
Reinforcement Learning-Assisted Genetic Programming Hyper
Heuristic Approach to Location-Aware Dynamic Online

Application Deployment in Clouds
Longfei Felix Yan , Hui Ma , Gang Chen

{felix.yan,hui.ma,aaron.chen}@ecs.vuw.ac.nz

Centre for Data Science and Artificial Intelligence & School of Engineering and Computer Science

Victoria University of Wellington

Wellington, New Zealand

ABSTRACT
Location-AwareDynamicOnlineApplication dePloyment (LADOAP)

in clouds is an NP-hard combinatorial optimisation problem. Ge-

netic Programming Hyper-Heuristic (GPHH) has emerged as a

promising approach for addressing LADOAP demands by dynami-

cally generating Virtual Machine (VM) selection heuristics online.

However, the performance of GPHH is impeded by long simula-

tion times and low sampling efficiency. In this paper, we propose a

novel hyper-heuristic framework that integrates Genetic Program-

ming Hyper-Heuristic (GPHH) and Reinforcement Learning (RL)

approaches to evolve rules for efficiently selecting location-aware

Virtual Machines (VMs) capable of hosting multiple containers. The

RL policy’s value function acts as a surrogate model, significantly

expediting the evaluation of generated VM selection rules. By ap-

plying this hybrid framework to LADOAP problems, we achieve

competitive performance with a notable reduction in the number of

required simulations. This innovative approach not only enhances

the efficiency of VM selection but also contributes to advancing the

state-of-the-art in addressing complex LADOAP challenges.

CCS CONCEPTS
• Computing methodologies→ Reinforcement learning; Ge-
netic programming.

KEYWORDS
genetic programming hyper heuristic, reinforcement learning, sur-

rogate model, application deployment

ACM Reference Format:
Longfei Felix Yan , Hui Ma , Gang Chen . 2024. Reinforcement Learning-

Assisted Genetic Programming Hyper Heuristic Approach to Location-

Aware Dynamic Online Application Deployment in Clouds. In Genetic
and Evolutionary Computation Conference (GECCO ’24), July 14–18, 2024,
Melbourne, VIC, Australia. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3638529.3654058

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0494-9/24/07. . . $15.00

https://doi.org/10.1145/3638529.3654058

1 INTRODUCTION
Recent years have witnessed a surge in cloud services market, with

global spending forecasting $679 billion in 2024 and over $1 tril-

lion in 2027 [13]. Container-based application deployment is often

utilised to meet cloud computing demands [21, 40, 50]. Containers

allow multiple applications to be deployed on the same Virtual

Machine (VM) by sharing one operating system, which can effec-

tively reduce the resources required for application deployment [6].

Furthermore, containers provide isolated sandboxes for serverless

applications, which are lightweight and secure [20].

For real-world applications, user requests generally span across

the globe. VMs in data centres of different geographic locations

must be considered to minimise the average response time [39].

Therefore, location-aware cloud environments have become in-

creasingly popular for container-based application deployment [2].

In a location-aware cloud environment, customers can enjoy the

opportunity of using the computing facilities that best suit their

requirements according to their geographic locations [38]. This

consideration of locations adds another layer of complexity to the

possible solution combinations, which gives the already challeng-

ing container-based application deployment even a larger solution

search space.

Rather than directly searching for solutions, using metaheuris-

tics or hyper-heuristics can make computationally intractable prob-

lems easier [11]. However, it is well-known that metaheuristics

can take long computational time and are not suitable for dynamic

problems [4]. In contrast, hyper-heuristics can handle dynamic

problems with fast online solutions. Genetic Programming Hyper-

Heuristic (GPHH) is a popular approach that generates a population

of tree-based computer programs to represent heuristics [7]. By

automatically optimising the population in a manner similar to

natural evolution, GPHH has been successfully applied to online

resource allocation problems to reduce energy consumption [44–

46]. Thus, GPHH has good potential for Location-Aware Dynamic

Online Application dePloyment (LADOAP) problems, which have

not been investigated in existing works.

The evaluation of heuristic rules for LADOAP problems is based

on historical data collected, categorising them as data-driven op-

timisation problems [18]. Each evolved rule in GPHH needs to be

evaluated separately through LADOAP simulations. However, simu-

lations in GPHH can be computation-intensive and time-consuming

[59]. This issue challenges the future use of GPHH for solving real-

world LADOAP problems. Surrogate models are often utilised to

approximate the real quality evaluation function and speed up the

988

https://orcid.org/0000-0003-4273-198X
https://orcid.org/0000-0002-6232-4436
https://orcid.org/0000-0002-9597-497X
https://orcid.org/0000-0003-4273-198X
https://orcid.org/0000-0002-6232-4436
https://orcid.org/0000-0002-9597-497X
https://doi.org/10.1145/3638529.3654058
https://doi.org/10.1145/3638529.3654058
https://doi.org/10.1145/3638529.3654058
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3638529.3654058&domain=pdf&date_stamp=2024-07-14

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Longfei Felix Yan , Hui Ma , Gang Chen

optimisation process [52, 53]. Research on surrogate models for

GPHH is still in an early stage. In [17, 59, 60], phenotypic repre-

sentations have been developed for surrogate models in dynamic

job shop scheduling tasks. These representations are fixed-length

vectors that correspond to a sequence of decision situations regard-

ing machine ranks obtained from GP heuristic phenotypes. Unlike

job shop scheduling, LADOAP problems have a large number of

machines (VMs) globally available for each decision. Using simi-

lar phenotypic representations would require a vector of possibly

hundreds of entries, which may not effectively represent genotypic

behaviours. On the other hand, the value function of RL’s policy is

a natural assessment of a sequence of decisions. This suggests that

RL-based surrogate model for GPHH can fit well into the picture of

LADOAP problems.

To make GPHH more efficient by reducing the total number of

simulations required without hurting its effectiveness, we devel-

oped a novel surrogate model by utilizing time-tested reinforcement

learning techniques, including the temporal difference learning

method in this paper. We adopt a unique perspective, positing that

the value function of a reinforcement learning (RL) policy can be

depicted as a tree structure. This structure allows for evaluation

and incremental enhancement through a GPHH based algorithm,

which is referred to as the GPHH-RL algorithm in this paper.

1.1 Contributions
Through the development and experimental evaluation of the GPHH-

RL algorithm, this paper achieves the following contributions:

(1) We propose a novel hyper-heuristic algorithm, GPHH-RL,

to solve LODOAP problems efficiently and effectively.

(2) To our best knowledge, GPHH-RL is the first hyper-heuristic

algorithm that utilises GP-based Q-functions as surrogate

models to drive the evolution of useful heuristics.

(3) We conduct a comprehensive experimental analysis of GPHH-

RL with respect to GPHH-based and classical heuristic base-

lines. Our results outperform all the baseline algorithms.

2 RELATEDWORK
In this section, we first introduce related work in the domain of

container-based application deployment in clouds. We then discuss

the works pertaining to RL-Assisted Genetic Programming.

2.1 Container-Based Application Deployment
in Clouds

The deployment of containerised applications in clouds has become

a burgeoning technology due to its elasticity and lightweight de-

ployment cost [5, 33]. Kubernetes-powered commercial container

management platforms, such as Rancher [31] and OpenShift [15],

deliver container deployment services in public clouds through a

unified API. Effective strategies for container-based application de-

ployment in clouds have become more essential than ever [39, 54].

