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Abstract

Reinforcement learning with human feed-
back (RLHF) is critical for aligning Large
Language Models (LLMs) with human
preference. Compared to the widely studied
offline version of RLHF, e.g. direct preference
optimization (DPO), recent works have shown
that the online variants achieve even better
alignment. However, online alignment requires
on-the-fly generation of new training data,
which is costly, hard to parallelize, and suffers
from varying quality and utility. In this paper,
we propose a more efficient data exploration
strategy for online preference tuning (OP-
TUNE), which does not rely on human-curated
or pre-collected teacher responses but dy-
namically samples informative responses for
on-policy preference alignment. During data
generation, OPTUNE only selects prompts
whose (re)generated responses can potentially
provide more informative and higher-quality
training signals than the existing responses.
In the training objective, OPTUNE reweights
each generated response (pair) by its utility
in improving the alignment so that learning
can be focused on the most helpful samples.
Throughout our evaluations, OPTUNE’d LLMs
maintain the instruction-following benefits
provided by standard preference tuning whilst
enjoying 1.27-1.56x faster training speed due
to the efficient data exploration strategy.

1 Introduction

Reinforcement Learning from Human Feedback
(RLHF) has emerged as an effective method for
training large language models (LLMs) to generate
responses that are more aligned with human
preferences (Ziegler et al., 2019a; Ouyang et al.,
2022a), and has underpinned the successes of
systems like ChatGPT and the Gemini models.
Offline preference tuning (PT) techniques such
as DPO (Rafailov et al., 2023), IPO (Azar et al.,
2024a), and KTO (Ethayarajh et al., 2024) are also

viable solutions for utilizing the human preference
dataset to enhance the alignment qualities of of
LLMs but these techniques require large volumes
of annotated response data. Its counterpart, online
PT, exhibits promising potential but demands
continuous sampling of new responses from the
LLM policy during iterative training which is an
expensive operation in its own right. Considering
online DPO training as an example, we can break
the overall process down into four steps: (1) Re-
ward model (RM) training. (2) Sampling responses
from the trained policy (LLM). (3) Evaluate
responses by the rewards from RM. (4) Preference
Tuning (PT) on the reward-labeled responses.
Given the time-consuming and resource-intensive
nature of these steps, our goal in this work is to
study methods for expediting the entire training
cycle without compromising the quality of the
trained models, thereby enhancing the practical
feasibility and effectiveness of online DPO.
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Table 1: Time percentage for each procedure in online
DPO. The batch size of generation and training have
been optimized for GPUs to ensure good parallelism.
We set the max response length of both generation and
training to 512.

Based on our analysis, as reported in Section 1,
it is evident that generating responses and training
the policy model are the most time-consuming
steps of online DPO training. Can we naively
reduce the number of responses being generated?
Unfortunately, in preliminary experiments, we
find that randomly selecting half of the generated
responses for reuse during iterative training results
in a significant degradation in instruction-following
performance compared to that of policies trained
in a fully online setting. This leads to another ques-



tion: Can we maintain the performance of online
PT while adhering to a fixed generation budget?

First, to reduce the generation cost without
compromising instruction-following capabilities or
alignment quality, we propose to only re-generate
and update the lowest-rewarded responses pro-
duced under the latest LLM policy. We posit that
the policy’s behavior on these specific prompts
can likely be improved further than in scenarios
where its responses are already high quality poten-
tially leading to greater improvements in overall
reward at each step. Thus, we generate new re-
sponses for those selected prompts and mix them
with the existing high-rewarded responses to con-
stitute the full training set. By implementing the
reward-based selection strategy, we address the
dual goals of reducing the computational cost of
response generation in online DPO while retaining
the instruction-following capability, which leads to
more data-efficient online RLHF.

Second, we investigate the utility of response
pairs in online DPO and propose a weighted
DPO (wDPO) objective that focuses learning on
preference pairs that may contribute the most to
the online alignment process. This is motivated
by the simple observation that in the original DPO
loss formulation, the positive-negative labels are
a binary quantization of their scalar rewards and
thus cannot explicitly reflect their reward gap. The
reward gap measures the utility of response pairs in
DPO training because comparing the preferred and
rejected responses with a larger reward gap reveals
more clues for improving the alignment. By di-
rectly assigning larger weights to these samples, in
each round online wDPO concentrates learning on
the high-utility samples yielding improved learning
efficiency.

