
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

GENERATIVE BANDIT OPTIMIZATION
VIA DIFFUSION POSTERIOR SAMPLING

Anonymous authors
Paper under double-blind review

ABSTRACT

Many real-world discovery problems, including drug and material design, can
be modeled within the bandit optimization framework, where an agent selects
a sequence of experiments to efficiently optimize an unknown reward function.
However, classic bandit algorithms operate on fixed finite or continuous action sets,
making discovering novel designs impossible in the former case, and often leading
to the curse of dimensionality in the latter, thus rendering these methods impractical.
In this work, we first formalize the generative bandit setting, where an agent wishes
to maximize an unknown reward function over the support of a data distribution,
often called data manifold, which implicitly encodes complex constraints (e.g., the
geometry of valid molecules), and from which (unlabeled) sample data is available
(e.g., a dataset of valid molecules). We then propose Diffusion Posterior Sampling
(DIFFPS), an algorithm that tackles the exploration-exploitation problem directly on
the learned data manifold by leveraging a conditional diffusion model. We formally
show that the statistical complexity of DIFFPS adapts to the intrinsic dimensionality
of the data, overcoming the curse of dimensionality in high-dimensional settings.
Our experimental evaluation supports the theoretical claims and demonstrates
promising performance in practice.

1 INTRODUCTION

Many real-world discovery problems, spanning drug discovery (Schneider, 2018), material de-
sign (Guo et al., 2021), and circuit design (El-Turky & Perry, 1989) among others, can be framed as
bandit optimization (Lattimore & Szepesvári, 2020). In this context, an agent aims to optimize an
unknown (black-box) reward function r over an experiments space Ω. Crucially, since r is unknown,
and evaluating r(x) for x ∈ Ω is typically expensive, the agent needs to select wisely a sequence of
experiments x1, . . . , xT that balances efficient exploration to learn r, and exploitation of its current
belief to select promising maximizers, a challenge known as the exploration-exploitation dilemma.
Historically, bandit algorithms were first devised for fixed and finite action sets, where the agent
is given a set Ω = {x1, . . . , xA}, which does not allow discovering novel actions (e.g., molecules,
previously unknown to the algorithm designer). More recently, bandit optimization algorithms have
been extended to continuous action spaces (Srinivas et al., 2009; Abbasi-Yadkori et al., 2011), e.g.,
Ω = RD, where decision-making occurs in a known or learned D-dimensional data representation
space. Unfortunately, for many real-world problems, including most scientific discovery applications,
the ambient dimensionality D is very high, causing bandit algorithms to incur statistical complexities
too large to be practical (Djolonga et al., 2013; Kandasamy et al., 2015). In other words, these
algorithms suffer the curse of dimensionality as their practical and theoretical sample complexities,
i.e., number of experiments needed to discover maximizers, heavily depend on D. Moreover, in
most real-world problems, such as molecular design, most points (or actions) in Ω = RD do not
correspond to valid molecules. Thus, fixed finite action spaces are too restrictive for discovery or too
large to enumerate, while typical continuous spaces lead to the curse of dimensionality and cannot
easily distinguish between valid experiments and invalid ones, e.g., an invalid molecule.

To address this issue, we introduce the generative bandit setting, aiming to close the gap between
finite and continuous action sets by combining their advantages: the ability to discover valid actions
unknown a priori to the algorithm designer, while tackling the curse of dimensionality in high-
dimensional real-world problems (Sec. 3). While previous works attempt to solve the bandit problem

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

on a learned low-dimensional latent space (Gómez-Bombarelli et al., 2018; Grosnit et al., 2021), in
generative bandits the action space is unknown to the agent and is defined as the support of a possibly
complex data distribution Px approximately learnable through sample data, e.g., a dataset of known
molecules. This set, namely Ω = supp(Px), typically called data manifold, can capture implicit
constraints hidden in the data, e.g., the complex geometry of valid molecules, and its dimensionality
is denoted as intrinsic data dimensionality (Fefferman et al., 2016). According to the manifold
hypothesis, the intrinsic dimensionality m of Ω is significantly lower than the ambient dimensionality,
i.e., m≪ D, for a wide range of real-world data types (Fefferman et al., 2016; Stanczuk et al., 2024).
As a consequence, in this work we first aim to answer the following question:

How can a decision-making agent solve the exploration-exploitation problem directly on the
unknown data manifold?

To this end, and motivated by the success of diffusion models (Sohl-Dickstein et al., 2015; Song &
Ermon, 2019; Ho et al., 2020) in learning complex data distributions across various domains, including
chemistry (Hoogeboom et al., 2022), biology (Corso et al., 2022), and robotics (Chi et al., 2023), we
present Diffusion Posterior Sampling (DIFFPS), which extends classic posterior sampling (Russo &
Van Roy, 2014; Osband & Van Roy, 2017) to generate a sequence of approximately valid actions from
diverse areas of the unknown manifold via sequential conditional generation, gradually concentrating
the generated experiments on high-reward regions (Sec. 4).

Next, by leveraging recent theoretical results on provable manifold learning via diffusion (Chen et al.,
2023; Stanczuk et al., 2024), we shed light on the statistical complexity of DIFFPS, showing that
under certain structural assumptions, it adapts to the intrinsic data dimensionality m, thus overcoming
the curse of dimensionality that typically hinders the applicability of bandit algorithms in real-world
discovery problems (Hao et al., 2020; Djolonga et al., 2013; Kandasamy et al., 2015) (Sec. 5). Finally,
we provide an experimental evaluation of DIFFPS, supporting our theoretical claims empirically and
showing promising performance (Sec. 6).

To sum up, we make the following contributions:

• The generative bandit setting, where the action set Ω is the unknown support, also called data
manifold, of a complex data distribution Px learnable from unlabeled data (Sec. 3).

• Diffusion Posterior Sampling (DIFFPS), an algorithm that leverages conditional diffusion models to
tackle the exploration-exploitation problem directly on the learned data manifold, and Generative
Posterior Sampling (GENPS), a generative model agnostic generalization of DIFFPS (Sec. 4).

• A statistical analysis of the (Bayesian) regret incurred by DIFFPS, showing that it adapts to the
intrinsic data dimensionality, and an analysis of the misgeneration regret of DIFFPS (Sec. 5).

• An experimental evaluation of DIFFPS, providing empirical support for our theoretical claims and
demonstrating promising performance. (Sec. 6).

2 BACKGROUND AND NOTATION

We denote with [N] a set of integers {1, . . . , N}. Let X be a set, ∆(X) is the probability simplex
over X . Given a probability distribution P ∈ P(RD), we indicate with supp(P) := {x ∈ RD :
P (x) > 0} the support of P .

2.1 BANDIT OPTIMIZATION, EXPLORATION-EXPLOITATION, AND POSTERIOR SAMPLING

Bandit optimization. A T -round bandit (optimization) problem (Lattimore & Szepesvári, 2020)
is a tuple υ = ⟨Ω, rθ∗ , T ⟩, where Ω ⊆ RD is a (possibly infinite) set of actions, rθ∗ : Ω → R is an
unknown deterministic reward function, and T is the number of rounds. At every round t ∈ [T], an
agent selects an action xt ∈ Ω according to a policy π = {πt}t∈[T] with πt ∈ P(RD), and receives
the noisy feedback yt = rθ∗(xt) + ϵt, i.e., the reward function evaluated at xt plus zero-mean noise.

Exploration-exploitation problem and posterior sampling. Balancing exploration of novel actions
to learn rθ∗ , and exploitation of the current belief about rθ∗ to propose promising actions, is known
as the exploration-exploitation dilemma. A classic algorithm to address this challenge is posterior
sampling (PS) (Russo & Van Roy, 2014). Given a set of bandit instances {υ = ⟨Ω, rθ, T ⟩}θ∈Θ and
a prior distribution q1 over Θ, PS operates as follows. At each round t ∈ [T], the agent samples a

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

reward parameter θ̃t ∼ qt, computes the policy πt that maximizes rθ̃t , selects an action xt ∼ πt,
receiving a noisy feedback rθ∗(xt) + ϵt from the true reward model. The agent then updates the
posterior qt+1 to integrate the new evidence. By acting optimally with respect to sampled reward
functions (thus promoting exploration) and updating its beliefs based on observed feedback, the agent
gradually learns enough about the true reward function to eventually act optimally with respect to it.

2.2 DIFFUSION MODELS, SCORE MATCHING, AND CONDITIONAL GENERATION

Generative models and conditional generation. Given i.i.d. samples from an unknown data
distribution Px, generative models aim to learn an approximate distribution P̂x that closely matches
Px. For a joint distribution Pxy , where y is a label for sample x, we express the conditional distribution
as P (· | y) and its learned approximation as P̂ (· | y). For the sake of clarity, in the following we
denote as P = Px the generative model exactly capturing the data distribution.

Conditional diffusion models and score matching with neural networks. Given a random variable
x0 ∼ Px diffusion models (DMs) construct a sequence of random variables x0, x1, . . . , xK by
sequentially adding Gaussian noise (Song et al., 2020). This forward process transforms the data
distribution into a noise distribution. DMs learn the backward process to convert noise back into the
original data distribution. In conditional diffusion models, we aim to sample from P (· | y) rather
than Px. The noising process can be expressed via the following forward Ornstein–Uhlenbeck SDE:

dx(k) = −1

2
g(k)x(k)dk +

√
g(k)dw(k) k ∈ (0,K] (1)

where x(0) ∼ P 0(· | y), K is the terminal time, w is a Wiener process, and the initial distribution
P 0(· | y) is induced by Pxy . For clarity, we set g(k) = 1. We denote with P k(· | y) the distribution
of x(k) and with pk(x | y) its density. We define the conditional score at time k as ∇x log p

k(x | y),
which in principle can be estimated by solving the following minimization problem:

argmin
s∈S

E
k∼U(k0,K)

E
(x,y)∼Pk

[
∥∇x log p

k(x | y)− s(x, y, k)∥22
]

(2)

where S is a properly defined concept class and U denotes the uniform distribution (Song et al.,
2020). Unfortunately, this problem is intractable as ∇x log p

k(x | y) is unknown. However, the same
solution can be obtained by minimizing over s ∈ S the following loss function, as in (Li et al., 2024):

E
(x,y)∼Pxy

ℓ(x, y, s) = E
(x,y)∼Pxy

E
k∼U(k0,K)

E
x′∼N (α(k)x,h(k)ID)

[
∥∇x′ log ϕk(x′ | x)− s(x′, y, k)∥22

]
Hereby, ϕk(x′ | x) is the density of N (α(k)x, h(k)ID), the conditional distribution of x(k) given
x(0) with α(k) := exp(−k/2) and h(k) := 1 − exp(−k). In the following, we denote with ŝ the
score obtained by solving the above problem approximately by estimating the expectations with data.

Conditional generation via diffusion. Once an estimate ŝ for the conditional score function is
available, new samples can be obtained by simulating the following reverse-time SDE:

dx(k) =

[
1

2
x(k) + ŝ(x(k), y, k)

]
dk + dw̄(k) (3)

where x(K) ∼ N (0, ID) and w̄ is a reversed Wiener process.

