
Active Learning with Selective Time-Step Acquisition for PDEs

Yegon Kim 1 Hyunsu Kim 1 Gyeonghoon Ko 1 Juho Lee 1

Abstract

Accurately solving partial differential equations
(PDEs) is critical to understanding complex sci-
entific and engineering phenomena, yet tradi-
tional numerical solvers are computationally ex-
pensive. Surrogate models offer a more effi-
cient alternative, but their development is hin-
dered by the cost of generating sufficient train-
ing data from numerical solvers. In this paper,
we present a novel framework for active learn-
ing (AL) in PDE surrogate modeling that reduces
this cost. Unlike the existing AL methods for
PDEs that always acquire entire PDE trajecto-
ries, our approach strategically generates only
the most important time steps with the numeri-
cal solver, while employing the surrogate model
to approximate the remaining steps. This dra-
matically reduces the cost incurred by each tra-
jectory and thus allows the active learning algo-
rithm to try out a more diverse set of trajecto-
ries given the same budget. To accommodate
this novel framework, we develop an acquisi-
tion function that estimates the utility of a set
of time steps by approximating its resulting vari-
ance reduction. We demonstrate the effective-
ness of our method on several benchmark PDEs,
including the Burgers’ equation, Korteweg–De
Vries equation, Kuramoto–Sivashinsky equation,
the incompressible Navier-Stokes equation, and
the compressible Navier-Stokes equation. Exper-
iments show that our approach improves perfor-
mance by large margins over the best existing
method. Our method not only reduces average
error but also the 99%, 95%, and 50% quantiles
of error, which is rare for an AL algorithm. All
in all, our approach offers a data-efficient solu-
tion to surrogate modeling for PDEs.

1 Korea Advanced Institute of Science and Technol-
ogy, Daejeon, Korea. Correspondence to: Yegon Kim
<yegonkim@kaist.ac.kr>, Juho Lee <juholee@kaist.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
In many scientific and engineering applications, accurately
solving partial differential equations (PDEs) in the form
of trajectories of states evolving over time is essential for
understanding complex phenomena (Holton and Hakim,
2013; Atkins et al., 2023; Murray, 2007; Wilmott et al.,
1995). The traditional approach involves running nu-
merical solvers, which provide accurate solutions but are
computationally costly, taking several hours, days or even
weeks to run depending on the complexity of the problem
(Cleaver et al., 2016; Cowan et al., 2001). As a result,
there is significant interest in developing surrogate models
(Greydanus et al., 2019; Bar-Sinai et al., 2019; Sanchez-
Gonzalez et al., 2020; Z. Li et al., 2020; Brandstetter et
al., 2022b; Lippe et al., 2024) that can approximate the
solutions more efficiently. Surrogate models are obtained
by solving regression tasks on some “ground truth” data.
The ground truth data for PDEs are generated by numeri-
cal solvers, which are costly compared to those of standard
regression problems. As a result, the expense of data ac-
quisition presents a major bottleneck in the development of
surrogate models for PDEs.

Active Learning (AL, Chernoff, 1959; MacKay, 1992; Set-
tles, 2009) can address this challenge by adaptively ac-
quiring the most informative inputs, effectively reducing
the amount of ground-truth data required to obtain a high-
quality surrogate model. However, there is a general lack
of research in AL for regression tasks (Dongrui Wu, 2018;
Holzmüller et al., 2023), let alone PDEs. Existing studies
on AL for PDEs have predominantly dealt with univariate
outputs such as energy (Pestourie et al., 2020; Pickering
et al., 2022), or predictions at a single, fixed time point
(Bajracharya et al., 2024; Dongxia Wu et al., 2023). To
our surprise, the only work directly addressing AL for pre-
diction of trajectories is that of Musekamp et al. (2024).
In this work, the surrogate model is set as an autoregres-
sive model that predicts the evolved state of a PDE at time
t + ∆t given a state at an arbitrary time point t, and is
trained on data acquired by existing regression-based AL
methods (Holzmüller et al., 2023). Specifically, at each
round of acquisition, the AL method chooses initial con-
ditions from which entire trajectories are acquired. How-
ever, we argue that querying all the states in a trajectory
is not sample-efficient, especially for autoregressive surro-

1

Active Learning with Selective Time-Step Acquisition for PDEs

Figure 1: PCA of surrogate model hidden layer’s activa-
tion patterns on states of the incompressible Navier-Stokes
equation. The left figure highlights states within 10 trajec-
tories, and the right figure highlights the same number of
states chosen randomly.

gate models.

Acquiring entire trajectories is inefficient mainly for two
reasons. First, states within a trajectory are often strongly
correlated, undermining their diversity or the joint informa-
tion gain (Houlsby et al., 2011; Kirsch et al., 2019). Fig. 1
shows a side-by-side comparison of PDE states selected
within a few trajectories and the same number of states se-
lected randomly from many trajectories. States within tra-
jectories exhibit clustering and hence lower diversity com-
pared to the randomly selected ones. Further analysis and
details are given in Appendix D.2. Secondly, even if the
states are not strongly correlated, it can be the case that only
certain time steps of a trajectory are the most informative
due to the dynamics of the PDE. In both cases, noting that
the main cost is in running the numerical solver, it would
be ideal to selectively acquire only the most important time
steps with the numerical solver, for a fraction of the cost
of acquiring the entire trajectory. However, this is usually
impossible without querying all the time steps that come
earlier.

In this paper, we propose a novel framework for data ac-
quisition that circumvents the constraint of having to query
all time steps in a trajectory, along with an AL strategy that
leverages this flexibility. Our method combines both a nu-
merical solver and a surrogate model to acquire data along
a trajectory with reduced cost. Specifically, it selects which
time steps along a trajectory to query to the solver, while
using the surrogate model to approximate the remaining
steps. To do so, we develop a novel acquisition function
that guides our AL strategy in choosing which time steps
to query to the numerical solver in each trajectory.

Overall, our framework, equipped with the novel AL strat-
egy, significantly improves surrogate model performance
over previous methods. We validate our approach through
extensive experiments on benchmarks, including the Burg-
ers’ equation, the Korteweg–De Vries equation, the Ku-

ramoto–Sivashinsky equation, the incompressible Navier-
Stokes equation and the compressible Navier-Stokes equa-
tion. The compressible Navier-Stokes equation is a par-
ticularly challenging task due to its high nonlinearity and
turbulent behavior. Additionally, we analyze the behavior
of our AL method, providing insights into the factors that
contribute to its effectiveness. Our code is publicly avail-
able at https://github.com/yegonkim/stap.

2. Background
2.1. Preliminaries

We consider PDEs with one time dimension t ∈
[0, T] and possibly multiple spatial dimensions x =
[x1, x2, . . . , xD] ∈ X where X is the spatial domain such
as the unit interval. These can be written in the form

∂tu = F (t,x,u, ∂xu, ∂xxu, . . .), (1)

where u : [0, T]×X→ Rn is a solution to the PDE. We are
also given a specific boundary condition and a fixed time
interval ∆t. If the PDE is well-posed (W. Evans, 1988),
there exists, for each t0 ∈ R, an evolution operator Gt0

which maps an initial condition u0 := u(t0, ·) to the solu-
tion u1 := u(t0 +∆t, ·). For simplicity, we only consider
time-independent PDEs, for which the evolution operator
Gt is the same for all t, say G. Iterating over G multi-
ple times, we can obtain a trajectory

(
ui

)L
i=1

of length L,
where ui := G(i)[u0] with G(i) being the i-th iterate of G.
In practice, G is implemented by various numerical meth-
ods, adequately chosen for the given PDE, as elaborated in
Appendix B.1.

We train a neural surrogate model Ĝ with input-output pairs
(u, G[u]) from the numerical solver G. Active learning
aims to build a high quality training dataset by adaptively
selecting informative inputs to be fed into the solver G.
Prior work (Musekamp et al., 2024) operates on the the
framework where initial conditions u0 are selected from
a pool P , from which full trajectories of length L are ob-
tained. For instance, Query-by-Committee (QbC, Seung
et al., 1992) queries initial conditions u0 that maximize the
predictive uncertainty estimated from a committee of M
models,

aQbC(u
0) =

1

M

M∑
m=1

L∑
i=1

∥ûi
m − ¯̂ui∥22 (2)

where ûi
m is the prediction of the ith state from the mth

surrogate model in the committee and ¯̂ui := 1
M

∑M
m=1 û

i
m

is the mean prediction from the committee.

2

https://github.com/yegonkim/stap

Active Learning with Selective Time-Step Acquisition for PDEs

Figure 2: Illustrated overview of STAP. This illustration
describes one round of AL.

2.2. Problem Setting

Our goal is to obtain a surrogate model Ĝ that approximates
the expensive numerical solver G with low error

Eu0∼p(u0)

[
err

(
(G(i)[u0])Li=1, (Ĝ

(i)[u0])Li=1

)]
(3)

where err(·, ·) is an error metric. Obtaining the surrogate
model requires sampling training data from the numerical
solver, which incurs a nontrivial cost. AL aims to im-
prove sample efficiency by sampling only the most impor-
tant data. In particular, AL utilizes the current surrogate
model Ĝ, or a committee of surrogate models {Ĝm}Mm=1,
to inform its choice. After acquiring the data chosen by
AL, the surrogate Ĝ is retrained with the new dataset.

We assume that there exists a pool P of initial conditions
u0. At each round of AL, we train a committee of M surro-
gate models {Ĝm}Mm=1 with the training dataset collected
from G up to that round of AL. We then use this commit-
tee to select a batch of inputs to be queried to the solver G,
and add the pairs of queried inputs and resulting outputs to
the training dataset. The cost at each round, defined as the
number of inputs queried to G, is limited to a certain bud-
get B. We aim to achieve low errors at each round, so an
AL strategy would ideally acquire data with cost as close
to or equal to the budget (S. Li et al., 2022a).

3. Selective Time-Step Acquisition for PDEs
3.1. Framework of Data Acquisition

We present our method, Selective Time-Step Acquisition
for PDEs (STAP), which operates under a framework of
data acquisition that is much more sample efficient than
previous works. Algorithm 1 provides an overview of our
framework. Fig. 2 also provides an illustrated version of the
overview. We start with a surrogate model Ĝ, or a commit-
tee of surrogate models {Ĝm}Mm=1, trained with the initial
dataset D. At every round of AL, we choose an initial con-

Algorithm 1 Overview of STAP
Require: Pool P of initial conditions, budget B per round, num-

ber of rounds R, numerical solver G, trajectory length L, ini-
tial training dataset D

Ensure: Trained surrogate model Ĝ
1: Train Ĝ on D
2: for round = 1 to R do
3: cost← 0
4: while cost < B do
5: Choose initial condition u0 from P ▷ § 3.3
6: P ← P \ {u0}
7: Choose S = (s1, . . . , sL) ▷ §§ 3.2 and 3.3
8: û0 ← u0

9: for i = 1 to L do

10: ûi ←

{
G[ûi−1] if si = true

Ĝ[ûi−1] if si = false

11: if si = true then
12: D ← D ∪ {(ûi−1, ûi)}
13: cost← cost + 1
14: end if
15: end for
16: end while
17: Train Ĝ on D
18: end for

dition u0 from the pool P , similar to the existing AL meth-
ods for PDE trajectories. However, while existing methods
acquire the entire trajectory starting from the chosen ini-
tial condition u0 (Musekamp et al., 2024), our method ac-
quires a partial trajectory. Specifically, we select a subset
of time steps to simulate from u0, rather than acquiring the
full trajectory. The rationale behind this approach is that,
given a fixed budget, acquiring as many trajectories as pos-
sible—albeit partially—from different initial conditions is
often more beneficial than fully acquiring fewer trajecto-
ries. This strategy enables more efficient exploration of the
data space and improves the overall sample efficiency of
the framework.