We conduct comprehensive experiments to
evaluate the OPTUNE-trained LLM policies,
incorporating instruction-following evaluations,
multiple benchmarks, and human studies. Specif-
ically, we select LIMA (Zhou et al., 2023) and
AlpacaEval (Li et al., 2023b) test sets as free-form
instruction evaluations and conduct pair-wise com-
parisons by employing GPT-4 as the judge. Given
the potential for biases from the judge to confound
model-based evaluations, human studies and bench-
mark evaluations such as MMLU (Hendrycks
et al., 2020a), GSM8k (Cobbe et al., 2021a), and
Truthful QA (Lin et al., 2021) are also included.
Through our experiments we demonstrate that
OPTUNE trains better LLMs than baselines whilst

enjoying 1.27-1.56x training speedup due to its
efficient data-exploration strategy.

To sum up, OPTUNE is the first efficient data
generation algorithm for online RLHF. By se-
lectively regenerating only the lowest-rewarded
responses and using a weighted DPO objective
that emphasizes pairs with larger reward gaps,
OPTUNE significantly enhances both the gener-
ation and training efficiency of the RLHF pipeline,
thereby paving the way for a promising future in
which preference-aligned LLMs can be developed
in a resource-efficient manner.

2 Preliminaries

The prevalent RLHF pipeline was proposed
by Ziegler et al. (2019b) and adopted by sub-
sequent works including (Stiennon et al., 2020;
Nakano et al., 2021; Ouyang et al., 2022b; Bai
et al., 2022). The standard method comprises
three stages: (1) Supervised Fine-Tuning (SFT)
on human-annotated/machine-generated responses;
(2) reward model training on preference data; and
(3) Reinforcement Learning based on the SFT
checkpoint and feedback received from the RM.

Reward Model Training Following (Ouyang
et al., 2022a; Touvron et al., 2023), we utilize the
Bradley-Terry model (Bradley and Terry, 1952) in
RM training procedure, which provides a proba-
bilistic framework for predicting preferences based
on pairwise comparisons. The goal is to learn a
set of parameters @ that best explains the observed
preferences between pairs of possible responses.
Specifically, the loss function is given by:
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where o (+) is the sigmoid function; rg(x, y) is the
scalar reward from the RM; y,, and y; denotes cho-
sen and rejected responses, respectively. This loss
function represents the negative log-likelihood of
the model preferring the chosen response y,, over
the rejected response y; under the Bradley-Terry
model.

RL finetuning The reinforcement learning
stage (Bai et al., 2022; Gao et al., 2022) does not
require predefined responses. It further fine-tunes
the SFT model msgr(y|z) = p(y|x; 65FT) to maxi-
mize the reward r(z, y) under a KL regularization
to prevent the model from deviating too far from
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Figure 1: The pipeline of our OPTUNE: it only explores the low-reward examples and reuses the high-quality
examples, which improves the generation efficiency of the iterative online PT. We also exploit the weighted DPO to
enhance the training efficiency by focusing on the high-utility samples. m;: the policy in iter ¢. R: the reward model.

p: the prompt selection ratio for re-generations.

the SFT model:
maxiemize Eyp, [Eywm (y|z) [r(x, y)]
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where my(y|lz) = p(y|lz;0); « > 0 is a con-
stant to control the regularization strength; D,
denotes the prompt set used for sampling the re-
sponse y ~ mg(y|z) from the trained policy and
construct pair (z,y) for RL training. Note the
KL term here is defined on the conditional dis-
tribution p(ylz;0) as Dy, [7o(y|2)|men(ylz)] =
By p(ylz:0) [log% :
DPO One representative method for preference
optimization is DPO (Rafailov et al., 2023). It fol-
lows Ziebart et al. (2008) and starts with a closed-
form solution for Eq. (2):

o |0) = sty | D) (5o,
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where Z(x) is the partition function: Z(x) =
>, met(y | @) exp (ér(ﬂ%y))
range the Eq. (3) and express the reward as a func-
tion of the policy:

r(ea) = 5 (tou(z(e) + 1og (U ) ).
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where 7; and 741 are the policies on the iteration
t and t + 1, respectively. It aims to optimize an
implicit reward function as a binary classification
loss:
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While in the standard offline DPO setting
(Rafailov et al., 2023) the preference datasets
are collected before training begins, Chen et al.
(2024c); Dong et al. (2024) extend DPO to the on-
line setting, by sampling two new responses to each
prompt at every iteration. These two responses are
passed to the reward model to identify the preferred
and dispreferred response, thereby training the pol-
icy on continuously updated preference data with
each iteration.

