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ABSTRACT

The stationary distribution of a stochastic system often provides fundamental in-
sights into its dynamics, yet the stationary distribution of the stochastic gradient
descent (SGD) algorithm, a cornerstone of machine learning, remains analytically
elusive. In this work, we first show that the minibatch noise of SGD regularizes
the solution towards a noise-balanced, low-dimensional subspace when the loss
function exhibits rescaling symmetry. This result allows us to construct a type of
linear network that captures the depth and width and for which a general stationary
distribution of the stochastic gradient flow can be derived. This stationary distri-
bution reveals complex nonlinear phenomena, including phase transitions, loss of
ergodicity, memory effects, sign coherence, and fluctuation inversion. These phe-
nomena are shown to exist uniquely in deep networks, highlighting a fundamental
distinction between deep and shallow models. Finally, we discuss the implications
of our proposed theory for practical problems in variational Bayesian inference.

1 INTRODUCTION

In both natural and social sciences, the stationary distribution of a stochastic system often holds the
key to understanding the underlying dynamics of complex processes (Van Kampen, 1992; Rolski
et al., 2009). For the stochastic gradient descent (SGD) algorithm, a foundational tool in mod-
ern machine learning, understanding its stationary distribution has the potential to provide deep
insights into its learning behavior. However, despite extensive use, the stationary distribution of
SGD remains analytically elusive. The stochastic gradient descent (SGD) algorithm is defined as
Ab; = L ¥ ,ep Vol(0, ) where 6 is the model parameter and £(6,z) is a per-sample loss whose
expectation over x gives the training loss: L(0) = E,[¢(0,2)]. B is a randomly sampled minibatch
of data points, each independently sampled from the training set, and S is the minibatch size. In
this work, we adopt the SDE approximation of SGD (Latz, 2021; Li et al., 2019; 2021; Sirignano &
Spiliopoulos, 2020; Fontaine et al., 2021; Hu et al., 2017):

0 = -V Ldt +/TC(0)dW,, (1)

where C(0) = E[V£(0)VT(0)]-E[VL(0)JE[VT £(0)] is the gradient covariance, dWV; is a stochas-
tic process satisfying dW; ~ N (0, Idt) and E[dW,;dW ] = §(t = t')I, and T = 1/S. Apparently,
T gives the average noise level in the dynamics. Previous works have suggested that the ratio T'
is a main factor determining the behavior of SGD, and using different 7" often leads to different
generalization performance (Shirish Keskar et al., 2016; Liu et al., 2021; Ziyin et al., 2022b).

Our main contributions are

1. the derivation of the “law of balance,” which shows that SGD converges to a low-dimensional
subspace when the rescaling symmetry is present in the loss function (Section 3);

2. identification of a minimal linear model with the concepts of width and depth, for which a
general form of the stationary distribution of SGD is found (Section 4);

3. discovery of novel phenomena in this model such as phase transitions, sign coherence (impos-
sibility to learn the wrong sign), loss of ergodicity, memory effects, and fluctuation inversion
(Section 4).

The next section discusses the closely related works, especially on known examples of stationary
distributions of SGD. All proofs and derivations are given in Appendix A.



2 RELATED WORKS

Stationary distribution of SGD. The FP equation is a high-dimensional partial differential equation
whose solution (and its existence) is an open problem in mathematics and many fields of sciences
and only known for a few celebrated special cases (Risken & Risken, 1996). One of the earliest
works that computes the stationary distribution of SGD is the Lemma 20 of Chaudhari & Soatto
(2018), which assumes that the noise has a constant covariance and shows that if the loss function is
quadratic, then the stationary distribution is Gaussian. Similarly, using a Laplace approximation ex-
pansion and assuming that the noise is parameter-independent, a series of recent works showed that
the stationary distribution of SGD is exponential in the model parameters close to a local minimum:
p(0) o< exp[-afT HO], for some constant a and matrix H (Mandt et al., 2017; Xie et al., 2020;
Liu et al., 2021). Assuming that the noise covariance only depends on the loss function value L(8),
Mori et al. (2022) and Wojtowytsch (2024) showed that the stationary distribution is power-law-like
and proportional to L(#)~ for some constant cy. A primary feature of these previous results is that
stationary distribution does not exhibit any memory effect and also preserves ergodicity. Until now,
the general form of the analytical solution to the stationary distribution of SGD is unknown.

Minimal Solvable Models. With the exact noise covariance, only two minimal models have been
solved exactly. Ziyin et al. (2021) solved a minimal model when the loss function is of the form
¢(w) = (zw? - y)?, and found that the solution takes the form:

2

2, 2 2
P(w) o< (w? + 502)—1—Sa/277+s bo* /1 oxp (_Sbw )’

n

where a = E[zy],b = E[2?] are determined from the input data and o represents the strength of the
additive noise. While this model exhibits an interesting phase transition from escaping the saddle
to convergence to the saddle, it has no notion of width and depth. A more recent example is solved
in Chen et al. (2023) where the loss function takes the form of ¢/(Wy, Ws) = |[WoWiz — y|? with
W being a matrix. Under special assumptions on the initialization (balanced), data distribution
(isotropic), and label noise (structured), the authors showed that the dynamics SGD reduces to a
similar problem with width 1: ¢ = (uwz — )2, and defining v = ww, the stationary distribution is
found to be
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This model is more advanced than Eq. 2 but still lacks the notion of depth and has a trivial depen-
dence on the width. Additionally, this solution is a particular solution that only applies to a special
initialization, and it is unclear whether this is the actual distribution found by SGD.

Symmetry and SGD dynamics. Also related to our work is the study of how symmetry affects the
learning dynamics of SGD (Kunin et al., 2020). A closely related work is (Li et al., 2020), which
studies the dynamics of SGD when there is scale invariance, conjecturing that SGD reaches a fast
equilibrium state at the early stage of training. Our result is different as we study a different type of
symmetry, the rescaling symmetry.

3 NOISE BALANCE UNDER THE RESCALING SYMMETRY

We show that when the loss function exhibits the rescaling symmetry, SGD will evolve towards
a solution for which the gradient noise is balanced. In Section 4, we will leverage this result to
construct a model for which the stationary distribution of SGD only has support on a very low-
dimensional subspace.

3.1 RESCALING SYMMETRY AND LAW OF BALANCE

A type of invariance — the rescaling symmetry — often appears in the loss function and it is preserved
for all sampling of minibatches. The per-sample loss £ is said to have the rescaling symmetry for
all z if £(u,w,z) = £ (Au,w/\ x) for a scalar A € R,. This type of symmetry appears in many
scenarios in deep learning. For example, it appears in any neural network with the ReL U activation.
It also appears in the self-attention of transformers, often in the form of key and query matrices
(Vaswani et al., 2017). When this symmetry exists between u and w, one can prove the following
result, which we refer to as the law of balance.



Theorem 3.1. Let u, w, and v be parameters of arbitrary dimensions. Let {(u,w,v,x) satisfy
L(u,w,v,2) = L(Au, w/\, v, x) for arbitrary x and any X € R,. Then,

d
$(||U||2 = [lwlf?) = =T (u" Cru - w” Cyw), )

where Cy = E[AT A] - E[AT]E[A], C; = E[AAT] - E[AJE[AT] and Ap; = 00/0(uywy) with
{(uiwk, v, ) = L(us,wi,v,x). In addition, if Eq. 4 does not vanish, there exists a unique \* €
R, U{ oo} such that C' = 0 if the training proceeds with {(\*u, w/\*, v, z).

Remark 3.2. A key step in the derivation is that the Brownian motion term vanishes in the time-
evolution of ||u|? — |w||?. Therefore, the time evolution of this quantity follows an ODE rather
than an SDE. Essentially, this is because when there is symmetry in the loss, the gradient noise is
low-rank.

Equation (4) will be referred to as the law of balance. Here, v stands for the parameters that are
irrelevant to the symmetry, and C'; and C% are positive semi-definite by definition. The theorem still
applies if the model has parameters other than u and w. The theorem can be applied recursively
when multiple rescaling symmetries exist. See Figure 1 for an illustration the the dynamics and
how it differs from other types of GD. While the matrices C'; and Co may not always be full-rank,
the law of balance is often well-defined and gives nontrivial result. Below, we prove that in a quite
general setting, for all active hidden neurons of a two-layer ReLU net, C; and C5 are full-rank
(Theorem 3.3).

The law of balance implies two different types of balance. The
first type of balance is the balance of gradient noise. The proof
of the theorem shows that the stationary point of the law in (4)
is equivalent to

minimum
balance

Tr, [C(w)] = Try, [C(u)], 3 =

where C'(w) and C'(u) are the gradient covariance of w and
u, respectively. Therefore, SGD prefers a solution where the
gradient noise between the two layers is balanced. Also, this
implies that the balance conditions of the law is only dependent
on the diagonal terms of the Fisher information (if we regard
the loss as a log probability), which is often well-behaved.'