3 PROBLEM SETTING: GENERATIVE BANDITS WITH OFFLINE DATA

In this section, we first introduce the generative bandit problem, extending bandit optimization to
settings where the valid action set Ω is the unknown support of a (typically complex) data distribution,
often regarded as data manifold1. Then, along with the classic Bayesian regret (Lattimore &
Szepesvári, 2020), we introduce a performance measure named misgeneration regret, which captures
the cost due to generating invalid actions, i.e., xt /∈ Ω, resembling measures of constraint violation in
bandit or reinforcement learning with safety constraints (Amani et al., 2019; Efroni et al., 2020).

1Here the term manifold is used in a loose sense. Specific structure, e.g., compactness (Stanczuk et al., 2024),
linearity (Chen et al., 2023), is typically assumed to derive theoretical results, as later done in Sec. 5.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.1 ONLINE LEARNING INTERACTION PROCESS

Definition 1 (Generative Bandit). A T -round generative bandit (optimization) problem is a tuple
υ = ⟨Px, rθ∗ , c, T ⟩, where rθ∗ , also expressed as r∗, and T denote respectively an unknown reward
function and the interaction budget. The action set corresponds to the data manifold and is implicitly
defined as Ω := supp(Px), where Px is an unknown data distribution. c : RD → R is an unknown
validity function assigning positive penalty to invalid actions x /∈ Ω, while c(x) = 0 for x ∈ Ω.

The interaction process proceeds as follows: at every round t ∈ [T], the agent selects an action
xt ∈ RD (also referred to as experiment or design) according to a policy π := {πt}t∈[T] where
πt ∈ P(RD) (i.e., xt ∼ πt), and receives a noisy observation yt = r∗(xt) + ϵt, with ϵt being
conditionally R-sub-Gaussian noise (Vershynin, 2018). If action xt is invalid (i.e., xt /∈ Ω), the agent
incurs an unobserved penalty c(xt). Here, we consider the case where the agent cannot query the
validity function c, while in Sec. 6, we discuss how black-box access to c can improve performance.

Access to offline unlabeled data To solve a generative bandit problem, an agent must learn to
distinguish valid actions (x ∈ Ω) from invalid ones (x /∈ Ω). To this end, and to capture practical
settings, we assume the agent has access to an unlabeled dataset Dunlabeled := {(xi)}ni=1 composed of
n i.i.d. unlabeled points sampled from the unknown data distribution Px, namely xi ∼ Px, ∀ i ∈ [n].

3.2 OPTIMALITY MEASURES: BAYESIAN REWARD AND MISGENERATION REGRET

We now introduce performance measures to account for both the cost of proposing sub-optimal
actions w.r.t. the unknown true reward r∗, and the penalty due to playing invalid actions (i.e., xt /∈ Ω).

Definition 2 (Bayesian reward and misgeneration regret). Given a set of generative bandit
instances {υ = ⟨Px, rθ, c, T ⟩}θ∈Θ with prior q over Θ, we define the Bayesian reward and
misgeneration regret incurred by a policy π = {πt}t∈[T] as follows:

BRr(T, π) := E
θ∗∼q

[
T∑
t=1

r∗(x
∗)− E

xt∼πt

[r∗(xt)]

]
(reward regret)

BRc(T, π) := E
θ∗∼q

[
T∑
t=1

E
xt∼πt

[c(xt)]

]
(misgeneration regret)

where we use r∗ to denote rθ∗ , and define x∗ ∈ argmaxx∈Ω r∗(x).

The term BRr(T, π) represents the expected regret over the instance class Θ incurred by the agent
from proposing sub-optimal actions w.r.t. the unknown reward function r∗. Conversely, BRc(T, π)
quantifies the expected regret over Θ due to proposing invalid samples (i.e., xt /∈ Ω), e.g., invalid
molecules, measured via the validity function c in Definition 1.

Intuitively, a policy minimizing the reward and misgeneration regret measures in Definition 2
must use the interaction budget T wisely to efficiently balance exploration and exploitation within
the (potentially complex) support of the unknown data distribution Px, i.e., the data manifold
Ω := supp(Px). In the next section, we propose an algorithm that tackles this challenging problem
by sequential conditional generation via diffusion modeling (Song & Ermon, 2019; Ho et al., 2020).

4 DIFFUSION POSTERIOR SAMPLING WITH OFFLINE UNLABELED DATA

In the following, we present Diffusion Posterior Sampling (DIFFPS), an algorithm that leverages
diffusion models (Song & Ermon, 2019) to tackle the generative bandit problem, as in Definition 1.

At each iteration t ∈ [T], DIFFPS (see Algorithm 1) uses a conditional diffusion model to generate an
action xt ∼ π̂t from the region of the manifold Ω̂r̃t ≈ Ωr̃t := {x ∈ Ω : x ∈ argmaxx∈Ω r̃t(x)} ⊆ Ω
of approximately valid actions maximizing the imaginary reward function r̃t sampled from the reward
prior qt. As illustrated in Fig. 1, this process enables DIFFPS to sequentially (and approximately)
explore different regions {Ωr̃t}t∈[T] of the unknown manifold, and by integrating observations into

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Data manifold Ω = supp(P). In yellow: manifold regions {Ωr̃t}t∈[T] of actions maximiz-
ing imaginary rewards {r̃t}t∈[T]. In orange: approximate regions used for sampling, e.g., Ω̂r ≈ Ωr.
In purple: region Ωr∗ of maximizers of true reward function r∗.

the reward prior qt gradually learn the true reward function r∗ well enough to ultimately approximately
sample from the region Ωr∗ ⊆ Ω of valid actions maximizing the true unknown reward function r∗.

Algorithm 1 DIFFPS: Diffusion Posterior Sampling (with offline unlabeled data)

1: Input: T : number of online samples, q1 : reward parameter prior, Dunlabeled : n unlabeled data,
k0 : early-stopping time, ν : noise level

2: for t = 1, 2, . . . , T do
3: Sample reward parameter θ̃t ∼ qt and define r̃t := rθ̃t
4: Label data in Dunlabeled via r̃t: D := {(xi, yi := r̃t(x

i) + ξi)}ni=1 with ξi ∼ N (0, ν2)
5: Conditional score matching on dataset D and arbitrary function class S:

ŝ ∈ argmin
s∈S

E
(x,y)∈D

E
k∼U(k0,K)

E
x′∼N (α(k)x,h(k)ID)

[
||∇x′ log ϕk(x′ | x)− s(x′, y, k)||22

]
6: Compute maximum imaginary reward: ỹt = maxx∈Ω r̃t(x)
7: Sample action xt := xt(0) via reverse SDE induced by estimated conditional score ŝt(·, ỹt, ·):

dx(k) =

[
1

2
x(k) + ŝ(x(k), ỹt, k)

]
dk + dw̄(k)

8: Play xt and observe yt = r∗(xt) + ϵt
9: Compute qt+1 via posterior update as in Eq. 6

10: end for

In the following, we present a detailed explanation of Algorithm 1. First, at each iteration t ∈ [T],
DIFFPS samples an imaginary reward parameter from the rewards prior, namely θ̃t ∼ qt (line 3). Then,
it computes the labeled dataset D via labeling the dataset Dunlabeled by defining pairs (xi, yi) with
yi := r̃t(x

i) + ξi, where we define r̃t := rθ̃t and ξi ∼ N (0, ν2) (line 4). Afterwards, DIFFPS learns
a conditional diffusion model P̂t(· | y) by estimating the score ŝ via conditional score matching
on dataset D (line 5), and computes the maximum imaginary reward value over Ω, namely ỹt
(line 6). Once ỹt is computed, the algorithm approximately samples via conditional generation
xt ∼ π̂t = P̂t(· | ỹt) from the region of the manifold achieving reward ỹt, namely Ωr̃t (line 7).
Ultimately, it plays action xt to observe feedback r∗(xt) + ϵt (line 8), and performs posterior update
of the reward prior qt (line 9) to integrate the new evidence gained about the true reward function r∗.

Towards a practical and scalable algorithm. The oracle optimization step (line 6) is a maximization
problem over Ω. We approximate this using output-space optimization techniques leveraging the
generative model P̂ , supported on the approximate data manifold Ω̂, as by Krishnamoorthy et al.
(2023). In Apx. F, we present two alternative oracle implementations, which can optionally exploit
black-box access to the validity function c to improve performances as discussed in Sec. 6.

Moreover, it is not necessary to retrain the diffusion model at each iteration t as one can leverage
the score decomposition ∇x log p(x|y) = ∇x log p(x) + ∇x log p(y|x), train a score model for
p(x) on the unlabeled dataset, and use r̃t for guidance (Song et al., 2020). Although tackling
scalable uncertainty quantification is beyond the scope of this work, recent approximate posterior

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

sampling methods (Osband et al., 2023) that have shown promising performances for exploration in
LLMs (Dwaracherla et al., 2024) can straightforwardly be integrated with DIFFPS.

Exploration-exploitation directly on the learned data manifold. Crucially, by generating actions
via conditional sampling DIFFPS effectively explores only the learned manifold Ω̂ ≈ Ω using a
learned sampler (i.e., the diffusion process), without relying on an explicit representation of the action
space Ω. Formally, one can see that for all t ∈ [T], action xt is sampled approximately in-manifold:

xt ∼ π̂t = P̂t(· | ỹt) and Ω̂r̃t := supp
(
P̂t(· | ỹt)

)
⊆ supp(P̂) =: Ω̂ ≈ Ω (4)

Here, P̂ stands for the unconditional generative model trained on the unlabeled data Dunlabeled

following distribution Px. Interestingly, this logic does not rely on the specific structure of diffusion
models, and in Apx. B, we present a generative model agnostic generalization of Algorithm 1.

Intuitively, solving the exploration-exploitation problem within the learned data manifold rather than
in the entire ambient space might significantly reduce the number of samples needed to discover
maximizers of the unknown reward function. In the next section, we formally prove this intuition
under typical structural assumptions, showing that the statistical complexity of DIFFPS adapts to the
intrinsic dimensionality of the data manifold.

5 THEORETICAL GUARANTEES: REWARD AND MISGENERATION REGRET

In this section, we present an upper bound on the Bayesian reward and misgeneration regrets, as in
Definition 2, achieved by DIFFPS against an optimal sampling strategy. This result captures the impact
on statistical complexity of solving the exploration-exploitation problem directly on the learned data
manifold. This gain can be formally captured via the notion of intrinsic data dimensionality2.

Definition 3 (Intrinsic data (manifold) dimensionality). Given a data distribution Px with support
Ω := supp(Px), we define:

m(Ω) := min{m ∈ N : Ω ⊆ Rm}

This complexity measure, which we denote as m when Ω is clear from context, is clearly data
dependent as it varies for different data types, e.g., molecules, natural images, proteins. Moreover, the
well-known manifold hypothesis states that the intrinsic data dimensionality m is significantly smaller
than the ambient dimensionality D, namely m ≪ D, in a variety of real-world problems (Loaiza-
Ganem et al., 2024; De Bortoli, 2022; Fefferman et al., 2016; Valdés & Tchagang, 2023). To leverage
the intrinsic data dimensionality in our analysis, we first assume the following.
Assumption 5.1 (Low-dimensional linear subspace). The action set Ω := supp(Px) lives in a m-
dimensional linear subspace. Namely, there exists an unknown matrix V ∈ RD×m with orthonormal
columns such that x = V z, where z ∈ Rm is a latent variable, and D is the ambient dimensionality.

