now, let’s consider the case where s1 ̸= s2 and v1 ̸= v2. Since f is an injective func-
tion, if f(Ms(s1),Mv(v2)) = f(Ms(s2),Mv(v2)), it implies that Ms(s1) = Ms(s2) and
Mv(v1) = Mv(v2). By the definition of the invariant sufficient representation, we can con-
clude that if f(Ms(s1),Mv(v1)) = f(Ms(s2),Mv(v2)), then (s2, v2) = g · (s1, v1) for some
g ∈ G. Conversely, if no such g exists to satisfy (s2, v2) = g · (s1, v1), it implies that
f(Ms(s1),Mv(v1)) ̸= f(Ms(s2),Mv(v2)).

Therefore, we can conclude that f(Ms(S),Mv(V )) serves as the invariant sufficient representation
of (S, V ) under the group G. This function captures the essential information required to explain the
relationship between (S, V ) and Y , ensuring that the conditional distribution P (Y |S, V ) remains
invariant under the group action.
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Table 4: The statistics of Amazon product dataset, which is from (Ou et al., 2022)

Categories |D| |V |
∑

|S∗| E[|S∗|] minS∗ |S∗| maxS∗ |S∗|
Toys 2,421 30 9,924 4.09 3 14

Furniture 280 30 892 3.18 3 6
Gear 4,277 30 16,288 3.80 3 10

Carseats 483 30 1,576 3.26 3 6
Bath 3,195 30 12,147 3.80 3 11

Health 2,995 30 11,053 3.69 3 9
Diaper 6,108 30 25,333 4.14 3 15

Bedding 4,524 30 17,509 3.87 3 12
Safety 267 30 846 3.16 3 5

Feeding 8,202 30 37,901 4.62 3 23
Apparel 4,675 30 21,176 4.52 3 21
Media 1,485 30 6,723 4.52 3 19

D DETAILS OF NEURAL SUBSET SELECTION IN OS ORACLE

D.1 THE OBJECTIVE OF NEURAL SUBSET SELECTION IN OPTIMAL SUBSET ORACLE

Our formulation of the optimization objective is based on the framework established in (Ou et al.,
2022). Specifically, the optimization objective is to address Equation 1 by adopting an implicit
learning strategy grounded in probabilistic reasoning. This approach can be succinctly formulated as
follows:

argmax
θ

EP(V,S)[log pθ(S
∗|V )]

s. t. pθ(S|V ) ∝ Fθ(S;V ),∀S ∈ 2V ,

The important step in addressing this problem involves constructing an appropriate set mass function
pθ(S|V ) that is monotonically increasing in relation to the utility function Fθ(S;V ). To achieve this,
we can employ the Energy-Based Model (EBM):

pθ(S|V ) =
exp(Fθ(S;V ))

Z
, Z :=

∑
S′⊆V

exp(Fθ(S
′;V )),

In practice, we approximate the EBM by solving a variational approximation

ϕ∗ = argminϕD(qϕ(Y |S, V ))||pθ(S|V )),

The expression of q(Y |S, V ) is defined as follows:

q(Y |S, V ) =
∏
i∈S

Yi

∏
i ̸∈S

(1− Yi), Y ∈ [0, 1]|V |.

Next, we would like to explain why q(Y |S, V ) can approximate P (S|V ). We have defined that
Y ∈ [0, 1]|V | and S = {0, 1}|V |. In this case, Y can be viewed as a stochastic version of S since Y
can also be generated as Y = {0, 1}|V | while still satisfying the constraint Y ∈ [0, 1]|V |.

To facilitate comprehension, let us consider an illustrative scenario. Suppose we have a ground
set V = {x1, x2, x3}, and the optimal subset S∗ is {x1, x2}, which can be represented as [1, 1, 0].
Specifically, we define P (S∗|V ) = 1, indicating that S∗ is the correct subset, while for any S ̸= S∗,
we have P (S|V ) = 0.

Now, let’s examine the case when Y = [1, 1, 0]. In this situation, we can calculate that q(Y |S∗, V ) =
1. This implies that q(Y |S∗, V ) accurately represents the probability of observing S∗ given V , and it
correctly assigns a high probability to the optimal subset.

Moreover, to generate Y, we construct an EquiNet (Ou et al., 2022), denoted as Y = EquiNet(V ;ϕ) :
2V → [0, 1]|V |. This network takes the ground set V as input and outputs probabilities indicating the
likelihood of each element x ∈ V being part of the optimal subset S∗. In the inference stage, EquiNet
is employed to predict the optimal subset for a given ground set V , using a TopN rounding approach.
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Figure 3: Here is an illustration of the CelebA dataset from the work by (Ou et al., 2022). Each row
in the dataset represents a sample, containing a combination of |S∗| anomaly images (highlighted
in red boxes) and 8 − |S∗| normal images. Notably, within each sample, normal images possess
two specific attributes, which are indicated in the rightmost column. In contrast, anomalies lack
both of these attributes. This clear distinction between normal images and anomalies allows for a
comprehensive analysis and understanding of the dataset’s characteristics.