More specifically, for a given initial condition u0, we de-
fine a boolean sequence of length L, S = (s1, . . . , sL),
which we refer to as the sampling pattern. For example,
S could be (true, false, . . . , true). The sampling pattern
specifies that data will be acquired only at time steps corre-
sponding to true values while skipping those marked false.

After selecting the sampling pattern S, the next step is to
acquire the PDE trajectory. While acquiring a full trajec-
tory is straightforward using a numerical solver G, obtain-
ing a partial trajectory corresponding to S can be tricky.
We want to run the solver G only for the time steps speci-
fied by S (those with true patterns), but the solver requires
the skipped time steps (those with false patterns) as inter-
mediate inputs. If we give up and just run the solver for
all time steps for this reason, we wouldn’t be saving any
cost. To address this, we use a simple heuristic: for the
skipped time steps, we replace the simulation with predic-

3

Active Learning with Selective Time-Step Acquisition for PDEs

tions from the surrogate model (we use the average surro-
gate Ĝ = 1

M

∑M
m=1 Ĝm when we have a committee). That

is, starting with û0 = u0, we iterate over 1 ≤ i ≤ L:

ûi =

{
G[ûi−1] if si = true

Ĝ[ûi−1] if si = false.
(4)

We add to our dataset D only the pairs obtained with the
solver G, namely (ûi−1, ûi) with si = true.

In comparison to full trajectory acquisition, which requires
L executions of the numerical solver, our strategy invokes
the numerical solver ∥S∥ :=

∑L
i=1 1[si = true] times and

utilizes the surrogate model L− ∥S∥ times. Since the sur-
rogate model is significantly cheaper to run than the nu-
merical solver, this approach substantially reduces the cost
of acquisition, enabling us to explore more initial condi-
tions within the same budget. In fact, as discussed in § 2.2,
we define the acquisition cost precisely as ∥S∥. We repeat
expanding our training dataset with new initial conditions
and sampling patterns until the cost incurred in the current
round reaches a budget B. At the end of each round, we
retrain the surrogate Ĝ with the expanded training set D.

Previous methods listed in Musekamp et al. (2024) can be
considered a special case of ours where the sampling pat-
tern S is full of true entries. Our framework is therefore
a strict generalization of previous works. In the remainder
of this section, we describe how STAP adaptively chooses
initial conditions u0 and sampling patterns S.

3.2. Acquisition Function

To adaptively select the sampling pattern S with the ini-
tial condition u0, we propose a novel acquisition func-
tion a(u0, S) that assesses the utility of S. Given a com-
mittee {Ĝm}Mm=1, consider (Ĝa, Ĝb) for some a ̸= b ∈
{1, . . . ,M}. We define the utility of the sampling pattern
S for the pair (Ĝa, Ĝb) as the resulting variance reduc-
tion in the pair’s rolled-out trajectories. Specifically, let ûa

and ûb be the trajectories estimated by Ĝa and Ĝb, start-
ing from u0. Next, let ûb,S,a be the trajectory rolled-out
using Eq. 4 but with Ĝ and G replaced by Ĝb and Ĝa, re-
spectively. In other words, Ĝb is used at time steps where
the sampling pattern indicates false and Ĝa otherwise. This
trajectory is designed to approximate Ĝb that’s updated it-
self with data from Ĝa at time steps for which the sampling
pattern indicates true. The variance reduction is defined as

R(a, b, S) :=

L∑
i=1

(
∥ûi

a − ûi
b∥2 − ∥ûi

a − ûi
b,S,a∥2

)
. (5)

The sampling pattern S that maximizes R(a, b, S) is the
one where the current models Ĝa and Ĝb disagree the most,
and acquiring data from S effectively reduces this discrep-
ancy. Our acquisition function is defined as the average

variance reduction between all the distinct pairs in the com-
mittee:

a(u0, S) =
1

M(M − 1)

∑
a,b∈{1,··· ,M},a ̸=b

R(a, b, S). (6)

We observe that our acquisition function simplifies to QbC
in Eq. 2 when S acquires all the time steps, differing only
by a constant factor of two. This occurs because, in that
case, ûb,S,a = ûa, which makes the second term in the
summand of Eq. 5 vanish. Consequently, we can interpret
our acquisition function as a generalization of QbC that ac-
commodates for the selection of time steps.

As an additional sanity check, consider the scenario where
S does not sample any time steps. In this situation,
ûb,S,a = ûb, leading the two terms in the summand to
cancel each other out, resulting in zero variance reduction.
Since acquiring no data should yield zero utility, we con-
firm that our acquisition function behaves as expected in
this limiting case. Appendix A.2 further details the precise
motivation behind the design of our acquisition function.

3.3. Batch Acquisition Algorithm

Since retraining on a new dataset with every new data point
is costly, and acquiring data in a parallel manner can be
more efficient than when done in a sequential manner, ac-
tive learning algorithms should accommodate batch acqui-
sition, that is, the acquisition of multiple data points at each
round of active learning (Kirsch et al., 2019). There are
two main challenges in designing a batch acquisition AL
methods. First, simply maximizing the acquisition values
of individual data points doesn’t maximize the utility of the
batch. Numerous works report that picking instances that
maximize individual acquisition values can severely under-
perform compared to methods that take into account the
interactions between those instances (Kirsch et al., 2019;
Ash et al., 2019). The problem is chiefly attributed to
the lack of diversity and representativeness (Dongrui Wu,
2018) caused by oversampling of small, high value regions
(Smith et al., 2023). Secondly, the AL method needs to
search over a large combinatorial space of size O(|P|B),
where |P| and B are the pool size and batch size, re-
spectively. The search method should therefore be scal-
able. Most existing batch AL algorithms address both is-
sues (Holzmüller et al., 2023).

With the acquisition function defined in § 3.2, we present
a batch acquisition algorithm given a pool P of initial con-
ditions. We define the cost of a batch {(u0

j , Sj)}Nj=1 as
the total number of queries to the solver,

∑N
j=1 ∥Sj∥. If

we were to maximize the sum of individual acquisition val-
ues

∑N
j=1 a(u

0
j , Sj) under a budget constraint

∑
j ∥Sj∥ ≤

B, there is a known approximate solution Salkin and De

4

Active Learning with Selective Time-Step Acquisition for PDEs

Kluyver (1975) that greedily maximizes the cost-weighted
acquisition function a∗(u0, S) = a(u0, S)/∥S∥ until the
total cost exceeds the budget B. However, as discussed
above, it’s questionable whether the sum of individual ac-
quisition values is actually a good representative for the
utility of a batch. Moreover, even if we employ the ap-
proximate greedy solution, we are still searching over the
product pool of the sampling pattern S and the pool P of
initial conditions, whose size is on the order of O(2L|P|).
Both terms impose significant computational burden on op-
timizing the cost-weighted objective a∗(u0, S).

We therefore propose STAP as an add-on to existing AL
methods that acquire full trajectories. By using STAP as
an add-on, the diversity and representativeness promoted
by existing AL methods (Holzmüller et al., 2023; Kirsch
et al., 2023; Musekamp et al., 2024) are upheld, and the
size of the optimization space for STAP is reduced to
O(2L). Specifically, a full-trajectory AL method A, which
we call a base method, first selects an initial condition u0.
Musekamp et al. (2024) introduces several possibilities for
such a method, including QbC (Seung et al., 1992), Largest
Cluster Maximum Distance (LCMD, Holzmüller et al.,
2023), Core-Set (Sener and Savarese, 2017), and stochas-
tic batch active learning (SBAL, Kirsch et al., 2023).
We then optimize the cost-weighted acquisition function
a∗(u0, S) over the sampling pattern S while holding u0

fixed, and add the pair (u0, S) to the current batch. We iter-
ate this two-stage process until the cost of the batch reaches
our budget B. Additionally, if the cost ever exceeds the
budget after adding a pair, we truncate the sampling pat-
tern so that the cost is exactly equal to the budget.

We use a greedy algorithm to optimize the cost-weighted
acquisition function a∗(u0, S) over S in the combinato-
rial space of size O(2L). In the greedy algorithm, we start
by initializing S with all entries set to true. At each step
of the greedy algorithm, we propose a neighboring pattern
S′ by applying a bit-flip mutation, where each bit of S is
flipped with a probability of ϵ. The proposal is accepted
only if the acquisition value a∗(u0, S′) is higher than the
current value a∗(u0, S). This process of proposal and ac-
ceptance/rejection is repeated T times. We use T = 100
and ϵ = 0.1 throughout our experiments. A more con-
cise summary of the batch acquisition algorithm is given in
Appendix A.3. The algorithmic complexity of batch acqui-
sition is discussed in § 5.6.

4. Related Work
AL for PDEs. The works by Pestourie et al. (2020), Picker-
ing et al. (2022), and Gajjar et al. (2022) apply active learn-
ing to problems involving PDEs, but their tasks are limited
to predicting a particular quantity of interest, such as the
maximum value of an evolved state. S. Li et al. (2024)

and Dongxia Wu et al. (2023) apply their AL methods to
single-state prediction. Bajracharya et al. (2024) explores
the use of active learning in tasks of predicting steady states
of PDEs, which can be seen as predicting single states at
t→∞. Finally, Musekamp et al. (2024) experiments with
active learning in predicting PDE trajectories with autore-
gressive models.

Active selection of time points. While our work is the
first to propose time step selection in active learning (AL)
for PDEs, the concept of selecting time points has been ex-
plored in other contexts. For example, in physics-informed
neural networks (PINNs), active selection of collocation
points for training has been widely studied (Arthurs and
King, 2021; Gao and Wang, 2023; Mao and Meng, 2023;
C. Wu et al., 2023; Turinici, 2024). “Labels” for PINNs,
or the residual loss, can be calculated directly at any time
point using closed form equations. There are also methods
in Bayesian experimental design (BED) that choose obser-
vation times that maximize information gain about param-
eters of interest (Singh et al., 2005; Cook et al., 2008). In
those works, a trajectory is already “there”, but the cost is
attributed to the act of observing a time point. In contrast,
in our setting, we cannot directly acquire a time point, be-
cause there is a cost in the simulation of the trajectory.