3 Method

In this section, we develop OPTUNE to improve
both the data generation efficiency and training
efficiency of online preference alignment. First, to
reduce the cost of iterative data re-generation in the
online setting, we propose a simple but effective
reward-based prompt selection strategy that only
updates the responses for prompts with the low-
est scoring current responses according the reward
model. Then, motivated by the observation that
the quantization of scalar rewards to binary labels
required by the online DPO objective necessarily
leads to information loss, we propose a weighted
DPO loss variant that prioritizes the learning of
response pairs with a larger reward gap, thereby
improving online learning efficiency even further.

3.1 Data generation efficiency: Reward-based
prompt selection

According to the Eq. (2), the ultimate goal of RL
finetuning is to maximize the expected reward
for the generated responses. We first investigate
whether different prompts contribute differently
to the total reward gain at each step. For each
iteration of online DPO, we generate the response
for ' € P and the reward model returns the
reward value 7 of each response. We compute the
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Figure 2: The reward gains brought by two subsets: top-
50% ranked prompts and bottom-50% ranked prompts.
More gains are achieved from the bottom-50% prompts
than the top-50% prompts.

reward gain from prior iteration, and also provide
statistics showing how different prompts contribute
to the overall reward gain.

As illustrated in Fig. 2, we divide the prompt
set into two subsets based on the reward rankings
of their preferred responses: the top-50% and the
bottom-50%. We then analyze the percentage of
reward gains from each subset. For example, in
Iter2, when comparing the reward on each prompt
to the Iterl, only 31.4% of the reward gain origi-
nates from prompts that generated higher-reward
responses in the previous iteration (top-50 subset),
while 68.6% comes from prompts that produced
lower-reward responses (bottom-50 subset). That
indicates if the response’s reward is low in this it-
eration, the prompt is more likely to produce a
high-reward response in the following iteration.
Conversely, if the response’s reward is high in the
current iteration, it is less likely to generate a high-
reward response in the next iteration.

Motivated by this observation, we propose a
reward-based prompt selection mechanism that pri-
oritizes prompts such that due to their currently low
reward, if their responses were to be re-generated
and trained on in the next round, the total reward
gain of the policy would likely to be larger. Using
this selection criteria our algorithm ensures that
each training iteration focuses on the most informa-
tive examples, thereby improving overall genera-
tion efficiency. Algorithm 1 formally defines how
OPTUNE’s reward-based prompt selection works.

3.2 Training efficiency: Weighted DPO Loss

To improve training efficiency, we more closely ex-
amine the iterative online DPO algorithm presented
in Algorithm 2.

In Line 5 of Algorithm 2, the scalar reward val-
ues from the reward model (RM) are reduced to
binary labels to determine the chosen (positive)
and rejected (negative) responses. This quantiza-

Algorithm 1 OPTune for Iterative Online DPO

1: Initialize policy parameters mo; ranked prompt set P; and
training set D, at iteration t; Prompt selection ratio p;
generation count g = 0;

2: fort =0toT — 1do
3: Clear temporary response storage R: = {}
4: Calculate the number of prompts to regenerate N =
o x [P]
5: Setg=20
6: while g < N do )
7 Pop the lowest ranking prompt z* from P
8: Sample two responses y1 and y5 for x* using ¢
9: Store responses: R¢ < R, U{(z*,y1), (z',y5)}
10: Increment the generation count g = g + 1
11: end while
12: for each z* € P; do
13: if (', 93), (", y3) € R then
14: Use the new responses from R; for z*
15: else _
16: Use the previous responses from D; for z*
17: end if
18: end for

19:  Compute rewards ri and ri for each
($17yi)7($17y5) eRt ) ] ) )

20: Construct the training set D; = {(z*, yy,), (z*, y7) |
' € P}

21: Rank the prompts in P; according to rewards to obtain
Pis1

22: Compute the wDPO (or DPO) loss and update the
policy parameters 7 to obtain 741

23: end for

Algorithm 2 Iterative Online DPO

1: Initialize policy parameters o and prompt set PP

2: fort=0,1,...,T — 1do

3: Sample two responses yt and 34 from 7, for each
prompt z* in P

4:  Compute the
(xlay{)a(xlayé) €Dy .

S: For each prompt z‘, determine the winning re-
sponse y,, and the losing response y; based on their
rewards r1 and 72 and construct the training set Dy =
{(@" yw), (2", y1) | =* € P}

6: Compute the DPO loss and update the policy parame-
ters 7r; to obtain 41

7: end for

7 @

rewards r] and r3; for

tion fails to leverage the full potential of the reward
signals 7% and % and leads to information loss. For
example, a larger reward gap indicates that there
are more significant differences between the two
responses that can be used to improve alignment.
In contrast, DPO loss with binary labels treats all
pairs equally and may lead to an inefficient train-
ing process. We hypothesize that to address these
issues, it is crucial to integrate the reward scalars
into the learning process more directly, ensuring
that the updates to ; reflect both the direction and
magnitude of human preferences, thus enhancing
the overall alignment of the policy with desired
outcomes.



