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Abstract

Reinforcement learning with human feed-001
back (RLHF) is critical for aligning Large002
Language Models (LLMs) with human003
preference. Compared to the widely studied004
offline version of RLHF, e.g. direct preference005
optimization (DPO), recent works have shown006
that the online variants achieve even better007
alignment. However, online alignment requires008
on-the-fly generation of new training data,009
which is costly, hard to parallelize, and suffers010
from varying quality and utility. In this paper,011
we propose a more efficient data exploration012
strategy for online preference tuning (OP-013
TUNE), which does not rely on human-curated014
or pre-collected teacher responses but dy-015
namically samples informative responses for016
on-policy preference alignment. During data017
generation, OPTUNE only selects prompts018
whose (re)generated responses can potentially019
provide more informative and higher-quality020
training signals than the existing responses.021
In the training objective, OPTUNE reweights022
each generated response (pair) by its utility023
in improving the alignment so that learning024
can be focused on the most helpful samples.025
Throughout our evaluations, OPTUNE’d LLMs026
maintain the instruction-following benefits027
provided by standard preference tuning whilst028
enjoying 1.27-1.56x faster training speed due029
to the efficient data exploration strategy.030

1 Introduction031

Reinforcement Learning from Human Feedback032

(RLHF) has emerged as an effective method for033

training large language models (LLMs) to generate034

responses that are more aligned with human035

preferences (Ziegler et al., 2019a; Ouyang et al.,036

2022a), and has underpinned the successes of037

systems like ChatGPT and the Gemini models.038

Offline preference tuning (PT) techniques such039

as DPO (Rafailov et al., 2023), IPO (Azar et al.,040

2024a), and KTO (Ethayarajh et al., 2024) are also041

viable solutions for utilizing the human preference 042

dataset to enhance the alignment qualities of of 043

LLMs but these techniques require large volumes 044

of annotated response data. Its counterpart, online 045

PT, exhibits promising potential but demands 046

continuous sampling of new responses from the 047

LLM policy during iterative training which is an 048

expensive operation in its own right. Considering 049

online DPO training as an example, we can break 050

the overall process down into four steps: (1) Re- 051

ward model (RM) training. (2) Sampling responses 052

from the trained policy (LLM). (3) Evaluate 053

responses by the rewards from RM. (4) Preference 054

Tuning (PT) on the reward-labeled responses. 055

Given the time-consuming and resource-intensive 056

nature of these steps, our goal in this work is to 057

study methods for expediting the entire training 058

cycle without compromising the quality of the 059

trained models, thereby enhancing the practical 060

feasibility and effectiveness of online DPO.

Generation Rewarding Training

Time 71.8% 0.1% 28.1%

Table 1: Time percentage for each procedure in online
DPO. The batch size of generation and training have
been optimized for GPUs to ensure good parallelism.
We set the max response length of both generation and
training to 512.

061
Based on our analysis, as reported in Section 1, 062

it is evident that generating responses and training 063

the policy model are the most time-consuming 064

steps of online DPO training. Can we naïvely 065

reduce the number of responses being generated? 066

Unfortunately, in preliminary experiments, we 067

find that randomly selecting half of the generated 068

responses for reuse during iterative training results 069

in a significant degradation in instruction-following 070

performance compared to that of policies trained 071

in a fully online setting. This leads to another ques- 072
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tion: Can we maintain the performance of online073