Multi-fidelity AL. Closely related to our work is multi-
fidelity active learning (S. Li et al., 2022b; Dongxia Wu et
al., 2023; Hernandez-Garcia et al., 2023; S. Li et al., 2024),
where outputs are acquired at varying fidelities for each in-
put, with associated costs inherent to each fidelity. In our
context, the task of actively selecting a sampling pattern for
a given initial condition can be seen as a fidelity selection
problem, where acquiring all time steps corresponds to the
highest fidelity but also incurs the highest cost.

5. Experiments
5.1. Baseline AL Methods

To compare with our method, we experiment with AL
for full trajectory sampling introduced in Musekamp et al.
(2024). Random sampling from the pool set is the simplest
method. QbC (Seung et al., 1992) is a simple active learn-
ing algorithm that selects points according to maximum
disagreement among members of a committee. LCMD
(Holzmüller et al., 2023) is an AL algorithm that uses a
feature map. We concatenate the last hidden layer activa-
tions of committee members at all time steps of a trajec-
tory, and sketch the concatenated features to a dimension
of 512 using a random projection. Kirsch et al. (2023) pro-
poses SBAL, which randomly samples data points x with
a probability distribution proportional to its temperature-
scaled acquisition value p(x) ∝ a(x)m. We use the ac-
quisition function of QbC with temperature m = 1. We

5

Active Learning with Selective Time-Step Acquisition for PDEs

Figure 3: Log RMSE of AL strategies, measured across 10 rounds of acquisition. Each round incurs constant cost of data
acquisition, namely the budget B.

leave out Core-Set (Sener and Savarese, 2017) because it
generally underperforms compared to the above methods,
according to both Holzmüller et al. (2023) and Musekamp
et al. (2024).

5.2. Target PDEs

We evaluate our method on a range of PDEs. The first
is the Burgers’ equation, which shows either diffusive
behavior or shock phenomena depending on the viscos-
ity parameter. Next, we test the nonlinear Korteweg–De
Vries (KdV) equation, which is known for exhibiting soli-
tary wave pulses with weak interactions (Zabusky and
Kruskal, 1965). We then apply our method to the Ku-
ramoto–Sivashinsky (KS) equation, another nonlinear PDE
in one dimension, notable for its chaotic dynamics. Lastly,
we examine two forms of the Navier–Stokes equation in
two spatial dimensions: the incompressible Navier–Stokes
equation (INS) in vorticity form and the compressible
Navier–Stokes equation (CNS). Both present significant
challenges due to their strong nonlinearity and turbulent
behavior. All equations are solved with periodic boundary
conditions. Our choice of PDEs and their parameters is de-
signed to validate our research across various flows exhibit-
ing complex behaviors, including shock waves, chaotic
dynamics, and turbulence. Additional details are in Ap-
pendix B.1.

5.3. Surrogate Models

We use Fourier Neural Operators (FNO, Z. Li et al., 2020)
for our surrogate model Ĝ. In particular, we train it to pre-
dict the differences between states in adjacent time steps,
following Musekamp et al. (2024). All models have four
hidden layers with 64 channels in each layer. We use 32,
256, 128, 16, and 32 Fourier modes for Burgers, KdV, KS,
INS and CNS equations, respectively. We also normalize
the data according to the initial dataset’s mean and standard
deviation over all temporal and spatial dimensions. The

Table 1: Log RMSE of AL strategies, averaged across 10
rounds of acquisition

Burgers KdV KS INS CNS

Random -2.881±0.060 0.191±0.058 -0.258 ±0.003 -0.422±0.010 2.603±0.038

QbC -3.121±0.065 0.266±0.027 -0.268 ±0.003 -0.385±0.014 2.844±0.021

LCMD -2.847±0.027 0.256±0.030 0.046 ±0.013 -0.320±0.011 2.736±0.029

SBAL -3.388±0.052 0.030±0.029 -0.275 ±0.014 -0.461±0.012 2.422±0.045

SBAL+STAP -3.674±0.071 -0.088±0.040 -0.349 ±0.003 -0.525±0.005 2.363±0.018

FNO is simply trained on ground truth input-output pairs
from the solver G without backpropagating through two
or more time steps. All models were trained with Adam
(Kingma, 2014) for 100 epochs, using a learning rate of
10−3, a batch size of 32, and a cosine annealing scheduler
(Loshchilov and Hutter, 2016).

5.4. Results

We compare between the four baselines introduced in § 5.1,
and our method combined with SBAL (SBAL+STAP). The
pool set has 10,000 initial conditions, and we always start
with an initial dataset of 32 fully sampled trajectories. The
initial conditions in the test set are sampled from the same
distribution as those in the pool set. An ensemble size of
M = 2 is used, as it has been shown to be sufficient for
good AL performance (Pickering et al., 2022; Musekamp
et al., 2024). We perform 10 rounds of acquisition, and the
budget of each round is set to B = 8 × L where L is the
length of a full trajectory. This means that at every round of
AL, full trajectory algorithms sample 8 trajectories, each of
length L. All experiments were conducted on 8 NVIDIA
GeForce RTX 2080 Ti GPUs, and the results are averages
from 5 seed values. Appendix C provides full report of all
metrics on all methods, while here we summarize the most
interesting results.

Fig. 3 shows plots of the committee’s logarithmic RMSE
across the 10 rounds of acquisition, and Table 1 summa-
rizes the results with mean logarithmic RMSEs, where the

6

Active Learning with Selective Time-Step Acquisition for PDEs

(a) 99% quantile (b) 95% quantile (c) 50% quantile

Figure 4: Quantiles of log RMSE on Burgers measured across 10 rounds of acquisition.

(a) Burgers (b) KdV (c) KS (d) INS (e) CNS

Figure 5: Timesteps chosen by SBAL+STAP. Each row corresponds to an acquired trajectory, where the black cells
indicate the selected time steps. We show twenty trajectories acquired in the first rounds of active learning.

mean is taken over all 10 rounds. We can observe from the
plots that SBAL+STAP outperforms other AL baselines in
a robust manner. Most notably, it improves performance on
the KS equation, where no other baseline improves signifi-
cantly over Random selection.

Following Holzmüller et al. (2023), we also report the 99%,
95%, and 50% quantiles of log RMSE. Quantiles are useful
for analyzing the behavior of AL strategies. AL methods
tend to improve performance on points with extreme er-
rors, or in other words the top quantiles, while not so much
in the middle quantiles. This is why AL methods perform
differently depending on the algorithm and the nature of
the task. Fig. 4 shows their respective plots for Burgers.
All baseline methods improve performance over random
sampling in the 99% and 95% quantiles, and this is true
even for LCMD which doesn’t improve over random sam-
pling in average error. In the 50% quantile, none of the
baseline methods reduce the error below random sampling,
but STAP surprisingly outperforms random sampling. This
trend holds for all equations, as detailed in Appendix C.
We can therefore infer that STAP isn’t simply sacrificing
the surrogate model’s performance in some trajectories to
improve its performance in others.

5.5. Random Bernoulli Sampling of Time Steps

We plot in Fig. 5 the distribution of time steps that STAP
chooses. The plot clearly shows the general tendency of
STAP to acquire the early time steps, with an occasional

Table 2: Log RMSE with Bernoulli sampling averaged
across 10 rounds of acquisition.

Burgers KdV KS INS CNS

SBAL -3.388±0.052 0.030±0.029 -0.275±0.014 -0.461±0.012 2.422±0.045

+STAP -3.674±0.071 -0.088±0.040 -0.349±0.003 -0.525±0.005 2.363±0.018

+Ber(1/16) -3.231±0.163 0.053±0.014 -0.365±0.008 -0.529±0.006 2.375±0.069

+Ber(1/8) -3.152±0.267 0.049±0.014 -0.359±0.006 -0.525±0.006 2.370±0.018

+Ber(1/4) -3.102±0.441 0.018±0.024 -0.346±0.008 -0.515±0.007 2.372±0.012

+Ber(1/2) -3.458±0.067 -0.064±0.031 -0.324±0.007 -0.500±0.009 2.392±0.012

selection of the later time steps. The distributions still show
clear differences between tasks, such as the number of cho-
sen time steps per trajectory or the frequency of later time
steps. This suggests that STAP is choosing time steps in a
highly adaptive manner.

We then ask ourselves: what if we perform random selec-
tion, for instance with a probability p, for every time step?
We call this method Bernoulli sampling, or Ber(p), where
each entry of S is true with probability p. Table 2 sum-
marizes the performance of Ber(p) for p = 1/16, 1/8, 1/4,
and 1/2. In general, Bernoulli sampling improves over the
base method SBAL, but it can also severely underperform
at certain values of p, such as for KdV. Still, for each PDE,
there exists at least one value of p at which Bernoulli sam-
pling provides an advantage over the base method SBAL.
In other words, sparse sampling of time steps itself has
an inherent advantage over full-trajectory sampling, as first
hypothesized with our analysis in Fig. 1.

7

Active Learning with Selective Time-Step Acquisition for PDEs

Table 3: Wall-clock time of each procedure during batch
selection in INS. Note that these are not the costs of data
acquisition, but the computational cost of batch selection
algorithms.

Random QbC LCMD SBAL

Time taken
(seconds) 0.1±0.1 62.5±0.1 100.3±0.1 62.5±0.1

+STAP +STAP MF +STAP 10

Time taken
(seconds) 132.7±0.7 91.5±0.1 15.4±0.1

Table 4: Log RMSE of more efficient STAP variants aver-
aged across 10 rounds.

SBAL +STAP +STAP MF +STAP 10

Burgers -3.388±0.052 -3.674±0.071 -3.608±0.177 -3.524±0.082

KdV 0.030±0.029 -0.088±0.040 -0.065±0.034 -0.118±0.024

KS -0.275±0.014 -0.349±0.003 -0.326±0.004 -0.316±0.009

INS -0.422±0.010 -0.525±0.005 -0.529±0.005 -0.502±0.004

CNS 2.422±0.045 2.363±0.016 2.360±0.005 2.401±0.004

How does STAP manage to be on par with or outperform
the best Ber(p) on every task? One might hypothesize
that the frequency of chosen time steps is what matters
most for performance and that STAP somehow finds the
optimal frequency p to sample with. We have measured
the frequency with which STAP samples time steps in the
first round of AL, and obtained 0.35, 0.11, 0.19, 0.22, and
0.16 for Burgers, KdV, KS, INS, and CNS, respectively.
One can see that for KdV, despite Ber(p) performing better
with higher p and best with p = 1/2, STAP outperforms all
Ber(p) with a frequency of 0.11, which is close to 1/8. In
other words, the specific time steps that are sampled also
matter as much as the overall frequency. These observa-
tions altogether suggest that STAP adaptively chooses not
only the frequency of the time steps to acquire, but also
their specific locations. We report the full results in Ap-
pendix D.3, along with a variant of Bernoulli sampling that
enforces acquiring consecutive initial time steps.