Assumption 5.2 (Linear bounded rewards and actions). We assume that r∗(x) = θ⊤∗ (ΠV x) ∈ [0, 1],
where ΠV = V V ⊤ is a projection onto Ω, ∥θ∗∥2 = 1, and ∥xt∥2 ≤ L ∀t ∈ [T].

As stated in Definition 2, we wish to analyse two types of regret: the reward regret BRr(T, π̂), which
captures the in-manifold reward sub-optimality due to policy learning and approximate sampling,
and the misgeneration regret BRc(T, π̂), that captures the cost associated with generating invalid
designs, i.e., out-of-manifold, namely xt /∈ Ω. We now proceed to bound these two terms separately.
As a first step in this direction, we state the following decomposition result for the reward regret:

Proposition 1 (Bayesian reward regret decomposition). Given a policy π̂ corresponding to
running Algorithm 2, we have:

BRr(T, π̂) ≤
T∑
t=1

E
θ∗∼q

E
xt∼πt

|r∗(x∗)− r∗(xt)|︸ ︷︷ ︸
BRΩ

r (T,π̂)

+

T∑
t=1

E
θ∗∼q

∣∣∣∣ E
xt∼π̂t

[r∗(xt)]− E
xt∼πt

[r∗(xt)]

∣∣∣∣︸ ︷︷ ︸
∆(Ω,Ω̂)(T,π̂)

2Notice that this definition is tight only for linear subspaces as later stated in Assumption 5.1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Notice that this result, which is proved in Appendix D, is generative model agnostic and extends the
result of Li et al. (2024, Appendix B.3.1) for conditional generation interpreted as offline bandit (Sakhi
et al., 2023) to the (online) bandit setting. Crucially, Proposition 1 shows that the in-manifold reward
sub-optimality incurred by policy π̂ over T interactions, decomposes into two terms: BRΩ

r (T, π̂) and
∆(Ω,Ω̂)(T, π̂). The former corresponds to the (Bayesian) regret of solving a classic bandit problem
on the low-dimensional manifold by following the exact policy π, which does not account for the
sampling approximation error. The latter accounts for the in-manifold reward sub-optimality caused
by the gap between the exact policy π and the approximate policy π̂. This discrepancy arises because
the quality of the learned conditional diffusion model is epistemically bounded by the amount n of
the available offline data in Dunlabeled and their data distribution Px.

In the following, we will analyse the terms BRΩ
r (T, π̂) and ∆(Ω,Ω̂)(T, π̂) separately, bounding

the former in a generative model agnostic way, and the latter by leveraging the specific diffusion
model structure via recent statistical results for approximate conditional generation via diffusion
models (Chen et al., 2023; Li et al., 2024). First, for the sake of analysis, we assume the following.
Assumption 5.3 (Latent distribution and score realizability). The latent variable z follows distribution
N (0,Σ) where λminIm ⪯ Σ ⪯ λmaxIm with λmin ≤ λmax ≤ 1 and λmin > 0. Moreover, the true
score is realizable, i.e., ∇x log p

k(x | y) ∈ S.

As a design choice, we select the validity function to be c(x) = ∥(ID −ΠV)x∥2, where (ID −ΠV)
is the projection onto the orthogonal complement of Ω. Therefore, for x ∈ Ω we have c(x) = 0.

Notice that Assumption 5.2 is typically made in the literature on high-dimensional bandits (e.g., (Lale
et al., 2019)), while Assumptions 5.1 and 5.3 have been used to analyse diffusion models under the
manifold hypothesis (e.g., Li et al., 2024; Chen et al., 2023). Moreover, for the sake of analysis,
we consider the neural networks model class S with m-dimensional encoder-decoder structure
to approximate the score function, as defined in (Li et al., 2024, Equation 4.8), and reported for
completeness in Appendix E. We can finally state the following upper bounds.

Theorem 5.1 (Bayesian reward and misgeneration regret upper bound). Given a policy π̂
corresponding to running Algorithm 1 and the assumptions stated above, by choosing k0 =
((Dm2 +D2m)/n)1/6, ν = 1/

√
D, and D ≥ m2, defining ȳ := maxt∈[T] ỹt, we have:

BRr(T, π̂) = Õ

(
m
√
T + T ·OnlineDS(T)

(
m2D +D2m

n

) 1
6

· ȳ
)

(reward regret)

BRc(T, π̂) = Õ

(
T

(√
k0D +

√
mD

n1/2
·
√
ȳ2 +m

))
(misgeneration regret)

where OnlineDS(T) is defined in Eq. 5.

In the following, we briefly discuss the main insights from Theorem 5.1.

Exploration-exploitation on the learned data manifold. The (Bayesian) reward regret bound
decomposes into two additive terms. The first matches the classic Bayesian regret for posterior sam-
pling (with linear rewards) on an m-dimensional action space (Russo & Van Roy, 2014), thus DIFFPS
approximately solves the exploration-exploitation problem on the low-dimensional learned manifold.
Meanwhile, the second term captures the regret due to using the learned manifold as a misspecified
action set (Freedman et al., 2021), showing a dependency on the online distribution shift defined as:

OnlineDS2(T) := max
t∈[T]

EPx|y=ỹt
[ℓ(x, ỹt; ŝ)]

EPx,y
[ℓ(x, y; ŝ)]

(5)

Recalling that ℓ(x, y; ŝ) represents the score estimation error at (x, y), OnlineDS(T) captures the
worst-case ratio between the expected score error according to the exact policy πt = P (· | y = ỹt),
and that under the joint distribution Px,y. This joint distribution is determined by the offline
data distribution Px and the imaginary reward model r̃t as y = r̃t(x) + ξ. This term extends the
distribution shift notion of Li et al. (2024) to the online setting, with the main difference that the
numerator in Eq. 5 depends on the imaginary rewards r̃t computed by the algorithm, rather than on a
value set a priori by the algorithm designer as typically the case with conditional generation. To sum
up, OnlineDS captures the effect of the generative model quality on the reward regret of DIFFPS.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 50 100 150
T

0

100

200

BR
r(
T
,π̂

)

DiffPS

DiffPS-N

m-bandit

D-bandit

(a) Bayesian reward regret

0 50 100 150
t

0.00

0.25

0.50

0.75

1.00

d
(µ

t,
θ ∗

)

(b) Efficient reward learning

0 50 100 150
T

0

5

10

15

20

BR
c(
T
,π̂

)

DiffPS

DiffPS-N

Tεc

(c) Misgeneration regret

Figure 2: Performance of DIFFPS and DIFFPS-N against m-bandit and D-bandit baselines in terms
of Bayesian reward regret (a) and reward learning (b) in a high-dimensional setting with unknown
intrinsic data dimensionality m. In plot (c), it is shown the misgeneration regret for ϵc = 0.15,
controllable with DIFFPS-N if black-box access to c is available.

No-(Bayesian) reward regret via increasing offline data n. Since the action set Ω is unknown in
generative bandits (see Definition 1), exploration-exploitation involves both the reward function r∗
and Ω. Without online access to new data to refine Ω, we learn the action manifold solely from offline
data. Consequently, choosing n = Õ(T 3) renders the reward regret sub-linear in the experiment
budget T (Theorem 5.1). However, the misgeneration regret retains a sublinear dependence on the
ambient dimensionality Õ(

√
k0D). As explained in Sec. 6, this can be mitigated by querying the

validity oracle c(xt) before evaluating the black-box reward r∗ on xt.

In this section, we have shown that the statistical complexity of DIFFPS adapts to the intrinsic
data dimensionality given certain assumptions. But does this behaviour happens also when some
assumptions used for theoretical analysis (e.g., known intrinsic data dimensionality m) do not hold?
In the following, we present an experimental evaluation of DIFFPS answering positively to this point.

6 EXPERIMENTAL EVALUATION

In this section, we perform an experimental evaluation of DIFFPS in a setting where the intrinsic data
dimensionality m is unknown to the algorithm, as opposed to Theorem 5.1 in Sec. 5. In particular,
we aim to analyse the following aspects.

1. The Bayesian reward regret (see Definition 2) of DIFFPS (in Fig. 2a).
2. The ability of DIFFPS to perform efficient reward learning (in Fig. 2b).
3. The misgeneration regret (see Definition 2) and how it can be controlled when black-box access to

the validity function c is available (in Fig. 2c).

We consider a setting where Ω is am-dimensional sphere embedded inD dimensions. We setD = 64
and m = 4, consider a linear reward function with standard Gaussian prior θ∗ ∼ N (0, ID), and
define c(x) as the l2 distance from the data manifold. In these experiments, DIFFPS knows neither Ω
nor m. The oracle step (line 6 in Alg. 1) is implemented by selecting the maximum achieved within
D. While DIFFPS then samples a unique action, DIFFPS-N samples N actions and selects promising
and approximately valid ones by evaluating them via the imaginary reward function and the validity
function c. All experiments are repeated with 5 seeds, and the mean and standard deviation are
plotted. Further details regarding the experimental setting are reported in Apx. F.

Bayesian reward regret. We compare the performances of DIFFPS and DIFFPS-N in terms of reward
regret (see Fig. 2a) against two posterior sampling (PS) baselines. The first baseline (m-bandit)
uses PS to solve exploration-exploitation over the given m-dimensional action set Ω. Meanwhile,
the second baseline (D-bandit) employs PS with the action set defined as the unit sphere in RD.
Interestingly, as can be seen in Fig. 2a, the reward regret incurred by DIFFPS almost matches
that of the bandit scheme given the true m-dimensional action set, and subsequently incurs low
constant regret due to the approximately learned action set, as indicated by Theorem 5.1. Meanwhile,
D-bandit incurs in a significantly higher regret due to the high dimensionality of the action space.

Efficient reward learning. We analyse the ability of DIFFPS and DIFFPS-N to efficiently perform
reward learning (see Fig. 2b) against the same baselines used to evaluated the reward regret, namely

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

m-bandit, which solves exploration-exploitation over the given m-dimensional action set Ω, and
D-bandit, that considers the unit sphere in RD as action set. Fig. 2b shows the convergence of the
reward posterior mean µt (of qt) to the true reward model parameter θ∗ for all t ∈ [T], with respect
to the distance d(µt, θ∗) := ∥ΠV µt − ΠV θ∗∥2/∥ΠV θ∗∥2 over the iterations. Once again, one can
notice that DIFFPS behaves with a similar rate as m-bandit, although neither the low-dimensional
action space Ω nor m are given. This shows that DIFFPS can leverage unlabeled offline data to
efficiently learn the lower dimensional reward parameter.

Misgeneration regret and its controllability. In Fig. 2c, we show the misgeneration regret as in
Def. 2 incurred by DIFFPS and DIFFPS-N given the same environment and setup as in the previous
experiments. Fixed ϵc = 0.15, the dashed black line represents the misgeneration regret obtained by
a policy sampling actions x1, . . . xT with c(xt) = ϵc for all t. As shown in the plot, DIFFPS achieves
an average misgeneration regret smaller than ϵc = 0.15 per iteration. Moreover, when black-box
access to the validity function c is available, it is possible to generate N samples (here N = 30)
at each iteration, and select the most promising valid samples. This can be done by querying c(x)
and selecting a sample satisfying c(x) ≤ ϵc while achieving a reward close to ỹt w.r.t. the reward
function r̃t. Crucially, this procedure does not lead to higher statistical cost as the imaginary reward
r̃t is known. By leveraging this, DIFFPS-N achieves lower misgeneration as well as reward regret.