To this end, we introduce a weighted DPO
Loss (wDPO) that incorporates explicit reward sig-
nals directly into the loss function for online DPO
training. This modification aims to enhance the
training efficiency by making full use of the avail-
able reward information and better aligning the
policy updates with the underlying human prefer-
ences. The wDPO Loss is derived by modifying
the original DPO loss to include a weighting factor
that represents the explicit rewards:

EWDPO - _]E(w’yw’yl)ND [R(l‘, Yuw yl) : log (‘I(‘T7 Yuw, yl))] )
I(@,yuw,y1) =0 (ﬂdogw 75110gw)
s Yw, ﬂ't(yw‘x) Wt(yl‘ﬂ:)

R(z,yuw,y1) = o [B2 (r(z,yw) — r(z,3))] .-

where I(x,y,,y;) denotes the implicit reward;
R(z,yw,y1) captures the relative preference be-
tween the winning and losing responses based on
their explicit reward difference, scaled by (5.

By incorporating these explicit rewards, wDPO
improves the efficiency of the training process by
prioritizing learning from pairs that show a signif-
icant difference in rewards. This approach makes
the model more sensitive to examples where the
distinction between preferred and less preferred
responses is clear, helping it learn the essential fea-
tures that distinguish highly preferred responses
from those less preferred. As a result, wDPO
guides policy updates more effectively toward the
desired behavior, enhancing the overall training
efficiency and effectiveness. This structured ap-
proach allows wDPO to leverage the full spectrum
of reward information, ensuring that each training
example contributes optimally to learning based on
the strength of its preference signal.

4 Experiment

4.1 Experiment setup

Our experiments are run on 8 NVIDIA A100 80GB
GPUs and the implementations are based on Hug-
gingface TRL (von Werra et al., 2020). Similar
to other online RLHF algorithms (Schulman et al.,
2017; Ouyang et al., 2022a), our OPTUNE will
distill the human preferences into the reward mod-
els first. On the policy training, it begins with a
supervised-finetuned (SFT) model, with the care-
fully designed OPTUNE loss and reward-based
sampling strategy for selected generations, i.e., re-
generating the low-score samples while reusing
high-score samples.
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Figure 3: OPTUNE (wDPO loss): Y-axis denotes the win
score against Zephyr-7B-beta model. Rdm_p: random se-
lection ratio (all striped bars). Under the same selection ra-
tio, OPTUNE’d models could perform better than the models
tuned with random-selection strategy. The policies in prompt
selection p = 0.5 and p = 0.7 could be comparable with

, the policies in p = 1 while enjoying 30% to 50% generation

efficiency, which proves the effectiveness of OPTUNE.

Dataset. We use Ultrachat (Cui et al., 2023),
which contains 200k prompts, as the preference
dataset and is widely used (Chen et al., 2024c; Wu
et al., 2024). Considering the budget, we only ran-
domly sample 48k prompts on the original set to
construct our prompt set which are fixed in our ex-
periments and used as the inputs of the on-the-fly
generations for iterative training of the policy.

Models and Training. Zephyr-7b-sft-full (Tun-
stall et al., 2023), which is SFT-ed on Ultra-
Chat200k dataset with decent instruction-following
capability, is employed as the RL finetuning start
point. For the reward models, we select the one
fine-tuned by Xiong et al. (2024), which shares
the same backbone, Mistral-7B, with the mwgpr
and top-ranked on RewardBench (Lambert et al.,
2024). Thus, we believe it is a strong reward model
that could provide informative reward signals. The
prompt and generation length are both set to 512.
We defer the other hyperparameters, e.g., learning
rate, into Appendix C.

Baselines. We have three baselines: (1).
Zephyr-7B-beta, which conducts offline DPO
training on the total 200k (prompt, preferred re-
sponse, rejected response) triplet in UltraFeedback
dataset, in which the responses come from many
competitive models, e.g., GPT-3.5-turbo and GPT4.
We use it as the offline baseline and expect our
models under online settings could be significantly
better than this baseline though we employ much
less prompts for training. (2). Models tuned with
selection ratio p = 1.0 and wDPO/DPO’ed for
three iterations on the whole prompt set, which is
under a fully online setting and has the largest gen-
eration cost. We expect the OPTUNE with smaller



ratios could be on par with it. (3). Models tuned
with random selection ratio. Models with OPTUNE
should surpass them. We also keep the iteration 0
the same for all the OPTUNE models for fair com-
parison, i.e., we will do one online iteration first
under p = 1 and save the checkpoint & responses
for further OPTUNE.