5.6. Computational Complexity of STAP

The time complexity of computing our acquisition function
for a single instance of (u0, S) is O(M2L). Since we op-
timize the acquisition function with T steps, and we can
acquire at most B initial conditions, the time complexity
of our batch acquisition algorithm is O(M2LBT) in the
worst case. We can parallelize the optimization of multi-
ple Sj’s to a certain extent using graphics processing unit
(GPU), which can significantly alleviate the burden of B.

We can further reduce the cost by at most a factor of M
with STAP MF described in Appendix B.4. Yet another al-

Table 5: Log RMSE with multistep FNO averaged across
10 rounds of acquisition.

Random SBAL +STAP

Burgers 8L/8 -1.670±0.098 -1.893±0.053 -2.058±0.028

KdV 8L/8 1.402±0.029 1.404±0.024 1.364±0.043

KS 8L/8 1.255±0.015 1.232±0.012 1.156±0.008

KS L/2 1.340±0.014 1.335±0.011 1.288±0.011

INS L/2 1.124±0.017 1.118±0.007 1.081±0.012

CNS L/2 3.593±0.023 3.594±0.044 3.420±0.050

Figure 6: From left to right, ground truth trajectory on
KS, trajectory predicted by surrogate model trained with
32 trajectories, and trajectory predicted by surrogate model
trained with one trajectory.

ternative is to decrease the number of greedy optimization
steps T from 100 to 10, which reduces the cost by a factor
of 10. We call this variant STAP 10. The wall-clock time
of each baseline method and STAP is measured with a sin-
gle NVIDIA GeForce RTX 2080 Ti GPU, and summarized
in Table 3. The performance of SBAL with STAP and its
two variants are summarized in Table 4. Note that STAP
10 incurs only a fraction of computational cost over the
baseline methods, while still achieving a significant boost
in performance over its base method.

5.7. Multi-step model

We have done experiments with multi-step FNO which re-
ceives N timesteps as input and outputs N timesteps. To
perform STAP, we group the total number of timesteps
into non-overlapping clusters of N timesteps, and perform
STAP as if each cluster is one timestep with N channels.
We have performed two variants of experiments. In the
first, we divide a timestep in our main experiment into 8
smaller timesteps, so that a total of L timesteps turn into
8L timesteps, and train 8-in-8-out models. In the second
variant, we keep L timesteps the same but train 2-in-2-out
models. Fig. 13 and Table 5 shows the log RMSE for Burg-

8

Active Learning with Selective Time-Step Acquisition for PDEs

Figure 7: Active learning with initial training dataset containing one trajectory, as opposed to 32 trajectories in the main
experiment. STAP is robust to initially inaccurate surrogate models.

Figure 8: PCA of FNO hidden layer activation for PDE
states sampled by SBAL (left) and SBAL+STAP (right)
during the first round of active learning on KS.

ers, KdV, and KS of the first variant, and KS, INS and CNS
of the second variant.

5.8. Out-of-distribution Synthetic Inputs

Inaccurate surrogate models might synthesize inputs that
lie far from the ground truth distribution, harming the rep-
resentativeness (Dongrui Wu, 2018). Indeed, under limited
training data, the surrogate model outputs visibly erroneous
trajectories. Fig. 6 are comparisons of the ground truth tra-
jectories and predictions from surrogate models trained on
32 trajectories and one trajectory, respectively.

To test how much this error harms STAP, we perform exper-
iments where the initial training dataset contains 1 trajec-
tory, compared to 32 used in our main experiments. Fig. 7
shows the log RMSEs. To our own surprise, we find that
SBAL+STAP still outperforms Random and SBAL, except
for INS in the early rounds.

Fig. 8 shows comparisons of FNO activation PCAs for
PDE states sampled by SBAL and SBAL+STAP during
the first round of active learning on KS. Note that the
PCA was fitted to ground truth states in random trajec-
tories (blue points), independent from the states sampled
by SBAL and SBAL+STAP, so that out-of-distributionness

can be properly evaluated. We find that only several of the
states sampled by SBAL+STAP diverge significantly from
the random ground truth states. In other words, the sur-
rogate model synthesizes erroneous inputs when looked at
trajectory-wise, but when looked at individually, they aren’t
out-of-distribution enough to harm STAP significantly.

6. Conclusion
In this paper, we presented a novel framework for active
learning in surrogate modeling of partial differential equa-
tion (PDE) trajectories, significantly reducing the cost of
data acquisition while maintaining or improving model ac-
curacy. By selectively querying only a subset of time steps
in a PDE trajectory, our method STAP enables the acquisi-
tion of informative data at a fraction of the cost of acquiring
entire trajectories. We introduced a new acquisition func-
tion that estimates the utility of a set of time steps based
on variance reduction, effectively guiding the selection pro-
cess in an adaptive manner. Through extensive experiments
on benchmark PDEs, including the Burgers equation, Ko-
rteweg–De Vries equation, Kuramoto–Sivashinsky equa-
tion, incompressible Navier-Stokes equation, and com-
pressible Navier-Stokes equation, we demonstrated that our
approach consistently outperforms existing AL methods,
providing a more cost-efficient and accurate solution for
PDE surrogate modeling.

Our results show that STAP can significantly enhance sur-
rogate modeling for PDEs, particularly in scenarios where
the numerical solver is computationally expensive. We fur-
ther showed that the success of STAP is driven by its ability
to prioritize both diverse and informative time steps. Mov-
ing forward, this framework could be extended to more
complex systems and integrated with other machine learn-
ing techniques, providing broader applicability in scientific
and engineering simulations. Future work may also explore
alternative acquisition functions and applications to simu-
lations outside the domain of PDEs.

9

Active Learning with Selective Time-Step Acquisition for PDEs

Acknowledgements
This work was partly supported by Institute of Informa-
tion & communications Technology Planning & Evalua-
tion(IITP) grant funded by the Korea government(MSIT)
(No.RS-2024-00509279, Global AI Frontier Lab; No.RS-
2019-II190075, Artificial Intelligence Graduate School
Program(KAIST); No.RS-2022-II220184, Development
and Study of AI Technologies to Inexpensively Conform
to Evolving Policy on Ethics), and the National Research
Foundation of Korea(NRF) grant funded by the Korea gov-
ernment(MSIT) (NRF-2022R1A5A708390812). We also
thank Hyungi Lee for his thoughtful discussion.

Impact Statement
We propose a new method that improves the cost efficiency
of acquiring data for building a surrogate model of PDE
trajectories. Although our approach doesn’t have a direct
positive or negative impact in ethical or societal aspects,
it accelerates the process of building a surrogate model
for an arbitrary PDE. This could be used for good, such
as medical simulations, environmental modeling, and opti-
mizing engineering designs, potentially leading to advance-
ments in healthcare, sustainability, and technological in-
novation. However, like many technologies, this method
could also be misused in domains where rapid simulations
could have harmful consequences, such as the development
of hazardous materials. Therefore, researchers and practi-
tioners should apply these methods with consideration of
their broader societal implications, aiming to ensure that
the benefits of the technology are used responsibly and eth-
ically.

References
Arthurs, Christopher J and Andrew P King (2021). “Active

training of physics-informed neural networks to aggre-
gate and interpolate parametric solutions to the Navier-
Stokes equations”. In: Journal of Computational Physics
438, p. 110364 (cit. on p. 5).

Ash, Jordan T et al. (2019). “Deep batch active learning
by diverse, uncertain gradient lower bounds”. In: arXiv
preprint arXiv:1906.03671 (cit. on p. 4).

Atkins, Peter William, Julio De Paula, and James Keeler
(2023). Atkins’ physical chemistry. Oxford university
press (cit. on p. 1).

Bajracharya, Pradeep et al. (2024). “Feasibility study on
active learning of smart surrogates for scientific sim-
ulations”. In: arXiv preprint arXiv:2407.07674 (cit. on
pp. 1, 5).

Bar-Sinai, Yohai et al. (2019). “Learning data-driven dis-
cretizations for partial differential equations”. In: Pro-
ceedings of the National Academy of Sciences 116.31,
pp. 15344–15349 (cit. on p. 1).

Brandstetter, Johannes, Max Welling, and Daniel E Wor-
rall (2022a). “Lie point symmetry data augmentation
for neural PDE solvers”. In: International Conference
on Machine Learning. PMLR, pp. 2241–2256 (cit. on
pp. 15, 16).

Brandstetter, Johannes, Daniel Worrall, and Max Welling
(2022b). “Message passing neural PDE solvers”. In:
arXiv preprint arXiv:2202.03376 (cit. on p. 1).

Chassignet, Eric P et al. (2007). “The HYCOM (hybrid
coordinate ocean model) data assimilative system”. In:
Journal of Marine Systems 65.1-4, pp. 60–83 (cit. on
p. 16).

Chernoff, Herman (1959). “Sequential Design of Experi-
ments”. In: The Annals of Mathematical Statistics 30.3,
pp. 755–770 (cit. on p. 1).

Cleaver, Timothy A et al. (2016). “Using design of ex-
periments methods for applied computational fluid dy-
namics: A case study”. In: Quality Engineering 28.3,
pp. 280–292 (cit. on p. 1).

Cook, Alex R, Gavin J Gibson, and Christopher A Gilligan
(2008). “Optimal observation times in experimental epi-
demic processes”. In: Biometrics 64.3, pp. 860–868 (cit.
on p. 5).

Cowan, Timothy J, Andrew S Arena Jr, and Kajal K
Gupta (2001). “Accelerating computational fluid dynam-
ics based aeroelastic predictions using system identifi-
cation”. In: Journal of Aircraft 38.1, pp. 81–87 (cit. on
p. 1).

Evans, WD (1988). PARTIAL DIFFERENTIAL EQUA-
TIONS (cit. on p. 2).

Gajjar, Aarshvi, Chinmay Hegde, and Christopher P Musco
(2022). “Provable active learning of neural networks for
parametric PDEs”. In: The Symbiosis of Deep Learning
and Differential Equations II (cit. on p. 5).

Gao, Wenhan and Chunmei Wang (2023). “Active learn-
ing based sampling for high-dimensional nonlinear par-
tial differential equations”. In: Journal of Computational
Physics 475, p. 111848 (cit. on p. 5).

Gelbart, Michael A, Jasper Snoek, and Ryan P Adams
(2014). “Bayesian optimization with unknown con-

10

Active Learning with Selective Time-Step Acquisition for PDEs

straints”. In: arXiv preprint arXiv:1403.5607 (cit. on
p. 17).