7 RELATED WORK

We review relevant work in high-dimensional bandit optimization, model-based optimization via
conditional sampling, diffusion models for function optimization, and diffusion models theory.

High-dimensional bandit and Bayesian optimization. Many real-world black-box function opti-
mization problems are modeled as high-dimensional bandit, including Bayesian optimization (Frazier,
2018). Typically, the high-dimensionality is addressed by either leveraging known or learned struc-
ture of the reward function (cf. Kveton et al., 2017; Lale et al., 2019; Kassraie et al., 2022), or by
exploiting a known or learned representation of the action set (cf. Mutny & Krause, 2018; Griffiths &
Hernández-Lobato, 2020; Wang et al., 2016; Kirschner et al., 2019; Djolonga et al., 2013), which
includes VAE-based Bayesian optimization (Gómez-Bombarelli et al., 2018; Griffiths & Hernández-
Lobato, 2020; Grosnit et al., 2021; Goodfellow et al., 2020). In contrast, DIFFPS directly performs
black-box function optimization on the approximate data manifold using a learned diffusion sampler,
without relying on a predefined or learned action space representation.

Model-based optimization via conditional sampling and inverse modeling. Various methods
optimize a black-box function f using datasets as {(xi, yi = f(xi)} through conditional sampling
or inverse models. These approaches can be categorized into offline, e.g., (Uehara et al., 2024b),
which use only pre-existing labeled data, and active, which can query an online oracle (e.g., Brookes
et al., 2019; Kumar & Levine, 2020). Arguably, the closest work to ours is (Kumar & Levine, 2020),
where the authors propose a randomized labeling strategy to approximate a posterior sampling using
GANs (Goodfellow et al., 2020) and VAEs (Kingma, 2013).

Diffusion models guidance, black-box optimization, and fine-tuning. To steer diffusion-based
generation towards designs meeting specific conditions, guidance techniques are commonly em-
ployed (Song et al., 2020; Ho & Salimans, 2022). While these methods can enhance conditional
generation in DIFFPS, they are orthogonal to our work, which focuses on provably optimizing an
unknown function rather than sampling predefined target values. Interestingly, our approach can be
interpreted as a way to automate this process by algorithmically exploring function values to identify
maxima. Additionally, some studies have used diffusion models for offline (Krishnamoorthy et al.,
2023; Kong et al., 2024) and online black-box optimization (Uehara et al., 2024a; Wu et al., 2024).
Unlike these approaches, which rely on upper confidence bounds (Lattimore & Szepesvári, 2020),
we extend posterior sampling with diffusion models and provide both experimental (see Sec. 6) and
theoretical (see Theorem 5.1) evidence that our method’s statistical complexity adapts to the data
intrinsic dimensionality. Moreover, unlike prior works that require a pre-trained diffusion model or
labeled data, we address the case where only unlabeled offline data is available.

Diffusion models theory. Recent research on diffusion models theory relevant to our work falls
into two categories. First, studies have established convergence rates based on the intrinsic data
dimensionality under exact score estimation (e.g., De Bortoli, 2022). Second, recent works have

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

provided statistical guarantees for unconditional and conditional generation by accounting for score
estimation and linking it to offline bandits (Chen et al., 2023; Li et al., 2024; Oko et al., 2023;
Metevier et al., 2019). Building on these results, we establish guarantees for online decision-making,
where an agent generates actions to navigate the exploration-exploitation trade-off with respect to
an unknown reward function, leveraging offline unlabeled data to implicitly learn an action space
corresponding to the data manifold.

8 CONCLUSIONS

In this work, we introduced a posterior sampling scheme with statistical guarantees that uses diffusion
models to solve bandit optimization directly on the learned data manifold. Before concluding, we
highlight a few key discussion points.

Data-dependent guarantees for decision-making. Theorem 5.1 states that the regret incurred
by DIFFPS adapts to the intrinsic data dimensionality m. We believe this measure can help in
bridging the gap between statistical complexity in decision-making and real-world applications,
where data like molecules and proteins have intrinsic dimensions that can be estimated using known
methods (Stanczuk et al., 2024; Kamkari et al., 2024; Campadelli et al., 2015; Verveer & Duin, 1995).

Beyond bandits and diffusion DIFFPS can be generalized beyond diffusion (see GENPS in Ap-
pendix B), and a significant part of the analysis does not rely on a specific generative model. Moreover,
the algorithm and its analysis can be extended to other decision-making settings including contextual
bandits (Chu et al., 2011) and reinforcement learning (Sutton et al., 1998), leading to decision-making
algorithms based on generative models while preserving insightful theoretical guarantees.

To summarize, we introduced generative bandit, a generalization of classic bandit optimization
where the action space is the unknown support of a complex data distribution, also known as data
manifold. Furthermore, we proposed Diffusion Posterior Sampling (DIFFPS), an algorithm that solves
the exploration-exploitation problem directly on the learned data manifold. Next, we presented
regret guarantees showing how the statistical complexity of this process adapts to the intrinsic data
dimensionality and how it depends on the available offline data. Ultimately, we have performed an
experimental evaluation of the proposed algorithm supporting our theoretical claims.

REFERENCES

Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic
bandits. Advances in neural information processing systems, 24, 2011.

Sanae Amani, Mahnoosh Alizadeh, and Christos Thrampoulidis. Linear stochastic bandits under
safety constraints. Advances in Neural Information Processing Systems, 32, 2019.

David Brookes, Hahnbeom Park, and Jennifer Listgarten. Conditioning by adaptive sampling for
robust design. In International conference on machine learning, pp. 773–782. PMLR, 2019.

Paola Campadelli, Elena Casiraghi, Claudio Ceruti, and Alessandro Rozza. Intrinsic dimension esti-
mation: Relevant techniques and a benchmark framework. Mathematical Problems in Engineering,
2015(1):759567, 2015.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estimation and
distribution recovery of diffusion models on low-dimensional data. In International Conference on
Machine Learning, pp. 4672–4712. PMLR, 2023.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint
arXiv:2303.04137, 2023.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff
functions. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics, pp. 208–214. JMLR Workshop and Conference Proceedings, 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Gabriele Corso, Hannes Stärk, Bowen Jing, Regina Barzilay, and Tommi Jaakkola. Diffdock:
Diffusion steps, twists, and turns for molecular docking. arXiv preprint arXiv:2210.01776, 2022.

Valentin De Bortoli. Convergence of denoising diffusion models under the manifold hypothesis.
arXiv preprint arXiv:2208.05314, 2022.

Josip Djolonga, Andreas Krause, and Volkan Cevher. High-dimensional gaussian process bandits.
Advances in neural information processing systems, 26, 2013.

Vikranth Dwaracherla, Seyed Mohammad Asghari, Botao Hao, and Benjamin Van Roy. Efficient
exploration for llms. arXiv preprint arXiv:2402.00396, 2024.

Yonathan Efroni, Shie Mannor, and Matteo Pirotta. Exploration-exploitation in constrained mdps.
arXiv preprint arXiv:2003.02189, 2020.

Fatehy El-Turky and Elizabeth E Perry. Blades: An artificial intelligence approach to analog circuit
design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 8(6):
680–692, 1989.

Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.
Journal of the American Mathematical Society, 29(4):983–1049, 2016.

Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

Rachel Freedman, Rohin Shah, and Anca Dragan. Choice set misspecification in reward inference.
arXiv preprint arXiv:2101.07691, 2021.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duvenaud, José Miguel Hernández-Lobato,
Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre, Timothy D Hirzel,
Ryan P Adams, and Alán Aspuru-Guzik. Automatic chemical design using a data-driven continuous
representation of molecules. ACS central science, 4(2):268–276, 2018.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. Communications of the
ACM, 63(11):139–144, 2020.

Ryan-Rhys Griffiths and José Miguel Hernández-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chemical science, 11(2):577–586,
2020.

Antoine Grosnit, Rasul Tutunov, Alexandre Max Maraval, Ryan-Rhys Griffiths, Alexander I Cowen-
Rivers, Lin Yang, Lin Zhu, Wenlong Lyu, Zhitang Chen, Jun Wang, et al. High-dimensional
bayesian optimisation with variational autoencoders and deep metric learning. arXiv preprint
arXiv:2106.03609, 2021.

Kai Guo, Zhenze Yang, Chi-Hua Yu, and Markus J Buehler. Artificial intelligence and machine
learning in design of mechanical materials. Materials Horizons, 8(4):1153–1172, 2021.

Botao Hao, Tor Lattimore, and Mengdi Wang. High-dimensional sparse linear bandits. Advances in
Neural Information Processing Systems, 33:10753–10763, 2020.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022.

Hamidreza Kamkari, Brendan Leigh Ross, Rasa Hosseinzadeh, Jesse C Cresswell, and Gabriel Loaiza-
Ganem. A geometric view of data complexity: Efficient local intrinsic dimension estimation with
diffusion models. arXiv preprint arXiv:2406.03537, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kirthevasan Kandasamy, Jeff Schneider, and Barnabás Póczos. High dimensional bayesian opti-
misation and bandits via additive models. In International conference on machine learning, pp.
295–304. PMLR, 2015.

Parnian Kassraie, Andreas Krause, and Ilija Bogunovic. Graph neural network bandits. Advances in
Neural Information Processing Systems, 35:34519–34531, 2022.

Diederik P Kingma. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.

Johannes Kirschner, Mojmir Mutny, Nicole Hiller, Rasmus Ischebeck, and Andreas Krause. Adaptive
and safe bayesian optimization in high dimensions via one-dimensional subspaces. In International
Conference on Machine Learning, pp. 3429–3438. PMLR, 2019.

Lingkai Kong, Yuanqi Du, Wenhao Mu, Kirill Neklyudov, Valentin De Bortol, Haorui Wang, Dongxia
Wu, Aaron Ferber, Yi-An Ma, Carla P Gomes, et al. Diffusion models as constrained samplers for
optimization with unknown constraints. arXiv preprint arXiv:2402.18012, 2024.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Diffusion models for black-
box optimization. In International Conference on Machine Learning, pp. 17842–17857. PMLR,
2023.

Aviral Kumar and Sergey Levine. Model inversion networks for model-based optimization. Advances
in neural information processing systems, 33:5126–5137, 2020.

Branislav Kveton, Csaba Szepesvári, Anup Rao, Zheng Wen, Yasin Abbasi-Yadkori, and S Muthukr-
ishnan. Stochastic low-rank bandits. arXiv preprint arXiv:1712.04644, 2017.

Sahin Lale, Kamyar Azizzadenesheli, Anima Anandkumar, and Babak Hassibi. Stochastic linear
bandits with hidden low rank structure. arXiv preprint arXiv:1901.09490, 2019.

Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020. doi:
10.1017/9781108571401.

Zihao Li, Hui Yuan, Kaixuan Huang, Chengzhuo Ni, Yinyu Ye, Minshuo Chen, and Mengdi Wang.
Diffusion model for data-driven black-box optimization. arXiv preprint arXiv:2403.13219, 2024.

Gabriel Loaiza-Ganem, Brendan Leigh Ross, Rasa Hosseinzadeh, Anthony L Caterini, and Jesse C
Cresswell. Deep generative models through the lens of the manifold hypothesis: A survey and new
connections. arXiv preprint arXiv:2404.02954, 2024.