Free-form Instruction Evaluation. We mainly
focus on free-form generation. Drawing on re-
cent advancements (Li et al., 2023b; Zheng et al.,
2023; Chiang et al., 2023) we rely on strong LLMs,
i.e., GPT-4 (OpenAl et al., 2023) as our judge.
The LIMA test set (Zhou et al., 2023), consist-
ing of 300 prompts, is chosen as our test set. The
same rating prompt as Chen et al. (2024a) is em-
ployed to compare the responses generated by the
policy with those produced by the baseline, i.e.,
Zephyr-7B-beta. To counteract the positional
bias identified in GPT-4’s ratings (Wang et al.,
2023), we collect two sets of ratings by swapping
the order of test and baseline model responses. A
response is deemed winning if it achieves at least
one win and no more than one tie. We assess per-
formance using the “win score”, which is defined
as:

Win Score = 50 + 100 x % (6)
where nyin and nyese are the number of examples
rated as better and worse than the baseline, respec-
tively; m is the total number of evaluation examples.
A Win Score > 50 indicates that the test model per-
forms at least as well as the baseline.

Benchmarks. Following LM-Evaluation-
Harness (Gao et al., 2023), we test the trained
policy m on TruthfulQA (Lin et al.,, 2021),
MMLU (Hendrycks et al., 2020b), GSM8K (Cobbe
et al., 2021b), and Hellaswag (Zellers et al., 2019)
to evaluate the model’s ability on truthfulness,
challenging multi-task solving, grade-school-level
math, and common-sense reasoning. For the
few-shot demo setting, we adopt the default
settings in the Im-evaluation-harness and we
summarize it together with the metrics in Table 5.
We expect the model could also improve its
performance on benchmarks since RLHF can also
help the reasoning (Al@Meta, 2024; Chen et al.,
2024c).

4.2 Results on Generation Efficiency

OPTune on wDPO loss. We first study OPTUNE
on wDPO loss. We sweep p = {0.3,0.5,0.7,1.0}

110
- =05

100 mem p=07
= Rdm_p=05

90 -RdeU'/

80
0
0
’ I
30

Iter 2
Iterations

Win Score
a @ N

N

Figure 4: OPTUNE (DPO loss): Even in the special case,
i.e., DPO loss is a special case of our proposed wDPO, we
could still have the conclusion that OPTUNE with p = 0.7
could maintain the performance but save 30% generation cost.
Rdm_p: random selection ratio.

for both OPTUNE and random selection ratio and
train three epochs using the same hyperparameters,
e.g., B2, learning rate, etc. We defer the details of
the hyperparameters into Appendix C.

In Fig. 3 we show that OPTUNE significantly
outperforms the random-selection baselines and is
comparable with models trained under fully online
settings p = 1 while achieving 30-50% generation
efficiency. We also observe an expected trend that
when the number of online samples is increased,
i.e., larger p, the win score goes up, corroborating
observations in (Tang et al., 2024).

To elucidate the training efficiency of our OP-
TUNE further, we visualize the win score of dif-
ferent OPTUNE ratios with training time in Fig. 5.
The training time includes generation, rewarding,
and wDPO training time and we consider their sum
total to provide a clear picture as to the level of
efficiency OPTUNE achieves. We note that, when
calculated in terms of GPU hours, the savings are
8x larger since we run the experiments on 8xA100
GPUs at a time.

OPTune on DPO loss. We also verify the effec-
tiveness of OPTUNE’s selection criteria when train-
ing with the regular DPO objective (Pi et al., 2024;
Yuan et al., 2024). We observe similar results on
the standard DPO loss and showcase them in Fig. 4.
OPTUNE matches or surpasses the performance
of vanilla online DPO (p = 1) in iteration 1 and
3, though in iteration 2, it lags slightly behind the
vanilla setting. However, it still enjoys 1.27-1.56x
training speedup, saving 30% to 50% on generation
time. Moreover, we note that OPTUNE consistently
outperforms the random selection criteria across
different ratios.

4.3 Results on Training Efficiency

We compare two different losses, i.e., DPO and
wDPO losses under different prompt selection ra-
tios and show the results in Fig. 6. We find that
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Figure 5: The win score vs. training time on different
prompt selection ratios. By re-generating the responses
on only half of the prompts, OPTUNE could achieve the
win score on par with the vanilla online version (p = 1).

wDPO with OPTUNE significantly surpasses DPO
with OPTUNE. We keep the training configs, e.g.,
the learning rates in each iteration, optimizer, and
the max length of the prompt & generation, exactly
the same for the online wDPO and online DPO un-
der the same ratio p. Thus, we believe the training
time is almost the same for wDPO and DPO under
the same ratio p. Our wDPO loss could achieve
faster convergence than DPO loss, i.e., it reaches
the same “win score” faster than DPO does., which
reflects the superiority of our proposed wDPO loss.