Figure 1: Dynamics of GD and SGD

The second type of balance is the norm ratio balance between , +'sn wih injected Gaussian noise

layers. Equation (4) implies that in the degenerate direction ¢, (e simple problem £(u,w) =
of the rescaling symmetry, a single and unique point is fa- (uwz —y)*. Due to the rescaling sym-
vored by SGD. Let v = Au* and w = A~'w* for arbitrary metry between u and w, GD follows
u* and w*, then, the stationary point of the law is reached a conservation law: u?(t) — w?(t) =

at \* = ((Z:giigfz}: The quantity \ can be called the “bal- u”(0) -~ w® (0), SGD2convergzes to the

ancedness” of the norm, and the law states that when a rescal- oalanced solution u” = w”, while

ing symmetry exists, a special balancedness is preferred by the GD with injected noise diverges due to
. > . RER simple diffusion in the degenerate di-

SGD algorithm. When C; or C3 vanishes, A or A" diverges, |octions.

and so does SGD. Therefore, having a nonvanishing noise ac-

tually implies that SGD training will be more stable. For com-

mon problems, C; and Cy are positive definite and, thus, if we know the spectrum of C and C5 at

the end of training, we can estimate a rough norm ratio at convergence:

d
“TOunllull® = Aomllwl) < = (lull® = [wl) < =T Qumllul* = Aaarllo]*),

where A1, (2m) and Ajpze2ar) represent the minimal and maximal eigenvalue of the matrix C'(3),
respectively. Thefore, the value of ||u|[?/|jw]|? is restricted by (See Section A.5)

)\Q’m ||’U,||2 A2M

(6)

A~ lwl? T A

'That the noise will balance does not imply that either trace will converge or stay close to a fixed value — it
is also possible for both terms to oscillate while their difference is close to zero.
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Figure 2: A two-layer ReLU network trained on a full-rank dataset. Left: because of the rescaling symmetry,
the norms of the two layers are balanced approximately (but not exactly). Right: the first and second terms
in Eq. (4). We see that both terms evolve towards a point where they exactly balance. In agreement with our
theory, SGD training leads to an approximate norm balance and exact gradient noise balance.

Thus, a remaining question is whether the quantities u” Cu and w? Cow are generally well-defined
and nonvanishing or not. The following proposition shows that for a generic two-layer ReLU net,
uT Cru and wT Cow are almost everywhere strictly positive. We define a two-layer ReLU net as

d
flx) = Z u,-ReLU(wiTx +b;), @)

where u; € R% w; € R and b; is a scalar with 4 being the index of the hidden neuron. For each
i, the model has the rescaling symmetry: u; — Au;, (w;, b;) = (A~tw;, A™1b;). We thus apply the
law of balance to each neuron separately. The per-sample loss function is

00.x) = | f(x) —y(z. o). ®)

Here, « has a full-rank covariance X, and y = g(x) + ¢ for some function g and € is a zero-mean
random vector independent of « and have the full-rank covariance ¥.. The following theorem shows
that for this network, C7 and Cy are full rank unless the neuron is “dead”.

Theorem 3.3. Let the loss function be given in Eq. (8). Let Cl(i) and 02(1‘) denote the corresponding

noise matrices of the i-th neuron, and p; := ]P’(szx +b; >0). Then, C’l(i) and CQ@ are full-rank for
all i such that p; > 0.

See Figure 2. We train a two-layer ReLU network with the number of neurons: 20 — 200 — 20.
The dataset is a synthetic data set, where x is drawn from a normal distribution, and the labels:
y = x +¢, for an independent Gaussian noise € with unit variance. While every neuron has a rescaling
symmetry, we focus on the overall rescaling symmetry between the two weight matrices. The norm
between the two layers reach a state of approximate balance — but not a precise balance. At the same
time, the model evolves during training towards a state where u” Cju and w” Cyw are balanced.

Standard analysis shows that the difference between SGD and GD is of order 72 per unit time step,
and it is thus often believed that SGD can be understood perturbatively through GD (Hu et al., 2017).
However, the law of balance implies that the difference between GD and SGD is not perturbative. As
long as there is any level of noise, the difference between GD and SGD at stationarity is O(1). This
theorem also implies the loss of ergodicity, an important phenomenon in nonequilibrium physics
(Palmer, 1982; Thirumalai & Mountain, 1993; Mauro et al., 2007; Turner et al., 2018), because not
all solutions with the same training loss will be accessed by SGD with equal probability.

3.2 1D RESCALING SYMMETRY

The theorem greatly simplifies when both « and w are one-dimensional.

Corollary 3.4. If u,w € R, then, “L[u® — w?| = =T Co|u* — w?|, where Cj = Var[a(ifu) ]

Before we apply the theorem to study the stationary distributions, we stress the importance of this
balance condition. This relation is closely related to Noether’s theorem (Misawa, 1988; Baez &
Fong, 2013; Malinowska & Ammi, 2014). If there is no weight decay or stochasticity in training,
the quantity ||u||* - |Jw||* will be a conserved quantity under gradient flow (Du et al., 2018; Kunin
et al., 2020; Tanaka & Kunin, 2021), as is evident by taking the infinite S limit. The fact that it
monotonically decays to zero at a finite 7" may be a manifestation of some underlying fundamental



mechanism. A more recent result in Wang et al. (2022) showed that for a two-layer linear network,
the norms of two layers are within a distance of order O(n™!), suggesting that the norm of the two
layers are balanced. Our result agrees with Wang et al. (2022) in this case, but our result is stronger
because our result is nonperturbative, only relies on the rescaling symmetry, and is independent
of the loss function or architecture of the model. It is useful to note that when Ly regularization
with strength + is present, the rate of decay changes from T'Cy to T'Cyy + . This points to a nice
interpretation that when rescaling symmetry is present, the implicit bias of SGD is equivalent to
weight decay. See Figure 1 for an illustration of this point.

This reveals a fundamental difference between the SGD gradient
noise and the full-rank Langevin noise that happens in nature.
See Figure 3, where we run SGD on the simple loss function
¢ = (uwx - y)? for x € R drawn from a Gaussian distribution,

10!

and y = = + e. The lack of fluctuation for the quantity |u® — N?

w?| is consistent with the theory that the noise vanishes in this % 0
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Example: two-layer linear network. It is instructive to il-
lustrate the application of the law to a two-layer linear net-
work, the simplest model that obeys the law. Let 0 = (w,u)
denote the set of trainable parameters; the per-sample loss is
00, x) = (22;1 W ~ y)? + 7||9H2 Here, d is the width of the | “ 101 vion. The quantity u?
model, 7]|0]|* is the L, regularization term with strength v > 0, /2 i conserved for GD without
and [, denotes the averaging over the training set, which could  noise Du et al. (2018), is divergent
be a continuous distribution or a discrete sum of delta distribu- for GD with an isotropic Gaussian
tions. It will be convenient for us also to define the shorthand: noise, which simulates the simple
v = Z? u;w;. The distribution of v is said to be the distribution Langevin model, and decays to zero
of the “model.” Applying the law of balance, we obtain that for SGD, making a sharp and dra-
matic contrast.

%(uf - w2) = —4[T(alv2 - 2000+ 3) + ’y](uf - w?)7 9)

)
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Figure 3: SGD converges to a bal-

where we have introduced the parameters
oy = Var[z?], ag:=E[2%y] - E[2?]E[zy], a3 := Var[zy]. (10)

When a; a3 — a3 or y > 0, the time evolution of [u? —w?| can be upper-bounded by an exponentially
decreasing function in time: |u? — w?|(t) < [u? — w?|(0) exp (4T (a3 — a3 )t/ay — 4vt) — 0.
Namely, the quantity (u? — w?) decays to 0 with probability 1. We thus have u? = w? for all
i€ {1,---,d} at stationarity, in agreement with the Corollary.

4 STATIONARY DISTRIBUTION OF AN ANALYTICAL MODEL

The law of balance allows us to construct a minimal analytical model that has notions of depth
and width, for which the stationary distribution can be found. While linear networks are limited
in expressivity, their loss landscape and dynamics are highly nonlinear and exhibits many shared
phenomenon with nonlinear neural networks (Kawaguchi, 2016; Saxe et al., 2013). Let 6 follow the
high-dimensional Wiener process given by Eq.(1). The probability density evolves according to its
Kolmogorov forward (Fokker-Planck) equation:

0 0 0 1 0?

—p(0,t)=-> — |p(0,t)—L(O) |+ = > ———C;;(0)p(0,1). 11

0.0 == 5 (00510 )+ 5= 25,0001 an
The solution of this partial differential equation is an open problem for almost all high-dimensional
problems. This section solves it for a high-dimensional non-quadratic loss function.