Blossom Metevier, Stephen Giguere, Sarah Brockman, Ari Kobren, Yuriy Brun, Emma Brunskill, and
Philip S Thomas. Offline contextual bandits with high probability fairness guarantees. Advances
in neural information processing systems, 32, 2019.

Mojmir Mutny and Andreas Krause. Efficient high dimensional bayesian optimization with additivity
and quadrature fourier features. Advances in Neural Information Processing Systems, 31, 2018.

Kazusato Oko, Shunta Akiyama, and Taiji Suzuki. Diffusion models are minimax optimal distribution
estimators. In International Conference on Machine Learning, pp. 26517–26582. PMLR, 2023.

Ian Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In International conference on machine learning, pp. 2701–2710. PMLR, 2017.

Ian Osband, Zheng Wen, Seyed Mohammad Asghari, Vikranth Dwaracherla, Morteza Ibrahimi,
Xiuyuan Lu, and Benjamin Van Roy. Approximate thompson sampling via epistemic neural
networks. In Uncertainty in Artificial Intelligence, pp. 1586–1595. PMLR, 2023.

Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. Mathematics of
Operations Research, 39(4):1221–1243, 2014.

Daniel Russo, Benjamin Van Roy, Abbas Kazerouni, Ian Osband, and Zheng Wen. A tutorial on
thompson sampling, 2020. URL https://arxiv.org/abs/1707.02038.

Otmane Sakhi, Pierre Alquier, and Nicolas Chopin. Pac-bayesian offline contextual bandits with
guarantees. In International Conference on Machine Learning, pp. 29777–29799. PMLR, 2023.

12

https://arxiv.org/abs/1707.02038

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gisbert Schneider. Automating drug discovery. Nature reviews drug discovery, 17(2):97–113, 2018.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. arXiv preprint arXiv:0912.3995,
2009.

Jan Pawel Stanczuk, Georgios Batzolis, Teo Deveney, and Carola-Bibiane Schönlieb. Diffusion
models encode the intrinsic dimension of data manifolds. In Forty-first International Conference
on Machine Learning, 2024.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. vol. 135, 1998.

Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. Advances in neural information processing
systems, 33:7537–7547, 2020.

Masatoshi Uehara, Yulai Zhao, Kevin Black, Ehsan Hajiramezanali, Gabriele Scalia, Nathaniel Lee
Diamant, Alex M Tseng, Sergey Levine, and Tommaso Biancalani. Feedback efficient online
fine-tuning of diffusion models. arXiv preprint arXiv:2402.16359, 2024a.

Masatoshi Uehara, Yulai Zhao, Ehsan Hajiramezanali, Gabriele Scalia, Gökcen Eraslan, Avantika
Lal, Sergey Levine, and Tommaso Biancalani. Bridging model-based optimization and generative
modeling via conservative fine-tuning of diffusion models. arXiv preprint arXiv:2405.19673,
2024b.

Julio J Valdés and Alain B Tchagang. Understanding the structure of qm7b and qm9 quantum
mechanical datasets using unsupervised learning. arXiv preprint arXiv:2309.15130, 2023.

Roman Vershynin. High-dimensional probability: An introduction with applications in data science,
volume 47. Cambridge university press, 2018.

Peter J. Verveer and Robert P. W. Duin. An evaluation of intrinsic dimensionality estimators. IEEE
Transactions on pattern analysis and machine intelligence, 17(1):81–86, 1995.

Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando De Feitas. Bayesian
optimization in a billion dimensions via random embeddings. Journal of Artificial Intelligence
Research, 55:361–387, 2016.

Dongxia Wu, Nikki Lijing Kuang, Ruijia Niu, Yi-An Ma, and Rose Yu. Diff-bbo: Diffusion-based
inverse modeling for black-box optimization. arXiv preprint arXiv:2407.00610, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

APPENDIX

A List of symbols 15

B Generative posterior sampling 17

B.1 Algorithm: Generative Posterior Sampling (GENPS) 17

B.2 Extension of results of DIFFPS to GENPS . 17

C Posterior updates 18

D Generative (Bayesian) regret analysis 19

D.1 (Bayesian) reward regret decomposition . 19

D.2 Bounding the (Bayesian) reward regret BRr(T, π̂) 19

D.2.1 Upper bound BRΩ
r (T, π̂) . 19

D.2.2 Upper bound ∆(Ω,Ω̂) . 24

D.3 Bounding the (Bayesian) misgeneration regret . 24

D.4 (Bayesian) regret theorem . 25

E Score network function class 26

F Practical implementation and experimental details 27

F.1 Approximate Oracle Implementations . 27

F.2 Practical Algorithm Implementations . 27

F.3 Experimental Details . 28

F.3.1 Sphere Environment . 28

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A LIST OF SYMBOLS

Basic mathematical objects
X† ≜ Moore-Penrose pseudo-inverse of matrix X
[N] ≜ Set of integers {1, . . . , N}
supp(P) ≜ Support of P , i.e., supp(P) := {x ∈ RD : P (x) > 0}
∥A∥F ≜ Frobenius norm of matrix A

(Generative) Bandit Optimization
T ≜ Number of rounds or interactions
t ≜ Round or interaction index, namely t ∈ [T]
Ω ≜ Action set, if Ω := supp(Px) then Ω corresponds with the data manifold
θ∗ ≜ True reward parameter
Θ ≜ Set of reward parameters
q ≜ Prior distribution on reward parameters Θ, q = q1
rθ∗ ≜ True reward model parametrized by θ∗
πt ≜ (Exact) policy at time t, πt ∈ P(RD)
π = {πt}t∈[T] ≜ (Exact) policy
xt ≜ Action played at iteration t ∈ [T]
yt ≜ Noisy reward observation observed at time t
ϵt ≜ Zero-mean noise observed at time step t ∈ [T]
νθ ≜ Bandit instance with true reward parameter θ
c ≜ Validity function, c : RD → R
Dunlabeled ≜ Unlabeled dataset of n data points, i.e., Dunlabeled = {(xi)}ni=1

Px ≜ Data distribution
n ≜ Number of available offline unlabeled data points, i.e., n := |Dunlabeled|

Generative Models and Diffusion
K ≜ Terminal time of diffusion sampling process
P 0(x | y) ≜ Initial conditional sampling distribution given y, i.e., x(0) ∼ P 0(x | y)
P k(x | y) ≜ Conditional sampling distribution at time k given y, i.e., x(k) ∼ P k(x | y)
∇x log p

k(x | y) ≜ Conditional score at time k
S ≜ Arbitrary function class to approximate score function, defined in App. E for Thr. 5.1.
s ≜ Function in S exactly minimizing Eq. 2, i.e., exact score given realizability in Assumption 5.3
ŝ ≜ Approximate score function computed via approximate score matching
w ≜ Wiener process
ϕk(x′ | x) ≜ Conditional distribution of x(k) given x(0), i.e., ϕk(x′ | x) = N (α(k)x, h(k)ID)
k0 ≜ Early-stopping time of diffusion process
ℓ ≜ Score matching loss function

Diffusion Posterior Sampling (DIFFPS)
P ≜ Exact unconditional generative model distribution, i.e., P = Px and Ω = supp(P)

P̂ ≜ Approximate unconditional generative model distribution
Ω̂ ≜ Support of approximate unconditional generative model, i.e., Ω̂ := supp(P̂)

θ̃t ≜ Reward parameter sampled at iteration t ∈ [T] of DIFFPS
r̃t ≜ Reward function sampled at iteration t ∈ [T] of DIFFPS, i.e., r̃t := r̃θ̃t
ỹt ≜ Maximum of imaginary reward r̃t over Ω, see line 6 Alg. 1
P (· | ỹt) ≜ Exact conditional diffusion model given reward ỹt and reward r̃t
πt ≜ Exact policy at time t, i.e., πt := P (· | ỹt)
Ωr̃t ≜ Support of exact policy πt, i.e., Ωr̃t := supp(πt)

P̂ (· | ỹt) ≜ Approximate conditional diffusion model given reward ỹt and reward r̃t
π̂t ≜ Approximate (sampling policy at time t, i.e., πt := P̂ (· | ỹt)
Ω̂r̃t ≜ Support of approximate policy π̂t, i.e., Ω̂r̃t := supp(p̂it)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Px,y ≜ Joint distribution of data points (x, y) ∈ D, see line 4 Alg. 1
Px|y=ỹt ≜ Conditional distribution of x given y = ỹt from Px,y of (x, y) ∈ D, see line 4 Alg. 1
ξi ≜ Sample from Gaussian noise used to label Dunlabeled, see line 4 Alg. 1
ν2 ≜ Variance of noise Gaussian distribution, i.e., ξi ∼ N (0, ν2), see line 4 Alg. 1
D ≜ Dataset obtained via labeling Dunlabeled, see line 4 Alg. 1
ŝt ≜ Approximate score function estimator at iteration t ∈ [T]

Regret Analysis
BRr(T, π) ≜ Bayesian reward regret, as in Definition 2
BRc(T, π) ≜ Bayesian misgeneration regret, as in Definition 2
D ≜ Ambient space dimensionality
m ≜ Intrinsic data dimensionality, as in Definition 3
BRΩ

r (T, π̂) ≜ In-manifold reward sub-optimality occurred by exact policy π, as in Prop. 1
∆(Ω,Ω̂)(T, π̂) ≜ In-manifold reward sub-optimality due to approximate policy, as in Prop. 1
z ≜ Latent variable, i.e., x = V z with z ∈ Rm
V ≜ Matrix V ∈ RD×m such that x = V z, x ∈ RD, z ∈ Rm
V̂ ≜ Learned approximation of matrix V
ΠV ≜ Projection onto Ω, i.e., ΠV := V V T

L ≜ Upper bound on ∥xt∥2, as in Assumption 5.2
Σ ≜ Variance of latent distribution Pz of z as in Assumption 5.3
λmin ≜ Lower bound on eigenvalues of Σ, as in Assumption 5.3
λmax ≜ Upper bound on eigenvalues of Σ, as in Assumption 5.3
OnlineDS ≜ Online distribution shift, as in Eq. 5
ȳ ≜ Maximum value of ỹt for t ∈ [T], i.e., ȳ := maxt∈[T] ỹt
Ht ≜ History observed until time t ∈ [T], i.e., Ht := {x1, y1, . . . , xt, yt}
Ut ≜ Upper confidence bound at time t
Lt ≜ Lower confidence bound at time t
At ≜ At := ΠV (Σt + λID)ΠV for λ > 0
Bt ≜ Bt ∈ Rm×m full-rank symmetric matrix s.t. At = V BtV

⊤√
βt,δ ≜ (1− δ)-probability confidence interval at time t ∈ [T], as in Lemma D.3

DS ≜ Distribution shift, as in Eq. 19
∠(V̂ , V) ≜ Subspace angle between V and V̂ , i.e., ∠(V̂ , V) := ∥V̂ V̂ ⊤ − V V ⊤∥2F
β̃t ≜ low-dimensional parameter of r̃t, β̃t ∈ Rm
Ψ ≜ Arbitrary function class Ψ : Rm+1 × [k0, T] → Rm

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B GENERATIVE POSTERIOR SAMPLING

In this section, we first present Generative Posterior Sampling (GENPS), a generative model inde-
pendent meta-algorithm that generalizes Diffusion Posterior Sampling beyond diffusion models, and
tackles the generative bandit problem introduced in Definition 1.