PT while adhering to a fixed generation budget?074

First, to reduce the generation cost without075

compromising instruction-following capabilities or076

alignment quality, we propose to only re-generate077

and update the lowest-rewarded responses pro-078

duced under the latest LLM policy. We posit that079

the policy’s behavior on these specific prompts080

can likely be improved further than in scenarios081

where its responses are already high quality poten-082

tially leading to greater improvements in overall083

reward at each step. Thus, we generate new re-084

sponses for those selected prompts and mix them085

with the existing high-rewarded responses to con-086

stitute the full training set. By implementing the087

reward-based selection strategy, we address the088

dual goals of reducing the computational cost of089

response generation in online DPO while retaining090

the instruction-following capability, which leads to091

more data-efficient online RLHF.092

Second, we investigate the utility of response093

pairs in online DPO and propose a weighted094

DPO (wDPO) objective that focuses learning on095

preference pairs that may contribute the most to096

the online alignment process. This is motivated097

by the simple observation that in the original DPO098

loss formulation, the positive-negative labels are099

a binary quantization of their scalar rewards and100

thus cannot explicitly reflect their reward gap. The101

reward gap measures the utility of response pairs in102

DPO training because comparing the preferred and103

rejected responses with a larger reward gap reveals104

more clues for improving the alignment. By di-105

rectly assigning larger weights to these samples, in106

each round online wDPO concentrates learning on107

the high-utility samples yielding improved learning108

efficiency.109

We conduct comprehensive experiments to110

evaluate the OPTUNE-trained LLM policies,111

incorporating instruction-following evaluations,112

multiple benchmarks, and human studies. Specif-113

ically, we select LIMA (Zhou et al., 2023) and114

AlpacaEval (Li et al., 2023b) test sets as free-form115

instruction evaluations and conduct pair-wise com-116

parisons by employing GPT-4 as the judge. Given117

the potential for biases from the judge to confound118

model-based evaluations, human studies and bench-119

mark evaluations such as MMLU (Hendrycks120

et al., 2020a), GSM8k (Cobbe et al., 2021a), and121

TruthfulQA (Lin et al., 2021) are also included.122

Through our experiments we demonstrate that123

OPTUNE trains better LLMs than baselines whilst124

enjoying 1.27-1.56x training speedup due to its 125

efficient data-exploration strategy. 126

To sum up, OPTUNE is the first efficient data 127

generation algorithm for online RLHF. By se- 128

lectively regenerating only the lowest-rewarded 129

responses and using a weighted DPO objective 130

that emphasizes pairs with larger reward gaps, 131

OPTUNE significantly enhances both the gener- 132

ation and training efficiency of the RLHF pipeline, 133

thereby paving the way for a promising future in 134

which preference-aligned LLMs can be developed 135

in a resource-efficient manner. 136

2 Preliminaries 137

The prevalent RLHF pipeline was proposed 138

by Ziegler et al. (2019b) and adopted by sub- 139

sequent works including (Stiennon et al., 2020; 140

Nakano et al., 2021; Ouyang et al., 2022b; Bai 141

et al., 2022). The standard method comprises 142

three stages: (1) Supervised Fine-Tuning (SFT) 143

on human-annotated/machine-generated responses; 144

(2) reward model training on preference data; and 145

(3) Reinforcement Learning based on the SFT 146

checkpoint and feedback received from the RM. 147

Reward Model Training Following (Ouyang 148

et al., 2022a; Touvron et al., 2023), we utilize the 149

Bradley-Terry model (Bradley and Terry, 1952) in 150

RM training procedure, which provides a proba- 151

bilistic framework for predicting preferences based 152

on pairwise comparisons. The goal is to learn a 153

set of parameters θ that best explains the observed 154

preferences between pairs of possible responses. 155

Specifically, the loss function is given by: 156

L(θ) = −E(x,yw,yl)∼D [log σ (rθ(x, yw)− rθ(x, yl))] ,
(1) 157

where σ(·) is the sigmoid function; rθ(x, y) is the 158

scalar reward from the RM; yw and yl denotes cho- 159

sen and rejected responses, respectively. This loss 160

function represents the negative log-likelihood of 161

the model preferring the chosen response yw over 162

the rejected response yl under the Bradley-Terry 163

model. 164

RL finetuning The reinforcement learning 165

stage (Bai et al., 2022; Gao et al., 2022) does not 166

require predefined responses. It further fine-tunes 167

the SFT model πSFT(y|x) = p(y|x; θSFT) to maxi- 168

mize the reward r(x, y) under a KL regularization 169

to prevent the model from deviating too far from 170
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Figure 1: The pipeline of our OPTUNE: it only explores the low-reward examples and reuses the high-quality
examples, which improves the generation efficiency of the iterative online PT. We also exploit the weighted DPO to
enhance the training efficiency by focusing on the high-utility samples. πt: the policy in iter t. R: the reward model.
ρ: the prompt selection ratio for re-generations.

the SFT model:171

maximize
θ

Ex∼Dp

[
Ey∼πθ(y|x)

[
r(x, y)

]
− αDKL

[
πθ(y|x) | πSFT(y|x)

]]
.

(2)172

where πθ(y|x) = p(y|x; θ); α > 0 is a con-173

stant to control the regularization strength; Dp174

denotes the prompt set used for sampling the re-175

sponse y ∼ πθ(y|x) from the trained policy and176

construct pair (x, y) for RL training. Note the177

KL term here is defined on the conditional dis-178

tribution p(y|x; θ) as DKL [πθ(y|x)|πsft(y|x)] =179

Ey∼p(y|x;θ)

[
log πθ(y|x)

πsft(y|x)

]
.180

DPO One representative method for preference181

optimization is DPO (Rafailov et al., 2023). It fol-182

lows Ziebart et al. (2008) and starts with a closed-183

form solution for Eq. (2):184

πr(y | x) = 1

Z(x)
πref(y | x) exp

(
1

β
r(x, y)

)
,

(3)185

where Z(x) is the partition function: Z(x) =186 ∑
y πref(y | x) exp

(
1
β r(x, y)

)
. Then they rear-187

range the Eq. (3) and express the reward as a func-188

tion of the policy:189

r(x, y) =
1

β1

(
log(Z(x)) + log

(
πt+1(y|x)
πt(y|x)

))
,

(4)190

where πt and πt+1 are the policies on the iteration191

t and t + 1, respectively. It aims to optimize an192

implicit reward function as a binary classification193

loss:194

LDPO(πt+1;πt) = −E(x,yu,yl)∼D

[
log σ

(
β1 log

πt+1(yw|x)
πt(yw|x)

− β1 log
πt+1(yl|x)
πt(yl|x)

)]
.