4.1 DEPTH-0 CASE

Let us first derive the stationary distribution of a one-dimensional linear regressor, which will be a
basis for comparison to help us understand what is unique about having a “depth.” The per-sample
loss is £(x,v) = (vz —y)? + yv?. Defining

81 =E[z?], Ba:=Elzy], (12)
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Figure 4: Stationary distributions of SGD for simple linear regression (D = 0), and a two-layer network
(D = 1) across different 7" = /S: T = 0.05 (left) and T = 0.5 (Mid). We see that for D = 1, the stationary
distribution is strongly affected by the choice of the learning rate. In contrast, for D = 0, the stationary
distribution is also centered at the global minimizer of the loss function, and the choice of the learning rate only
affects the thickness of the tail. Right: the stationary distribution of a one-layer tanh-model, f(x) = tanh(vz)
(D = 0) and a two-layer tanh-model f(z) = wtanh(uzx) (D = 1). For D = 1, we define v := wu. The vertical
line shows the ground truth. The deeper model never learns the wrong sign of wu (“sign coherence”), whereas
the shallow model can learn the wrong one.

the global minimizer of the loss can be written as: v* = 35/8]. The gradient variance is also not
trivial: C(v) = Var[V, (v, )] = 4(a1v*-2a5v+a3), where « is defined in Eq. (10). Note that the
loss landscape L only depends on 1 and [32, and the gradient noise only depends on o1, g and, a3.
It is thus reasonable to call 3 the landscape parameters and « the noise parameters. Both 8 and «
appear in all stationary distributions, implying that the stationary distributions of SGD are strongly
data-dependent. Another relevant quantity is A := ay min,, C'(v)/4 > 0, which is the minimal level
of noise on the landscape. It turns out that the stationary distribution is qualitatively different for
A =0 and for A > 0. For all the examples in this work,

A = Var[z?]Var[zy] - cov(2?, zy) = ayaz — a3. (13)

A zero when, for all samples of (x,y), zy + ¢ = ka? for some constant k and c. We focus on the
case A > 0 in the main text, which is most likely the case for practical situations. The other cases
are dealt with in Section A.

For A > 0, the stationary distribution for linear regression is (Section A)

o 2 o) Lo -oups (ozw—az)]

p(v) o< (a1v” = 2000 + 03) exp| - VA arctan 7= )| (14)
in agreement with the previous result in Mori et al. (2022). Two notable features exist for this
distribution: (1) the power exponent for the tail of the distribution depends on the learning rate and
batch size, and (2) the integral of p(v) converges for an arbitrary learning rate. On the one hand, this
implies that increasing the learning rate alone cannot introduce new phases of learning to a linear
regression; on the other hand, it implies that the expected error is divergent as one increases the
learning rate (or the feature variation), which happens at T’ = 31 /a;. We will see that deeper models
differ from the single-layer model in these two crucial aspects.

4.2 AN ANALYTICAL MODEL

Now, we consider the following model with a notion of depth and width; its loss function is
2

do { D
€=[Z(Hu§’“))w—y] : (15)
i \k=0
where D can be regarded as the depth and dj the width. When the width dy = 1, the law of balance is
sufficient to solve the model. When d > 1, we need to eliminate additional degrees of freedom. We
note that this model conceptually resembles (but not identical to) a diagonal linear network, which
has been found to well approximate the dynamics of real networks (Pesme et al., 2021; Nacson et al.,
2022; Berthier, 2023; Even et al., 2023).

We introduce v; := Hszo ugk), and so v = ), v;, where we call v; a “subnetwork” and v the “model.”
The following proposition shows that independent of dy and D, the dynamics of this model can be
reduced to a one-dimensional form by invoking the law of balance.



Theorem 4.1. For all i # j, one (or more) of the following conditions holds for all trajectories at
stationarity: (1) v; = 0, or v; =0, or L(0) = 0; (2) sgu(v;) = sgn(v;). In addition, (2a) if D = 1,
for a constant co, log |v;| - log|v;| = co; (2b) if D > 1, v]* = |vj|* = 0.

This theorem contains many interesting aspects. First of all, the three situations in item 1 directly
tell us the distribution of v if the initial state of of v is given by these conditions.> This implies a
memory effect, namely, that the stationary distribution of SGD can depend on its initial state. The
second aspect is the case of item 2, which we will solve below. Item 2 of the theorem implies that all
the v; of the model must be of the same sign for any network with D > 1. Namely, no subnetwork
of the original network can learn an incorrect sign. This is dramatically different from the case of
D = 0. We will refer to this phenomenon as the “sign coherence” of deep networks. Figure 4 shows
an example of this effect in a nonlinear network. The third interesting aspect of the theorem is that
it implies that the dynamics of SGD is qualitatively different for different depths of the model. In
particular, D = 1 and D > 1 have entirely different dynamics. For D = 1, the ratio between every
pair of v; and v; is a conserved quantity. In sharp contrast, for D > 1, the distance between different
v; is no longer conserved but decays to zero. Therefore, a new balancing condition emerges as we
increase the depth. Conceptually, this qualitative distinction also consistent with the result in Ziyin
et al. (2022a), where D = 1 models are found to be qualitatively different from models with D > 1.

With this theorem, we are ready to solve the stationary distribution. It suffices to condition on the
event that v; does not converge to zero. Let us suppose that there are d nonzero v; that obey item
2 of Theorem 4.1 and d can be seen as an effective width of the model. We stress that the effective
width d < dy depends on the initialization and can be arbitrary.> Therefore, we condition on a fixed
value of d to solve for the stationary distribution of v (Appendix A):

Theorem 4.2. Let 6(x) denote the Dirac delta function. For an arbitrary factor z in[0,1], an
invariant solution of the Fokker-Planck Equation is p*(v) = (1 - 2)6(v) + zp. (v), where

1 (_l f‘u‘dlvl A2+ (B, || # Ba) ) 16)
0

pe(vl) o g, (o) P\ "7 (D+ DIEPP g (1)
where p_ is the distribution on (—00,0) and p, is that on (0, 00), and g=(v) = a1 |v]* F 2as|v] + as.

The arbitrariness of the scalar z is due to the memory effect of SGD — if all parameters are initialized
at zero, they will remain there with probability 1. This means that the stationary distribution is not
unique. Since the result is symmetric in the sign of 82 = E[zy], we assume that E[zy] > 0 from
now on. Also, we focus on the case v = 0 in the main text.*

4.3 NONEQUILIBRIUM PHASE TRANSITION AT A CRITICAL T,

The distribution of v is
|v[=F2/2esT=3/2 1 azf —azfs " o[ F ag (17)
exp| -—— " arctan ——=|.
(1|02 7 2a0fv] + az) 1=P2/4Tas “P\To7 (/A VA

This measure is worth a close examination. First, the exponential term is upper and lower bounded
and well-behaved in all situations. In contrast, the polynomial term becomes dominant both at
infinity and close to zero. When v < 0, the distribution is a delta function at zero: p(v) = §(v). To
see this, note that the term v~72/2@s7-3/2 integrates to give v~P22asT=1/2 ¢lose to the origin, which
is infinite. Away from the origin, the integral is finite. This signals that the only possible stationary
distribution has a zero measure for v # 0. The stationary distribution is thus a delta distribution,
meaning that if « and y are positively correlated, the learned subnets v; can never be negative,
independent of the initial configuration.

px([v]) o<

For v > 0, the distribution is nontrivial. Close to v = 0, the distribution is dominated by v/2/2¥37=3/2,
which integrates to v#2/2237=1/2 It is only finite below a critical T, = 3/cv3. This is a phase-
transition-like behavior. As T' — (f2/as3)-, the integral diverges and tends to a delta distribution.

2L > 0is only possible when A = 0 and v = B2/ 1.

*One can initialize the parameters such that d takes any value between 1 and do. One way to achieve this
is to initialize on the stationary points specified by Theorem 4.1 at the desired d.

“When weight decay is present, the stationary distribution is the same, except that one needs to replace 32
with 2 — «. Other cases are also studied in detail in Appendix A and listed in Table. 1.



Namely, if T' > T¢, we have u; = w; = 0 for all 4 with probability 1, and no learning can happen.
If T < T, the stationary distribution has a finite variance, and learning may happen. In the more
general setting, where weight decay is present, this critical 7" shifts to T, = ’8 2= When T = 0,
the phase transition occurs at 3 = =y, in agreement with the threshold We1ght decay identified in
Ziyin & Ueda (2022). See Figure 4 for illustrations of the distribution across different values of
T'. We also compare with the stationary distribution of a depth-0 model. Two characteristics of the
two-layer model appear rather striking: (1) the solution becomes a delta distribution at the sparse
solution v = w = 0 at a large learning rate; (2) the two-layer model never learns the incorrect sign
(v is always non-negative). Another exotic phenomenon implied by the result is what we call the
“fluctuation inversion.” Naively, the variance of model parameters should increase as we increase
T, which is the noise level in SGD. However, for the distribution we derived, the variance of v and
u both decrease to zero as we increase 7": injecting noise makes the model fluctuation vanish. We
discuss more about this “fluctuation inversion” in the next section.