B.1 ALGORITHM: GENERATIVE POSTERIOR SAMPLING (GENPS)

Algorithm 2 GENPS: Generative Posterior Sampling (with offline unlabeled data)

1: Input: T : number of online samples, q1 : reward parameter prior, Dunlabeled = {(xi)}ni=1 :
unlabeled data, π : generative model

2: for t = 1, 2, . . . , T do
3: Sample reward parameter θt ∼ qt and define r̃t := rθt
4: Label data in Dunlabeled via r̃t: D := {(xi, yi := r̃t(xi) + ξi}ni=1 with ξi ∼ N (0, ν2)
5: Train conditional generative model π̂t on D
6: Compute maximum imaginary reward ỹt = maxx∈Ω rθt(x)
7: Sample xt ∼ π̂t(· | ỹt) via conditional generation
8: Play xt and observe yt ∼ rθ∗(xt) + ϵt
9: Compute qt+1 via posterior update

10: end for

In the following, we present a detailed explanation of Algorithm 2. First, the algorithm samples
an imaginary reward parameter from the rewards prior, namely θt ∼ qt (line 3). Then, it computes
the labeled dataset D by labeling the dataset Dunlabeled by defining pairs (xi, yi) with yi := r̃t(xi),
where we define r̃t := rθt (line 4). Afterwards, GENPS trains a conditional generative model π̃(· | y)
on the labeled dataset D (line 5), and computes the maximum imaginary reward value over Ω, namely
ỹt (line 6). The same observations regarding this oracle step made in Section 4 w.r.t. DIFFPS extend to
GENPS. Once ỹt is computed, the algorithm approximately samples from the region of the manifold
Ω achieving reward ỹt, namely Ωr̃t , via conditional generation xt ∼ π̂t(· | ỹt) (line 7). Ultimately, it
plays action xt to observe feedback rθ∗(xt)+ ϵt (line 8), and performs posterior update of the reward
prior qt (line 9) to integrate the new evidence gained about the true reward function rθ∗ .

B.2 EXTENSION OF RESULTS OF DIFFPS TO GENPS

Interestingly, the argument for approximate in-manifold exploration shown in Equation 4 w.r.t. DIFFPS
extends to GENPS, and analogously also the regret decomposition Proposition 1. Nonetheless, while
the BRΩ

r (T, π̂) of the reward regret can be bounded analogously for GENPS, the term ∆(Ω,Ω̂)(T, π̂),
as well as the validity regret, require generative model specific estimation guarantees and therefore
the regret results presented in Theorem 5.1 does not trivially extend to Algorithm 2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C POSTERIOR UPDATES

Posterior Sampling. Given reward prior qt = N (µt,Σt), we compute the posterior qt+1 using the
standard closed-form updates for Gaussians given by (Russo et al., 2020):

Σt+1 =
(
Σt + xtx

⊤
t /σ

2
)−1

and µt+1 = Σt+1

(
Σ−1
t µt + xt(yt + ϵt)/σ

2
)−1

(6)

where (µt,Σt) are the prior mean and covariance, respectively, and ϵt ∼ N (0, σ2).

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

D GENERATIVE (BAYESIAN) REGRET ANALYSIS

First, we state the following decomposition result for the (Bayesian) reward regret as presented in
Definition 2.

D.1 (BAYESIAN) REWARD REGRET DECOMPOSITION

Proposition 1 (Bayesian reward regret decomposition). Given a policy π̂ corresponding to running
Algorithm 2, we have:

BRr(T, π̂) ≤
T∑
t=1

E
θ∗∼q

E
xt∼πt

|r∗(x∗)− r∗(xt)|︸ ︷︷ ︸
BRΩ

r (T,π̂)

+

T∑
t=1

E
θ∗∼q

∣∣∣∣ E
xt∼π̂t

[r∗(xt)]− E
xt∼πt

[r∗(xt)]

∣∣∣∣︸ ︷︷ ︸
∆(Ω,Ω̂)(T,π̂)

Proof. First, recall the definition of (Bayesian) reward regret associated to a policy π̂ interacting for
T steps with a problem instance θ∗ ∼ q, namely:

BRr(T, π̂) := E
θ∗∼q

[
T∑
t=1

rθ∗(x
∗)− E

xt∼π̂t

[rθ∗(xt)]

]
To derive the decomposition result we start by writing:

E
xt∼π̂t

[rθ∗(xt)] ≥ E
xt∼πt

[rθ∗(xt)]−
∣∣∣∣ E
xt∼π̂t

[rθ∗(xt)]− E
xt∼πt

[rθ∗(xt)]

∣∣∣∣
= rθ∗(x

∗)− E
xt∼πt

∣∣rθ∗(x∗)− rθ∗(xt)
∣∣− ∣∣∣∣ E

xt∼π̂t

[rθ∗(xt)]− E
xt∼πt

[rθ∗(xt)]

∣∣∣∣
then by defining lt s.t. BRr(T, π̂) = Eθ∗∼q

[∑T
t=1 lt,θ∗

]
, we have:

lt,θ∗ ≤ E
xt∼πt

∣∣rθ∗(x∗)− rθ∗(xt)
∣∣+ ∣∣∣∣ E

xt∼π̂t

[rθ∗(xt)]− E
xt∼πt

[rθ∗(xt)]

∣∣∣∣ , (7)

which leads to:

BRr(T, π̂) = E
θ∗∼q

[
T∑
t=1

lt,θ∗

]

≤ E
θ∗∼q

[
T∑
t=1

E
xt∼πt

|rθ∗(x∗)− rθ∗(xt)|+
∣∣∣∣ E
xt∼π̂t

[rθ∗(xt)]− E
xt∼πt

[rθ∗(xt)]

∣∣∣∣
]

≤
T∑
t=1

E
θ∗∼q

E
xt∼πt

|rθ∗(x∗)− rθ∗(xt)|+
T∑
t=1

E
θ∗∼q

∣∣∣∣ E
x∼π̂t

[rθ∗(xt)]− E
xt∼πt

[rθ∗(xt)]

∣∣∣∣

D.2 BOUNDING THE (BAYESIAN) REWARD REGRET BRr(T, π̂)

Given the decomposition result in Proposition 1 for the reward regret, in the following we proceed by
upper bounding separately the terms BRΩ

r (T, π̂) and ∆(Ω,Ω̂)(T, π̂).

D.2.1 UPPER BOUND BRΩ
r (T, π̂)

We now proceed upper bounding the term BRΩ
r (T, π̂), which captures the regret incurred by the

agent by generating samples within the true manifold Ω with the exact policy π. In fact, notice that
BRΩ

r (T, π̂) does not depend on the approximate policy π̂, but only on the exact policy π. First, we
state the following decomposition result which extends (Russo & Van Roy, 2014, Proposition 1) to
the case of generative, hence stochastic and approximate, policies.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Proposition 2 (Decomposition PS regret on manifold). Given a policy π̂ corresponding to running
Algorithm 1, for any upper confidence sequence {Ut | t ∈ N} defined as in (Russo & Van Roy, 2014,
Section 4.1), we have that:

BRΩ
r (T, π̂) =

T∑
t=1

E
θ∗∼q

E
xt∼πt

[Ut(xt)− rθ∗(xt)] +

T∑
t=1

E
θ∗∼q

[rθ∗(x
∗)− Ut(x

∗)]

Proof. For each term t ∈ [T] within the sum in BRΩ
r (T, π̂) defined as in Proposition 1, we have:

E
θ∗∼q

E
xt∼πt

[rθ∗(x
∗)− rθ∗(xt)]

(1)
= E E

θ∗∼q
E

xt∼πt

[rθ∗(x
∗)− rθ∗(xt) | Ht]

= E E
θ∗∼q

E
xt∼πt

[Ut(xt)− Ut(xt) + rθ∗(x
∗)− rθ∗(xt) | Ht]

(2)
= E E

θ∗∼q
E

xt∼πt

[Ut(xt)− Ut(x
∗) + rθ∗(x

∗)− rθ∗(xt) | Ht]

= E E
θ∗∼q

E
xt∼πt

[Ut(xt)− rθ∗(xt) | Ht] + E E
θ∗∼q

[rθ∗(x
∗)− Ut(x

∗) | Ht]

(3)
= E

θ∗∼q
E

xt∼πt

[Ut(xt)− rθ∗(xt)] + E
θ∗∼q

[rθ∗(x
∗)− Ut(x

∗)]

Where in step (1) we use the law of total expectation with history Ht := {x1, y1, . . . , xt, yt}, in step
(2) we employ Lemma D.1, and in step (3) we use again the law of total expectation in the reverse
direction. Ultimately, summing over t ∈ [T] leads to the result in the statement.

In classic posterior sampling (Russo & Van Roy, 2014), given θt ∼ qt, the action selected is
deterministically chosen as xt ∈ argmaxx∈X rθt(x). On the other hand, DIFFPS first computes
deterministically ỹt ∈ maxx∈Ω rθt(x) and then approximately samples xt ∼ π̂ = P̂ (· | ỹt) via a
generative (diffusion) process. Nonetheless, notice that due to the decomposition result in Proposition
1, the random variable xt within the definition of BRΩ

r (T, π̂) is an imaginary random variable
introduced for the sake of analysis and sampled according to the exact policy πt = P (· | ỹt). This is
a crucial observation to prove the following Lemma used within the proof of Proposition 2 in step (2).

Lemma D.1 (Generative action replacement). Given the notation above, we can state the following:

E E
θ∗∼q

E
xt∼πt

[Ut(xt) | Ht] = E E
θ∗∼q

E
xt∼πt

[Ut(x
∗) | Ht] (8)

Proof. Recall that xt ∼ πt = P (· | ỹt = maxx∈Ω rθt(x)). Since P is the exact distribution rather
than the approximate distribution P̂ , we have that x ∈ argmaxx∈Ω rθt(x) with θt ∼ qt. Meanwhile,
notice that we can characterize x∗ as x∗ ∼ π∗ = P ∗(· | y∗ = maxx∈Ω rθ∗(x)) and therefore
x∗ ∈ argmaxx∈Ω rθ∗(x) with θ∗ ∼ q = q0. Hence we can see that the exact sampling process can
be seen as an implementation of the argmax operation and therefore both Ut(xt) and Ut(x∗) can be
seen as obtained via the sampling process of θt and θ∗ respectively, plus a deterministic operation,
i.e., the argmax. As a consequence, by conditioning on Ht we have that θt and θ∗ are identically
distributed and since Ut(xt) and Ut(x∗) are deterministic given θt and θ∗, then they are identically
distributed as well given Ht as it is the case in the classic posterior sampling analysis, e.g., (Russo &
Van Roy, 2014, Section 5.2, Proposition 1).

We now upper bound the term BRΩ
r (T, π̂) via an optimistic analysis leveraging Assumption 5.1

stating that Ω is a low-dimensional linear subspace, and Assumption 5.2 stating the fact that the
reward is representable via a linear model.

Lemma D.2 (Upper bound BRΩ
r (T, π̂): in-manifold regret given exact generative model). Given a

policy π̂ corresponding to running Algorithm 1, and Assumptions 5.2, 5.1 we have:

BRΩ
r (T, π̂) = Õ(m

√
T) (9)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Proof. First, recall the following decomposition of BRΩ
r (T, π̂) given by Proposition 2.