(5)195

While in the standard offline DPO setting 196

(Rafailov et al., 2023) the preference datasets 197

are collected before training begins, Chen et al. 198

(2024c); Dong et al. (2024) extend DPO to the on- 199

line setting, by sampling two new responses to each 200

prompt at every iteration. These two responses are 201

passed to the reward model to identify the preferred 202

and dispreferred response, thereby training the pol- 203

icy on continuously updated preference data with 204

each iteration. 205

3 Method 206

In this section, we develop OPTUNE to improve 207

both the data generation efficiency and training 208

efficiency of online preference alignment. First, to 209

reduce the cost of iterative data re-generation in the 210

online setting, we propose a simple but effective 211

reward-based prompt selection strategy that only 212

updates the responses for prompts with the low- 213

est scoring current responses according the reward 214

model. Then, motivated by the observation that 215

the quantization of scalar rewards to binary labels 216

required by the online DPO objective necessarily 217

leads to information loss, we propose a weighted 218

DPO loss variant that prioritizes the learning of 219

response pairs with a larger reward gap, thereby 220

improving online learning efficiency even further. 221

3.1 Data generation efficiency: Reward-based 222

prompt selection 223

According to the Eq. (2), the ultimate goal of RL 224

finetuning is to maximize the expected reward 225

for the generated responses. We first investigate 226

whether different prompts contribute differently 227

to the total reward gain at each step. For each 228

iteration of online DPO, we generate the response 229

for xi ∈ P and the reward model returns the 230

reward value ri of each response. We compute the 231
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Figure 2: The reward gains brought by two subsets: top-
50% ranked prompts and bottom-50% ranked prompts.
More gains are achieved from the bottom-50% prompts
than the top-50% prompts.

reward gain from prior iteration, and also provide232

statistics showing how different prompts contribute233

to the overall reward gain.234

As illustrated in Fig. 2, we divide the prompt235

set into two subsets based on the reward rankings236

of their preferred responses: the top-50% and the237

bottom-50%. We then analyze the percentage of238

reward gains from each subset. For example, in239

Iter2, when comparing the reward on each prompt240

to the Iter1, only 31.4% of the reward gain origi-241

nates from prompts that generated higher-reward242

responses in the previous iteration (top-50 subset),243

while 68.6% comes from prompts that produced244

lower-reward responses (bottom-50 subset). That245

indicates if the response’s reward is low in this it-246

eration, the prompt is more likely to produce a247

high-reward response in the following iteration.248

Conversely, if the response’s reward is high in the249

current iteration, it is less likely to generate a high-250

reward response in the next iteration.251

Motivated by this observation, we propose a252

reward-based prompt selection mechanism that pri-253

oritizes prompts such that due to their currently low254

reward, if their responses were to be re-generated255

and trained on in the next round, the total reward256

gain of the policy would likely to be larger. Using257

this selection criteria our algorithm ensures that258

each training iteration focuses on the most informa-259

tive examples, thereby improving overall genera-260

tion efficiency. Algorithm 1 formally defines how261

OPTUNE’s reward-based prompt selection works.262

3.2 Training efficiency: Weighted DPO Loss263

To improve training efficiency, we more closely ex-264

amine the iterative online DPO algorithm presented265

in Algorithm 2.266

In Line 5 of Algorithm 2, the scalar reward val-267

ues from the reward model (RM) are reduced to268

binary labels to determine the chosen (positive)269

and rejected (negative) responses. This quantiza-270

Algorithm 1 OPTune for Iterative Online DPO
1: Initialize policy parameters π0; ranked prompt set Pt and

training set Dt at iteration t; Prompt selection ratio ρ;
generation count g = 0;

2: for t = 0 to T − 1 do
3: Clear temporary response storageRt = {}
4: Calculate the number of prompts to regenerate N =
⌈ρ× |Pt|⌉

5: Set g = 0
6: while g < N do
7: Pop the lowest ranking prompt xi from Pt

8: Sample two responses yi
1 and yi

2 for xi using πt

9: Store responses: Rt ←Rt ∪ {(xi, yi
1), (x

i, yi
2)}

10: Increment the generation count g = g + 1
11: end while
12: for each xi ∈ Pt do
13: if (xi, yi

1), (x
i, yi

2) ∈ Rt then
14: Use the new responses fromRt for xi

15: else
16: Use the previous responses from Dt for xi

17: end if
18: end for
19: Compute rewards ri1 and ri2 for each

(xi, yi
1), (x

i, yi
2) ∈ Rt

20: Construct the training set Dt = {(xi, yi
w), (x

i, yi
l ) |

xi ∈ Pt}
21: Rank the prompts inPt according to rewards to obtain
Pt+1

22: Compute the wDPO (or DPO) loss and update the
policy parameters πt to obtain πt+1

23: end for

Algorithm 2 Iterative Online DPO
1: Initialize policy parameters π0 and prompt set P
2: for t = 0, 1, . . . , T − 1 do
3: Sample two responses yi