Also, while there is no other phase-transition behavior below T, there is still an interesting crossover
behavior in the distribution of the parameters as we change the learning rate. When training a
model, The most likely parameter we obtain is given by the maximum likelihood estimator of the
distribution, ¥ := argmaxp(v). Understanding how ©(T") changes as a function of T is crucial.
This quantity also exhibits nontrivial crossover behaviors at critical values of 7.

When T < T, a nonzero maximizer for p(v) must satisfy

10° 4

«  B1=100a2T - /(81 - 1002T)? + 2801 T (B2 — 33T)
v l4a, T !

(18) 10-14

The existence of this solution is nontrivial, which we an-

alyze in Appendix A.8. When 7' — 0, a solution exists "~

and is given by v = 82/, which does not depend on the 1077

learning rate or noise C. Note that 5/f; is also the min-

imum point of L(u;,w;). This means that SGD is only a ;
1034

consistent estimator of the local minima in deep learning
in the vanishing learning rate limit. How biased is SGD at 100
a finite learning rate? Two limits can be computed. For a o

10!

small learning rate, the leading order correction to the so-

lution is v = % + (102;%62 - % - @) T'. This implies
that the common Bayesian analysis that relies on a Laplace
expansion of the loss fluctuation around a local minimum is
improper. The fact that the stationary distribution of SGD is
very far away from the Bayesian posterior also implies that
SGD is only a good Bayesian sampler at a small learning
rate.

Example. It is instructive to consider an example of a struc-
tured dataset: y = kx + ¢, where z ~ N(0,1) and the
noise € obeys e ~ N(0,0%). We let v = 0 for simplic-
ity. If 0% > 51 2 k2, there exists a transitional learning rate:
T* = 4(42%\/_78]‘;2). Obviously, T./3 < T*. One can char-
acterize the learning of SGD by comparing 1" with T, and
T*. For this example, SGD can be classified into roughly 5
different regimes. See Figure 5.

4.4 POWER-LAW TAIL OF DEEPER MODELS

Figure 5: Regimes of learning for SGD
as a function of 7" and the noise in the
dataset 0. According to (1) whether
the sparse transition has happened, (2)
whether a nontrivial maximum probabil-
ity estimator exists, and (3) whether the
sparse solution is a maximum probabil-
ity estimator, the learning of SGD can be
characterized into 5 regimes. Regime I is
where SGD converges to a sparse solution
with zero variance. In regime I, the sta-
tionary distribution has a finite spread, but
the probability of being close to the sparse
solution is very high. In regime III, the
probability density of the sparse solution
is zero, and therefore the model will learn
without much problem. In regime b, a lo-
cal nontrivial probability maximum exists.
The only maximum probability estimator
in regime a is the sparse solution.

An interesting aspect of the depth-1 model is that its distribution is independent of the width d of
the model. This is not true for a deep model, as seen from Eq. (16). The d-dependent term vanishes
only if D = 1. Another intriguing aspect of the depth-1 distribution is that its tail is independent of
any hyperparameter of the problem, dramatically different from the linear regression case. This is
true for deeper models as well.



Since d only affects the non-polynomial part of the distribution, the stationary distribution scales

1 . . .
as (V) o SETRBT) (ay 57 Baguray)” HENCe, When v — oo, the scaling behaviour is v

—5+3/(D+1).

The tail gets monotonically thinner as one increases the depth. For D = 1, the exponent is 7/2;
an infinite-depth network has an exponent of 5. Therefore, the tail of the model distribution only
depends on the depth and is independent of the data or details of training, unlike the depth-0 model.
In addition, due to the scaling v°~%/(P+1) for v — oo, we can see that E[v?] will not diverge no

matter how large the T is.

An intriguing feature of this model is that the model with at
least one hidden layer will never have a divergent training loss.
This directly explains the puzzling observation of the edge-
of-stability phenomenon in deep learning: SGD training often
gives a neural network a solution where a slight increment of
the learning rate will cause discrete-time instability and diver-
gence (Wu et al., 2018; Cohen et al., 2021). These solutions,
quite surprisingly, exhibit low training and testing loss values
even when the learning rate is right at the critical learning rate
of instability. This observation contradicts naive theoretical
expectations. Let 74, denote the largest stable learning rate.
Close to a local minimum, one can expand the loss function up
to the second order to show that the value of the loss function
L is proportional to Tr[X]. However, ¥ o< 1/(#sta —7) should
be a very large value (Yaida, 2018; Liu et al., 2021), and there-
fore L should diverge. Thus, the edge of stability phenomenon
is incompatible with the naive expectation up to the second
order, as pointed out by Damian et al. (2022). Our theory of-
fers a direct explanation of why the divergence of loss does not
happen: for deeper models, the fluctuation of model parame-
ters decreases as the gradient noise level increases, reaching a
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Figure 6: Training loss of a tanh net-
work. D = 0 is the case where only
the input weight is trained, and D = 1
is the case where both input and out-
put layers are trained. For D = 0,
the model norm increases as the model
loses stability. For D = 1, a “fluc-
tuation inversion” effect appears. The
fluctuation of the model vanishes be-
fore it loses stability.

minimal value before losing stability. Thus, SGD has a finite loss because of the power-law tail and

fluctuation inversion. See Figure 6.

Infinite-D limit.

As D tends to infinity, the distribution becomes

(v) o 1 _a &+a2a35172a§62+a1a362 ¢ (Oq’l)*az
plv v3+R1 (02 - 200 + g ) 17k1/2 exp DT \ asv ag\/Z arctan VA
where k; = d(azf1 — 2a282)/(TDa3). An interesting fea- 8501 BN _wom
ture is that the architecture ratio d/D always appears simul- 98.25 e -
taneously with 1/7". This implies that for a sufficiently deep 98.00 4 [
neural network, the ratio D/d also becomes proportional to 2 o775 ] u
the strength of the noise. Since we know that 7' = 7/S de- 5 "
termines the performance of SGD, our result thus shows an & %7:50]
extended scaling law of training: %% = const. The architec- 97.25 7
ture aspect of the scaling law also agrees with an alternative 97.001 ™ Zt:nlégr d
analysis (Hanin, 2018; Hanin & Rolnick, 2018), where the op- 96.75 , : :

5 10 15

timal architecture is found to have a constant ratio of d/D. See
Figure 7.

Now, if we fix T, there are three situations: (1) d = o(D),
(2) d = c¢oD for a constant ¢y, 3) d = QD). If d =
o(D), k1 — 0 and the distribution converges to p(v) o<
v73(a1v? = 2av + a3) 7L, which is a delta distribution at 0.
Namely, if the width is far smaller than the depth, the model
will collapse to zero. Therefore, we should increase the model
width as we increase the depth. In the second case, d/D is a

D

Figure 7: Performance of fully con-
nected tanh nets on MNIST for dif-
ferent depths D. The training pro-
ceeds with standard Adam. Scaling the
learning rate as 1/D keeps the model
performance relatively unchanged.

constant and can thus be absorbed into the definition of 7" and is the only limit where we obtain a
nontrivial distribution with a finite spread. If d = (D), the distribution becomes a delta distribution
at the global minimum of the loss landscape, p(v) = §(v—82/61) and achieves the global minimum.



4.5 VARIATIONAL BAYESIAN LEARNING

An implications of the analytical solution we found is the inappropriateness of using SGD to ap-
proximate a Bayesian posterior. Because every SGD iteration can be regarded as a sampling of the
model parameters. A series of recent works have argued that the stationary distribution can be used
as an approximation of the Bayesian posterior for fast variational inference (Mandt et al., 2017;
Chaudhari & Soatto, 2018), pRayes(#) ~ psap(8), a method that has been used for a wide variety of
applications (Jospin et al., 2022). However, our result implies that such an approximation is likely
to fail. Common in Bayesian deep learning, we interpret the per-sample loss as the log probability
and the weight decay as a Gaussian prior over the parameters, the true model parameters have a log
probability of

10g PBayes (0]x) o< £(6, x) + (0] (19)

This distribution has a nonzero measure everywhere for any differentiable loss. However, the distri-
bution for SGD in Eq.(16) has a zero probability density almost everywhere because a 1d subspace
has a zero probability measure in a high-dimensional space. This implies that the KL divergence
between the two distributions (either KL(pgayes|[Psap) or KL(psap||[pBayes)) is infinite.