BRΩ
r (T, π̂) =

T∑
t=1

E
θ∗∼q

E
xt∼πt

[Ut(xt)− rθ∗(xt)] +

T∑
t=1

E
θ∗∼q

[rθ∗(x
∗)− Ut(x

∗)] (10)

For rθ∗ taking values in [0, R] ⊆ [−C,C] this implies:

BRΩ
r (T, π̂) ≤

T∑
t=1

E [Ut(xt)− Lt(xt)]︸ ︷︷ ︸
ϕ

+2R

T∑
t=1

[P(rθ∗(x∗) > Ut(x
∗)) + P(rθ∗(xt) < Lt(xt))]︸ ︷︷ ︸
ψ

(11)
where Ut and Lt are upper and lower confidence bounds Lt : X → R and Ut : X → R
so that Lt(x) ≤ rθ∗(x) ≤ Ut(x) w.h.p. for all x and t. As in a typical optimistic anal-
ysis, we build a ellipsoidal confidence set Θt and define Ut := max{R,maxθ∈Θt θ

⊤x} and
Lt := min{−R,minθ∈Θt

θ⊤x}. Then we will bound ϕ by building a valid upper bound of∑T
t=1 [Ut(xt)− Lt(xt)] for any sequence of actions, and we will bound ψ by 4R by a proper

definition of Θt and therefore of Ut and Lt.

Upper bound ϕ First, we introduce the following objects:

ΠV := V V ⊤ (projection onto Ω)

Σt :=

t∑
i=1

xix
⊤
i = XtX

⊤
t

At := ΠV (Σt + λID)ΠV for λ > 0

Bt ∈ Rm×m full-rank symmetric matrix s.t. At = V BtV
⊤

Then, we bound the t-th element within the sum in ϕ as follows.

ϕt = E |Ut(xt)− Lt(xt)|
(4)
≤ 2E |Ut(xt)− rθ∗(xt)|
(5)
= 2E |θ̃⊤t xt − θ⊤∗ xt|
≤ E ∥xt∥A†

t−1
· ∥θ∗ − θ̃t∥At−1

(6)
≤ 2E ∥xt∥A†

t−1
·
√
βt,δ (12)

Where in step (4) we used the definition of Ut and Lt, in step (5) we used Assumption 5.2, and in
step (6) we employed Lemmata D.4 and D.3. We proceed bounding the first term within Equation 12.
We have:

E ∥xt∥A†
t−1

(7)
≤ min{1,E ∥xt∥A†

t−1
}

(8)
= min{1,E ∥V ⊤xt∥B−1

t−1
}

where in step (7) we use the fact that lt ≤ 1, and in step (8) we have used the definition of At and Bt.
Now we can bound the sum of such contributions as:

T∑
t=1

min{1,E ∥V ⊤xt∥B−1
t−1

} ≤ 2m log

(
1 +

TL2

mλ

)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

by using Lemma D.5. We can now bound ϕ as:

ϕ =

T∑
t=1

ϕt

(9)
≤

√√√√T

T∑
t=1

ϕ2t

(10)
≤ 2

√√√√TβT,δ

T∑
t=1

min{1,E ∥V ⊤xt∥B−1
t

}

(11)
≤ 2

√
TβT,δ2m log

(
1 +

TL2

mλ

)
where in step (9) we used Cauchy-Schwarz, in step (10) we used the fact that βT,δ ≥ βt,δ∀t ∈ [T]

and in step (11) we leveraged Lemma D.5. Here
√
βT,δ := R

√
m log

(
1+TL2/λ

δ

)
+
√
λ as stated in

Lemma D.3. By plugging βT,δ into the expression above one obtains that with probability at least
1− δ:

ϕ ≤ 2

(
R

√
m log

(
1 + TL2/λ

δ

)
+

√
λ

)√
T2m log

(
1 +

TL2

mλ

)
= Õ

(
m
√
T
)

Upper bound ψ By construction of the sequence of confidence intervals βt,δ as in Lemma D.3,
we have that P(θ /∈ Θt | Ht) ≤ 1/T and therefore ψ ≤ 4R as argued in (Russo & Van Roy, 2014,
Section 6.2.1).

Lemma D.3 (Confidence Intervals for m-dimensional linear bandits). Given the same assumption of
Theorem 5.1, for any δ > 0, with probability at least 1− δ for all t ∈ [T] we have that θ∗ lies in the
set:

Θt =

{
θ ∈ Rm : ∥θ̂t − θ∥At

≤
√
βt,δ := R

√
m log

(
1 + tL2/λ

δ

)
+

√
λ

}
(13)

Proof. This result can be proved analogously to (Lale et al., 2019, Theorem 3) but given knowledge
of the projection operator ΠV = V V ⊤, thus leading to the same result as in classic m-dimensional
linear bandits, e.g., (Abbasi-Yadkori et al., 2011, Theorem 2).

Lemma D.4 (Subspace Cauchy–Schwarz).
|θ̃⊤t xt − θ⊤∗ xt| ≤ ∥xt∥A†

t
· ∥θ∗ − θ̃t∥At

(14)

Proof. We can write:

|θ̃⊤t xt − θ⊤∗ xt|
(12)
= |θ̃⊤t (ΠV xt)− θ⊤∗ (ΠV xt)|
= |(ΠV xt)⊤(θ̃t − θ∗)|
= |(ΠV xt)⊤(A†

t)
1
2A

1
2
t (θ̃t − θ∗)|

= |[(A†
t)

1
2ΠV xt]

⊤A
1
2
t (θ̃t − θ∗)|

(13)
≤ ∥(A†

t)
1
2ΠV xt∥ · ∥A

1
2
t (θ̃t − θ∗)∥

(14)
= ∥ΠV xt∥A†

t
· ∥A

1
2
t (θ̃t − θ∗)∥

(15)
= ∥xt∥A†

t
· ∥A

1
2
t (θ̃t − θ∗)∥

(16)
= ∥xt∥A†

t
· ∥θ∗ − θ̃t∥At

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

where step (12) in due to xt ∼ πt and supp(πt) ⊆ Ω, in step (13) we used Cauchy-Schwarz, and in
step (14) we have used that

∥(A†
t)

1
2ΠV xt∥ =

√
[(A†

t)
1
2ΠV xt]⊤(A

†
t)

1
2 (ΠV xt)

=

√
(ΠV xt)T (A

†
t)

1
2 (A†

t)
1
2 (ΠV xt)

=

√
(ΠV xt)⊤A

†
t(ΠV x)

= ∥ΠV xt∥A†
t
,

in step (15) we have used the fact that xt = ΠV xt and in step (16) we have used the following:

∥A
1
2
t (θ̃t − θ∗)∥ =

√
[A

1
2
t (θ̃t − θ∗)]⊤[A

1
2
t (θ̃t − θ∗)]

=

√
(θ̃t − θ∗)⊤A

1
2
t A

1
2
t (θ̃t − θ∗)

=

√
(θ̃t − θ∗)⊤At(θ̃t − θ∗)

= ∥θ̃t − θ∗∥At

Lemma D.5 (Projected potential lemma in expectation). Given the same assumptions of Theorem
5.1, we have:

T∑
t=1

min{1,E ∥V ⊤xt∥2B−1
t−1

} ≤ 2m log

(
1 +

TL2

mλ

)
(15)

Proof. We first prove the result without the expectation in the LHS, for any sequence of iterates xt,
and then use it to upper bound the expression with expectation as in the statement. For t ≥ 1 we
have:

det (Bt) = det
(
Bt−1 + V ⊤xtx

⊤
t V
)

= det
(
B

1/2
t−1(Im +B

−1/2
t−1 V ⊤xtx

⊤
t V B

−1/2
t−1)B

1/2
t−1

)
= det (Bt−1) det

(
1 + ∥V ⊤xt∥2B−1

t−1

)
= λm

t∏
i=1

(
1 + ∥V ⊤xi∥2B−1

i−1

)
Hence for t = T :

T∑
i=1

log
(
1 + ∥V ⊤xi∥2B−1

i−1

)
= log

(
det(BT)

λm

)
≤ m log

(
1 +

TL2

mλ

)
where the last step is due to (Lale et al., 2019, Lemma 11). Ultimately, we use the fact that
min{1, u} ≤ 2 log(1 + u) to obtain:

T∑
t=1

min{1, ∥V ⊤xt∥2B−1
t−1

} ≤ 2m log

(
1 +

TL2

mλ

)
(16)

Due to the definition of the expectation one can then upper bound the LHS in the statement with the
bound in Equation (16) as it holds for any sequence of xt.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

D.2.2 UPPER BOUND ∆(Ω,Ω̂)

We now proceed upper bounding the term ∆(Ω,Ω̂), which captures the regret incurred in-manifold
due to the approximate diffusion model sampling.
Lemma D.6 (Upper bound ∆(Ω,Ω̂): in-manifold regret due to approximate generative model). Given
a policy π̂ corresponding to running Algorithm 1, and given the same assumptions of Theorem 5.1,
we have:

∆(Ω,Ω̂) ≤ T ·DS(ȳ)

(
m2D +D2d

n

) 1
6

· ȳ (17)

where ȳ := maxt∈[T] ỹt.

Proof. Recall that:

∆(Ω,Ω̂) =

T∑
t=1

E
θ∗∼q

∣∣∣∣ E
xt∼π̂t

[rθ∗(xt)]− E
xt∼πt

[rθ∗(xt)]

∣∣∣∣
From Li et al. (2024) we know that ∀t ∈ [T], we have:

E
θ∗∼q

∣∣∣∣ E
xt∼π̂t

[rθ∗(xt)]− E
xt∼πt

[rθ∗(xt)]

∣∣∣∣ ≤ DistShift(ỹt)

(
m2D +D2m

n

) 1
6

· ỹt (18)

where DS(ỹt) is defined as follows. Given the imaginary reward r̃t, and labeled dataset Dt =
{(xi, yi = r̃t(xi) + ξi)}i∈[n], we denote with Px,y the joint distribution such that (xi, yi) ∼ Px,y.
And given ỹt, we define the conditional distribution of x given ỹt as Px|y=ỹt , then we have:

DS2(ỹt) :=
EPx|y=ỹt

[ℓ(x, ỹt; ŝ)]

EPx,y [ℓ(x, y; ŝ)]
(19)

We now define the following online distribution shift:

OnlineDS2(t′) := max
t∈[t′]

DS2(ỹt) = max
t∈[t′]

EPx|y=ỹt
[ℓ(x, ỹt; ŝ)]

EPx,y
[ℓ(x, y; ŝ)]

Therefore, we can upper bound the expression above as follows.

∆(Ω,Ω̂) ≤ T ·OnlineDS(T)

(
m2D +D2m

n

) 1
6

· ȳ

where ȳ := maxt∈[T] ỹt.