Several studies have investigated queuing models when deploy-

ing containerised applications in clouds [34, 39, 47]. In this pa-

per, our GPHH-RL algorithm also utilises an 𝑀/𝑀/1 queue for

modelling the average response time of applications. Due to the

long-running nature of applications, queuing models help predict

the processing time of deployed applications. However, these pre-

vious studies ignore the location information of the data centres

[34, 47] or overlook the possibility of using shared VMs for multiple

containers [39].

Another stream of research in the deployment of container-based

applications in clouds focuses on application replication strategies

[25, 37, 41]. Most of existing research deals with offline application

deployment. In [37], the authors utilised Mixed Integer Linear Pro-

gramming (MILP) and Large Neighbourhood Search (LNS) to select

VMs for application deployment. Both MILP and LNS are not only

time-consuming, but also require future application arrival infor-

mation a priori. Hence, they are not suitable for dynamic online

application deployment problems.

A closely related research field to LADOAP is Resource Alloca-

tion in Container-based clouds (RAC) [44, 46, 51]. The similarity

lies in the fact that RAC problems also involve selecting VMs for

application deployment. The difference is that RAC problems are

from the perspective of cloud providers, not the perspective of cloud

users. Energy consumption is the main concern in RAC problems

[44, 46, 51], while user experience attributes such as application

response time are not considered in RAC problems. Traditionally,

RAC problems are solved by manually designed heuristics like Best-

Fit algorithms [1, 9]. They are generally outperformed by GPHH

counterparts [44, 46, 51].

2.2 Reinforcement Learning-Assisted Genetic
Programming

Hybrid approaches that interweave RL with GP have received

growing interest in recent years [42]. GP can effectively perform

population-based random searches to explore useful solutions for

a given problem. However, GP algorithms often suffer from low

sampling efficiency and generalisability [10, 42]. On the other hand,

RL algorithms convert the given problem into a sequential decision-

making problem. They usually exhibit strong reasoning abilities

[19]. Furthermore, RL-based surrogate models have low time com-

plexity and speed up the evaluation process [14].

RL-assisted GP can fall into three major categories according

to the role of RL: solution generation [27], population selection

[14], and learnable objective functions [16, 30, 48, 55]. The goal of

solution generation is to generate complete (or partial) solutions for

the evolutionary search process to use. A GP solution is represented

by a syntax tree that can be compiled as an expression of a callable

function [55]. Researchers in [27] use Recurrent Neural Network

(RNN)-based RL algorithm to generate the initial population, which

is called population seeding. This technique has two-fold benefits.

Firstly, RL-guided population seeding provides good starting pop-

ulations facilitating the evolutionary process in GP. Second, GP

helps RNN escape local optima by providing new solutions that are

not derived from gradient descent.

Population selection can be performed by employing an ensem-

ble population strategy [56]. As finding high-quality solutions with

a single population search is a challenging task [58], an ensemble

population strategy can be utilised to improve the search perfor-

mance. The researchers in [14] design four search modes for four

population strategies. The selection of population is dynamically

989

https://orcid.org/0000-0003-4273-198X
https://orcid.org/0000-0002-6232-4436
https://orcid.org/0000-0002-9597-497X

RL-Assisted GPHH Approach to Location-Aware Dynamic Online Application Deployment in Clouds GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

adjusted in the RL algorithm to balance the exploration and ex-

ploitation of the population search. This increases the chances of

finding better solutions.

Using RL for learnable objective functions in GP is the most com-

mon way of integrating RL into GP [16, 30, 48, 55]. The objective

function to evaluate the fitness of individual solutions plays a fun-

damental role in GP. By employing a learnable objective function,

the explored information can be incorporated effectively to guide

the search direction [42]. As RL formulates a problem as a sequence

of decisions, the trajectory samples of the state-action space can

be utilised to learn the objective function [16]. In particular, [16]

proposes a model-based RL algorithm in which the environment

is known. In other words, the expected reward for every state is

known in advance. In practice, many environments are not known,

and the interaction between RL decisions and the environment has

to be explored through trial-and-error [26]. In this type of model-

free RL algorithms, the learnable objective function, or the value

function of the RL policy, is derived from sample trajectories of

state-action pairs.

In summary, RL-assisted GP remains a relatively underexplored

domain. Among the research directions of RL-assisted GP, the appli-

cation of RL to construct a learnable objective function particularly

piques our interest. Inspired by this approach, we are interested

in investigating RL-based surrogate models that approximate ob-

jective functions. The RL-based surrogate models can capitalise on

the synergistic fusion of RL’s potent learning capabilities with GP’s

robust search capabilities. Currently, no empirical investigations

or studies have been undertaken in this specific direction and we

would like to be the first to tackle this research question.

3 PROBLEM FORMULATION
Dynamically arrived applications can be deployed on VMs provided

in geo-distributed data centres with the help of a cloud application

deployment broker. A simple example is illustrated in Figure 1.

The mathematical notation utilised for the problem formulation is

presented in Table 1.

Given a time period 𝑇 (e.g., one day), a set of container-based

applications arrives dynamically to be allocated by cloud service bro-

kers. We denote the set of applications as A = {𝑎1, 𝑎2, · · · , 𝑎 |A | },
where |A| is the number of applications that arrived during the

given time period𝑇 . The arrival time of 𝑎𝑙 is denoted by 𝑡𝑙 . We use a

set of user centresU = {𝑈1, · · · ,𝑈𝑘 , · · · ,𝑈 |U | } to represent global
user centres. The request rate 𝜆𝑙𝑘 (𝑇) is the number of requests

made from the user centre 𝑈𝑘 to the application 𝑎𝑙 during 𝑇 . Thus,

the total workload𝑊𝑙 of 𝑎𝑙 during 𝑇 is:

𝑊𝑙 (𝑇) =
|U |∑︁
𝑘=1

𝜆𝑙𝑘 (𝑇) . (1)

The set of VM types isM = {𝑀0, · · · , 𝑀𝑖 , · · · , 𝑀 |M | }. The loca-
tions of the data centres that provide the VMs are represented by

the setD = {𝐷0, · · · , 𝐷 𝑗 , · · · , 𝐷 |D | }. The unit price of𝑀𝑖 provided

by 𝐷 𝑗 is denoted by 𝑐𝑖 𝑗 . The deployment cost of 𝑎𝑙 in a new VM is

𝐶𝑙 (𝑇) = 𝑐𝑖 𝑗 · 𝑜𝑙 , where 𝑜𝑙 is the number of hours remaining during

𝑇 after deployment. If 𝑎𝑙 is deployed in an existing VM, 𝐶𝑙 (𝑇) = 0.

We assume that all VM types are available in 𝐷 𝑗 . A rented VM is

represented as𝑉𝑖 𝑗𝑛 , where 𝑖 implies the VM is of type𝑀𝑖 , 𝑗 signifies

Broker

Application

VM selection rule

Figure 1: A simplified example of deploying one container-
ised application through a cloud application deployment
broker. The application is associated with three global user
centres and it will be deployed on a VM in one of the two
geo-distributed data centres.

that the VM is located in 𝐷 𝑗 , and 𝑛 indicates the VM is the 𝑛-th

instance of type𝑀𝑖 in 𝐷 𝑗 . The total number of VMs rented during

𝑇 is |V|. As the dynamically arrived applications need to be swiftly

deployed, |V| will keep increasing during 𝑇 .