1 and yi
2 from πt for each

prompt xi in P
4: Compute the rewards ri1 and ri2 for

(xi, yi
1), (x

i, yi
2) ∈ Dt

5: For each prompt xi, determine the winning re-
sponse yi

w and the losing response yi
l based on their

rewards r1 and r2 and construct the training set Dt =
{(xi, yi

w), (x
i, yi

l ) | xi ∈ P}
6: Compute the DPO loss and update the policy parame-

ters πt to obtain πt+1

7: end for

tion fails to leverage the full potential of the reward 271

signals ri1 and ri2 and leads to information loss. For 272

example, a larger reward gap indicates that there 273

are more significant differences between the two 274

responses that can be used to improve alignment. 275

In contrast, DPO loss with binary labels treats all 276

pairs equally and may lead to an inefficient train- 277

ing process. We hypothesize that to address these 278

issues, it is crucial to integrate the reward scalars 279

into the learning process more directly, ensuring 280

that the updates to πt reflect both the direction and 281

magnitude of human preferences, thus enhancing 282

the overall alignment of the policy with desired 283

outcomes. 284
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To this end, we introduce a weighted DPO285

Loss (wDPO) that incorporates explicit reward sig-286

nals directly into the loss function for online DPO287

training. This modification aims to enhance the288

training efficiency by making full use of the avail-289

able reward information and better aligning the290

policy updates with the underlying human prefer-291

ences. The wDPO Loss is derived by modifying292

the original DPO loss to include a weighting factor293

that represents the explicit rewards:294

LwDPO = −E(x,yw,yl)∼D [R(x, yw, yl) · log (I(x, yw, yl))] ,

I(x, yw, yl) = σ

(
β1 log

πt+1(yw|x)
πt(yw|x)

− β1 log
πt+1(yl|x)
πt(yl|x)

)
,

R(x, yw, yl) = σ [β2 (r(x, yw)− r(x, yl))] .

295

where I(x, yw, yl) denotes the implicit reward;296

R(x, yw, yl) captures the relative preference be-297

tween the winning and losing responses based on298

their explicit reward difference, scaled by β2.299

By incorporating these explicit rewards, wDPO300

improves the efficiency of the training process by301

prioritizing learning from pairs that show a signif-302

icant difference in rewards. This approach makes303

the model more sensitive to examples where the304

distinction between preferred and less preferred305

responses is clear, helping it learn the essential fea-306

tures that distinguish highly preferred responses307

from those less preferred. As a result, wDPO308

guides policy updates more effectively toward the309

desired behavior, enhancing the overall training310

efficiency and effectiveness. This structured ap-311

proach allows wDPO to leverage the full spectrum312

of reward information, ensuring that each training313

example contributes optimally to learning based on314

the strength of its preference signal.315

4 Experiment316

4.1 Experiment setup317

Our experiments are run on 8 NVIDIA A100 80GB318

GPUs and the implementations are based on Hug-319

gingface TRL (von Werra et al., 2020). Similar320

to other online RLHF algorithms (Schulman et al.,321

2017; Ouyang et al., 2022a), our OPTUNE will322

distill the human preferences into the reward mod-323

els first. On the policy training, it begins with a324

supervised-finetuned (SFT) model, with the care-325

fully designed OPTUNE loss and reward-based326

sampling strategy for selected generations, i.e., re-327

generating the low-score samples while reusing328

high-score samples.329
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Figure 3: OPTUNE (wDPO loss): Y-axis denotes the win
score against Zephyr-7B-beta model. Rdm_ρ: random se-
lection ratio (all striped bars). Under the same selection ra-
tio, OPTUNE’d models could perform better than the models
tuned with random-selection strategy. The policies in prompt
selection ρ = 0.5 and ρ = 0.7 could be comparable with
the policies in ρ = 1 while enjoying 30% to 50% generation
efficiency, which proves the effectiveness of OPTUNE.

Dataset. We use Ultrachat (Cui et al., 2023), 330

which contains 200k prompts, as the preference 331

dataset and is widely used (Chen et al., 2024c; Wu 332

et al., 2024). Considering the budget, we only ran- 333

domly sample 48k prompts on the original set to 334

construct our prompt set which are fixed in our ex- 335

periments and used as the inputs of the on-the-fly 336

generations for iterative training of the policy. 337

Models and Training. Zephyr-7b-sft-full (Tun- 338

stall et al., 2023), which is SFT-ed on Ultra- 339

Chat200k dataset with decent instruction-following 340

capability, is employed as the RL finetuning start 341

point. For the reward models, we select the one 342

fine-tuned by Xiong et al. (2024), which shares 343

the same backbone, Mistral-7B, with the πSFT 344

and top-ranked on RewardBench (Lambert et al., 345

2024). Thus, we believe it is a strong reward model 346

that could provide informative reward signals. The 347

prompt and generation length are both set to 512. 348

We defer the other hyperparameters, e.g., learning 349

rate, into Appendix C. 350

Baselines. We have three baselines: (1). 351

Zephyr-7B-beta, which conducts offline DPO 352

training on the total 200k (prompt, preferred re- 353

sponse, rejected response) triplet in UltraFeedback 354

dataset, in which the responses come from many 355

competitive models, e.g., GPT-3.5-turbo and GPT4. 356

We use it as the offline baseline and expect our 357

models under online settings could be significantly 358

better than this baseline though we employ much 359

less prompts for training. (2). Models tuned with 360

selection ratio ρ = 1.0 and wDPO/DPO’ed for 361

three iterations on the whole prompt set, which is 362

under a fully online setting and has the largest gen- 363

eration cost. We expect the OPTUNE with smaller 364
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ratios could be on par with it. (3). Models tuned365