D.3 BOUNDING THE (BAYESIAN) MISGENERATION REGRET

Lemma D.7 (Bayesian misgeneration regret upper bound). Given a policy π̂ corresponding to
running Algorithm 1, and given the same assumptions of Theorem 5.1, we have:

BRc(T, π̂) = Õ

T
√k0D +

√
1

λmin

√
Dm2 +D2m

n
·
√

ȳ2

∥βt∥Σ
+m

Proof. Recall that:

BRc(T, π̂) :=

T∑
t=1

E
x∼π̂t

[c(x)] (20)

Given assumptions 5.1, 5.3, 5.2 and recalling that π̂t := P̂ (· | ỹt), we can upper bound an element of
the sum within Equation 20 as in (Li et al., 2024, Theorem 6.2), obtaining:

E
x∼π̂t

[c(x)] = O

(√
k0D +

√
∠(V̂ , V) ·

√
ỹ2t

∥β̃t∥Σ
+m

)
(21)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

where β̃t ∈ Rm is the low-dimensional parameter of r̃t, namely for x ∈ Ω we have r̃t(x) := θ̃⊤t x =

θ̃⊤t (ΠV x) = (ΠV θt)
⊤x = β̃⊤

t z . Formally, by defining ȳ := maxt∈[T] ỹt, and β̄ := mint∈[T] ∥β̃t∥Σ,
we have

T∑
t=1

E
x∼π̂t

[c(x)] = O

(
T

(√
k0D +

√
∠(V̂ , V) ·

√
ȳ2

β̄
+m

))
(22)

where ∠(V̂ , V) is the subspace angle between matrices V̂ and V . Here matrix V̂ represents the
representation matrix implicitly learned by the diffusion model, while V is the matrix representing
the ground truth subspace. Formally, ∠(V̂ , V) measures the column space difference between V̂ and
V , and is defined as:

∠(V̂ , V) := ∥V̂ V̂ ⊤ − V V ⊤∥2F
We can derive the statement by recalling that by (Li et al., 2024, Theorem 5.4), we have:

∠(V̂ , V) = Õ

(
1

λmin

√
N (S, 1/n)D

n

)
= Õ

(
1

λmin

√
Dm2 +D2m

n

)
(23)

D.4 (BAYESIAN) REGRET THEOREM

We can now state an upper bound on the Bayesian regret.
Theorem 5.1 (Bayesian reward and misgeneration regret upper bound). Given a policy π̂ corre-
sponding to running Algorithm 1 and the assumptions stated above, by choosing k0 = ((Dm2 +

D2m)/n)1/6, ν = 1/
√
D, and D ≥ m2, defining ȳ := maxt∈[T] ỹt, we have:

BRr(T, π̂) = Õ

(
m
√
T + T ·OnlineDS(T)

(
m2D +D2m

n

) 1
6

· ȳ
)

(reward regret)

BRc(T, π̂) = Õ

(
T

(√
k0D +

√
mD

n1/2
·
√
ȳ2 +m

))
(misgeneration regret)

where OnlineDS(T) is defined in Eq. 5.

Proof. BRr(T, π̂) is bounded as shown within Section D.2 and BRc(T, π̂) is bounded as in Section
D.3.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

E SCORE NETWORK FUNCTION CLASS

For the sake of analysis, we consider the neural networks model class S with m-dimensional encoder-
decoder structure to approximate the score function, as defined in (Li et al., 2024, Equation 4.8),
namely:

S =

{
sV,ψ(x, y, k) =

1

h(k)
(V · ψ(V ⊤x, y, k)− x) : V ∈ RD×m, ψ ∈ Ψ : Rm+1 × [k0, T] → Rm

}
where V is a matrix with orthonormal columns and Ψ is an arbitrary function class. Notice that a
score network function class with encoder-decoder structure as S was first proposed by Chen et al.
(2023) to derive statistical complexities for unconditional generation via diffusion models.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

F PRACTICAL IMPLEMENTATION AND EXPERIMENTAL DETAILS

F.1 APPROXIMATE ORACLE IMPLEMENTATIONS

In the following, we propose two practical methods to approximately implement the oracle step (line
6) in Algorithm 1.

In-dataset maximizer. One classic method typically used in optimization via inverse model consist
in selecting the in-dataset maximizer (Krishnamoorthy et al., 2023; Kumar & Levine, 2020). Namely:

ỹt = max
x∈D

r̃t(x)

In this way, ỹt can be computed efficiently, namely linearly in n, and by using a best-of-N scheme
for sampling via diffusion, as discussed below, it is possible to generate actions xt better w.r.t. the
imaginary reward r̃t than the ones already present in the dataset.

Binary search on output space. In principle, the oracle step consists in an output-maximization
problem over an unknown set Ω. Given enough and well distributed unlabeled data the diffusion model
support Ω̂ := supp(P̂) approximates well Ω, namely Ω̂ ≈ Ω. Then one can perform approximate
maximization over the output space of r̃t considering the domain Ω via the following scheme:

Algorithm 3 Approximate binary search oracle implementation

1: Input: ϵ1 : search stopping condition, ϵ2 : validity oracle approximation, ϵ3 : sampling approxi-
mation, Rmax : upper bound reward function, r̃t : imaginary reward

2: Compute maximum reward in dataset L := maxx∈D r̃t(x)
3: Set U = Rmax

4: while U − L ≥ ϵ1 do
5: Compute middle point yM = (U − L)/2

6: Perform conditional sampling xM ∼ P̂ (· | yM)
7: if c(xM) ≤ ϵ2 and |r̃t(xM)− yM | ≤ ϵ3 then
8: Set L = yM
9: else

10: Set U = yM
11: end if
12: end while
13: Return xt = xM

Best-of-N sampling. In practice, to improve the performances of both oracles presented above, it is
possible to sample N points SN = {x1t , . . . xNt } via conditional generation, select the valid ones by
checking c(xit) ≤ ϵc for a chosen value of ϵc, and finally compute the maximum w.r.t. the imaginary
reward r̃t, namely xt := argmaxx∈SN

r̃t(x). This scheme is used by DIFFPS-N in Sec. 6.

F.2 PRACTICAL ALGORITHM IMPLEMENTATIONS

Score Estimation and Sampling. As already mentioned in 4, we don’t train a conditional score at ev-
ery iteration of the algorithm but leverage the fact that ∇x log p(x|y) = ∇x log p(x)+∇x log p(x|y).
We approximate p(x|y) = N (x⊤θ, σ2), with a fixed σ and we approximate ∇x log p(x) using score
matching. More formally, we use the following variance preserving SDE for the noise perturbation
Song et al. (2020), the discretization of which corresponds to the forward diffusion in DDPM Ho
et al. (2020).

dx(k) = −1

2
β(k)dk +

√
β(k)dw(k) (24)

where β(k) = βmin + (βmax − βmin)k. As in Song et al. (2020), we choose βmin = 0.1 and
βmax = 20. The objective that we minimize during training is the continuous weighted combination
of fisher divergences that is given by:

Ek∼U(k0,1)

[
λ(k)Ex(0)∼p0(x)Ex(k)∼pk(·|x(0))[∥s(x(k), k)−∇x(k) log pk(x(k)|x(k))∥]

]
27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

where:

pk(x(k)|x(0)) = N
(
e−

1
4k

2(βmax−βmin)− 1
2kβminx(0), I − Ie−

1
2k

2(βmax−βmin)−kβmin

)
and we choose ϵ = 10−5 as well as λ(k) =

√
E∥∇x(k) log pk(x(k)|x(0))∥22.

To solve the corresponding reverse SDE, we use a predictor corrector Song et al. (2020) and scale
∇x log p(x|y) by a factor γ(t) that is decreasing in k and hence the guidance strength is increased
when solving the reverse SDE. We found this to be particularly useful in the case of linear rewards as
in this setting, we cannot train a regressor/classifier on the noised samples, like one would typically
do in guidance where the reward function is parameterized by a neural network. As r̃t is not invariant
with respect to the projector ΠV onto the manifold, we further use Tweedie’s formula, to estimate the
final sample one would obtain from unconditional sampling:

x0 =
xk − (1− αk)∇ log pk(xk)√

αk

where αk = e−
1
2 t

2(βmax−βmin)−kβmin . We found that this allowed for effective guidance towards
high reward regions. In the case of a linear reward function, we then use this estimate of x0 in the
conditional score p(y|xk) = N (y;x⊤0 θ, σ

2) and take the gradient w.r.t. xk meaning that we also
differentiate through the estimated score.

F.3 EXPERIMENTAL DETAILS

In the following section, we give further details on the implementation of DIFFPS in both experiments.

F.3.1 SPHERE ENVIRONMENT

Data and Setup. We consider the setting where Ω = {x = V z : ∥z∥1 ≤ 1} where V ∈ RD×m is a
matrix that consists of the first m columns of a matrix in the special orthogonal group, SO(D). In
order to generate the data, we sample z uniformly from a unit sphere in Rm and then project it into
RD. We choose m = 4, D = 64 and the number of samples n = 1.2 · 106. Such high number of
samples were necessary in order to be able to sample from high reward regions as outlined below.

Reward and Cost. As previously mentioned, we use a linear reward with a standard Gaussian prior
on θ and the cost function is given as the L2 distance to the sphere in D dimensions. Due to the
fact that the reward maximum is always achieved at a single point on the surface of the sphere, we
required a fairly large dataset, in order to be able to approximately sample those points.

Neural Networks and Training Algorithms. To parametrize the score function we use a 20-Layer
MLP with skip connections and a hidden dimension of 128 neurons. For the time embedding we use
Gaussian Random Features (Tancik et al., 2020). We train our model for 30 epochs with a batch size
of 128, using the Adam optimizer with cosine annealing and warm restarts.

Posterior Sampling. We use the standard closed form updates for Gaussians given by (Russo et al.,
2020):

Σt+1 =
(
Σt + xtx

⊤
t /σ

2
)−1

µt+1 = Σt+1

(
Σ−1
t µt + xt(yt + ϵt)/σ

2
)−1

where (µt,Σt) are the posterior mean and covariance, respectively and ϵt ∼ N (0, σ2). We assume
the noise σ2 to be known and set it to 0.1. This also motivates the Gaussian likelihood p(y|x) as
explained in F.2.

Best-of-N. We set N = 30 and ϵc = 0.15. If none of the 30 samples achieved a cost lower than
this, we simply took the sample with the minimum cost. We also tried to the binary search oracle
as presented in F.1 but found that the accuracy in the conditional generation required was too high,
for the model we trained. In other words, we could not generate samples xM that achieved a reward
close enough to yM . We however believe that with an even better generative model, this method
could be beneficial and could be explored further in the future.

28

	Introduction
	Background and Notation
	Bandit optimization, exploration-exploitation, and posterior sampling
	Diffusion models, score matching, and conditional generation

	Problem Setting: Generative Bandits with Offline Data
	Online learning interaction process
	Optimality measures: Bayesian reward and misgeneration regret

	Diffusion Posterior Sampling with Offline Unlabeled Data
	Theoretical Guarantees: Reward and Misgeneration Regret
	Experimental Evaluation
	Related Work
	Conclusions
	List of symbols
	Generative posterior sampling
	Algorithm: Generative Posterior Sampling (GenPS)
	Extension of results of DiffPS to GenPS

	Posterior updates
	Generative (Bayesian) regret analysis
	(Bayesian) reward regret decomposition
	Bounding the (Bayesian) reward regret BRr(T,)
	Upper bound BRr(T,)
	Upper bound (, "0362)

	Bounding the (Bayesian) misgeneration regret
	(Bayesian) regret theorem

	Score network function class
	Practical implementation and experimental details
	Approximate Oracle Implementations
	Practical Algorithm Implementations
	Experimental Details
	Sphere Environment