E EXPERIMENTAL DETAILS

E.1 DETAILED DESCRIPTION OF DATASETS

Amazon Baby Registry Dataset. The Amazon baby registry data (Gillenwater et al., 2014b) is
collected from Amazon with several datasets in different categories, such as toys, furniture, etc. For
each category, we are provided with |V | sets of products selected by different customers. We then
construct a sample (S∗, V ) as follows. We first removed any subset whose optimal subset size |S∗|
is greater than or equal to 30. Then we divided the remaining subsets into the training, validation,
and test folds with a 1 : 1 : 1 ratio. Finally, we randomly sampled additional 30 − |S∗| products
from the same category to construct (S⋆, V ). In this way, we constructed a data point (S∗, V ). For
completeness, We provide the statistics of the categories in Table. 4 from (Ou et al., 2022).

Double MNIST. This dataset includes 1000 photos, ranging from 00 to 99. To construct (S∗, V ),
we first sampled |S∗| ∈ {2, . . . , 5} images with the same digit as S∗. Then we selected 20 − |S∗|
images with different digits to construct the set V \S∗.

CelebA. The CelebA dataset contains 202, 599 images and 40 attributes. We randomly chose two
attributes to construct each set V with the size of 8. Then, for each set, we selected |S⋆| ∈ {2, 3}
images without the two attributes as the S⋆. To facilitate comprehension, we have included an
illustrative example of the dataset in Fig. 3, sourced from the work of (Ou et al., 2022).

PDBBind. This dataset provides a comprehensive collection of experimentally measured binding
affinity data for biomolecular complexes. We used the “refined” part of the whole PDBBind to
construct our dataset of subsets, which contain 179 complexes. To construct a data point (V, S⋆), we
randomly sampled 30 complexes as the ground set V , and then S⋆∗ was generated by the five most
active complexes in V . We constructed 1000, 100, and 100 data points for the training, validation,
and test split, respectively.

BindingDB. BindingDB is a public, web-accessible database of measured binding affinities con-
sisting of 52, 273 drug-targets with small, drug-like molecules. Same as PDBBind, We randomly
sampled 300 drug-targets from the BindingDB database to construct the ground set V and select 15
most active drug-target pairs as S⋆. Finally, we also generated the training, validation, and test set
with the size of 1000, 100, and 100, respectively.
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E.2 THE ARCHITECTURE OF INSET

The structure of INSET is similar to EquiVSet, while INSET has an additional information-sharing
component, i.e., EquiVSet uses only one DeepSets layer in the set function modelue, while INSET
uses two. For completeness, we also provide the detailed architectures of INSET in this subsection.
Firstly, the structure of DeepSets in INSET is as follows:

Table 5: Detailed architectures of the DeepSets.

Set Function
InitLayer(S, h)
SumPooling

FC(h, hd,ReLU)
FC(hd, hd,ReLU)

FC(h, 1,−)

Specifically, InitLayer(S, d) encodes the set objects into vector representations. FC(d, h, f) is a
fully-connected layer with activation function f . In particular, we set h as 256 and hd as 500, same
as (Ou et al., 2022).

In all experiments, the structure of InitLayer will change based on the type of datasets.

Synthetic datasets. The synthetic datasets consist of the Tow-Moons and Gaussian-Mixture datasets.
Each instance of the set is a two-dimensional vector, which represents the corresponding Cartesian
coordinates. In this dataset, the InitLayer is a one-layer feed-forward neural network FC(2, 256,−).

Amazon Baby Registry. In this datasets, each product is encoded into a 768-dimensional vector
by the pre-trained BERT model based on its textual description. Therefore, each element of the
set is a 768-dimensional feature vector, and FC(768, 256,−) will be the InitLayer to process each
embedding of the product.

Double MNIST. The double MNIST dataset consists of different digit images with a shape of
(64, 64) and we transformed it as (4096, ). Then, the InitLayer is also a fully connected layer as
FC(4096, 256,−).

CelebA. The CelebA dataset includes face images in the shape of (3, 64, 64). We used 3-depth
convolutional neural networks as the InitLayer. Specifically,

ModuleList([Conv(32, 3, 2,ReLU),Conv(64, 4, 2,ReLU),

Conv(128, 5, 2,ReLU),MaxPooling,FC(128, 256,−)]),

where Conv(d, k, s, f) is a convolutional layer with d output channels, k kernel size, s stride size,
and activation function f .