A container-based application [34] is deployed on only one VM

instance. Due to the flexibility of using containers [6], one VM

instance can host multiple container-based applications as long as

its capacity allows. The available capacity of a VM,𝑉𝑖 𝑗𝑛 , is denoted

by 𝜇𝑖 𝑗𝑛 , which is the maximum workload that 𝑉𝑖 𝑗𝑛 is capable of

processing per time unit [39].When a new containerised application

𝑎𝑙 is deployed in 𝑉𝑖 𝑗𝑛 , the capacity 𝜇𝑖 𝑗𝑛 is reduced by𝑊𝑙 (𝑇). To
avoid system overload [29], we set the upper bound for the capacity

utilization rate as 85%.

Every application has an independent queue of application re-

quests from user centres. The average resource consumption of a

long-running application is observed to be relatively stable [32].

Therefore, following many recent works [35–37, 39], we adopt a

𝑀/𝑀/1 queue proposed in [49] to model the application request

queue of the deployed applications. We denote the capacity of 𝑉𝑖 𝑗𝑛
by 𝜇𝑖 𝑗𝑛 . By Little’s law [23], the Average Processing Time (ARP) of

an application 𝑎𝑙 in 𝑉𝑖 𝑗𝑛 is:

ARP𝑖 𝑗𝑛𝑙 =
1

𝜇𝑖 𝑗𝑛 −𝑊𝑙 (𝑇)
. (2)

The set of applications hosted in𝑉𝑖 𝑗𝑛 is denoted byA𝑖 𝑗𝑛 = {𝑎𝑙 , · · · ,
𝑎𝑟 } and their workloads are denoted by Λ𝑖 𝑗𝑛 (𝑇) = {𝑊𝑙 (𝑇), · · · ,

990

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Longfei Felix Yan , Hui Ma , Gang Chen

Table 1: Mathematical notation

Notation Definition

𝑇 The given time period

A The set of dynamically arrived applications

U The set of user centres

D The set of data centres

M The set of VM types

𝑀𝑖 The 𝑖-th VM type inM
𝑈𝑘 The 𝑘-th user centre inU
𝑎𝑙 The 𝑙-th application in A
𝑡𝑙 The arrival time of 𝑎𝑙
𝐷 𝑗 The 𝑗-th data centre in D

𝜆𝑙𝑘 (𝑇) The request rate from 𝑈𝑘 to 𝑎𝑙 during 𝑇

𝑐𝑖 𝑗 The unit price of𝑀𝑖 in 𝐷 𝑗

𝑜𝑙 Remaining hours during 𝑇 , starting from 𝑡𝑙
𝐶𝑙 The deployment cost of 𝑎𝑙
𝑉𝑖 𝑗𝑛 The 𝑛-th VM instance of type𝑀𝑖 in 𝐷 𝑗

𝑊𝑙 (𝑇) The workload of 𝑎𝑙 during 𝑇

𝜇𝑖 𝑗𝑛 The capacity of 𝑉𝑖 𝑗𝑛
ARP𝑖 𝑗𝑛𝑙 The average processing time of 𝑎𝑙 in 𝑉𝑖 𝑗𝑛
A𝑖 𝑗𝑛 The applications deployed in 𝑉𝑖 𝑗𝑛

Λ𝑖 𝑗𝑛 (𝑇) The workloads of A𝑖 𝑗𝑛 during 𝑇

ANL𝑙 (𝑇) The average network latency of 𝑎𝑙 during 𝑇

ART𝑙 The average response time of 𝑎𝑙
𝜋 The reinforcement learning policy

ℎ The ℎ-th step in RL

𝑆ℎ The state at step ℎ in RL

𝐴ℎ The action to be taken at step ℎ in RL

𝑅ℎ The reward at step ℎ in RL

𝑄𝜋 (𝑆ℎ, 𝐴ℎ) The Q-value of 𝑆ℎ and 𝐴ℎ given 𝜋

𝛿ℎ−1 The TD error at step (ℎ − 1)

𝑊𝑟 (𝑇)}. The total workload𝑊𝑖 𝑗𝑛 (𝑇) in 𝑉𝑖 𝑗𝑛 is the sum of all the

application workloads in it, defined as:

𝑊𝑖 𝑗𝑛 (𝑇) =
∑︁

𝑊𝑙 (𝑇) ∈Λ𝑖 𝑗𝑛 (𝑇)
𝑊𝑙 (𝑇) . (3)

Each application in the hosted VM is assigned a proportion of the

VM capacity according to its workload. For example, the ARP of 𝑎𝑙
in 𝑉𝑖 𝑗𝑛 is calculated by:

ARP𝑖 𝑗𝑛𝑙 =
1

𝑊𝑙 (𝑇)/𝑊𝑖 𝑗𝑛 (𝑇) · (𝜇𝑖 𝑗𝑛 −𝑊𝑖 𝑗𝑛 (𝑇))
. (4)

To satisfy the assumption of the𝑀/𝑀/1 queue model, we have the

constraint that

𝜇𝑖 𝑗𝑛 >𝑊𝑖 𝑗𝑛 (𝑇) . (5)

This constraint ensures that the workload in𝑉𝑖 𝑗𝑛 will never exceed

its capacity.

The Average Network Latency (ANL) of 𝑎𝑙 deployed in data

centre 𝐷 𝑗 during 𝑇 is defined as:

ANL𝑙 (𝑇) =
∑ |U |
𝑘=1

𝜆𝑙𝑘 (𝑇)𝐼 𝑗𝑘
𝑊𝑙 (𝑇)

, (6)

where 𝐼 𝑗𝑘 is the network latency between the data centre 𝐷 𝑗 and

the user centre𝑈𝑘 . We can now define the Average Response Time

(ART) of 𝑎𝑙 during 𝑇 as the sum its ARP and ANL:

ART𝑙 = ANL𝑙 (𝑇) + ARP𝑖 𝑗𝑛𝑙 . (7)

We formulate the LADOAP problem in this paper as a single-

objective optimisation problem to accommodate flexible weighting

schemes to different objectives. The objective function of deploying

a given set of applications A during 𝑇 is defined as:

𝑓A (𝑇) =
|A |∑︁
𝑙=1

(
ÃRT𝑙 ·𝑤1 +𝐶𝑙 ·𝑤2

)
, (8)

where ÃRT𝑙 and 𝐶𝑙 are normalised ART and 𝐶𝑙 (𝑇), and 𝑤1 and

𝑤2 are the weights for ARTs and deployment costs, respectively.

𝑤1 ∈ [0, 1] and 𝑤2 ∈ [0, 1], 𝑤1 + 𝑤2 = 1. The normalisation

is performed to scale ARTs and costs with their maximum and

minimum values so that they are within the range from 0 to 1. For

example, the normalisation formula for ART𝑙 is:

ÃRT𝑙 =
ART𝑙 −min(ART)

max(ART) −min(ART) , (9)

where min(ART) is the minimum ART and max(ART) is the maxi-

mumART.𝐶𝑙 (𝑇) can be derived similarly to (9). Our aim is to assign

VMs to geo-distributed data centres to host the arrived applications

in A with minimised ARTs and costs, which is defined as:

min 𝑓A (𝑇) . (10)

In the next sections, we introduce how to use an RL-assisted GPHH

algorithm to obtain a VM selection rule based on predicted prior-

ity scores to solve the problem. During training, RL will learn a

surrogate model to facilitate the evaluation of rules in GPHH.