Goswami, Somdatta et al. (2022). “Deep transfer opera-
tor learning for partial differential equations under con-
ditional shift”. In: Nature Machine Intelligence 4.12,
pp. 1155–1164 (cit. on p. 17).

Greydanus, Samuel, Misko Dzamba, and Jason Yosinski
(2019). “Hamiltonian neural networks”. In: Advances in
neural information processing systems 32 (cit. on p. 1).

Hernandez-Garcia, Alex et al. (2023). “Multi-fidelity
active learning with gflownets”. In: arXiv preprint
arXiv:2306.11715 (cit. on p. 5).

Hernández-Lobato, José Miguel et al. (2015). “Predictive
entropy search for Bayesian optimization with unknown
constraints”. In: International conference on machine
learning. PMLR, pp. 1699–1707 (cit. on p. 17).

Holton, James R and Gregory J Hakim (2013). An introduc-
tion to dynamic meteorology. Vol. 88. Academic press
(cit. on p. 1).

Holzmüller, David et al. (2023). “A framework and bench-
mark for deep batch active learning for regression”. In:
Journal of Machine Learning Research 24.164, pp. 1–81
(cit. on pp. 1, 4–7, 17).

Houlsby, Neil et al. (2011). “Bayesian active learning
for classification and preference learning”. In: arXiv
preprint arXiv:1112.5745 (cit. on p. 2).

Jarrin, Nicolas et al. (2006). “A synthetic-eddy-method
for generating inflow conditions for large-eddy simula-
tions”. In: International Journal of Heat and Fluid Flow
27.4, pp. 585–593 (cit. on p. 16).

Jumper, John et al. (2021). “Highly accurate protein struc-
ture prediction with AlphaFold”. In: nature 596.7873,
pp. 583–589 (cit. on p. 16).

Kalnay, E (2003). Atmospheric Modeling, Data Assimila-
tion and Predictability. Vol. 341. Cambridge University
Press (cit. on p. 16).

Kassam, Aly-Khan and Lloyd N Trefethen (2005). “Fourth-
order time-stepping for stiff PDEs”. In: SIAM Journal on
Scientific Computing 26.4, pp. 1214–1233 (cit. on p. 16).

Kingma, Diederik P (2014). “Adam: A method for stochas-
tic optimization”. In: arXiv preprint arXiv:1412.6980
(cit. on p. 6).

Kirsch, Andreas, Joost Van Amersfoort, and Yarin Gal
(2019). “Batchbald: Efficient and diverse batch acquisi-
tion for deep bayesian active learning”. In: Advances in
neural information processing systems 32 (cit. on pp. 2,
4).

Kirsch, Andreas et al. (2023). “Stochastic Batch Acqui-
sition: A Simple Baseline for Deep Active Learning”.
In: Transactions on Machine Learning Research. ISSN:
2835-8856 (cit. on p. 5).

Kusner, Matt J, Brooks Paige, and José Miguel Hernández-
Lobato (2017). “Grammar variational autoencoder”. In:
International conference on machine learning. PMLR,
pp. 1945–1954 (cit. on p. 16).

Li, Shibo et al. (2022a). “Batch multi-fidelity active learn-
ing with budget constraints”. In: Advances in Neural In-
formation Processing Systems 35, pp. 995–1007 (cit. on
p. 3).

Li, Shibo et al. (2022b). “Deep Multi-Fidelity Active
Learning of High-Dimensional Outputs”. In: Interna-
tional Conference on Artificial Intelligence and Statis-
tics, AISTATS 2022, 28-30 March 2022, Virtual Event
(cit. on pp. 5, 13).

Li, Shibo et al. (2024). “Multi-Resolution Active Learn-
ing of Fourier Neural Operators”. In: International Con-
ference on Artificial Intelligence and Statistics. PMLR,
pp. 2440–2448 (cit. on p. 5).

Li, Zongyi et al. (2020). “Fourier neural operator for para-
metric partial differential equations”. In: arXiv preprint
arXiv:2010.08895 (cit. on pp. 1, 6, 16).

Lippe, Phillip et al. (2024). “Pde-refiner: Achieving accu-
rate long rollouts with neural pde solvers”. In: Advances
in Neural Information Processing Systems 36 (cit. on
p. 1).

Loshchilov, Ilya and Frank Hutter (2016). “Sgdr: Stochas-
tic gradient descent with warm restarts”. In: arXiv
preprint arXiv:1608.03983 (cit. on p. 6).

MacKay, David JC (1992). “Information-based objective
functions for active data selection”. In: Neural compu-
tation 4.4, pp. 590–604 (cit. on p. 1).

Mao, Zhiping and Xuhui Meng (2023). “Physics-informed
neural networks with residual/gradient-based adaptive
sampling methods for solving partial differential equa-
tions with sharp solutions”. In: Applied Mathematics and
Mechanics 44.7, pp. 1069–1084 (cit. on p. 5).

11

Active Learning with Selective Time-Step Acquisition for PDEs

Murray, James D (2007). Mathematical biology: I. An in-
troduction. Vol. 17. Springer Science & Business Media
(cit. on p. 1).

Musekamp, Daniel et al. (2024). “Active Learning for Neu-
ral PDE Solvers”. In: arXiv preprint arXiv:2408.01536
(cit. on pp. 1–6).

Pestourie, Raphaël et al. (2020). “Active learning of deep
surrogates for PDEs: application to metasurface design”.
In: npj Computational Materials 6.1, p. 164 (cit. on
pp. 1, 5).

Pickering, Ethan et al. (2022). “Discovering and forecast-
ing extreme events via active learning in neural opera-
tors”. In: Nature Computational Science 2.12, pp. 823–
833 (cit. on pp. 1, 5, 6).

Roy, Nicholas and Andrew McCallum (2001). “Toward op-
timal active learning through monte carlo estimation of
error reduction”. In: Icml, williamstown 2.441-448, p. 4
(cit. on p. 13).

Salkin, Harvey M and Cornelis A De Kluyver (1975). “The
knapsack problem: a survey”. In: Naval Research Logis-
tics Quarterly 22.1, pp. 127–144 (cit. on p. 4).

Sanchez-Gonzalez, Alvaro et al. (2020). “Learning to sim-
ulate complex physics with graph networks”. In: In-
ternational conference on machine learning. PMLR,
pp. 8459–8468 (cit. on p. 1).

Sener, Ozan and Silvio Savarese (2017). “Active learning
for convolutional neural networks: A core-set approach”.
In: arXiv preprint arXiv:1708.00489 (cit. on pp. 5, 6).

Settles, Burr (2009). Active learning literature survey.
Tech. rep. University of Wisconsin-Madison Department
of Computer Sciences (cit. on pp. 1, 13).

Seung, H Sebastian, Manfred Opper, and Haim Sompolin-
sky (1992). “Query by committee”. In: Proceedings of
the fifth annual workshop on Computational learning
theory, pp. 287–294 (cit. on pp. 2, 5).

Singh, Rohit et al. (2005). “Active learning for sampling in
time-series experiments with application to gene expres-
sion analysis”. In: Proceedings of the 22nd international
conference on Machine learning, pp. 832–839 (cit. on
p. 5).

Smith, Freddie Bickford et al. (2023). “Prediction-oriented
bayesian active learning”. In: International Confer-
ence on Artificial Intelligence and Statistics. PMLR,
pp. 7331–7348 (cit. on p. 4).

Takamoto, Makoto et al. (2022). “Pdebench: An exten-
sive benchmark for scientific machine learning”. In: Ad-
vances in Neural Information Processing Systems 35,
pp. 1596–1611 (cit. on pp. 15, 16).

Taylor, Karl E, Ronald J Stouffer, and Gerald A Meehl
(2012). “An overview of CMIP5 and the experiment de-
sign”. In: Bulletin of the American meteorological Soci-
ety 93.4, pp. 485–498 (cit. on p. 16).

Turinici, Gabriel (2024). “Optimal time sampling in
physics-informed neural networks”. In: arXiv preprint
arXiv:2404.18780 (cit. on p. 5).

Wilmott, Paul, Sam Howison, and Jeff Dewynne (1995).
The mathematics of financial derivatives: a student in-
troduction. Cambridge university press (cit. on p. 1).

Wu, Chenxi et al. (2023). “A comprehensive study
of non-adaptive and residual-based adaptive sampling
for physics-informed neural networks”. In: Computer
Methods in Applied Mechanics and Engineering 403,
p. 115671 (cit. on p. 5).

Wu, Dongrui (2018). “Pool-based sequential active learn-
ing for regression”. In: IEEE transactions on neural net-
works and learning systems 30.5, pp. 1348–1359 (cit. on
pp. 1, 4, 9).

Wu, Dongxia et al. (2023). “Disentangled multi-fidelity
deep bayesian active learning”. In: International Con-
ference on Machine Learning. PMLR, pp. 37624–37634
(cit. on pp. 1, 5).

Zabusky, Norman J and Martin D Kruskal (1965). “Interac-
tion of" solitons" in a collisionless plasma and the recur-
rence of initial states”. In: Physical review letters 15.6,
p. 240 (cit. on pp. 6, 15).

12

Active Learning with Selective Time-Step Acquisition for PDEs

A. Further explanation of Acquisition with STAP
A.1. Different types of PDE active learning

(a) QoI (b) Single-state

(c) Autoregressive

Figure 10: Task settings assumed by previous works in active learning of PDEs.

There are three primary tasks in active learning for PDEs, each depending on the type of surrogate model being trained.
The first task, univariate Quantity of Interest (QoI) prediction, focuses on learning a model to directly predict a scalar QoI,
denoted as y, from an initial condition u0. The second task, single-state prediction, involves learning a model to predict
a single state transition from u0 to u1 over a fixed time interval ∆t. The third task, autoregressive trajectory prediction,
aims to approximate the ground truth evolution operator G using a surrogate model to predict the entire time evolution of
the states. Fig. 10 provides a visual comparison of the three tasks. In this paper, we focus on the autoregressive trajectory
prediction task.

A.2. Motivation behind the Acquisition Function

Here we detail the motivation behind our acquisition function defined in § 3.2. First, one can imagine several alternative
acquisition functions.

The most straightforward alternative is to simply use the sum of the variances at time points for which bi = true. The
variances are larger for the later time steps since they accumulate, and in our preliminary experiments, we found that this
is catastrophic as undersampling the earlier time steps leads to the sampled trajectory being very out-of-distribution, and
hence the trained surrogate model underperforming on the test distribution.

It quickly became clear to us that we need some kind of measure of "how much total uncertainty will be reduced by
sampling these time steps", instead of "how uncertain is our model on these time steps?" This would help select sampling
patterns that reduce the out-of-distribution-ness introduced by Ĝ. One way to approximate this is to use mutual information,
as used by S. Li et al. (2022b). In other words, we would rollout M trajectories with M surrogate models, and compute
the mutual information between time steps for which bi = true and all time steps. However, in preliminary experiments,
we found that this method underperforms, which we hypothesize is because relying simply on the covariance matrix of the
committee between time steps is not a good enough method for computing the posterior uncertainty.