4.4 Evaluation Results on AlpacaEval,
Benchmarks, Human Study

We provide more evaluation results including Al-
pacaEval (Li et al., 2023b), Benchmarks, and hu-
man studies to further test the performance of the
policies trained by OPTUNE and verify the effec-
tiveness of our method in this subsection.

AlpacaEval. To alleviate the concerns of evaluat-
ing the open-ended generation only on LIMA test
set, we also test our trained policies on the AlpacaE-
val (Li et al., 2023b), which contains 805 prompts
and is more diverse. Due to the limited GPT-4 API
budget, we only test the models trained with wDPO
loss in the final iteration (iter3). We show the re-
sults in Table 2. It aligns with the results in Fig. 4
and Fig. 3: OPTUNE is better than the random
selection strategy and no selection (p = 1.0).

Benchmark Results. The benchmark results of
the trained policies are shown in Table 4 and
higher values indicate better performance. The
policies trained with the prompt selection ratio
p = 0.7 show superiority against the offline poli-
cies (Zephyr-7B-Beta) and vanilla online (p =
1.0) policies regarding on the “Average” score. It
also achieves the highest scores on Truthful QA and
GSMB8k, showing gains in math problem-solving
and factuality.
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Figure 6: The online DPO vs. online wDPO under dif-
ferent prompt selection ratios. The dashed line denotes
the OPTUNE ratio p = 0.5.

Human Study. To further evaluate how OPTune
performs against full generation as well as random
selection, we randomly select 50 responses gener-
ated by OPTune and compare them first to random
selection and then to full generation (p = 1.0).
On the 100 response pairs, we collect 400 ratings
from 8 participants and find that participants pre-
fer OPTune responses 24.07% of the time against
14.81% for random selection, and perform simi-
larly to full generation with users ranking its output
better 23.44% of the time, full generation 25.0% of
the time and considering outputs similar 51.56 %
of the time. The details of how we conduct human
studies could be referred to Appendix D.

5 Related Work

RLHF algorithms Proximal Policy Optimiza-
tion(PPO) (Ouyang et al., 2022b; Schulman et al.,
2017) is the most widely-used online preference
tuning framework in the industry, which leads to
the success of the ChatGPT (OpenAl et al., 2023),
Gemini (Team et al., 2023), and LLaMA (Touvron
et al., 2023). It requires training a reward model as
a proxy of the human preference and on-the-fly gen-
erations in the online training procedure. Online
DPO/wDPO stays relevant with it but the difference
is that the online generation and policy updates are
less frequent than PPO, in which the policy will be
updated per batch. On the other hand, several of-
fline RLHF methods such as DPO (Rafailov et al.,
2023), IPO (Azar et al., 2024b), KTO (Ethayarajh
et al., 2024), and SLIC-HF (Zhao et al., 2023)
also show promises for learning of human pref-
erence. These methods are considered offline be-
cause their preference datasets are kept unchanged
during RLHF but the performance of the offline
RLHF could not be on par with the online ver-
sion (Tang et al., 2024; Dong et al., 2024). Thus, in



Table 2: Alpaca-eval scores on the iteration-3 models trained under different settings. LC_win_rate: length-
controlled win rate, which is the standard metric in AlpacaEval-2.@. (r): policies trained with a random selection
strategy. p = 0.7 performs the best and even better than the p = 1.0.

Model

| Zephyr-7B-Beta | p=1.0 | p=0.5() | p=0.5 | p=0.7 | p=0.7(r)

LC_win_rate | 13.2 | 15.43 |

1528 | 1563 | 1645 | 1539

this work, we focus on investigating online iterative
RLHF, which demands substantial computational
resources for on-the-fly sampling from the policies.
OPTUNE is proposed to reduce the cost in the re-
generation process by selecting a subset of prompts
to regenerate while keeping the outstanding perfor-
mance of the trained models.

Prompt Selection. A powerful LLM usually re-
quires high-quality training data, and the commu-
nity has focused on creating high-quality instruc-
tion finetuning (IF) datasets, either via distilling of
the SOTA API LLMs (Taori et al., 2023; Peng et al.,
2023; Chiang et al., 2023) or requiring experienced
human annotators (Conover et al., 2023; Ouyang
et al., 2022a). But there are still low-quality ex-
amples in these IF datasets and a series of data
selection strategies (Chen et al., 2023b; Li et al.,
2023a; Cao et al., 2024) are proposed to further en-
hance the quality of datasets by filtering out these
data, which shares the same objective with the OP-
TUNE: optimizing towards the training data quality.
However, these data selection approaches are not
ideal for prompt selection in the iterative RLHF
paradigm as they primarily focus on the quality of
the responses, not targeting selecting the prompt
for efficient data exploration.