4 PROPOSED METHOD
An overview of our proposed GPHH-RL algorithm is demonstrated

in Figure 2. GPHH-RL utilises an RL-based surrogate model to

efficiently evaluate rules generated by GPHH with much fewer

simulations while maintaining the effectiveness.

4.1 GPHH-RL for LADOAP
We propose a novel hybrid approach GPHH-RL for LADOAP prob-

lems, which enhances efficient learning of GPHH with RL-based

surrogate models. The computationally expensive simulations in

LADOAP problems prevent GPHH from having a more efficient

heuristic evolution. Employing a surrogate model can substantially

reduce the number of simulations required for generating good

heuristic rules in LADOAP problems. In GPHH-RL, Q-functions act

as surrogate models by using the expressive power of GP trees.

The terminal and function sets utilised in GPHH-RL is listed in

Table 2. The terminal set contains the workload𝑊𝑙 (𝑇), the cost 𝑐𝑖 𝑗 ,
the average response time ART𝑙 , the capacity 𝜇𝑖 𝑗𝑛 , the arrival time

𝑡𝑙 , and the ephemeral constants 1 and −1. The function set contains

addition, subtraction, multiplication, analytic quotient, negative,

maximum, and minimum. The negative function simply multiplies

the input by −1. Sine and cosine are also included in the function

set to enhance the universal approximation power of GP [57].

The overview of the GPHH-RL algorithm is shown in Figure

2 and the pseudo-code for GPHH-RL is described in Algorithm 1.

991

https://orcid.org/0000-0003-4273-198X
https://orcid.org/0000-0002-6232-4436
https://orcid.org/0000-0002-9597-497X

RL-Assisted GPHH Approach to Location-Aware Dynamic Online Application Deployment in Clouds GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

Population Initialisation

Termination?

Start

Crossover

Mutation

Parent Selection

No

Yes

Generation
divisible by 10?

Yes

No

Real EvaluationTop Individuals
Selection

RL-based Surrogate
Evaluation

End

Return the Best
Individual

Experience
Update

Figure 2: Overview of the GPHH-RL algorithm.

We first initialise the population of size 𝑁 with the ramped-half-

and-half strategy [22]. The population is evaluated by simulations

to determine real fitness. Simulations generate experience as illus-

trated in Algorithm 2. The experience of a heuristic rule 𝑝 contains

lists of selected VMs, rewards, costs and the Q-table associated with

it. We store a batch of the best experiences by their real fitness in

each generation. The batch size 𝑁𝑒 is called the experience size in

Table 5. According to the real evaluation period in Table 5, full simu-

lation is performed for all the population individuals intermittently

in certain generations. The experience stored is updated with the

best 𝑁𝑒 heuristic rules according to their real fitness. The update

replaces experience entries of lower fitness with new ones, but the

size of the experience is maintained. In other generations, surro-

gate models are used for the TD evaluation. TD-Eval(·) takes an
experience and a heuristic rule as inputs. It calculates the TD error

by following (13). In this work, we always take the best experience

for the TD evaluation. Therefore, the replay size is 1. The heuristic

rules are first sorted by their TD errors. The best 𝑁𝑒 heuristic rules

are evaluated by their real fitness to update the stored experience.

Evolutionary procedures in GPHH-RL are standard. At the be-

ginning of each generation, parents are selected through tourna-

ment selection. The evolutionary operators consist of mutation and

crossover. For selected parents, mutation or crossover is conducted.

In other words, mutation and crossover will not be conducted to-

gether for the same selected individuals. After retaining the best

individuals, the generated offspring replace the rest of the original

population at the end of the generation. The iterative evolutionary

procedures continue until the specified total number of generations,

Gen, has been met.

The procedure of VM selection is explained in Algorithm 3. We

first examine existing VMs and assign priority scores to them. The

available new VMs in each data centre are also assigned priority

scores. The VM with the highest priority score is selected as the

VM to deploy the arrived application. If the selected VM belongs

to the existing pool of VMs, the reward only considers ART as the

cost is 0. If the remaining capacity of the selected VM is below the

minimum capacity threshold, it is removed from the existing VM

pool. For newly rented VMs, the reward takes account of both ART

and cost. If the remaining capacity of the newly rented VM is above

the minimum capacity threshold, it is added into the pool of VMs.

Table 2: Terminal and function sets for GPHH-RL

Terminal Description

Workload The workload of an application during 𝑇

Cost The deployment cost of a VM during 𝑇

ART The ART of an application during 𝑇

Capacity The available capacity of a VM

Arrival The arrival time of an application

Constant 1 and -1

Function Description

+, -, ×, negative,
cosine, sine, Standard arithmetic operations

max, min

Analytic quotient
𝑥1√︃
1+𝑥2

2

Algorithm 1 GPHH-RL for LADOAP

1: procedure GPHH-RL(A, 𝑃0)

2: 𝑃 ← 𝑃0 = {𝑝0
1
, · · · , 𝑝0

𝑁
}

3: expList← []

4: for 𝑟 ← 1 to 𝑁 do
5: exp← Simulation(A,𝑃 [𝑟])
6: expList updates 𝑒𝑥𝑝

7: for 𝑔← 1 to Gen do
8: 𝑃 ← TournamentSelection(𝑃)
9: 𝑃 ′ ← Evolution(𝑃)
10: if 𝑔%10 = 0 then
11: for 𝑟 ← 1 to 𝑁 do
12: exp← Simulation(A,𝑃 ′ [𝑟])
13: expList updates exp

14: else
15: for 𝑟 ← 1 to 𝑁 do
16: TD-Eval(expList[0],𝑃 ′ [𝑟])
17: 𝑃 ′ ← sort(𝑃 ′)
18: for 𝑟 ← 1 to 𝑁𝑒 do
19: exp← Simulation(A,𝑃 ′ [𝑟])
20: expList updates exp

21: 𝑃 ← 𝑃 ′

22: 𝑝
best
← pick the best individual from 𝑃

23: return 𝑝
best

992

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Longfei Felix Yan , Hui Ma , Gang Chen

Algorithm 2 Simulation in LADOAP

1: procedure Simulation(A, 𝑝)

2: 𝑅sum ← 0

3: 𝑄-table← []
4: VMpool← []
5: VMlist← []
6: Rlist← []
7: Clist← []
8: for 𝑙 ← 1 to |A| do
9: VMpool, 𝑅𝑙 , 𝑄𝑙 , vm, 𝑐 ← VMselect(𝑝,A[𝑙],VMpool)

10: 𝑄-table appends 𝑄𝑙

11: Rlist appends 𝑅𝑙
12: VMlist appends vm

13: Clist appends 𝑐

14: 𝑅sum ← 𝑅sum + 𝑅𝑙
15: fitness← 𝑅sum/|A|
16: 𝑝 .update(fitness)

17: exp← (VMlist, Rlist, Clist, Q-table)