with random selection ratio. Models with OPTUNE366

should surpass them. We also keep the iteration 0367

the same for all the OPTUNE models for fair com-368

parison, i.e., we will do one online iteration first369

under ρ = 1 and save the checkpoint & responses370

for further OPTUNE.371

Free-form Instruction Evaluation. We mainly372

focus on free-form generation. Drawing on re-373

cent advancements (Li et al., 2023b; Zheng et al.,374

2023; Chiang et al., 2023) we rely on strong LLMs,375

i.e., GPT-4 (OpenAI et al., 2023) as our judge.376

The LIMA test set (Zhou et al., 2023), consist-377

ing of 300 prompts, is chosen as our test set. The378

same rating prompt as Chen et al. (2024a) is em-379

ployed to compare the responses generated by the380

policy with those produced by the baseline, i.e.,381

Zephyr-7B-beta. To counteract the positional382

bias identified in GPT-4’s ratings (Wang et al.,383

2023), we collect two sets of ratings by swapping384

the order of test and baseline model responses. A385

response is deemed winning if it achieves at least386

one win and no more than one tie. We assess per-387

formance using the “win score”, which is defined388

as:389

Win Score = 50 + 100× nwin − nlose

n
, (6)390

where nwin and nlose are the number of examples391

rated as better and worse than the baseline, respec-392

tively; n is the total number of evaluation examples.393

A Win Score ≥ 50 indicates that the test model per-394

forms at least as well as the baseline.395

Benchmarks. Following LM-Evaluation-396

Harness (Gao et al., 2023), we test the trained397

policy π on TruthfulQA (Lin et al., 2021),398

MMLU (Hendrycks et al., 2020b), GSM8K (Cobbe399

et al., 2021b), and Hellaswag (Zellers et al., 2019)400

to evaluate the model’s ability on truthfulness,401

challenging multi-task solving, grade-school-level402

math, and common-sense reasoning. For the403

few-shot demo setting, we adopt the default404

settings in the lm-evaluation-harness and we405

summarize it together with the metrics in Table 5.406

We expect the model could also improve its407

performance on benchmarks since RLHF can also408

help the reasoning (AI@Meta, 2024; Chen et al.,409

2024c).410

4.2 Results on Generation Efficiency411

OPTune on wDPO loss. We first study OPTUNE412

on wDPO loss. We sweep ρ = {0.3, 0.5, 0.7, 1.0}413
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Figure 4: OPTUNE (DPO loss): Even in the special case,
i.e., DPO loss is a special case of our proposed wDPO, we
could still have the conclusion that OPTUNE with ρ = 0.7
could maintain the performance but save 30% generation cost.
Rdm_ρ: random selection ratio.

for both OPTUNE and random selection ratio and 414

train three epochs using the same hyperparameters, 415

e.g., β2, learning rate, etc. We defer the details of 416

the hyperparameters into Appendix C. 417

In Fig. 3 we show that OPTUNE significantly 418

outperforms the random-selection baselines and is 419

comparable with models trained under fully online 420

settings ρ = 1 while achieving 30-50% generation 421

efficiency. We also observe an expected trend that 422

when the number of online samples is increased, 423

i.e., larger ρ, the win score goes up, corroborating 424

observations in (Tang et al., 2024). 425

To elucidate the training efficiency of our OP- 426

TUNE further, we visualize the win score of dif- 427

ferent OPTUNE ratios with training time in Fig. 5. 428

The training time includes generation, rewarding, 429

and wDPO training time and we consider their sum 430

total to provide a clear picture as to the level of 431

efficiency OPTUNE achieves. We note that, when 432

calculated in terms of GPU hours, the savings are 433

8x larger since we run the experiments on 8xA100 434

GPUs at a time. 435

OPTune on DPO loss. We also verify the effec- 436

tiveness of OPTUNE’s selection criteria when train- 437

ing with the regular DPO objective (Pi et al., 2024; 438

Yuan et al., 2024). We observe similar results on 439

the standard DPO loss and showcase them in Fig. 4. 440

OPTUNE matches or surpasses the performance 441

of vanilla online DPO (ρ = 1) in iteration 1 and 442

3, though in iteration 2, it lags slightly behind the 443

vanilla setting. However, it still enjoys 1.27-1.56x 444

training speedup, saving 30% to 50% on generation 445

time. Moreover, we note that OPTUNE consistently 446

outperforms the random selection criteria across 447

different ratios. 448

4.3 Results on Training Efficiency 449

We compare two different losses, i.e., DPO and 450

wDPO losses under different prompt selection ra- 451

tios and show the results in Fig. 6. We find that 452
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Figure 5: The win score vs. training time on different
prompt selection ratios. By re-generating the responses
on only half of the prompts, OPTUNE could achieve the
win score on par with the vanilla online version (ρ = 1).