Inference Speedup of LLLMs. One orthogonal
direction to our method is the inference speedup
of LLMs. Traditionally, batch inference and Key-
Value (KV) cache (Ge et al., 2023) are employed to
accelerate the decoding process, but they consume
substantial GPU memory and hinder the utilization
of large batch sizes. Thus, some works (Shazeer,
2019; Ainslie et al., 2023; Xiao et al., 2023;
Dettmers et al.,, 2022) are proposed to reduce
the memory used by KV cache through chang-
ing model architecture or using quantization tech-
niques. On the other hand, some other approaches
(Leviathan et al., 2023; Chen et al., 2023a; Cai
et al., 2024) are proposed to minimize the num-
ber of decoding steps to speed up the inference of
LLMs. Compared to it, OPTUNE achieves effi-
ciency by reusing the generations in the previous
step. But all these inference speedup techniques
can be used for the selected prompts of OPTUNE,

providing further faster generation speed.

Evaluation of LLMs. To evaluate the instruction-
following ability of the policies in iterative RLHF
procedure, we employ GPT-4 (OpenAl et al., 2023)
as our judge and employ LIMA (Zhou et al., 2024)
test set which contains 300 prompts and larger than
the MT-bench (Zheng et al., 2023) (80 prompts),
Koala (Geng et al., 2023) (180 prompts), and Wiz-
ardLM test set (Xu et al., 2023) (218 prompts).
AlpacaEval (Li et al., 2023b) is also employed to
evaluate the trained policy on instruction-following
ability more comprehensively. Moreover, follow-
ing the previous works (Chen et al., 2023b, 2024b),
we also include human study for a side-by-side
comparison of the model responses and test the
models on four most commonly used benchmarks,
Truthful QA (Lin et al., 2021), MMLU (Hendrycks
et al., 2020a), GSM8K (Cobbe et al., 2021b), and
Hellaswag (Zellers et al., 2019).

6 Discussions & Conclusion

To sum up, we introduced OPTUNE in this work,
a novel approach to enhance the training and gen-
eration efficiency of online RLHF by selectively
regenerating only the lowest-reward responses
and representing the reward gap explicitly in our
wDPO objective. This method focuses computa-
tional resources on the most informative samples,
significantly reducing the need for full-scale data
regeneration and achieving up to 2x in generation
efficiency and a 1.56x speedup in training effi-
ciency. Our comprehensive experiments show that
OPTUNE maintains or improves the alignment of
LLMs with human preferences. Finally, we believe
OPTUNE could also be applied to other online
RLHF algorithms such as Best-of-N (Stiennon
et al., 2020) and PPO (Schulman et al., 2017),
since PPO has a replay buffer which contains
“off-policy” examples and we could select the
prompts using the same strategy to encourage the
generations on the low-reward prompts, which we
leave for the future work.
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A Limitations

Despite the advancements presented by OPTUNE
in online RLHF, OPTUNE’s performance heavily
relies on the accuracy and consistency of the reward
model (RM). If the RM does not effectively cap-
ture the nuances of human preferences or suffers
from biases, the efficiency gains from our approach
could lead to suboptimal policy training.

B Broader Impact

In this paper, we introduce OPTUNE, enhancing
the training efficiency and generation efficiency of
the online RLHF. The broader impacts of this study
are two-fold:

1. Advancing AI Alignment with Human Val-
ues: The proposed OPTUNE significantly im-
proves the alignment of Al behaviors with
human preferences. This enhancement is vi-
tal for deploying Al in sensitive applications,
ensuring that Al responses adhere closely to
human ethical standards.

. Enhancing Efficiency in AI Training: OP-
TUNE accelerates the LLM training process
without compromising output quality. This
advance reduces computational bottlenecks,
enabling faster development cycles and mak-
ing high-performing AI models more accessi-
ble, especially to organizations with limited
computational resources.

C Hyperparameters

We use learning rate = Se-7 for DPO/wDPO train-
ing with RMSProp (Hinton, 2012) as our optimizer;
the warmup ratio is set to 0.1 and the batch size
is 128. To encourage the model’s exploration, we
choose top_p=0.9 and temperature T=1.0 as the
generation config in data generation part.