18: return exp

Algorithm 3 The procedure of selecting VM

1: procedure VMselect(𝑝𝑟 , 𝑎𝑙 , VMpool)

2: VMselected← None

3: scoreMax← −99999
4: Q-value← 0

5: cost← 0

6: for vm in VMpool do
7: score← 𝑝𝑟 (vm, 𝑎𝑙)
8: if scoreMax < score then
9: scoreMax← score

10: VMselected← vm

11: for vm-new in D do
12: score← 𝑝𝑟 (vm-new, 𝑎𝑙)
13: if scoreMax < score then
14: scoreMax← score

15: VMselected← vm-new

16: Q-value← scoreMax

17: if VMselected is vm then
18: vm.capacity← vm.capacity −𝑊𝑙 (𝑇)
19: if vm.capacity < 𝜇min then
20: VMpool removes vm

21: 𝑅𝑙 ← −ÃRT𝑙 ·𝑤1 − 0
22: else
23: vm-new.capacity← vm-new.capacity −𝑊𝑙 (𝑇)
24: if vm-new.capacity > 𝜇min then
25: VMpool appends vm-new

26: 𝑅𝑙 ← −ÃRT𝑙 ·𝑤1 −𝐶𝑙 ·𝑤2

27: cost← 𝐶𝑙

28: return VMpool, 𝑅𝑙 , Q-value, VMselected, cost

4.2 RL-Based Surrogate Model
Temporal Difference (TD) learning is a fundamental concept within

the realm of reinforcement learning, which combines the principles

of Monte Carlo approaches and dynamic programming [43]. TD

methods iteratively update the Q-function by learning from expe-

riences collected directly from the interaction with environments.

As a result, the TD error, i.e., the prediction error between two

adjacent states, can be minimised [43].

In the context of RL, we first define states in our GPHH-RL algo-

rithm. The state 𝑆ℎ is a feature vector of attributes used for making

VM selection decisions at step ℎ. Each attribute is represented by a

separate terminal type used in GP, as listed in Table 2. An action𝐴ℎ

corresponds to the decision of selecting any specific VM in step ℎ.

The RL policy 𝜋 is a mapping from a given state 𝑆ℎ to an action 𝐴ℎ .

The Q-function of the policy 𝜋 and the state-action pair (𝑆ℎ, 𝐴ℎ)
is denoted by 𝑄𝜋 (𝑆ℎ, 𝐴ℎ). It is defined as the expected cumulative

reward during 𝑇 recursively:

𝑄𝜋 (𝑆ℎ, 𝐴ℎ) = E

𝑆ℎ+1

[
𝑅ℎ+1 +max

𝐴
𝑄𝜋 (𝑆ℎ+1, 𝐴)

]
, (11)

where 𝑅ℎ+1 is the reward obtained from step ℎ, and 𝐴 is an action

in the action space. In GPHH-RL, 𝑄𝜋 (𝑆ℎ, 𝐴ℎ) is expressed through

GP trees. The reward 𝑅ℎ is defined as:

𝑅ℎ = −ÃRTℎ ·𝑤1 −𝐶𝑙 ·𝑤2 . (12)

The maximised cumulative reward will jointly minimise ARTs and

deployment costs of all applications.

We can now define the TD error at step (ℎ − 1) as:
𝛿ℎ−1 =

��𝑅ℎ +max

𝐴
𝑄𝜋 (𝑆ℎ, 𝐴) −𝑄𝜋 (𝑆ℎ−1, 𝐴ℎ−1)

��. (13)

The TD error 𝛿ℎ−1 is the non-negative estimation error of𝑄 (𝑆ℎ−1,
𝐴ℎ−1) that is only known at the next step ℎ, since 𝑄𝜋 (𝑆ℎ, 𝐴) is
required to calculate 𝛿ℎ−1. We start by calculating the TD error

from ℎ = 1 with ℎ ∈ {1, · · · , |A| − 1}.
Using the TD error defined in (13) as the fitness to be minimised

for the GP individuals, the estimation of the Q-values between

adjacent states will become more and more accurate through the

evolutionary optimisation process. Naturally, the Q-functions can

be used as surrogate models for estimating the quality of heuristic

rules according to its definition.

5 EXPERIMENTAL EVALUATION
5.1 Dataset
Our VM pricing scheme is collected from AWS [3] in January 2024,

as shown in Table 3. Five M6g VM types are considered in each data

centre. For test scenarios with 8 data centres, the data centres are lo-

cated at Northern Virginia, Northern California, Dublin, Singapore,

Tokyo, Sydney, Sao Paulo and Mumbai. For test scenarios with 15

data centres, the 7 extra data centres are located at London, Paris,

Frankfurt, Stockholm, Hong Kong, Seoul, and central Canada. Our

81 global user centres are from 34 countries on 6 continents based

on the simulation in the Sprint IP backbone network databases [37].

In our simulation, we group user centres into 6 continents. Each

application is assumed to have a focused continent. We randomly

pick 10 to 20 extra user centres from other continents. The focused

continent occupies about 50-80% of the total application workload.

The rest all of the workload is shared by user centres from other

continents. The proportion of the workload for each user centre is

determined by its population size. The workload of each application

is ranged from 52 to 304 [37].

993

https://orcid.org/0000-0003-4273-198X
https://orcid.org/0000-0002-6232-4436
https://orcid.org/0000-0002-9597-497X

RL-Assisted GPHH Approach to Location-Aware Dynamic Online Application Deployment in Clouds GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

We design 8 different test scenarios to test our algorithm. The

scenarios are listed in Table 4. Four scenarios have 15 data centres,

and the other 4 have 8 data centres. The training scenario has 300

applications and 15 data centres. The best heuristic rule is derived

from the training scenario and tested on all the scenarios.

Table 3: AWS M6g VM Configurations in N. Virginia, USA

VM type CPU Hourly rate

medium 1 $0.0385

large 2 $0.77

xlarge 4 $0.154

2xlarge 8 $0.308

4xlarge 16 $0.616

Table 4: Test scenarios

Scenario Applications Data Centre

1 300 8

2 250 8

3 200 8

4 150 8

5 300 15

6 250 15

7 200 15

8 150 15

5.2 Baselines
As previous studies on containerised application deployment in

clouds do not simultaneously consider dynamic online deployment

of applications that can share VMs, we adapted two algorithms in

similar problems as our main baselines for LADOAP problems. The

first is a co-evolutionary GPHH algorithm for solving RAC problems

[46]. This work has a two-level selection process: the VM selection

and the Physical Machine (PM) selection. For a fair comparison,

we first adapt it by replacing the original terminals in the VM

selection level with ones relevant in LADOAP problems: workload,

cost and available capacity. Second, since the PM selection part is

irrelevant, we assign VMs to geo-distributed data centres with a

greedy algorithm. The selection of data centre is determined by

the lowest ANL. The population size in GPHH is changed to 1024

since it does not have two populations any more. This algorithm is

termed as GPHH-DC.

The second baseline is a Best-Fit algorithm adapted to LODOAP

problems [1, 9]. Best-Fit algorithms are classic but popular ap-

proaches for solving bin-packing problems [28], which can be for-

mulated into both RAC and LADOAP problems. The Best-Fit algo-

rithm deals with two level selection problems: VM selection and

Data centre selection. The algorithm will first try to find a VM with

with the fastest ARP in the existing VM pool. If no available VM is

found, the algorithm will rent a new VM in the data centre with

the smallest ANL. The new VM should have the minimal cost and

ARP in the chosen data centre.