wDPO with OPTUNE significantly surpasses DPO453

with OPTUNE. We keep the training configs, e.g.,454

the learning rates in each iteration, optimizer, and455

the max length of the prompt & generation, exactly456

the same for the online wDPO and online DPO un-457

der the same ratio ρ. Thus, we believe the training458

time is almost the same for wDPO and DPO under459

the same ratio ρ. Our wDPO loss could achieve460

faster convergence than DPO loss, i.e., it reaches461

the same “win score” faster than DPO does., which462

reflects the superiority of our proposed wDPO loss.463

4.4 Evaluation Results on AlpacaEval,464

Benchmarks, Human Study465

We provide more evaluation results including Al-466

pacaEval (Li et al., 2023b), Benchmarks, and hu-467

man studies to further test the performance of the468

policies trained by OPTUNE and verify the effec-469

tiveness of our method in this subsection.470

AlpacaEval. To alleviate the concerns of evaluat-471

ing the open-ended generation only on LIMA test472

set, we also test our trained policies on the AlpacaE-473

val (Li et al., 2023b), which contains 805 prompts474

and is more diverse. Due to the limited GPT-4 API475

budget, we only test the models trained with wDPO476

loss in the final iteration (iter3). We show the re-477

sults in Table 2. It aligns with the results in Fig. 4478

and Fig. 3: OPTUNE is better than the random479

selection strategy and no selection (ρ = 1.0).480

Benchmark Results. The benchmark results of481

the trained policies are shown in Table 4 and482

higher values indicate better performance. The483

policies trained with the prompt selection ratio484

ρ = 0.7 show superiority against the offline poli-485

cies (Zephyr-7B-Beta) and vanilla online (ρ =486

1.0) policies regarding on the “Average” score. It487

also achieves the highest scores on TruthfulQA and488

GSM8k, showing gains in math problem-solving489

and factuality.490
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Figure 6: The online DPO vs. online wDPO under dif-
ferent prompt selection ratios. The dashed line denotes
the OPTUNE ratio ρ = 0.5.

Human Study. To further evaluate how OPTune 491

performs against full generation as well as random 492

selection, we randomly select 50 responses gener- 493

ated by OPTune and compare them first to random 494

selection and then to full generation (ρ = 1.0). 495

On the 100 response pairs, we collect 400 ratings 496

from 8 participants and find that participants pre- 497

fer OPTune responses 24.07% of the time against 498

14.81% for random selection, and perform simi- 499

larly to full generation with users ranking its output 500

better 23.44% of the time, full generation 25.0% of 501

the time and considering outputs similar 51.56 % 502

of the time. The details of how we conduct human 503

studies could be referred to Appendix D. 504

5 Related Work 505

RLHF algorithms Proximal Policy Optimiza- 506

tion(PPO) (Ouyang et al., 2022b; Schulman et al., 507

2017) is the most widely-used online preference 508

tuning framework in the industry, which leads to 509

the success of the ChatGPT (OpenAI et al., 2023), 510

Gemini (Team et al., 2023), and LLaMA (Touvron 511

et al., 2023). It requires training a reward model as 512

a proxy of the human preference and on-the-fly gen- 513

erations in the online training procedure. Online 514

DPO/wDPO stays relevant with it but the difference 515

is that the online generation and policy updates are 516

less frequent than PPO, in which the policy will be 517

updated per batch. On the other hand, several of- 518

fline RLHF methods such as DPO (Rafailov et al., 519

2023), IPO (Azar et al., 2024b), KTO (Ethayarajh 520

et al., 2024), and SLIC-HF (Zhao et al., 2023) 521

also show promises for learning of human pref- 522

erence. These methods are considered offline be- 523

cause their preference datasets are kept unchanged 524

during RLHF but the performance of the offline 525

RLHF could not be on par with the online ver- 526

sion (Tang et al., 2024; Dong et al., 2024). Thus, in 527
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Table 2: Alpaca-eval scores on the iteration-3 models trained under different settings. LC_win_rate: length-
controlled win rate, which is the standard metric in AlpacaEval-2.0. (r): policies trained with a random selection
strategy. ρ = 0.7 performs the best and even better than the ρ = 1.0.