We identified two "pathways" through which sampling a time step reduces uncertainty in the remaining time steps. First,
there is the "indirect" pathway: sampling a time step will reduce the model’s uncertainty on similar inputs, hence reducing
uncertainty on the remaining time steps. This is what is approximated by mutual information. Then, there is the "direct"
pathway: sampling a time step i gives out the i+1 th state, which starts a chain reaction of reducing model uncertainty on
all successive states. Note that these two pathways are not distinct from a strictly theoretical view, but are rather two ways
of approximating uncertainty reduction.

The direct pathway motivated our acquisition function based on variance reduction. In variance reduction, we calculate the
posterior uncertainty by rolling out the trajectories with N surrogate models, but collapse into one surrogate model at time
steps for which bi = true. This effectively computes the reduced uncertainty due to the effect of the direct pathway. With
experiments, we confirmed that this acquisition function behaves just like we wanted: it is slightly biased towards sampling
the earlier time steps, and it chooses an appropriate frequency of time steps to sample that leads to good performance.

To elaborate, our acquisition function is an approximation to the expected error reduction (EER), which is statistically
near-optimal for active learning (Settles, 2009; Roy and McCallum, 2001). The EER measures how much the model’s gen-

13

Active Learning with Selective Time-Step Acquisition for PDEs

Algorithm 2 Batch Acquisition Algorithm of STAP

Require: Budget B, base active learning algorithm A, probability ϵ, number of iterations T for greedy optimization, pool
P of initial conditions, cost function cost(·) for batches.

Ensure: A batch B of initial conditions and sampling patterns.
1: B ← ∅
2: while cost(B) < B do
3: Acquire an initial condition u0 with A.
4: Initialize S ← (true, . . . , true).
5: for i = 1 to T do
6: C = (C1, . . . , CL) where C1, . . . , CL

i.i.d.∼ Ber(ε).
7: S′ = S ⊕ C
8: if a∗(u0, S′) ≥ a∗(u0, S) then
9: S ← S′.

10: end if
11: end for
12: if ∥S∥+ cost(B) > B then
13: Keep only the first (B − cost(B)) trues from S and flip the remaining trues.
14: end if
15: B ← B ∪ {(u0, S)}.
16: end while

eralization error is likely reduced after updating on hypothetically acquired data. We model our hypothetical belief about
the ground truth solver as a *uniform categorical distribution* over the ensemble {Ĝa}Ma=1. We assume that acquiring the
trajectory of u0 with sampling pattern S only reduces generalization error on the trajectory of u0. The current general-
ization error is expected to be the average of ∥ûa − ûb∥2 over b. We make a second assumption that the hypothetically
acquired data ûb,S,a will update the model such that the model predicts the trajectory ûb,S,a given u0. This gives us the
expected reduction in error ∥ûa− ûb∥2−∥ûa− ûb,S,a∥2 averaged across a and b, which is equal to our acquisition function.

A.3. Batch Acquisition Algorithm

Algorithm 2 summarizes the batch selection algorithm of STAP. Starting with an empty batch B, the algorithm repeatedly
selects initial conditions and their sampling patterns until reaching the budget limit. It first uses the base active learning
method A to choose an initial condition u0. Then, it optimizes which time steps to sample through a greedy procedure:
starting with a pattern S that samples all time steps (all true values), it performs T iterations of random mutations. In each
iteration, it generates a candidate pattern S′ by randomly flipping entries in S with probability ϵ (using a binary mask C
where each entry is drawn from a Bernoulli distribution and the XOR operation ⊕). If this new pattern achieves a better
value according to the cost-weighted acquisition function a∗, it becomes the current pattern. To ensure the budget isn’t
exceeded, if adding the current pattern would go over budget, the algorithm truncates it by keeping only enough true values
to exactly meet the budget. The pair of initial condition and its optimized sampling pattern (u0, S) is then added to the
batch B.

B. Experimental details
B.1. Details on PDEs

In this section, we describe the PDEs used in our experiments. Each of these equations plays a critical role in modeling
physical phenomena and showcases diverse behaviors, from diffusion and soliton dynamics to chaotic systems and fluid
flow. Examples of PDE trajectories are shown in Fig. 11.

Burgers’ Equation The one-dimensional Burgers’ equation is expressed as

∂tu+ u∂xu = (ν/π)∂xxu (7)

where u = u(x, t) represents the field and ν ≥ 0 is the viscosity parameter. The Burgers’ equation exhibits shock
phenomena, characterized by the gradients of u becoming extremely sharp or even discontinuous when ν = 0. These

14

Active Learning with Selective Time-Step Acquisition for PDEs

(a) Burgers (b) KdV (c) KS

(d) INS

(e) CNS

Figure 11: Example trajectories of PDEs. (a), (b), (c): Horizontal and vertical axes represent the temporal and spatial
domain. (d), (e): Two-dimensional states at six time points are shown.

shocks arise due to the the advection term u∂xu, while the presence of the diffusion term ∂xxu prevents the formation
of discontinuities in the wave. We set ν = 0.01 to ensure the formation of sharp gradients while maintaining numerical
stability. For simulations, we adopt the implementation by Takamoto et al. (2022), which employs a finite difference
method (FDM) to compute the two terms.

Korteweg–De Vries (KdV) Equation The second equation we study is the Korteweg–De Vries (KdV) equation, given
by:

∂tu+ u∂xu+ ∂xxxu = 0, (8)

where u = u(x, t) represents a wave profile evolving over space and time. This nonlinear PDE describes the evolution
of shallow water waves, and its most famous characteristic is the presence of solitons—solitary, stable wave packets that
maintain their shape over long distances and weak interactions with other waves (Zabusky and Kruskal, 1965). Solitons
have important applications in fluid dynamics, plasma physics, and optical fiber communications. The KdV equation’s
nonlinearity and third-order spatial derivative (∂xxx) allow it to capture complex wave behavior. The equation is also known
for conserving key quantities like energy. We solve this equation using the pseudospectral method with Dormand–Prince
solver as in Brandstetter et al. (2022a).

Kuramoto–Sivashinsky (KS) Equation The Kuramoto–Sivashinsky (KS) equation is a fourth-order nonlinear PDE,
written as:

∂tu+ ∂xxu+ ∂xxxxu+ u∂xu = 0, (9)

15

Active Learning with Selective Time-Step Acquisition for PDEs

where u = u(x, t) is the evolving field in space and time. The KS equation is known for its chaotic behavior and is
used to model phenomena such as flame front propagation, plasma instabilities, and thin film dynamics. Its chaotic nature
arises from the interplay between destabilizing nonlinear terms and stabilizing higher-order diffusion terms. The equation
is particularly challenging to solve due to its sensitivity to initial conditions and long-term unpredictability. To handle this
complexity, we use the Exponential Time Differencing (ETD) fourth-order Runge-Kutta method, as introduced by Kassam
and Trefethen (2005). This numerical method is well-suited for stiff PDEs like the KS equation.

Incompressible Navier-Stokes (INS) Equation We consider the vorticity form of the 2D incompressible Navier-Stokes
(INS) equation, which governs the motion of incompressible and viscous fluid flows. The equation is given by:

∂tu+ v · ∇u = ν∇2u+ f, ∇ · v = 0, (10)

where u(x1, x2, t) is the vorticity, v is the velocity field, ν is the kinematic viscosity, and f(x1, x2) is an external forcing
term. This equation describe the behavior of incompressible fluid flow, playing a central role in understanding turbulence,
weather patterns, and aerodynamics. The external forcing term f(x1, x2) is set to

f(x) = 0.1 (sin(2π(x1 + x2)) + cos(2π(x1 + x2))) , (11)

which injects energy into the system, driving complex fluid dynamics. We use kinematic viscosity of ν = 2 × 10−4,
ensuring a sufficiently turbulent regime. In our experiments, we adapt the Crank–Nicolson method implemented by Z. Li
et al. (2020).

Compressible Navier-Stokes (CNS) Equation Finally, we consider the 2D compressible Navier-Stokes (CNS) equation,
which extends the incompressible case by incorporating density variations. We adapt the form used in Takamoto et al.
(2022), which is given by:

∂tρ+∇ · (ρv) = 0,

ρ(∂tv + v · ∇v) = −∇p+ η△v + (ζ +
1

3
η)∇(∇ · v),

∂t(ϵ+
1

2
ρv2) +∇ · [(p+ ϵ+

1

2
ρv2)v − v · σ′] = 0,

(12)

where it has four variables (density ρ, velocity v = (vx, vy) and pressure p) and two fixed parameters (shear viscosity
η and bulk viscosity ζ). The terms σ′ and ϵ are the viscous stress tensor and the internal energy, respectively. We set
η = ζ = 0.05. The numerical solution was computed using a second-order scheme in both time and space, employing a
high-resolution reconstruction method for the inviscid terms and a central differencing approach for the viscous terms.

Initial conditions As per Brandstetter et al. (2022a), states are first sampled from a simple distribution and then evolved
for a certain time to obtain the initial conditions. The evolved initial conditions are more realistic than the sampled states,
in that they are more likely to be observed under a system governed by the respective PDEs. This procedure hence
approximates applications where the initial conditions of interest are realistic states either from observed data (Jumper
et al., 2021; Kalnay, 2003; Chassignet et al., 2007; Taylor et al., 2012) or carefully crafted synthetic data (Jarrin et al.,
2006; Kusner et al., 2017). For 1D equations, the states are sampled from truncated Fourier series with random coefficients
(Brandstetter et al., 2022a), and for the 2D INS equation, states are sampled from a Gaussian random field as described in Z.
Li et al. (2020). Similarly, for the CNS equation, the initial conditions for all four variables are constructed by superposing
random sinusoidal waves, with density and pressure renormalized to ensure positivity. The lengths and discretizations of
trajectories are summarized in Table 6.

Let U stand for the uniform distribution. For Burgers and KdV, the initial condition is in the form
∑N

i=1 Ai sin(2πkix/L+
ϕi). The amplitudes and phases are always sampled from U([0, 1]) and U([0, 2π]). For Burgers, N = 2 and
ki ∼ U(1, 2, 3, 4), and for KdV, N = 10 and ki ∼ U(1, 2, 3). For KS and INS, the initial conditions are gaussian
random fields drawn from N(0, 25(−∆+25I)−1) and N(0, 73/2(−∆+49I)−2.5) respectively. For CNS, we first sample∑

k∈{1,2,3,4}3 Ak sin(2πkx/L + ϕk), the amplitudes and phases sampled uniformly at random for each channel (rho, p
and v). Then, we renormalize rho, p to lie within ρ0(1 ± ∆ρ) and p0(1 ± ∆p), respectively, where ρ0 ∼ U([0.1, 10]),
∆ρ ∼ U([0.013, 0.26]), ∆p ∼ U([0.04, 0.8]) and T0 := ρ0/p0 ∼ U([0.1, 10]). The v is also computed by superposing si-
nusoidal waves, but with amplitudes chosen so that the initial condition has the given initial Mach number M ∼ U([0.1, 1]).