5.3 Parameter Settings
The parameter settings in GPHH-RL include parameters for both

GP and RL algorithms. They are listed in Table 5. GPHH-RL was

implemented in DEAP [12].

Table 5: Parameter Settings

Parameter Description

Initialisation ramped-half-and-half

Initial depth from 1 to 2

Crossover rate 90%

Mutation rate 10%

Mutated component depth from 0 to 2

Maximum depth 8

Number of generations 100

Populations size 1024

Selection tournament (size = 5)

Hall of fame 1

Experience size 128

Replay size 1

Real evaluation period every 10 generations

5.4 Main Results
Table 6 demonstrates the main results of GPHH-RL in 8 different

scenarios, compared with GPHH-DC and Best-Fit. We conducted

30 independent runs for all algorithms. From the table, it is obvious

that GPHH-RL outperforms two other baseline algorithms in all

scenarios. We applied Wilcoxon signed rank tests with a signifi-

cance level of 0.05 to the main results. The null hypothesis is that

there is no difference between the results of GPHH-RL and other

baselines. It turns out that the null hypothesis can be rejected.

We can also observe that both GPHH-RL and GPHH-DC are

much better than Best-Fit. This makes sense as the heuristic in

Best-Fit is a manually designed greedy algorithm that can easily

get stuck in a local optimum. In contrast, GPHH-RL and GPHH-

DC search for heuristics evolutionarily, without being confined by

human experience. They are more likely to explore heuristics that

are closer to the global optima.

Another crucial benefit of GPHH-RL is the reduced number of

simulations. In the current parameter settings listed in Table 5,

GPHH-RL has 10 generations of full simulation evaluations. For the

other 90 generations, each generation would only require 128 simu-

lations for the experience update. This would save (1024−128) ·90 =
80640 simulations in 100 generations. Out of 102400 total simula-

tions, GPHH-RL can reduce up to 78.75% of the simulations. Gener-

ally speaking, cloud computing simulations involve complex pro-

cedures such as communication between components that would

prolong execution time [24]. In contrast, our surrogate model only

calculates the TD errors between Q-values and avoids the execution

time consumed by the simulation procedures. The saving of the

simulation time can either be used to speed up the optimisation

process, or maneuver computational resources to some bottleneck

points to further enhance the optimisation performance.

994

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Longfei Felix Yan , Hui Ma , Gang Chen

Table 6: Test results in 8 different scenarios

Scenario GPHH-RL GPHH-DC Best-Fit

1 0.1246 ± 0.0003 0.1267 ± 0.00007 0.1874

2 0.1247 ± 0.0003 0.1268 ± 0.00009 0.1915

3 0.1275 ± 0.0004 0.1293 ± 0.00010 0.1850

4 0.1249 ± 0.0003 0.1263 ± 0.00010 0.1848

5 0.1215 ± 0.0003 0.1238 ± 0.00007 0.1822

6 0.1216 ± 0.0003 0.1239 ± 0.00009 0.1880

7 0.1243 ± 0.0005 0.1262 ± 0.00010 0.1860

8 0.1216 ± 0.0003 0.1232 ± 0.00010 0.1816

5.5 Further Analyses
To have a deeper insight into the heuristic designed by GPHH-RL,

we examine one of the best heuristics in Figure 3. One thing to

notice is that even though we have 6 terminal types, only 5 are used

in this heuristic. The missing one is the workload. As workload

can be utilised to obtain ART, it is possibly true that having ART

alone is sufficient enough for constructing good heuristics. There

are also unutilised functions such as max and min. This suggests

that we may have redundant terminal and function types in our

GPHH design. By reducing unused terminals and functions, we

may have more effectively evolved heuristics.

Another observation is that cosine function is used heavily in

this heuristic. The heuristic can be expressed as a ratio between two

cosine functions. As cosine is a periodic function that regularise

outputs from -1 to 1, the output range of this heuristic is bounded.

We will investigate whether famous neural network activation

functions like sigmoid would have a similar effect in the evolution

of GPHH algorithms in our future work.

divide

cos cos

divide divide

divide add -1 add

arrival cos divide ART ART ART

divide add cos

add add ART price price

ART -1 capacity price

Figure 3: Tree representation of the best VM selection rule.

Table 7: Test results compared with multi-objective GPHH

Scenario GPHH-RL MO-GPHH

1 0.1246 ± 0.0003 0.1323

2 0.1247 ± 0.0003 0.1323

3 0.1275 ± 0.0004 0.1348

4 0.1249 ± 0.0003 0.1325

5 0.1215 ± 0.0003 0.1289

6 0.1216 ± 0.0003 0.1288

7 0.1243 ± 0.0005 0.1312

8 0.1216 ± 0.0003 0.1289

We make further comparisons with a multi-objective GPHH al-

gorithm designed for RAC problems [8]. The results are shown

in Table 7. Similar to GPHH-DC, we replaced the original RAC-

related terminals to be the same as what used in GPHH-RL and

name the adapted algorithm as MO-GPHH. One key difference in

MO-GPHH is that the original GPHH algorithm in [8] does not sup-

port multiple containers in one VM and we kept it that way. After

obtaining a Pareto front of heuristics, we convert them into single

objective fitness based on (8). The heuristic with the best converted

single objective fitness is employed for testing scenarios. We notice

that the heuristics obtained from MO-GPHH are quite stable, with

negligible standard deviation. It is obvious that GPHH-RL outper-

forms MO-GPHH significantly. This indicates the effectiveness of

supporting multiple containers in one VM in LADOAP problems.

6 CONCLUSIONS
The overarching goal of this paper is to improve the efficiency of

GPHH algorithms for LADOAP problems while maintaining the

effectiveness. By combining GPHH with an RL-based surrogate

model, we achieve this goal successfully. A novel GPHH-RL algo-

rithm is proposed to solve the dynamic application deployment in

clouds in an online manner.

The experimental results show that GPHH-RL can significantly

reduce the number of simulations without hurting the performance.

Further analyses indicate that GPHH-RL can learn insightful heuris-

tics without using all the terminals and functions, suggesting that

there is room to improve the terminal and function representation

in this work.

This paper is the first paper employing GP-based Q-function to

approximate objective functions in surrogate models. We expect

that the fast-developing field of RL-assisted GP will get inspiration

from this paper and advance further. We would like to investigate

the comprehensive benefits of using RL-based surrogate models in

GP in the near future.

ACKNOWLEDGMENTS
The authors wish to acknowledge the use of New Zealand eScience

Infrastructure (NeSI) high performance computing facilities. This

work was partly supported under Grant VUW-FSRG-10114, admin-

istered by Victoria University of Wellington.

995

https://orcid.org/0000-0003-4273-198X
https://orcid.org/0000-0002-6232-4436
https://orcid.org/0000-0002-9597-497X

RL-Assisted GPHH Approach to Location-Aware Dynamic Online Application Deployment in Clouds GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia

REFERENCES
[1] Susanne Albers, Arindam Khan, and Leon Ladewig. 2021. Best fit bin packing

with random order revisited. Algorithmica 83 (2021), 2833–2858.
[2] Yasser Aldwyan, Richard O Sinnott, and Glenn T Jayaputera. 2021. Elastic deploy-

ment of container clusters across geographically distributed cloud data centers

for web applications. Concurrency and Computation: Practice and Experience 33,
21 (2021), e6436.