Model Zephyr-7B-Beta ρ=1.0 ρ = 0.5(r) ρ=0.5 ρ = 0.7 ρ = 0.7(r)

LC_win_rate 13.2 15.43 15.28 15.63 16.45 15.39

this work, we focus on investigating online iterative528

RLHF, which demands substantial computational529

resources for on-the-fly sampling from the policies.530

OPTUNE is proposed to reduce the cost in the re-531

generation process by selecting a subset of prompts532

to regenerate while keeping the outstanding perfor-533

mance of the trained models.534

Prompt Selection. A powerful LLM usually re-535

quires high-quality training data, and the commu-536

nity has focused on creating high-quality instruc-537

tion finetuning (IF) datasets, either via distilling of538

the SOTA API LLMs (Taori et al., 2023; Peng et al.,539

2023; Chiang et al., 2023) or requiring experienced540

human annotators (Conover et al., 2023; Ouyang541

et al., 2022a). But there are still low-quality ex-542

amples in these IF datasets and a series of data543

selection strategies (Chen et al., 2023b; Li et al.,544

2023a; Cao et al., 2024) are proposed to further en-545

hance the quality of datasets by filtering out these546

data, which shares the same objective with the OP-547

TUNE: optimizing towards the training data quality.548

However, these data selection approaches are not549

ideal for prompt selection in the iterative RLHF550

paradigm as they primarily focus on the quality of551

the responses, not targeting selecting the prompt552

for efficient data exploration.553

Inference Speedup of LLMs. One orthogonal554

direction to our method is the inference speedup555

of LLMs. Traditionally, batch inference and Key-556

Value (KV) cache (Ge et al., 2023) are employed to557

accelerate the decoding process, but they consume558

substantial GPU memory and hinder the utilization559

of large batch sizes. Thus, some works (Shazeer,560

2019; Ainslie et al., 2023; Xiao et al., 2023;561

Dettmers et al., 2022) are proposed to reduce562

the memory used by KV cache through chang-563

ing model architecture or using quantization tech-564

niques. On the other hand, some other approaches565

(Leviathan et al., 2023; Chen et al., 2023a; Cai566

et al., 2024) are proposed to minimize the num-567

ber of decoding steps to speed up the inference of568

LLMs. Compared to it, OPTUNE achieves effi-569

ciency by reusing the generations in the previous570

step. But all these inference speedup techniques571

can be used for the selected prompts of OPTUNE,572

providing further faster generation speed. 573

Evaluation of LLMs. To evaluate the instruction- 574

following ability of the policies in iterative RLHF 575

procedure, we employ GPT-4 (OpenAI et al., 2023) 576

as our judge and employ LIMA (Zhou et al., 2024) 577

test set which contains 300 prompts and larger than 578

the MT-bench (Zheng et al., 2023) (80 prompts), 579

Koala (Geng et al., 2023) (180 prompts), and Wiz- 580

ardLM test set (Xu et al., 2023) (218 prompts). 581

AlpacaEval (Li et al., 2023b) is also employed to 582

evaluate the trained policy on instruction-following 583

ability more comprehensively. Moreover, follow- 584

ing the previous works (Chen et al., 2023b, 2024b), 585

we also include human study for a side-by-side 586

comparison of the model responses and test the 587

models on four most commonly used benchmarks, 588

TruthfulQA (Lin et al., 2021), MMLU (Hendrycks 589

et al., 2020a), GSM8K (Cobbe et al., 2021b), and 590

Hellaswag (Zellers et al., 2019). 591

6 Discussions & Conclusion 592

To sum up, we introduced OPTUNE in this work, 593

a novel approach to enhance the training and gen- 594

eration efficiency of online RLHF by selectively 595

regenerating only the lowest-reward responses 596

and representing the reward gap explicitly in our 597

wDPO objective. This method focuses computa- 598

tional resources on the most informative samples, 599

significantly reducing the need for full-scale data 600

regeneration and achieving up to 2x in generation 601

efficiency and a 1.56x speedup in training effi- 602

ciency. Our comprehensive experiments show that 603

OPTUNE maintains or improves the alignment of 604

LLMs with human preferences. Finally, we believe 605

OPTUNE could also be applied to other online 606

RLHF algorithms such as Best-of-N (Stiennon 607

et al., 2020) and PPO (Schulman et al., 2017), 608

since PPO has a replay buffer which contains 609

“off-policy” examples and we could select the 610

prompts using the same strategy to encourage the 611

generations on the low-reward prompts, which we 612

leave for the future work. 613
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A Limitations1023