5 CONCLUSION

In this work, we established that SGD systematically converges toward a balanced solution when
rescaling symmetry is present, a principle we termed the “law of balance.” This finding implies that
SGD inherently focuses on a low-dimensional subspace in the stationary stage of training, offering
new insights into its behavior in deep learning. By leveraging the law of balance, we constructed an
analytically solvable model incorporating the concepts of depth and width and successfully derived
the stationary distribution of SGD. This analytical solution revealed several previously unknown
phenomena, which may have significant implications for understanding deep learning dynamics.
One key consequence of our theory is that using SGD to approximate the Bayesian posterior may
be fundamentally inappropriate when symmetries exist in the model, a concern particularly relevant
for overparameterized models (Nguyen, 2019). For those seeking to employ SGD for variational
inference, it may be necessary to eliminate symmetries from the loss function, which presents an
intriguing avenue for future research. While our theory provides valuable insights, it is currently
limited to a minimal model, and exploring more complex and realistic models will be an essential
direction for future studies.
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A THEORETICAL CONSIDERATIONS

A.1 BACKGROUND
A.1.1 Ito’s LEMMA

Let us consider the following stochastic differential equation (SDE) for a Wiener process W (¢):
dXt = Mtdt + UtdW(t) (20)

We are interested in the dynamics of a generic function of X;. Let Y; = f(¢, X;); Ito’s lemma states
that the SDE for the new variable is

2 92
df (t, Xy) = (88]; +ﬂt% + O;SXJ;
Let us take the variable Y; = X7 as an example. Then the SDE is
dYy = (2 Xy + 07 ) dt + 20, X dW (2). (22)
Let us consider another example. Let two variables X; and Y; follow

dXt = [Lfdt + UtdW(t),
Y, = \dt + ¢ dW (2). (23)

)dt+at8de(t). 1)

ox

The SDE of X,Y; is given by
d(XtY;j) = (/LtYVt + N Xy + O't(bt)dt + (O'tY;g + (z)tXt)dW(t) 24)

A.1.2 FOKKER PLANCK EQUATION

The general SDE of a 1d variable X is given by:

dX = -p(X)dt + B(X)dW (t). (25)
The time evolution of the probability density P(x,t) is given by the Fokker-Planck equation:
OP(X,t) 0
—=——J(X,1 26
where J(X,t) = p(X)P(X,t) + 1 5 [B*(X)P(X,t)]. The stationary distribution satisfying
OP(X,t)/0t =01is
1 2u(X) | _ 5
P(X) o< ———— exp | - f ax = P(X), 27
<) exp[ B?(X)] o 0

which gives a solution as a Boltzmann-type distribution if B is a constant. We will apply Eq. (27)
to determine the stationary distributions in the following sections.

A.2 PROOF OF THEOREM 3.1

Proof. We first prove the law of balance, and then prove the uniqueness of A.

(Part I) We omit writing v in the argument unless necessary. By definition of the symmetry
(u,w,x) = £(Au,w/\, x), we obtain its infinitesimal transformation £(u, w,x) = £((1+€)u, (1 -
€)w/\, z). Expanding this to first order in ¢, we obtain

or ot

i— = R 28
The equations of motion are
dui or
= 29

dwj 19/4
— = 30

dt 811}j ( )
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Using Ito’s lemma, we can find the equations governing the evolutions of u? and w]2

du? du;  (du;)? or
L= 9y, = —2u, TCY,
a a T a Yo
dw? dw;  (dw; )2 ol
i_9 J J —ow. TCY 31
dt Yita T wjawz+ 70 D

where C* = Var[aa—] and C}’ = Var[ ] With Eq. (28), we obtain

d

WP =Py = -T(E ey - ZC“>——T(ZVar[ |- s

]) (32)

Due to the rescaling symmetry, the loss function can be considered as a function of the matrix uw? .

Here we define a new loss function as Z(u-wj) = {(u;,w;). Hence, we have

ot ol
A L 33
Z 8(uzwj) ou; Zw] O(uw;) (33)
We can rewrite Eq. (32) into’
d
QP - [l = =T Cyu =" Cow),, G4)
where
[ ol ol ol ol
1)y =E -S'E E ,
T Dl e ] ek oyl o)
=E[ATA] - E[AT]E[A] (35)
[ ol ol
C = E
(C2)u Z O(u;wg) 0 uzwl)] Zl: |:3(u7wk)] |:6(uzwl):|
= [AAT] - E[A]E[AT], (36)
where -
ol
(A)ix = wwn)’ (37)
(Part II) The rescaling transformation can be rewritten as
Ox = A(N)9, (38)
where \ o
Ao 9 ). (39)
and we denote 0 := (u”,wT)T. The covariance matrix as a function of 6, is given by
o (ot ol ot "
6))=E E|——|E[|=——| =AT'(\C@O)AN). 40
¢ = [89,\(8%) ] [GGA] [89>\] NEEAN) “0)

3 Alternatively, we provide a conventional proof that explicitly invokes Ito’s lemma. By defining 0 :=

(uT,wT)T and B := ( IO" _?w

the Ito’s lemma (22), the dynamics of 7 B can be written as D(0) = -07 BvyL + 67 B\/TC(0)dW /dt +
TTr[C(0)B]. Meanwhile, the infinitesimal form of the rescaling symmetry can be expressed as £(6,x) =

. (1. O
£(A0, :r)w1thA.7( o I,

ing the average to the both sides, we have #7 BV, L = 0. In addition, we have 87 BC'(9) = E[67 BVo{V} (] -

E[6T BVol]E[V} £] = 0. Therefore, 87 B\/C(6) = 0since C'(0) and \/C (0) share the same null space. Plug-
ging 87 BVyL = 0 and 7 B\/C () = 0 into the evolution equation of D(#), we obtain D(#) = TTr[C(0)B],
which is the same as Eq. (34).

), the quantity |u|? - |w|? can be rewritten as #7 Bf =: D(#). Using

) We can expand the equation to first order in € and obtain 87 BV £ = 0. Tak-
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Here, we denote Iu(w) as an identity matrix with the dimension d,, (d,, ), which is the dimension of
the vector u(w). Then,

Tr[C(62)B] = Tr[A2C(0) B], 41
where B := ( IO“ _(12 ) is considered as the generator of the transformation matrix A and hence

[A, B] = 0. The conserved quantity Q(u,w) = |u[? - |w|? can be also expressed as

Q(9) =67 Bs. (42)
Then, under the rescaling transformation, we have
Q0,)=0TA"'BA 0 =0T B0, (43)
where ) o
~ 241,
B:( o e ) (44)

The matrix B can be further decomposed into two subspaces: the subspace with positive eigen-
values(the subspace associated with the vector u) and the subspace with negative eigenvalues(the
subspace associated with the vector w). The function G(0)) := C'(0)) takes the form of

G(0x) = =y (Jur]® = [wal*) = T(ux Crux = wi Cowy) = =163 Boy + TTe[C(61)B]  (45)
in the presence of the weight-decay term. By this decomposition, we obtain

G(0y) = 01 B, + TTr[C(6))B]

1 dy /4 9 o [ & ol 2
:)\Q(T;Var(au‘)+'y|w|| )—)\ (T;Var e +y)ul?]- (46)

? J

Here we assume v > 0. We can also similarly obtain the case with v < 0. Notice that the first term
on the right-hand side of Eq. (46) is propotional to A\=2. Therefore, the unique |\*| with G(6,) =0
is given by

du 9 1/4
- (Tz“wr(ae/aumw )

-\ = ; 47
T x5 Var(0tfow;) + | ul
which is unique. The proof is complete. O
A.3 SECOND-ORDER LAW OF BALANCE
Considering the modified loss function:
1 2
bt =€+ ZTHVLH . (48)
In this case, the Langevin equations become
ol 1, 0|vVL|?
dwj = ———dt — =T ———, 49
bt 8wj 4 8’[1)]‘ (49)
ol 1. 0||vL|P?
du; = — - dt - =T . 50
b ou; 4 Ou; (50)
Hence, the modified SDEs of uf and wj2 can be rewritten as
du? du;  (du;)? o 1 9
L= Quy = —2u; TC! - =Tw;V,,|VL|7, 51
at at T ar Uiy, TN - g TVl VL G
dw? dw;  (dw;)? ol 1
—L —ow,—L + = 2w, — +TCY - ~Tw,;V,, VL 52
a0 a dt Y w, i = 3TV VL (52)

In this section, we consider the effects brought by the last term in Egs. (51) and (52). From the
infinitesimal transformation of the rescaling symmetry:

ot ol
2w = Dtig (53)

j 7

J
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we take the derivative of both sides of the equation and obtain

oL 0?L 0’L
el o o E 54
ou; " ;uj Ou;Ou; ;w] du;0w;’ 54
2 2
PL 0L 9L 55

%: i 8wlc’)uj - 8’11}2 " %:wj awiawj ’

where we take the expectation to ¢ at the same time. By substituting these equations into Egs. (51)
and (52), we obtain

d 2 d 2
I A 52 (9., 1) T XACY + (9, 102) 56
K J

Then following the procedure in Appendix. A.2, we can rewrite Eq. (56) as
dlful* _ dlfwl?