PDBBind. The PDBBind database consists of experimentally measured binding affinities for
biomolecular complexes (Liu et al., 2015a). The atomic convolutional network (ACNN) (Gomes
et al., 2017) provides meaningful feature vectors for complexes by constructing nearest neighbor
graphs based on the 3D coordinates of atoms and predicting binding free energies. In this work, we
used ACNN as the pre-train model and used the output of the second to the lastlayer of the ACNN
model to obtain the representations of complexes. Specifically, the InitLayer is defined as

ModuleList([ACNN[: −1],FC(1922, 2048,ReLU),FC(2048, 256,−)]),

where ACNN[: −1] denotes the ACNN module without the last prediction layer, whose output
dimensionality is 1922.

BindingDB. We employ the DeepDTA model (Öztürk et al., 2018) as the based-encoder to transform
drug-target pairs as vector representations. The detailed architecture of InitLayer used in our code is
defined as follows:

E.3 TRAINING DETAILS

We applied the early stopping strategy to train both the baselines and our models as in EquiVSet.
Specifically, if the best validation performance is not improved in the continuous 6 epochs, we will
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Table 6: Detailed architectures of InitLayer in the BindingDB dataset.

Drug Target

Conv(32, 4, 1,ReLU) Conv(32, 4, 1,ReLU)
Conv(64, 6, 1,ReLU) Conv(64, 8, 1,ReLU)
Conv(96, 8, 1,ReLU) Conv(96, 12, 1,ReLU)

MaxPooling MaxPooling
FC(96, 256,ReLU) FC(96, 256,ReLU)

Concat
FC(512, 256,−)

Table 7: Results in the MJC metric on Two-Moons and Gaussian-Mixture datasets. we leverage the
results of baselines as reported in the study by (Ou et al., 2022).

Method Two Moons Gaussian Mixture

Random 0.055 0.055
PGM 0.360 ± 0.020 0.438 ± 0.009

DeepSet 0.472 ± 0.003 0.446 ± 0.002
Set Transformer 0.574 ± 0.002 0.905 ± 0.002

EquiVSet 0.584 ± 0.003 0.908 ± 0.002
INSET 0.590 ± 0.003 0.909 ± 0.002

stop the training process. The maximum of epochs is set as 100 for each dataset. We saved the
models with the best validation performance and evaluated them on the test set. We repeated all
experiments 5 times with different random seeds, and the average performance metrics and their
standard deviations are reported as the final performances.

The proposed models are trained using the Adam optimizer (Kingma & Ba, 2014) with a fixed
learning rate of 1e− 4 and a weight decay rate of 1e− 5. To accommodate the varying model sizes
across different datasets, we select the batch size from the set {4, 8, 16, 32, 64, 128}. Notably, we
choose the largest batch size that allows the model to be trained on a single GeForce RTX 2080 Ti
GPU, ensuring efficient training.

F ADDITIONAL EXPERIMENTS

F.1 SYNTHETIC EXPERIMENTS

We substantiate the effectiveness of our models by conducting experiments on learning set functions
using two synthetic datasets: the two-moons dataset with additional noise of variance σ2 = 0.1, and
a mixture of Gaussians represented by 1

2N (µ0,Σ) +
1
2N (µ1,Σ).

For the Gaussian mixture dataset, we specify the following data generation procedure: i) We first
select an index, denoted as b, using a Bernoulli distribution with a probability of 1

2 . ii) Next, we
sample 10 points from the Gaussian distribution N (µb,Σ) to construct the set S∗. iii) Subsequently,
we sample 90 points for V \S∗ from the Gaussian distribution N (µ1−b,Σ). We repeat this process to
obtain a total of 1,000 samples, which are then divided into training, validation, and test sets.

Both the two-moon dataset and the Gaussian mixture dataset serve as valuable benchmarks for
evaluating the performance of our models. By conducting experiments on these datasets and collecting
the necessary data points, we are able to demonstrate the efficacy of our approach in learning complex
set functions. The results are reported in Table 7.

F.2 COMPUTATION COST

One of the key distinctions between INSET and EquiVSet lies in the inclusion of an information-
sharing module, specifically a DeepSets Layer, in our architecture. However, a legitimate concern
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that arises is whether the improved performance of INSET can be solely attributed to the additional
parameters introduced by this module, rather than the underlying framework itself. To address this
concern and gain deeper insights, we conducted experiments using the CelebA dataset.