16

Active Learning with Selective Time-Step Acquisition for PDEs

Table 6: Domain lengths and discretizations for trajectory learning.

PDE Domain Length (T,X) Resolution (L,Nx)

Burgers (2.0, 1.0) (13, 256)
KdV (52.0, 128.0) (13, 256)
KS (13.0, 1.0) (26, 256)
INS (13.0, 1.0, 1.0) (26, 32, 32)
CNS (0.5, 1.0, 1.0) (26, 32, 32)

Table 7: Acquired datasize in KdV

Round 0 1 2 3 4 5 6 7 8 9 10

SBAL 416 520 624 728 832 936 1040 1144 1248 1352 1456
SBAL+STAP 416 507 611 715 819 923 1027 1131 1235 1339 1443

B.2. Error Metrics

The test set always consists of 1,000 trajectories, on which several error metrics are defined. The RMSE is defined on a
trajectory u as √√√√ 1

LNx

L∑
i=1

Nx∑
j=1

∥ui(xj)− ûi(xj)∥22. (13)

Similarly, the NRMSE is defined as √∑
i,j ∥ui(xj)− ûi(xj)∥22∑

i,j ∥ui(xj)∥22
(14)

and the MAE as
1

LNx

L∑
i=1

Nx∑
j=1

|ui(xj)− ûi(xj)|. (15)

The metrics are averaged across all trajectories in the test set. We also report their logarithmic values averaged across all
AL rounds, following Holzmüller et al. (2023). Note that we do not use a committee’s mean prediction for computing the
metrics, but instead compute the metrics for each model and report their average.

B.3. Simulation Instability

It was observed that using STAP on the KdV equation, the simulation crashes on a small subset of synthetic inputs.
Analysis reveals that these synthetic inputs have unusually large norms and particularly appear in later parts of trajectories
due to accumulated error. We do not attempt to fix this problem explicitly due to the risk of over-complicating our method,
and simply refrain from adding these time steps to the training dataset. This means that STAP actually acquires a smaller
number of time steps than the budget B per round of acquisition, which could be problematic when a large subset of
inputs do crash. However, we find that this is not the case, and the number of such inputs is small enough that STAP can
outperform other baselines. We report the comparison of datasize across rounds in Table 7, for a single experiment. We
can see that 13 time steps were left out in the first round due to instability, and no instability occurred in the rounds after.

Since queries that crash incur a cost, they should be avoided as much as possible. Previous works in Bayesian optimization
(Gelbart et al., 2014; Hernández-Lobato et al., 2015) propose methods to learn these unknown constraints. Alternatively,
one could simply test out large, random inputs. In fact, we find that the maximum absolute value of an input being above
10 is a robust criterion for predicting that the solver will crash. Either way, we could simply filter out time steps that
fall outside of these constraints during runtime of the solver, and use the freed up budget on acquiring other trajectories.
Another possible approach is to impose physical constraints on the surrogate model (Goswami et al., 2022) that reduces
the risk of outputting abnormal synthetic inputs. For instance, the KdV equation is energy-conserving, and when this prior
knowledge is encoded into the surrogate model, the synthetic inputs would never be abnormally large like we experienced
with our naive surrogate models.

17

Active Learning with Selective Time-Step Acquisition for PDEs

B.4. STAP MF

We can also define a simpler acquisition function in the spirit of mean-field approximation. We take the mean model
Ĝ = 1

M

∑
m Ĝm, and define the variance reduction R(Ĝ, b, S) between Ĝ and a model Ĝb in the same way as before. We

then average the variance reduction between the mean model and all models in the committee:

aMF(u
0, S) =

1

M

M∑
b=1

R(Ĝ, b, S), (16)

which reduces the computational cost by a factor of M in the best case. We call this modified version STAP MF.

C. Full Report of Results on Main Experiment

Table 8: Mean log metrics for Burgers’ Equation

RMSE NRMSE MAE 99% 95% 50%

Random −2.881±0.060 −3.955±0.060 −4.813±0.067 −0.288±0.145 −1.701±0.070 −3.924±0.067

Random+STAP −3.477±0.064 −4.433±0.078 −5.394±0.061 −1.010±0.142 −2.551±0.109 −4.278±0.093

SBAL −3.388±0.052 −4.081±0.061 −5.332±0.046 −1.677±0.065 −2.375±0.067 −3.885±0.047

SBAL+STAP −3.674±0.071 −4.306±0.065 −5.585±0.066 −2.185±0.085 −2.853±0.078 −4.017±0.070

QbC −3.121±0.065 −3.805±0.062 −5.067±0.058 −1.483±0.081 −2.098±0.078 −3.571±0.068

QbC+STAP −3.333±0.064 −3.941±0.069 −5.250±0.056 −1.874±0.084 −2.453±0.065 −3.674±0.068

LCMD −2.847±0.027 −3.555±0.022 −4.819±0.027 −1.160±0.041 −1.758±0.015 −3.338±0.049

LCMD+STAP −2.925±0.061 −3.546±0.061 −4.886±0.059 −1.281±0.085 −1.874±0.072 −3.360±0.079

Table 9: Mean log metrics for KdV Equation

RMSE NRMSE MAE 99% 95% 50%

Random 0.191±0.058 −1.193±0.050 −2.034±0.045 2.449±0.047 1.395±0.049 −1.196±0.043

Random+STAP −0.067±0.054 −1.425±0.047 −2.228±0.036 1.885±0.033 1.296±0.038 −1.424±0.044

SBAL 0.030±0.029 −1.282±0.030 −2.139±0.027 1.875±0.039 1.267±0.028 −1.267±0.027

SBAL+STAP −0.088±0.040 −1.378±0.040 −2.239±0.043 1.731±0.040 1.280±0.043 −1.378±0.040

QbC 0.266±0.027 −1.019±0.029 −1.879±0.029 1.859±0.037 1.251±0.029 −1.019±0.031

QbC+STAP 0.134±0.035 −1.130±0.037 −2.004±0.035 1.721±0.031 1.120±0.037 −1.286±0.035

LCMD 0.256±0.030 −1.033±0.036 −1.879±0.033 1.868±0.034 1.322±0.034 −1.100±0.038

LCMD+STAP 0.286±0.034 −0.978±0.034 −1.824±0.039 1.799±0.036 1.128±0.034 −1.129±0.032

Table 10: Mean log metrics for KS Equation

RMSE NRMSE MAE 99% 95% 50%

Random −0.258±0.004 −1.683±0.004 −2.165±0.004 1.097±0.003 0.752±0.005 −0.575±0.004

Random+STAP −0.335±0.014 −1.759±0.014 −2.248±0.014 1.060±0.015 0.691±0.007 −0.662±0.015

SBAL −0.275±0.014 −1.700±0.014 −2.184±0.014 1.086±0.017 0.732±0.023 −0.594±0.012

SBAL+STAP −0.349±0.003 −1.774±0.003 −2.265±0.003 1.042±0.011 0.672±0.012 −0.674±0.008

QbC −0.268±0.004 −1.693±0.004 −2.178±0.004 1.077±0.008 0.739±0.013 −0.582±0.006

QbC+STAP −0.331±0.014 −1.756±0.014 −2.246±0.014 1.050±0.013 0.681±0.020 −0.650±0.013

LCMD 0.046±0.015 −1.378±0.015 −1.829±0.015 1.204±0.009 0.954±0.011 −0.203±0.016

LCMD+STAP −0.138±0.017 −1.561±0.016 −2.033±0.017 1.139±0.006 0.841±0.014 −0.431±0.016

We provide a full report of all results from the main experiment. Table 8, Table 9, Table 10, Table 11, and Table 12 show
the full results on Burgers, KdV, KS, and NS equations, respectively. Fig. 12 shows the plots of RMSE quantiles on all
PDEs.

18

Active Learning with Selective Time-Step Acquisition for PDEs

(a) 99% quantile, Burgers (b) 95% quantile, Burgers (c) 50% quantile, Burgers

(d) 99% quantile, KdV (e) 95% quantile, KdV (f) 50% quantile, KdV

(g) 99% quantile, KS (h) 95% quantile, KS (i) 50% quantile, KS

(j) 99% quantile, INS (k) 95% quantile, INS (l) 50% quantile, INS

(m) 99% quantile, CNS (n) 95% quantile, CNS (o) 50% quantile, CNS

Figure 12: Log RMSE quantiles

19

Active Learning with Selective Time-Step Acquisition for PDEs

Table 11: Mean log metrics for INS Equation

RMSE NRMSE MAE 99% 95% 50%

Random −0.422±0.010 −2.714±0.010 −2.698±0.010 0.515±0.021 0.134±0.012 −0.520±0.010

Random+STAP −0.489±0.012 −2.780±0.012 −2.764±0.012 0.412±0.042 0.037±0.025 −0.581±0.010

SBAL −0.461±0.012 −2.751±0.012 −2.736±0.009 0.372±0.039 0.043±0.024 −0.543±0.014

SBAL+STAP −0.525±0.005 −2.814±0.005 −2.797±0.003 0.268±0.027 −0.043±0.007 −0.601±0.003

QbC −0.385±0.014 −2.675±0.015 −2.663±0.016 0.282±0.024 0.047±0.013 −0.439±0.015

QbC+STAP −0.466±0.011 −2.757±0.011 −2.746±0.010 0.205±0.021 −0.036±0.014 −0.518±0.010

LCMD −0.320±0.011 −2.607±0.010 −2.587±0.010 0.532±0.019 0.202±0.011 −0.400±0.012

LCMD+STAP −0.378±0.012 −2.665±0.012 −2.645±0.011 0.476±0.017 0.145±0.020 −0.462±0.011

Table 12: Mean log metrics for CNS Equation

RMSE NRMSE MAE 99% 95% 50%

Random 2.603±0.038 −2.498±0.050 −0.732±0.031 4.618±0.057 3.806±0.050 2.044±0.050

Random+STAP 2.461±0.017 −2.637±0.015 −0.863±0.013 4.458±0.057 3.659±0.020 1.905±0.030

SBAL 2.422±0.045 −2.482±0.040 −0.880±0.041 4.206±0.038 3.497±0.044 2.024±0.064

SBAL+STAP 2.363±0.016 −2.501±0.051 −0.932±0.015 4.096±0.019 3.423±0.018 1.990±0.031

QbC 2.844±0.021 −2.102±0.024 −0.476±0.018 4.329±0.045 3.899±0.022 2.539±0.015

QbC+STAP 2.788±0.017 −2.063±0.021 −0.534±0.015 4.249±0.017 3.783±0.010 2.518±0.022

LCMD 2.736±0.029 −2.227±0.028 −0.582±0.029 4.263±0.021 3.803±0.032 2.401±0.032

LCMD+STAP 2.739±0.002 −2.147±0.009 −0.572±0.002 4.143±0.017 3.726±0.017 2.478±0.015

D. Additional experiments
D.1. Active learning with 20 Rounds

We have performed the main experiment for 20 rounds instead of 10, on Random, SBAL, and SBAL+STAP. The results are
shown in Fig. 14. We observe that the gap between SBAL and SBAL+STAP keeps widening, except in the KdV equation.