[3] Amazon. 2024. Amazon EC2 On-Demand Pricing. https://aws.amazon.com/ec2/

pricing/on-demand/. (accessed Jan. 29, 2024).

[4] Zahra Beheshti and Siti Mariyam Hj Shamsuddin. 2013. A review of population-

based meta-heuristic algorithms. Int. j. adv. soft comput. appl 5, 1 (2013), 1–35.
[5] Thad Benjaponpitak, Meatasit Karakate, and Kunwadee Sripanidkulchai. 2020.

Enabling live migration of containerized applications across clouds. In IEEE
INFOCOM 2020-IEEE Conference on Computer Communications. IEEE, 2529–2538.

[6] David Bernstein. 2014. Containers and cloud: From lxc to docker to kubernetes.

IEEE cloud computing 1, 3 (2014), 81–84.

[7] Edmund K Burke, Mathew R Hyde, Graham Kendall, Gabriela Ochoa, Ender

Ozcan, and John R Woodward. 2009. Exploring hyper-heuristic methodologies

with genetic programming. In Computational intelligence: Collaboration, fusion
and emergence. Springer, 177–201.

[8] Yuheng Chen, Tao Shi, Hui Ma, and Gang Chen. 2022. Automatically design

heuristics for multi-objective location-aware service brokering in multi-cloud. In

IEEE International Conference on Services Computing (SCC). IEEE, 206–214.
[9] Edward GCoffman, János Csirik, Gábor Galambos, SilvanoMartello, Daniele Vigo,

et al. 2013. Bin Packing Approximation Algorithms: Survey and Classification.

In Handbook of combinatorial optimization. Springer, 455–531.
[10] Kenneth De Jong. 2017. Evolutionary computation: a unified approach. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference Companion.
ACM, 373–388.

[11] Ke-Lin Du, MNS Swamy, et al. 2016. Search and optimization by metaheuristics.
Springer.

[12] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner Gardner,

Marc Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary algorithms made

easy. The Journal of Machine Learning Research 13, 1 (2012), 2171–2175.

[13] Gartner. 2023. Gartner Says Cloud Will Become a Business Necessity

by 2028. https://www.gartner.com/en/newsroom/press-releases/2023-11-29-

gartner-says-cloud-will-become-a-business-necessity-by-2028. (accessed Dec.

01, 2023).

[14] Yangyang Guo, Hao Wang, Lei He, Witold Pedrycz, PN Suganthan, and Yanjie

Song. 2023. A Reinforcement Learning-assisted Genetic Programming Algorithm
for Team Formation Problem Considering Person-Job Matching. arXiv preprint

arXiv:2304.04022.

[15] Red Hat. 2024. Red Hat OpenShift. https://www.redhat.com/en/technologies/

cloud-computing/openshift. (accessed Jan. 29, 2024).

[16] Daniel Hein, Steffen Udluft, and Thomas A Runkler. 2018. Interpretable policies

for reinforcement learning by genetic programming. Engineering Applications of
Artificial Intelligence 76 (2018), 158–169.

[17] Torsten Hildebrandt and Jürgen Branke. 2015. On using surrogates with genetic

programming. Evolutionary computation 23, 3 (2015), 343–367.

[18] Yaochu Jin, Handing Wang, Tinkle Chugh, Dan Guo, and Kaisa Miettinen. 2018.

Data-driven evolutionary optimization: An overview and case studies. IEEE
Transactions on Evolutionary Computation 23, 3 (2018), 442–458.

[19] Michael I Jordan and Tom M Mitchell. 2015. Machine learning: Trends, perspec-

tives, and prospects. Science 349, 6245 (2015), 255–260.
[20] Ali Kanso and Alaa Youssef. 2017. Serverless: beyond the cloud. In Proceedings of

the 2nd International Workshop on Serverless Computing. ACM, 6–10.

[21] Ioannis Korontanis, Antonios Makris, and Konstantinos Tserpes. 2024. A Survey

on Modeling Languages for Applications Hosted on Cloud-Edge Computing

Environments. Applied Sciences 14, 6 (2024), 2311.
[22] JR Koza. 1992. Genetic Programming: on the programming of computers by

means of natural selection.

[23] John DC Little and Stephen C Graves. 2008. Little’s law. In Building intuition:
insights from basic operations management models and principles, Dilip Chhajed

and Timothy J. Lowe (Eds.). Springer.

[24] Najme Mansouri, R Ghafari, and B Mohammad Hasani Zade. 2020. Cloud com-

puting simulators: A comprehensive review. Simulation Modelling Practice and
Theory 104 (2020), 102144.

[25] Marwa F Mohamed. 2016. Service replication taxonomy in distributed environ-

ments. Service Oriented Computing and Applications 10 (2016), 317–336.
[26] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations

of machine learning. MIT press.

[27] Terrell Mundhenk, Mikel Landajuela, Ruben Glatt, Claudio P Santiago, Daniel

faissol, and Brenden K Petersen. 2021. Symbolic Regression via Deep Reinforce-

ment Learning Enhanced Genetic Programming Seeding. In Advances in Neural
Information Processing Systems, Vol. 34. Curran Associates, Inc., 24912–24923.

[28] Aniket Murhekar, David Arbour, Tung Mai, and Anup Rao. 2023. Dynamic
Vector Bin Packing for Online Resource Allocation in the Cloud. arXiv preprint

arXiv:2304.08648.

[29] Seyed Mohammad Reza Nouri, Han Li, Srikumar Venugopal, Wenxia Guo,

MingYun He, and Wenhong Tian. 2019. Autonomic decentralized elasticity based

on a reinforcement learning controller for cloud applications. Future Generation
Computer Systems 94 (2019), 765–780.

[30] Swarna Kamal Paul and Parama Bhaumik. 2020. A reinforcement learning

agent based on genetic programming and universal search. In 4th International
Conference on Intelligent Computing and Control Systems (ICICCS). IEEE, 122–128.

[31] Rancher. 2024. Enterprise Kubernetes Management. https://www.rancher.com/.

(accessed Jan. 29, 2024).

[32] Charles Reiss, Alexey Tumanov, Gregory R Ganger, Randy H Katz, and Michael A

Kozuch. 2012. Heterogeneity and dynamicity of clouds at scale: Google trace anal-

ysis. In Proceedings of the third ACM symposium on cloud computing. Association
for Computing Machinery, 1–13.

[33] Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli. 2020.

Geo-distributed efficient deployment of containers with Kubernetes. Computer
Communications 159 (2020), 161–174.

[34] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini. 2019. Horizontal and

vertical scaling of container-based applications using reinforcement learning.

In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). IEEE,
329–338.

[35] Tao Shi, Hui Ma, and Gang Chen. 2020. Seeding-based multi-objective evolution-

ary algorithms for multi-cloud composite applications deployment. In 2020 IEEE
International Conference on Services Computing (SCC). IEEE, 240–247.