In order to enhance the capacity of EquiVSet and enable a fair comparison, we introduced an
additional convolution layer within the InitLayer. By doing so, we ensured that both EquiVSet and
INSET had comparable model sizes. The experimental results, including the performance of models
with different model sizes, are reported in Table 9.

Moreover, we further investigated and analyzed the specific architecture of the initial layer for
EquiVSet in two different versions, denoted as EquiVSet(v1) and EquiVSet(v2). For EquiVSet(v1),
the initial layer is structured as follows:

ModuleList([Conv(32, 3, 2,ReLU),Conv(64, 4, 2,ReLU),Conv(64, 4, 2,ReLU),

Conv(128, 5, 2,ReLU),MaxPooling,FC(128, 256,−)]),

The initial layer for EquiVSet(v2) is:

ModuleList([Conv(32, 3, 2,ReLU),Conv(64, 4, 2,ReLU),Conv(128, 5, 2,ReLU),

Conv(128, 5, 2,ReLU),MaxPooling,FC(128, 256,−)]),
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Figure 4: Sensitivity analysis of INSET performance under varying numbers of Monte Carlo (MC)
sampling.

F.3 COMPOUND SELECTION

In the main text, we focused on the application of a single filter. However, to provide a more practical
perspective, we extended our analysis by simulating the OS (Objective Selector) oracle of compound
selection using two filters: the high bioactivity filter and the diversity filter. By incorporating these
additional filters, we aimed to evaluate the performance of our approach in a more realistic scenario.

The results of this extended analysis are presented in Table 8. These findings shed light on the
effectiveness and applicability of our approach when considering multiple filters for compound
selection. By incorporating both high bioactivity and diversity filters, we demonstrate the potential
of our method to enhance the selection process and improve the overall quality and diversity of the
selected compounds.

Table 8: Compound selection results.
Method PDBBind BindingDB

Random 0.073 0.027
PGM 0.350 ± 0.009 0.176 ± 0.006

DeepSet 0.323 ± 0.004 0.165 ± 0.005
Set Transformer 0.355 ± 0.010 0.183 ± 0.004

EquiVSet 0.357 ± 0.005 0.188 ± 0.006
INSET 0.371 ± 0.010 0.198 ± 0.005
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Table 9: Compared with EquiVSet with more parameters

MJC Parameters

Random 0.2187 -
DeepSet 0.440±0.006 651181
Set-Transformer 0.527±0.008 1288686
EquiVSet 0.549±0.005 1782680
EquiVSet (v1) 0.554±0.007 2045080
EquiVSet (v2) 0.560±0.005 3421592
INSET 0.580±0.012 2162181

F.4 ABLATION STUDIES

To further verify the robustness of INSET, we have now conducted ablation studies focusing on the
Monte-Carlo (MC) sample numbers for each input pair {(Vi, S

∗
i )}. In the context of neural subset

selection tasks, our primary aim is to train the model θ to predict the optimal subset S∗ from a given
ground set V . During training, we sample m subsets from V to optimize our model parameters θ,
thereby maximizing the conditional probability distribution pθ(S

∗|V ) among of all pairs of (S, V )
for for a given V. In our main experiments, we adhere to EquiVSet’s protocol by setting the sample
number m to 5 across all the tasks. The empirical results depicted in Figure 4 demonstrate that
INSET consistently achieves satisfactory results, even with decreasing values of m.

F.5 EXPERIMENTS ON SET ANOMALY DETECTION.

In this experiment, we further perform set anomaly detection on CIFAR-10. Following the setup of
(Ou et al., 2022), we randomly sample n ∈ {2, 3} images as the OS oracle S∗, and then select 8−|S∗|
images with different labels to construct the set V \S∗. We finally obtain the training, validation, and
test set with the size of 10, 000, 1, 000, 1, 000, respectively. We report all the set anomaly detection
results in Table 10. It is obviously that INSET outperform the baselines significantly across different
datasets on set anomaly detection tasks.

Table 10: Empirical results of set anomaly detection Tasks

Double MNIST CelebA F-MNIST CIFAR-10
RANDOM 0.0816 0.2187 0.1930 0.1926
PGM 0.300 ± 0.010 0.481 ± 0.006 0.540 ± 0.020 0.450 ± 0.020
DEEPSET 0.111 ± 0.003 0.440 ± 0.006 0.490 ± 0.020 0.320 ± 0.008
SET TRANSFORMER 0.512 ± 0.005 0.527 ± 0.008 0.581 ± 0.010 0.650 ± 0.023
EQUIVSET 0.575 ± 0.018 0.549 ± 0.005 0.645 ± 0.010 0.630 ± 0.012
INSET 0.707 ± 0.010 0.580 ± 0.012 0.710 ± 0.021 0.712 ± 0.020
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