= —T(uTClu +ul Dyu—wl Cow - wTDgw)

dt dt
= —T('LLTEl’LL - wTEQw), (57)
where

ov ol
P = 3 g | g | oY

ol ol
(Da)ur =2 % [a(uiww]E [a<uiwz> ] | >

or ov

E 7 = E ) 60
(Ev)iy [Zk: I(ujwy) 5(%‘%)] )

(61)

%

o0 ol
(B2)p =E [Z I(uzwy,) 8(inl):| ‘

For one-dimensional parameters u, w, Eq. (57) is reduced to

d ar \’

Therefore, we can see this loss modification increases the speed of convergence. Now, we move
to the stationary distribution of the parameter v. At the stationarity, if u; = —w;, we also have the
distribution P(v) = é(v) like before. However, when u; = w;, we have

dv = —4U(ﬁlv—ﬁg)+4Tv(a1112—2a2v+a3)—4612Tv(61v—52)(3ﬁlv—ﬁg)+4v\/T(aw2 - 2000 + i3)

dt
(63)

aw
dt -

Hence, the stationary distribution becomes

B2/2a3T-3/2-3 [2as 1 _ ~
P(v) o< - eXP(—(OM+K2)arctanM)7

(o102 = 2090 + a3)1+/32/4Ta3+K1 oT 043\/Z A
(64)
where
3o ﬁQ - 52
K= 280 Tl
4oz
Ky - 3aa3 37 — dagas By Ba + a1a25§. .
20103V A

From the expression above we can see K < 1+ 35/4T a3 and Ko < (asf1 — agﬁg)/2Ta3\/Z.
Hence, the effect of modification can only be seen in the term proportional to v. The phase transition
point is modified as

B2

T. = . 66
s+ B2 (66)

Compared with the previous result 7, = (%, we can see the effect of the loss modification is a3 —

as + B2, or equivalently, Var[zy] — E[x2?y?]. This effect can be seen from E; and E.
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A.4 PROOF OF THEOREM 3.3

Proof. For any ¢, one can obtain the expressions of Cl(i) and CQ@ from Theorem 3.1 as

(C) s 0r = ADiE z[|x|| (Zual TF - mxzuazv% y”)]

B A B

= dp. B, [||7]Pro o] - 4p? Y [#Pr | B, [27r22], (67)
3

(O )0 = 15[ 5 52||zuv -4t - 42E[ﬁl(zua faey]e [ﬂ2(zua -]
=4p,E i[||r||2x51m52]—4piZEi[fﬁﬂlra] [ ﬁ27“0“], (63)

where we use the notation r¢ := Z? Lug vj -y, 7= (2T, )T v = (w],b;)T and E;[O] :=
E[Olwl'z +b; > 0].

We start with showing that C§1) is full-rank. Let 1 be an arbitrary unit vector in R%. We have that

mTCF)m:élpiEi [||i||2(mTT)2]—4pf%Ei [i‘ (m r)] [ B(mT T)]

> 4p7E; [||2]* (m" ) ]—41)?%:]E [2°(m" )] Bs [ (m"r)]

= 4p1 Z Var;[Z mTT]

d d
= 4p? Z[Vari[a?ﬁmT(g(a:) - Z ujvaa?)] + Var; [i;’BmTe] - 2C0vi[iﬂmT(g(a;) - Z ujv;‘»ra?), *m
j=1 j=1

B
> 4p? Z Var;[#°mTe] > 0, (69)

where the last inequality follows from

d
COV[ Z P T]
j_d d
BT (6() - 3wl D B0 (0(0) - 3wt DB
=0. (70

Here we denote that Var;[O] := E;[O?]-E;[O]? and Cov;[O1, O3] = E;[0105] -E;[O1]E;[O5].
For Céi), we let the vector 72 := (n?,n f)T be a unit vector in R%*! | yielding
AT CE 7 = dpE, [||r|* (AT 2)?] - 4p? ZE [+ (772) | E: [r* (77 7))
> 4p3E; [|Ir|)* (7" 2)?] - 4p7 ZEi [r* (2" 2)]|E; [r*(a"2)]

=4p? > Var,[r*i" 7). (71)
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Note that this quantity can be decomposed as

d
> Var; [rontz] = > Var;[(g%(z) - ). uj"vafc +e)(nT2)]

d

= > Var;[(g%(x) - Zlufv]Ti)(nTa: +ng)]+ ZVari[ea(nTx +ny)]
d

-2% Cov;[(9*(z) - Z;ufvfi)(n:rx +ng),e*(nTz+ng)]. (72)

The covariance term vanishes because

d
Cov[(g*(z) - Zl uSvl Z)(n"x+ng),e*(n"z+ny)]

B0 (@) - 3 TR (0T 4 1))~ Eal(9° () - 3 udoT ) (0T + ) Exle (nT -+ )
-0. " . (73)
Therefore,
aTC7 > %:Vari[(ga(x) - ji uSoT#)(nTa +ng)] + % Var;[¢*(n"z + ng)]

> Y Var € (n" )]

= %:Vari[ea]Vari[(nTm +ng)]+ %:(Vari[ea]Ei[(nTx +ns)?] + Var;[n”z + n B[ (e)?])

> S Var;[e*]E;[(n"z +ny)?] > 0, (74)

where the penultimate inequality follows from the fact that € is independent of z. Hence, both the
matrices Cfl) and CQ(Z) are full-rank. The proof is completed. O
A.5 DERIVATION OF EQ. (6)

We here prove inequality (6). At stationarity, d(||u|? - ||w[?)/dt = 0, indicating
Al = Agm [w]? 2 0, Ai[]? = A2ar [w]* <0 (75)

The first inequality in Eq. (75) gives the solution

[ul® | Aom
> . (76)
lwl* ~ A
The second inequality in Eq. (75) gives the solution
Jul* | Aan
< . (77
lwl? ™ Avm
Combining these two results, we obtain
2
m A
Aom |y 2M (78)

v wl* T A
which is Eq. (6).
A.6 PROOF OF THEOREM 4.1
Proof. This proof is based on the fact that if a certain condition is satisfied for all trajectories with

probability 1, this condition is satisfied by the stationary distribution of the dynamics with probabil-
ity 1.
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Let us first consider the case of D > 1. We first show that any trajectory satisfies at least one of
the following five conditions: for any i, (i) v; - 0, (ii) L(#) — 0, or (iii) for any k # [, (ugk))2 -

(u{)? - 0.
The SDE for ugk) is

du(k)
dt

_ o Vi (g Ui 7z aw
= 2u(k)(ﬁlv 52)+2u(k)\/77(@111 2042U+O‘3) dt (79)

(k)

where v; := ]'IkD:1 ugk), and so v = }_; v;. There exists rescaling symmetry between v, ~ and ugl) for

k # (. By the law of balance, we have

d (k)y2 (MDy27 _ (k)2 (1)y2 ot
%[(uz ) - (ui ) :|_ _T[(ui ) - (’U,,L ) ]Var a(u(k)u(l)) ) (80)
where
ol (Y 2 2
Var a(u(k)u(l))‘| = (u(.k)u(l)) (a1v” = 200 + i3) (81)

(l))2

with vi/(ugk)qél)) = Tssry ugs). In the long-time limit, (u(k))2 converges to (u; unless

i
Var[m] = 0, which is equivalent to vi/(ugk)ugl)) = 0 or a1v? — 2000 + a3 = 0. These
two conditions correspond to conditions (i) and (ii). The latter is because o 02 =2a9v+as = 0 takes
place if and only if v = ap/a and a3 — g = 0 together with L(8) = 0. Therefore, at stationarity,
we must have conditions (i), (ii), or (iii).

Now, we prove that when (iii) holds, the condition 2-(b) in the theorem statement must hold: for
D =1, (log|v;| - log|v,|) = co with sgn(v;) = sgn(v,). When (iii) holds, there are two situations.
First, if v; = 0, we have ufk) = 0 for all k£, and v; will stay O for the rest of the trajectory, which
corresponds to condition (i).

(k)

If v; # 0, we have u; "~ # 0 for all k. Therefore, the dynamics of v; is

2 2
dv; v v; dW v3

v _ K3 _ 3 2 _ o R S
i 2 (ul(.k)) (Brv-P2)+2 Ek (ugk)) Vi(a1v? - 2000 + as) a +4Z((u(k)

i 2
n(a1v°-2asv+asz).
k k.l uz(.l))2)

(82)

Comparing the dynamics of v; and v; for ¢ # j, we obtain
dv; [dt dv;/dt pORR Y (AR O EI Y U?/(u§m)u§l))2
Sevifu)? (05 /uf)? ) ( Se(oifuy? (v ful))2
_ 4(vlzm,lvf/(u§m)u51))2 . Zm,zﬂf/(ugm)u;l))z
Conea®r Ty

)n(a1v2 - 200 + 3)

) n(a1v? - 2000 + a3).
(83)
By condition (iii), we have [u{”| = --- = [u{™], i.e., (v;/ul*)? = (v2)P/P+D) and (v; ful™u{P)? =
(1)1'2)([)71)/(17“).6 Therefore, we obtain
dv/dt C dyfde i (W‘D(U§)<D—1>/<D+1> R i
(D +1)(v2)PI(P+1) (D + 1)(U‘72)D/(D+1) ' 2(v2) DI+ J 2(1]]2‘)D/(D+1)

)n(a1v2—2a2v+a3).