Despite the advancements presented by OPTUNE1024

in online RLHF, OPTUNE’s performance heavily1025

relies on the accuracy and consistency of the reward1026

model (RM). If the RM does not effectively cap-1027

ture the nuances of human preferences or suffers1028

from biases, the efficiency gains from our approach1029

could lead to suboptimal policy training.1030

B Broader Impact1031

In this paper, we introduce OPTUNE, enhancing1032

the training efficiency and generation efficiency of1033

the online RLHF. The broader impacts of this study1034

are two-fold:1035

1. Advancing AI Alignment with Human Val-1036

ues: The proposed OPTUNE significantly im-1037

proves the alignment of AI behaviors with1038

human preferences. This enhancement is vi-1039

tal for deploying AI in sensitive applications,1040

ensuring that AI responses adhere closely to1041

human ethical standards.1042

2. Enhancing Efficiency in AI Training: OP-1043

TUNE accelerates the LLM training process1044

without compromising output quality. This1045

advance reduces computational bottlenecks,1046

enabling faster development cycles and mak-1047

ing high-performing AI models more accessi-1048

ble, especially to organizations with limited1049

computational resources.1050

C Hyperparameters1051

We use learning rate = 5e-7 for DPO/wDPO train-1052

ing with RMSProp (Hinton, 2012) as our optimizer;1053

the warmup ratio is set to 0.1 and the batch size1054

is 128. To encourage the model’s exploration, we1055

choose top_p=0.9 and temperature T=1.0 as the1056

generation config in data generation part.1057

D Human Study1058

For human study, we randomly choose 50 prompts1059

from the original LIMA test set and present them1060

to the participants. We recruit 8 volunteer students1061

as the participants in the human study. For each1062

prompt, we create two comparison pairs, one pair1063

contains responses from the two policies trained by1064

OPTUNE ρ = 0.7 and OPTUNE ρ = 1.0, respec-1065

tively; another pair contains responses from the1066

policy trained by OPTUNE ρ = 0.7 and the policy1067

trained by random selection ρ = 0.7. Through this1068

Figure 7: UI for the human study. At each step, the partici-
pants are presented with the prompt and generations from two
models and asked to indicate their preferences.

way, we create a total of 100 unique pairs. Each 1069

participant is presented with 50 randomly selected 1070

pairs from these 100 unique pairs and is asked 1071

to choose which one they prefer with the guiding 1072

criteria based on (Chen et al., 2024b). In the UI 1073

interface, they can indicate a preference or a tie as 1074

shown in Fig. 7. 1075

Overall we obtain 400 ratings, 200 for each com- 1076

parison. The distribution is shown in Table 3. 1077

We also provide the user guidelines which is 1078

used in our human study: 1079

Below are responses to the following 1080

questions from two different models. 1081

Please evaluate which of the answers 1082

would be more helpful. If you think both 1083

answers are equally helpful, please select 1084

the last option. 1085

During your evaluation, consider the fol- 1086

lowing criteria to judge the more helpful 1087

response: 1088

• Alignment with User’s Intent: En- 1089

sure the response directly addresses 1090

the user’s question or task, interpret- 1091

ing underlying intentions when not 1092

explicitly stated. 1093

• Clarity and Precision: Responses 1094

should be easy to understand, avoid- 1095

ing unnecessary jargon and main- 1096

taining focus on the user’s query. 1097

• Directness and Relevance: Keep 1098

the response strictly related to the 1099

task, avoiding unrelated informa- 1100

tion or tangents. 1101

• Efficiency and Brevity: Provide 1102

comprehensive yet concise informa- 1103

tion, steering clear of repetitive or 1104
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overly detailed content that does not1105

enhance understanding.1106

E Benchmark Results1107

We show the benchmark results in Table 4, where1108

higher values indicate better performance.1109

F The benchmark settings1110

The detailed benchmark settings are shown in Ta-1111

ble 5.1112

G Rating prompt1113

Following Chen et al. (2024a), we also use the GPT-1114

4 rating prompt in the original Vicuna blog post 11115

and we provide the detailed form in Table 6.1116

1https://lmsys.org/blog/2023-03-30-vicuna/
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Comparison OPTune Win (%) Loss (%) Tie (%)

OPTUNE ρ = 0.7 vs OPTUNE ρ = 1.0 23.44 25.00 51.56

OPTUNE ρ = 0.7 vs Rdm ρ = 0.7 24.07 14.81 61.11

Table 3: Results of the human study, the pairs of responses to each prompt are rated by 4 people on average.

Table 4: Benchmark results for different prompt selection ratios. We use bold font to mark the highest score.

Models Hellaswag MMLU TruthfulQA GSM8k Average

Zephyr-7B-SFT 78.54 55.67 40.37 32.75 51.83
Zephyr-7B-Beta 82.05 58.13 50.1 36.24 56.63
Iter3 (ρ=1.0) 81.44 58.49 45.04 42.3 56.82
Iter3 (rdm=0.5) 83.06 58.39 45.77 42.00 57.31
Iter3 (rdm=0.7) 82.17 58.55 46.22 42.15 57.27
Iter3 (ρ=0.5) 82.48 58.62 46.64 39.88 56.91
Iter3 (ρ=0.7) 82.78 58.46 46.81 42.53 57.65

Datasets TruthfulQA GSM8k HellaSwag MMLU

# few-shot 0 5 0 0
Metric mc2 acc acc_norm acc

Table 5: The metrics and few-shot demos for each benchmark. It is the standard setting in LM-Harness-Evaluation
repo (Gao et al., 2023)

Table 6: The GPT4 evaluation prompt.

[System Prompt]
You are a helpful and precise assistant for checking the quality of the answers.
[User Prompt]
[Question]
[The Start of Assistant1’s Answer]
Answer 1
[The End of Assistant1’s Answer]
[The Start of Assistant2’s Answer]
Answer 2
[The End of Assistant2’s Answer]

We would like to request your feedback on the performance of two AI assistants in response to the
user question displayed above. Please rate the helpfulness, relevance, accuracy, and level of details
of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score
indicates better overall performance. Please first output a single line containing only two values
indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. In
the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any
potential bias and ensuring that the order in which the responses were presented does not affect your
judgment.
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