[36] Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann. 2020. Location-aware and

budget-constrained service deployment for composite applications in multi-cloud

environment. IEEE Transactions on Parallel and Distributed Systems 31, 8 (2020),
1954–1969.

[37] Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann. 2021. Cost-effective web appli-

cation replication and deployment in multi-cloud environment. IEEE Transactions
on Parallel and Distributed Systems 33, 8 (2021), 1982–1995.

[38] Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann. 2021. Location-aware and

budget-constrained service brokering in multi-cloud via deep reinforcement

learning. In Service-Oriented Computing: 19th International Conference, ICSOC.
Springer, 756–764.

[39] Tao Shi, Hui Ma, Gang Chen, and Sven Hartmann. 2023. Auto-Scaling Con-

tainerized Applications in Geo-Distributed Clouds. IEEE Transactions on Services
Computing 16 (2023), 4261–4274.

[40] Vindeep Singh and Sateesh K Peddoju. 2017. Container-based microservice

architecture for cloud applications. In International Conference on Computing,
Communication and Automation (ICCCA). IEEE, 847–852.

[41] Sarra Slimani, Tarek Hamrouni, and Faouzi Ben Charrada. 2021. Service-oriented

replication strategies for improving quality-of-service in cloud computing: a

survey. Cluster Computing 24 (2021), 361–392.

[42] Yanjie Song, Yutong Wu, Yangyang Guo, Ran Yan, Ponnuthurai Nagaratnam Sug-

anthan, Yue Zhang, Witold Pedrycz, Yingwu Chen, Swagatam Das, Rammohan

Mallipeddi, et al. 2023. Reinforcement Learning-assisted Evolutionary Algorithm:
A Survey and Research Opportunities. arXiv preprint arXiv:2308.13420.

[43] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[44] Boxiong Tan, Hui Ma, and Yi Mei. 2018. A genetic programming hyper-heuristic

approach for online resource allocation in container-based clouds. In AI 2018:
Advances in Artificial Intelligence: 31st Australasian Joint Conference. Springer,
146–152.

[45] Boxiong Tan, Hui Ma, and Yi Mei. 2019. A hybrid genetic programming hyper-

heuristic approach for online two-level resource allocation in container-based

clouds. In 2019 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2681–
2688.

[46] Boxiong Tan, Hui Ma, Yi Mei, and Mengjie Zhang. 2020. A cooperative co-

evolution genetic programming hyper-heuristics approach for on-line resource

allocation in container-based clouds. IEEE Transactions on Cloud Computing 10,

3 (2020), 1500–1514.

[47] Laszlo Toka, Gergely Dobreff, Balazs Fodor, and Balazs Sonkoly. 2020. Adaptive

AI-based auto-scaling for Kubernetes. In 20th IEEE/ACM International Symposium
on Cluster, Cloud and Internet Computing (CCGrid). IEEE, 599–608.

[48] Mathurin Videau, Alessandro Leite, Olivier Teytaud, and Marc Schoenauer. 2022.

Multi-objective genetic programming for explainable reinforcement learning. In

European Conference on Genetic Programming (Part of EvoStar). Springer, 278–293.
[49] Jordi Vilaplana, Francesc Solsona, Ivan Teixidó, Jordi Mateo, Francesc Abella,

and Josep Rius. 2014. A queuing theory model for cloud computing. The Journal
of Supercomputing 69 (2014), 492–507.

[50] Xili Wan, Xinjie Guan, Tianjing Wang, Guangwei Bai, and Baek-Yong Choi. 2018.

Application deployment using Microservice and Docker containers: Framework

and optimization. Journal of Network and Computer Applications 119 (2018),

97–109.

[51] Chen Wang, Hui Ma, Gang Chen, Victoria Huang, Yongbo Yu, and Kameron

Christopher. 2023. Energy-Aware Dynamic Resource Allocation in Container-

Based Clouds via Cooperative Coevolution Genetic Programming. In International

996

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://www.gartner.com/en/newsroom/press-releases/2023-11-29-gartner-says-cloud-will-become-a-business-necessity-by-2028
https://www.gartner.com/en/newsroom/press-releases/2023-11-29-gartner-says-cloud-will-become-a-business-necessity-by-2028
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://www.rancher.com/

GECCO ’24, July 14–18, 2024, Melbourne, VIC, Australia Longfei Felix Yan , Hui Ma , Gang Chen

Conference on the Applications of Evolutionary Computation (Part of EvoStar).
Springer, 539–555.

[52] Handing Wang, Yaochu Jin, and Jan O Jansen. 2016. Data-driven surrogate-

assisted multiobjective evolutionary optimization of a trauma system. IEEE
Transactions on Evolutionary Computation 20, 6 (2016), 939–952.

[53] Handing Wang, Yaochu Jin, Chaoli Sun, and John Doherty. 2018. Offline data-

driven evolutionary optimization using selective surrogate ensembles. IEEE
Transactions on Evolutionary Computation 23, 2 (2018), 203–216.

[54] Sheng Wang, Zhijun Ding, and Changjun Jiang. 2020. Elastic scheduling for

microservice applications in clouds. IEEE Transactions on Parallel and Distributed
Systems 32, 1 (2020), 98–115.

[55] Tonghao Wang, Xingguang Peng, Tao Wang, Tong Liu, and Demin Xu. 2024.

Automated design of action advising trigger conditions for multiagent reinforce-

ment learning: A genetic programming-based approach. Swarm and Evolutionary
Computation 85 (2024), 101475.

[56] Guohua Wu, Rammohan Mallipeddi, and Ponnuthurai Nagaratnam Suganthan.

2019. Ensemble strategies for population-based optimization algorithms–A sur-

vey. Swarm and evolutionary computation 44 (2019), 695–711.

[57] Xin Yao. 1999. Universal approximation by genetic programming. In Foundations
of Genetic Programming. Springer Berlin, Heidelberg, 66–67.

[58] Wenxing Ye, Weiying Feng, and Suohai Fan. 2017. A novel multi-swarm particle

swarm optimization with dynamic learning strategy. Applied Soft Computing 61

(2017), 832–843.

[59] Fangfang Zhang, Yi Mei, Su Nguyen, Kay Chen Tan, and Mengjie Zhang. 2022.

Instance rotation based surrogate in genetic programming with brood recom-

bination for dynamic job shop scheduling. IEEE Transactions on Evolutionary
Computation 27, 5 (2022), 1192–1206.

[60] Fangfang Zhang, Yi Mei, Su Nguyen, Mengjie Zhang, and Kay Chen Tan. 2021.

Surrogate-assisted evolutionary multitask genetic programming for dynamic

flexible job shop scheduling. IEEE Transactions on Evolutionary Computation 25,

4 (2021), 651–665.

997

https://orcid.org/0000-0003-4273-198X
https://orcid.org/0000-0002-6232-4436
https://orcid.org/0000-0002-9597-497X

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	2.1 Container-Based Application Deployment in Clouds
	2.2 Reinforcement Learning-Assisted Genetic Programming

	3 Problem Formulation
	4 Proposed Method
	4.1 GPHH-RL for LADOAP
	4.2 RL-Based Surrogate Model

	5 Experimental Evaluation
	5.1 Dataset
	5.2 Baselines
	5.3 Parameter Settings
	5.4 Main Results
	5.5 Further Analyses

	6 Conclusions
	Acknowledgments
	References