(84)
We first consider the case where v; and v; initially share the same sign (both positive or both nega-
tive). When D > 1, the left-hand side of Eq. (84) can be written as

2/(D+1)-1
1 dvj

-D dt

2/(D+1)-1
1 dy; 4Dyl 2/(D+)
1-D dt ‘

—4Dv;_2/(D+1)n(a1v2—2a2v+a3),
(85)

n(a1v2—2agv+a3)— .

°Here, we only consider the root on the positive real axis.
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which follows from Ito’s lemma:

dp?/(P+D-1 2 dv; 2 2 V; ’
— :( 1)”?/@“)72*1 +2( 1)( - 2/ (Z( i) Vil —2azv+a3))
Eou;

D+1 dt D+1 ’"D+1

2 2/(D+1)-2 dv;

- (—2 1) =
(51~ Vv dt
Substitute in Eq. (84), we obtain Eq. (85).

+4D(D - 1)v P p(a10% — 2050 + a3).  (86)

Now, we consider the right-hand side of Eq. (84), which is given by

2Dvil—2/(D+1) a 2Dv;—2/(D+1)

n(oqv? - 2090 + a3) n(o1v? - 2020 + as). 87)

Combining Eq. (85) and Eq. (87), we obtain

1 dvg/(D”)_l 1 dv?/(DH)fl 1-2/(D+1) 1-2/(D+1) 2
G L 7 ;) 7 =-2D(v; - v, In(a1v® = 290 + a3).
(88)
By defining z; = vf/ (D“)*l, we can further simplify the dynamics:
d(z; — z; 1 1
A=) =2D(D-1)[ = - = | n(a1v® - 2000 + a3)
dt Zi Zj
= 2D(D - 1) "0 - 2090 + a3). (89)
ZiZj
Hence,
2D(D -1
zi(t) — z;(t) =exp [— f dtQ’I?(Oél’UZ - 2000+ 3) |- (90)
ZiZj

Therefore, if v; and v; initially have the same sign, they will decay to the same value in the long-
time limit ¢ — oo, which gives condition 2-(b). When v; and v; initially have different signs, we can
write Eq. (84) as

d|v;|/dt N dlv;|/dt (|
(D+ D)([o)PTPD ™ (D + 1)(Joy[2)PIOD ~

D(|Ui‘2)(D_1)/(D+1) D(|’Uj|2)(D_1)/(D+1)
s qumprE o Eere

x n(a1v? = 2000 + ag). 91)
Hence, when D > 1, we simplify the equation with a similar procedure as

1 d|1}i|2/(D+1)_1 . 1 d|vj|2/(D+1)_1

= —2D(|Ui|1_2/(D+1)+|vj|1_2/(D+1))n(alv2—2a2v+a3).

1-D dt 1-D dt
92)
Defining z; = |v;|?/(P+D~1, we obtain
d(z; i 1 1
dz+ ) =2D(D-1)[ =+ = | n(a1v® - 2000 + a3)
dt Zi Zj
=2D(D - )2 p(arv? - 2090 + a), (93)
ZiZj
which implies
2D(D -1
zi(t) + z;(t) = exp [[ dtQW(alv2 - 2000 + 043)] . 94)
ZiZj

From this equation, we reach the conclusion that if v; and v; have different signs initially, one of
them converges to 0 in the long-time limit ¢ - oo, corresponding to condition 1 in the theorem
statement. Hence, for D > 1, at least one of the conditions is always satisfied at t — oco.

Now, we prove the theorem for D = 1, which is similar to the proof above. The law of balance gives

ot ] . (95)

d.(y2 (o (2)y27 _ (D2, (22
%[(Ui ) ‘(“i )]—‘T[(Ui ) ‘(Ui )" ]Var m
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__ ot

B(ugl)uf))

L(#) = 0. This corresponds to condition (ii). Hence, if condition (ii) is violated, we need to prove
M

dvi/dt  dv;/dt

|vi] v

We can see that [ul"] — |u{®| takes place unless Var[ ] = 0, which is equivalent to

condition (iii). In this sense, |u |ul(.2)| occurs and Eq. (84) can be rewritten as

= (sign(v;) - sign(v;))n(a1v”® - 2090 + a3). (96)

When v; and v; are both positive, we have
dv;/dt ~ dv;/dt 0o

CH)
(Y Uy
With Ito’s lemma, we have
dl i dv;
% = rﬁit —2n(a1v? = 2050 + a3). (98)
Therefore, Eq. (97) can be simplified to
d(log(v:) ~lox(vy)) _, ©9)

dt

which indicates that all v; with the same sign will decay at the same rate. This differs from the case
of D > 2 where all v; decay to the same value. Similarly, we can prove the case where v; and v; are
both negative.

Now, we consider the case where v; is positive while v; is negative and rewrite Eq. (96) as
dv; [dt N d(|v;])/dt

= 2n(a1v® = 2000 + i3). (100)
v; |v;]

Furthermore, we can derive the dynamics of v; with Ito’s lemma:

dlog(|v; dv;
% B m - 2n(a1v? - 2090 + a3). (101)

Therefore, Eq. (100) takes the form of

d(l i) + 1 j
(log(v );t og(|v;])) = —2n(a1v? - 290 + az). (102)

In the long-time limit, we can see log(v;|v;|) decays to —oo, indicating that either v; or v; will decay
to 0. This corresponds to condition 1 in the theorem statement. Combining Eq. (99) and Eq. (102),
we conclude that all v; have the same sign as ¢ — oo, which indicates condition 2-(a) if conditions
in item 1 are all violated. The proof is thus complete. O

A.7 PROOF OF THEOREM 4.2
(k)

%

/P for arbitrary k£ and obtain

Proof. Following Eq. (82), we substitute u,; ~ with vl.l
d’Uz'

dt

AW
=-2(D+ 1)|vi|2D/(D+1)(61’u - B2)+2(D + 1)|1)1-|2D/(D+1)\/77(0z1v2 — 2000 + 043)%

+2(D + 1) Dol |v;| Y P Dy (ay0? - 2000 + as). (103)

With Eq. (90), we can see that for arbitrary ¢ and j, v; will converge to v; in the long-time limit. In
this case, we have v = dv; for each i. Then, the SDE for v can be written as

% == 2(D + 1)@ PO PRI (819 - By) + 2(D + 1)d> P+ pPPIP /(g0 - 2090 + ag)‘%/
+2(D + 1)Dd4/(D+1)_2v3|v|_4/(D+1)77(a11)2 - 200 + 3). (104)

If v > 0, Eq. (104) becomes

% = —2(D +1)dP+D=12DIDD) (5 4y By) + 2(D + 1)d?/ P+ =1 2DID+D) | [y (02 — 250 + ag)cii—vtv
+2(D + 1) DdYP+D=23=4/(D+D (02— 2000 + a3). (105)
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Therefore, the stationary distribution of a general deep diagonal network is given by

1 1 dl 2/(D+1)(ﬁ v ﬁQ)
p(v) o< exp|-= f dv .
p3A-1/(D+1) (02 - 2090 + 3) T (D + 1)v2D/(D+D) (02 - 2090 + r3)

(106)
If v <0, Eq. (104) becomes
dlv _ _ aw
% = —2(D +1)d¥ PO 2PPI(PD) (g [u] + By) = 2(D + 1)d¥ POy 2P/DD /(o [u]2 + 2a5 0] + 0[3)?

+2(D + 1) DAY P+D=2 [y 34/ (DD () 0] + 200|0] + 3). (107)

The stationary distribution of |v| is given by

J1-2/(D+1)
p(lo]) o 1 o (-7 [ (Bilol+ 52) )

[v[3Q-1/(D+1)) (g [v]2 + 20e|v] + a3) (D + 1)|[v2PI(P+1) (e |[v]2 + 2aa|v] + i)

Thus, we have obtained

1 1 dt 2/(D+1)(61|’U| =S ﬁ2)
pa(vl) o sy 2 P\ =7 f dlv| 2D/(D+1 2 :
[v[3A-1/(D+1)) (aq [v]2 F 202|v] + a3) T (D + 1) |[v2PI(P+1) (ay |[v]2 F 20 |v] + i)
(109)
Especially when D = 1, the distribution function can be simplified as

|U|iﬁ2/2a3T—3/2 1 a3fBi — asfs 041|'U| F oy
(o |v]? F 20a]0] + a3)11/32/4Ta3 exp rctan ————

P ([v]) o< ) (110)

———(—— a
2T a3VA VA

where we have used the integral

/d B1v F B2 _agfh—af o |v] F az 52

Pa
= t log(v)+-—1 —2a00+
vv(a1v2—2a2v+a3) /N arctan /A - g(v) 203 og(a1v*-20v+a3).