D Human Study

For human study, we randomly choose 50 prompts
from the original LIMA test set and present them
to the participants. We recruit 8 volunteer students
as the participants in the human study. For each
prompt, we create two comparison pairs, one pair
contains responses from the two policies trained by
OPTUNE p = 0.7 and OPTUNE p = 1.0, respec-
tively; another pair contains responses from the
policy trained by OPTUNE p = 0.7 and the policy
trained by random selection p = 0.7. Through this
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User Task Evaluation Guidelines: Relevance and Helpfulness

Figure 7: UI for the human study. At each step, the partici-
pants are presented with the prompt and generations from two
models and asked to indicate their preferences.

way, we create a total of 100 unique pairs. Each
participant is presented with 50 randomly selected
pairs from these 100 unique pairs and is asked
to choose which one they prefer with the guiding
criteria based on (Chen et al., 2024b). In the Ul
interface, they can indicate a preference or a tie as
shown in Fig. 7.

Overall we obtain 400 ratings, 200 for each com-
parison. The distribution is shown in Table 3.

We also provide the user guidelines which is
used in our human study:

Below are responses to the following
questions from two different models.
Please evaluate which of the answers
would be more helpful. If you think both
answers are equally helpful, please select
the last option.

During your evaluation, consider the fol-
lowing criteria to judge the more helpful
response:

* Alignment with User’s Intent: En-
sure the response directly addresses
the user’s question or task, interpret-
ing underlying intentions when not
explicitly stated.

Clarity and Precision: Responses

should be easy to understand, avoid-

ing unnecessary jargon and main-
taining focus on the user’s query.

* Directness and Relevance: Keep
the response strictly related to the
task, avoiding unrelated informa-
tion or tangents.

 Efficiency and Brevity: Provide

comprehensive yet concise informa-

tion, steering clear of repetitive or



overly detailed content that does not
enhance understanding.

E Benchmark Results

‘We show the benchmark results in Table 4, where
higher values indicate better performance.

F The benchmark settings

The detailed benchmark settings are shown in Ta-
ble 5.

G Rating prompt

Following Chen et al. (2024a), we also use the GPT-
4 rating prompt in the original Vicuna blog post !
and we provide the detailed form in Table 6.

"https://1msys.org/blog/2023-03-30-vicuna/
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Comparison | OPTune Win (%) | Loss (%) | Tie (%)
OPTUNE p = 0.7 vs OPTUNE p = 1.0 ‘ 23.44 ‘ 25.00 ‘ 51.56
OPTUNE p = 0.7 vs Rdm p = 0.7 ‘ 24.07 ‘ 14.81 ‘ 61.11

Table 3: Results of the human study, the pairs of responses to each prompt are rated by 4 people on average.

Table 4: Benchmark results for different prompt selection ratios. We use bold font to mark the highest score.

Models | Hellaswag | MMLU | TruthfulQA | GSM8k | Average
Zephyr-7B-SFT 78.54 55.67 40.37 32.75 51.83
Zephyr-7B-Beta 82.05 58.13 50.1 36.24 56.63
Iter3 (p=1.0) 81.44 58.49 45.04 423 56.82
Iter3 (rdm=0.5) 83.06 58.39 45.77 42.00 57.31
Iter3 (rdm=0.7) 82.17 58.55 46.22 42.15 57.27
Iter3 (p=0.5) 82.48 58.62 46.64 39.88 56.91
Iter3 (p=0.7) 82.78 58.46 46.81 42.53 57.65

Datasets | TruthfulQA | GSM8k | HellaSwag | MMLU
0 5 0 0
mc2 acc acc_norm acc

# few-shot
Metric

Table 5: The metrics and few-shot demos for each benchmark. It is the standard setting in LM-Harness-Evaluation
repo (Gao et al., 2023)

Table 6: The GPT4 evaluation prompt.

[System Prompt]

You are a helpful and precise assistant for checking the quality of the answers.
[User Prompt]

[Question]

[The Start of Assistantl’s Answer]

Answer 1

[The End of Assistant]l’s Answer]

[The Start of Assistant2’s Answer]

Answer 2

[The End of Assistant2’s Answer]

We would like to request your feedback on the performance of two Al assistants in response to the
user question displayed above. Please rate the helpfulness, relevance, accuracy, and level of details
of their responses. Each assistant receives an overall score on a scale of 1 to 10, where a higher score
indicates better overall performance. Please first output a single line containing only two values
indicating the scores for Assistant 1 and 2, respectively. The two scores are separated by a space. In
the subsequent line, please provide a comprehensive explanation of your evaluation, avoiding any
potential bias and ensuring that the order in which the responses were presented does not affect your
judgment.
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