D.2. Diversity of Sparsely Selected Time Steps

We provide a simple analysis to show that time steps sampled in a sparse manner are more diverse than time steps from
entire trajectories. Out of 128 trajectories, we first randomly chose 10 trajectories, which contains L× 10 states. Then, out
of all L× 128 states, we randomly chose L× 10 states. The first choice represents full trajectory sampling, and the latter
represents spare time steps sampling. We probe an FNO surrogate model trained on all the 128 trajectories at its hidden
layer, and observe the hidden layer activation at each of the L × 128 states. The result is shown in Fig. 15, where black
points represent states from the fully sampled trajectories and red points represent sparsely selected states. The latter states
are visibly more diverse, which partially explains how sampling time steps in a sparse manner from trajectories can benefit
a surrogate model.

D.3. Random Bernoulli Sampling of Time Steps

We provide the whole list of results with Bernoulli sampling described in § 5.5. Also, we can enforce consecutive initial
time steps sampling by bringing all the true entries in S to the beginning. We call this method Initial Bernoulli sampling,
or Initial Ber(p). We report the results with SBAL in Table 13 and Table 14. Initial Bernoulli sampling always performs
the worst, possibly because they rarely see the time steps at the end.

D.4. Time-dependent Incompressible Navier-Stokes

We have performed an experiment on a time-dependent incompressible Navier Stokes equation, simply by using the time-
dependent external force in our current INS equation. The new forcing term is a sinusoidal mixture of two spatial co-
ordinates and the temporal coordinate. Fig. 16 shows the log RMSE of Random, SBAL, and SBAL+STAP. Since our
methodology aligns closely to the time-dependent PDEs, our method significantly outperforms the others.

20

Active Learning with Selective Time-Step Acquisition for PDEs

Figure 13: Log RMSE of AL strategies with multi-step FNO, across 10 rounds of acquisition.

Figure 14: Log RMSE of AL strategies, measured across 20 rounds of acquisition.

E. Comparison of Costs with Our Numerical Solvers
Our paper does not claim direct computational speedups on our benchmark PDEs; instead, it relies on the benchmark PDEs
as proxies reflecting realistic, expensive simulations. Our surrogate metric, the number of numerical solver-simulated
timesteps, effectively represents relative computational savings in realistic, expensive simulations.

However, we provide the analysis of computational cost on our benchmark PDEs for the sake of completeness. We compare
the wall clock time of Random and SBAL+STAP, and for a meaningful comparison, we cut the SBAL+STAP experiment
when it reaches below the RMSE of the final Random surrogate model.

Table 15 compares the wall clock times between non-AL and AL, and Table 16 decomposes them into data acquisition,
model training, and data selection. We find that AL reduces the total cost in CNS, where acquisition is relatively expensive.
On other benchmarks, the training and data selection costs dominate, as expected. We want to stress yet again that the
benchmarks were intentionally chosen to be inexpensive, to enable fast experimentation.

We provide the condition under which AL reduces total cost. Suppose AL improves data efficiency by E over non-AL.
Define Tacquire, Ttrain as the acquisition time and training time per unit data, and Tselect as the data selection time per round.
The total cost of non-AL is

N
(1)
acquireTacquire +N

(1)
trainTtrain

and for AL,

N
(2)
acquireTacquire +N

(2)
trainTtrain +MTselect

where N
(i)
acquire are the number of acquired data, and N

(i)
train are the total number of training examples (counting duplicates),

21

Active Learning with Selective Time-Step Acquisition for PDEs

(a) Burgers

(b) KdV

(c) KS

(d) INS

(e) CNS

Figure 15: PCA of FNO hidden layer’s activation pattern for both entire trajectories (black) and sparsely sampled time
steps (red)

22

Active Learning with Selective Time-Step Acquisition for PDEs

Table 13: Bernoulli sampling

SBAL +STAP +Ber(1/16) +Ber(1/8) +Ber(1/4) +Ber(1/2)

Burgers

RMSE −3.388±0052 −3.674±0.071 −3.231±0.163 −3.152±0.267 −3.102±0.441 −3.458±0.067

NRMSE −4.081±0.061 −4.306±0.065 −3.847±0.171 −3.782±0.259 −3.734±0.447 −4.122±0.078

MAE −5.332±0.046 −5.585±0.066 −5.169±0.164 −5.085±0.272 −5.037±0.442 −5.397±0.063

KdV

RMSE 0.030±0.029 −0.088±0.040 0.053±0.014 0.049±0.014 0.018±0.024 −0.064±0.031

NRMSE −1.282±0.030 −1.378±0.040 −1.254±0.017 −1.257±0.014 −1.288±0.020 −1.370±0.033

MAE −2.139±0.027 −2.239±0.043 −2.082±0.016 −2.083±0.018 −2.120±0.025 −2.207±0.034

KS

RMSE −0.275±0.014 −0.349±0.003 −0.365±0.008 −0.359±0.006 −0.346±0.008 −0.324±0.007

NRMSE −1.700±0.014 −1.774±0.003 −1.790±0.008 −1.784±0.006 −1.771±0.008 −1.749±0.007

MAE −2.184±0.014 −2.265±0.003 −2.282±0.007 −2.276±0.006 −2.262±0.009 −2.237±0.009

INS

RMSE −0.422±0.010 −0.525±0.005 −0.529±0.006 −0.525±0.006 −0.515±0.007 −0.500±0.009

NRMSE −2.751±0.012 −2.814±0.005 −2.818±0.006 −2.814±0.006 −2.805±0.007 −2.789±0.009

MAE −2.736±0.009 −2.797±0.003 −2.794±0.006 −2.790±0.006 −2.781±0.007 −2.769±0.008

CNS

RMSE 2.422±0.045 2.363±0.016 2.375±0.069 2.370±0.018 2.372±0.012 2.392±0.012

NRMSE −2.482±0.040 −2.501±0.051 −2.540±0.058 −2.526±0.024 −2.521±0.021 −2.519±0.013

MAE −0.880±0.041 −0.932±0.015 −0.921±0.064 −0.925±0.019 −0.923±0.012 −0.906±0.010

and M the number of rounds. With initial datasize D and acquired datasize B per round,

N
(1)
acquire = BM

N
(1)
train = D +BM

N
(2)
acquire = BM/E

N
(2)
train =

M/E∑
round=0

(D +B · round)

For AL to reduce the total cost, the setting would need to satisfy

N
(1)
acquireTacquire +N

(1)
trainTtrain > N

(2)
acquireTacquire +N

(2)
trainTtrain +MTselect

Table 17 lists these values, and whether they satisfy the condition above.

23

Active Learning with Selective Time-Step Acquisition for PDEs

Table 14: Initial Bernoulli sampling

Initial Ber(1/16) Initial Ber(1/8) Initial Ber(1/4) Initial Ber(1/2)

Burgers

RMSE −3.737±0.034 −3.686±0.064 −3.634±0.024 −3.551±0.043

NRMSE −4.368±0.049 −4.322±0.065 −4.274±0.027 −4.222±0.056

MAE −5.654±0.027 −5.607±0.058 −5.561±0.018 −5.483±0.034

KdV

RMSE 0.032±0.016 −0.015±0.014 −0.001±0.018 0.011±0.014

NRMSE −1.278±0.014 −1.321±0.017 −1.303±0.018 −1.294±0.014

MAE −2.150±0.016 −2.197±0.014 −2.181±0.018 −2.168±0.014

KS

RMSE −0.302±0.009 −0.293±0.008 −0.287±0.005 −0.283±0.009

NRMSE −1.728±0.009 −1.719±0.008 −1.713±0.005 −1.708±0.009

MAE −2.216±0.008 −2.206±0.008 −2.199±0.007 −2.194±0.010

INS

RMSE −0.282±0.005 −0.294±0.010 −0.329±0.005 −0.397±0.008

NRMSE −2.575±0.005 −2.587±0.010 −2.621±0.005 −2.688±0.008

MAE −2.597±0.004 −2.609±0.009 −2.643±0.004 −2.703±0.007

CNS

RMSE 2.431±0.017 2.420±0.009 2.389±0.011 2.420±0.009

NRMSE −2.492±0.020 −2.493±0.011 −2.545±0.009 −2.501±0.013

MAE −0.873±0.015 −0.883±0.008 −0.918±0.009 −0.886±0.008

Figure 16: Log RMSE of AL strategies on time-dependent INS.

Table 15: Total wall clock time until target RMSE (in seconds)

Equation Random SBAL+STAP

Burgers 237 441
KdV 834 1469
KS 385 2920
INS 526 3702
CNS 4053 3476

24

Active Learning with Selective Time-Step Acquisition for PDEs

Table 16: Total wall clock time decomposed into acquisition/training/selection (in seconds)

Equation Random SBAL+STAP

Burgers 90/147/0 27/234/180
KdV 670/164/0 455/664/350
KS 40/345/0 35/2075/810
INS 190/336/0 160/1750/1792
CNS 3570/483/0 1448/972/1056

Table 17: Variables for cost analysis

Equation E Tacquire Ttrain Tselect Satisfied

Burgers 3.33 0.087 0.101 60 F
KdV 1.43 0.654 0.106 50 F
KS 1.11 0.005 0.116 90 F
INS 1.25 0.077 0.112 224 F
CNS 2.50 1.760 0.157 264 T

25

	Introduction
	Background
	Preliminaries
	Problem Setting

	Selective Time-Step Acquisition for PDEs
	Framework of Data Acquisition
	Acquisition Function
	Batch Acquisition Algorithm

	Related Work
	Experiments
	Baseline AL Methods
	Target PDEs
	Surrogate Models
	Results
	Random Bernoulli Sampling of Time Steps
	Computational Complexity of STAP
	Multi-step model
	Out-of-distribution Synthetic Inputs

	Conclusion
	Further explanation of Acquisition with STAP
	Different types of PDE active learning
	Motivation behind the Acquisition Function
	Batch Acquisition Algorithm

	Experimental details
	Details on PDEs
	Error Metrics
	Simulation Instability
	STAP MF

	Full Report of Results on Main Experiment
	Additional experiments
	Active learning with 20 Rounds
	Diversity of Sparsely Selected Time Steps
	Random Bernoulli Sampling of Time Steps
	Time-dependent Incompressible Navier-Stokes

	Comparison of Costs with Our Numerical Solvers