(111)

Furthermore, we can also see that p(v) = 6(v) is also the stationary distribution of the Fokker-Planck
equation of Eq. (105). Hence, the general stationary distribution of v can be expressed as

p*(v) = (1-2)8(v) + zps(v). (112)
The proof is complete. O

A.8 ANALYSIS OF THE MAXIMUM PROBABILITY POINT

To investigate the existence of the maximum point given in Eq. (18), we treat 7" as a variable and
study whether (31 — 102 T)? + 280, T'(32 — 3a3T) = A in the square root is always positive or not.

When T < - 5 =T./3, A s positive for arbitrary data. When 7' > 222, we divide the discussion into

several cases. Flrst when a3 > g

—5aa 1 + Tar B2 +VT/3aras B2 — 10 oo B1 B + Tt 52
2(21laras — 25a3)

a2, there exists a root for the expresswn A. Hence, we find that

T- =T (113)

is a critical point. When T,./3 < T < T*, there exists a solution to the maximum condition. When
T > T*, there is no solution to the maximum condition.

The second case is a3 < ajag < 21 2543, In this case, we need to further compare the value between
S5agf1 and Tagfs. If Bagfy < Tayfa, we have A > 0, which indicates that the maximum point
exists. If bao By > Ta B2, we need to further check the value of minimum of A, which takes the

form of ) ) )
2505 — 21 ac: —(Ta - b
ming A(T) = 25%2 103)51 - (Teafy = 5ah)” (114)
2
2505 - 2lajag
Sag+y/2502-21 .. . .. . .

If gg; < gl <= ‘;,z’j; 2% | the minimum of A is positive and the maximum exists. However,
i Sag+y/25a2-21 . . . Bag+/2502-21 .
if By 222 @277 there is a critical learning rate T7*. If 2t = o 27N there is

B 3as B2 3as
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without weight decay with weight decay

. 2 1B —o_GB1tn)
single layer (a1v® = 2000 + v3) ™ 2Ten ar(v-k) " T
X lati oP2/2azT=3]2 25 (B2-1)2a3 =372

non-interpolation (10?200 0tag) tPaliTas (a102—2azvtagz)+(B2-N/ATay
T ol
. . -3/2+B1/2T a1k =32 gk P1m %) 8
_ v v _ Py 1
interpolation y = kx Ry AATaE (v_k)2+2T}y]k(ﬁl_%> exp( T k(k_v))

Table 1: Summary of distributions p(v) in a depth-1 neural network. Here, we show the distribution
in the nontrivial subspace when the data x and y are positively correlated. The ©(1) factors are
neglected for concision.

only one critical learning rate as 7, = SashoTaafs _ \whep T, /3 < T < T*, there is a solution to

2(2502-21lajas)’
Saa+y/2503-21ar s

the maximum condition, while there is no solution when T > T*. If % > 3as , there
are two critical points:
—504261 + 70[162 + \/7\/3041043ﬁ% - 100410(25162 + 70[%5%
Ty = . (115)

2(21laras - 25a3)

For T' < T and T > T5, there exists a solution to the maximum condition. For 7T} < T < 15,

there is no solution to the maximum condition. The last case is a3 = a3 < %a%. In this sense,
the expression of A is simplified as 3% + 281 52T — 20a2 3, T. Hence, when % < gg; , there is no
Bi 5 T2 there is a critical

critical learning rate and the maximum always exists. Nonetheless, when 5

2
. * 51
learning rate as 1™ = 00351 -1 s

while there is no solution when T" > T

5&2

. When T < T, there is a solution to the maximum condition,

A.9 OTHER CASESFOR D =1

The other cases are worth studying. For the interpolation case where the data is linear (y = kx for
some k), the stationary distribution is different and simpler. There exists a nontrivial fixed point for
Yi(uf —w?): ¥jujw; = 2, which is the global minimizer of L and also has a vanishing noise. It

is helpful to note the follov?/éilng relationships for the data distribution when it is linear:
ay = Var[z?],
ag = kVar[z?] = kay,
as = k2aq, (116)
B = E[a?],
B2 = kKE[2?] = kpB;.

Since the analysis of the Fokker-Planck equation is the same, we directly begin with the distribution
function in Eq. (17) for w; = —w; which is given by P(Jv]|) o< §(|v|). Namely, the only possible
weights are u; = w; = 0, the same as the non-interpolation case. This is because the corresponding
stationary distribution is

P(Jo]) o<

L |v|61(|v|+k)+a1%(|v|+k)2
(ol + k)2 © P\ 2T azfv[(jo] + k)

B B1
oc |v] 2T |y + k)2 FTaTE (117)

81
The integral of Eq. (117) with respect to |v| diverges at the origin due to the factor |v|%+2T“1’f .

For the case u; = w;, the stationary distribution is given from Eq. (17) as

1 1 Br(v—k) +onT(v—-k)?
P(v) m exp (_2T dv arv(v - k)2 )

oc v HYITRE (4 — )72 TR (118)
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Now, we consider the case of v # 0. In the non-interpolation regime, when u; = —w;, the stationary
distribution is still p(v) = §(v). For the case of u; = w;, the stationary distribution is the same as
in Eq. (17) after replacing 8 with 35 = B2 — +. It still has a phase transition. The weight decay
has the effect of shifting S by —v. In the interpolation regime, the stationary distribution is still
p(v) = §(v) when u; = —w;. However, when u; = w;, the phase transition still exists since the
stationary distribution is

3402 b1y 1
w0 = e o s ) N

where 0y = ﬁ( B1 - 7). The phase transition point is ¢ = 1/2, which is the same as the non-
interpolation one.

The last situation is rather special, which happens when A = 0 but y # kx: y = kx — ¢/« for some
¢ # 0. In this case, the parameters a and 3 are the same as those given in Eq. (116) except for [o:

By = kE[2?] - ke = kB - ke. (120)

The corresponding stationary distribution is

Pl o AT (L), (121)
(ol 5 P\ 57wy 5 E o))

where ¢y = Tiqk(ﬁl - ¢). Here, we see that the behavior of stationary distribution P(|v]) is

influenced by the sign of c. When ¢ < 0, the integral of P(|v|) diverges due to the factor [v|~2 %> <
|u[~3/? and Eq. (121) becomes & (|v|) again. However, when ¢ > 0, the integral of [v| may not diverge.
The critical point is % + ¢o = 1 or equivalently: ¢ = 51 + T k. This is because when ¢ < 0, the data
points are all distributed above the line y = kxz. Hence, u; = —w; can only give a trivial solution.
However, if ¢ > 0, there is the possibility to learn the negative slope k. When 0 < ¢ < 81 + Ta k,
the integral of P(|v|) still diverges and the distribution is equivalent to §(|v|). Now, we consider the
case of u; = w;. The stationary distribution is

P(|v|) o< Mexp e 1 . (122)
(Jv] - k)2+e2 2Tan k- |v]

It also contains a critical point: —% + ¢ = —1, or equivalently, ¢ = B; — a1 kT. There are two
cases. When ¢ < 0, the probability density only has support for |v| > & since the gradient pulls the
parameter |v| to the region |v| > k. Hence, the divergence at |v| = 0 is of no effect. When ¢ > 0,
the probability density has support on 0 < |v| < k for the same reason. Therefore, if 51 > a1kT,
there exists a critical point ¢ = 81 — a1 kT. When ¢ > 81 — a1 kT, the distribution function P(|v|)
becomes §(|v|). When ¢ < 81 — a1 kT, the integral of the distribution function is finite for 0 < |v| < k,
indicating the learning of the neural network. If 51 < a1 kT, there will be no criticality and P(|v|)
is equivalent to (|v|). The effect of having weight decay can be similarly analyzed, and the result
can be systematically obtained if we replace 3 with 31 + ~y/k for the case u; = —w; or replacing 31
with 81 — v/k for the case u; = w;.

B DERIVATION OF EQ. (14)

When D = 0, the Langevin equation (1) becomes
dv = —V@L + \/TO(’U)th
= =2(B1v - B2) + VAT (a102 - 2050 + az)dW,, (123)

where /3] := 31 +~. According to the stationary distribution of the general SDE (27), by substituting
1(X) with Bv — B3 and B(X) with \/4T (@102 - 2a2v + a3, we obtain

Pv) o 1 |- [t |

4T (c1v? = 2000 + ai3) P 4T (1 v? - 290 + a3)

g , ( ; ):|
2 1 L 2M1 1P2 1 2
xX (v 20000 + (v 2Ta1 exp arctan y (12 )
( ! ? ) [ 1 Oél\/A \/A
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where we utilize the integral

Biv = B2 ] —aif

[ v

0102 — 2000 + a

Ckl\/z

arctan (
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V= Q2

)

!
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20(1

log(av? = 209 + ai3). (125)
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