
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

AUTOMATING BENCHMARK DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid progress and widespread deployment of LLMs and LLM-powered
agents has outpaced our ability to evaluate them. Hand-crafted, static bench-
marks are the primary tool for assessing model capabilities, but these quickly
become saturated. In contrast, dynamic benchmarks evolve alongside the models
they evaluate, but are expensive to create and continuously update. To address
these challenges, we develop BeTaL (Benchmark Tuning with an LLM-in-the-
loop), a framework that leverages environment design principles to automate the
process of dynamic benchmark design. BeTaL works by parametrizing key de-
sign choices in base benchmark templates and uses LLMs to reason through the
parameter space to obtain target properties (such as difficulty and realism) in a
cost-efficient manner. We use our approach to generate a new and challenging
spatial reasoning benchmark and to develop new tasks for popular agentic tasks
like τ -bench. We carry out extensive experiments on three datasets, at different
benchmark target performance (difficulty) levels, and show that BeTaL achieves
the lowest performance gap, as low as 0.4% and up to 5% in most settings; sig-
nificantly improving over competing LLM and non-LLM based baselines. These
experiments demonstrate that BeTaL opens the door to a new paradigm of self-
adaptive, continually improving evaluation systems.

1 INTRODUCTION

New developments in LLMs, particularly in powering agents via advanced planning, reasoning, and
tool-use capabilities Valmeekam et al. (2023; 2024); Ferrag et al. (2025), have outpaced current
methods for evaluation. Static, human-curated benchmarks, such as GPQA Rein et al. (2024) or
HLE Phan et al. (2025), remain popular, but are costly to develop and quickly become obsolete as
models continue to improve. This is challenging for model developers, as increasingly saturated
benchmarks make it impossible to differentiate between the performance of state-of-the-art models.

To address these challenges, researchers have turned to dynamic benchmarks that can be updated
over time. These benchmarks avoid saturation via re-calibration or the introduction of new and
harder data; this also limits the risk of contamination. For example, LiveBench White et al. (2024)
periodically introduces new questions and harder tasks. However, these types of benchmarks still
largely rely on unscalable human authoring and manual updates. Increasingly popular agentic tasks
exacerbate this problem, as simulated environments must be carefully crafted; repeatedly designing
and implementing new environments promises to be even more labor-intensive.

How can we build dynamic benchmarks for frontier LLMs without the expense and inefficiency of
ongoing manual design and implementation? Unsupervised Environment Design (UED) methods
Jiang et al. (2021a) work with environments that are built from abstract task templates with a set of
configurable parameters. These parameters can be tuned to produce new and higher utility versions
of the benchmark, thus enabling dynamic re-use. In practice, however, we find that the search
space over such parameters is intractable for non-trivial environments. Naively sampling random
configurations is inefficient, as many will be trivial or unsolvable.

We overcome these obstacles via a new approach, Benchmark Tuning with LLM-in-the-loop
(BeTaL), that performs dynamic benchmark design. BeTaL leverages the capabilities of large
reasoning models playing the role of designers. Central to our approach is the use of a powerful
designer LLM tasked with reasoning over the space of possible parameter values, design choices, or
tasks. The designer is prompted to consider the various parameters of an under-specified benchmark

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: BeTaL automates the process of designing and adjusting dynamic benchmarks to meet
target criteria.

or environment and to propose instances or values that expected to be high utility. This is set up as an
interactive and iterative process: after the designer has specified an environment, a simulator creates
tasks, and the model or agent being evaluated attempts the tasks, with results provided back to the
designer. After each round, the designer must reason over choices and results and make changes to
increase utility while maintaining the realism and integrity of the basic tasks. This closed-loop
multi-round strategy allows the benchmark to dynamically adjust over time to meet the objectives.

We hypothesize that the strong zero-shot or few-shot reasoning capabilities of frontier models en-
able the designer to understand the factors that influence usefulness (e.g., task difficulty) and design
benchmarks that meet all desirable criteria (e.g., tasks that are just outside of a weaker model’s cur-
rent capabilities). This framework design reduces the burden of designing and continually updating
benchmarks to meet the demands of ever improving models. In addition, it permits re-purposing of
existing static benchmarks - breathing new life into datasets long considered outdated.

Our contributions are:

• Dynamic benchmark generation and design: We formulate the benchmark design pro-
cess as an optimization problem, where the goal is to maximize utility or usefulness, and
we introduce BeTaL as an agentic-driven design process for automatically producing and
evolving benchmarks.

• Efficient task synthesis: We develop strategies to make BeTaL cost-effective and
sample-efficient and compare our approach to baseline methods under a similar compu-
tation budget.

• New benchmarks and empirical validation: Using BeTaL we modify existing bench-
marks to meet new requirements for dataset-level difficulty, and we introduce new bench-
marks that focus on mathematical and spatial reasoning. Our empirical results show
BeTaL consistently obtains benchmarks with any given target difficulty, achieving a per-
formance gap of as low as 0.4% and up to 5% in several settings, a significant improvement
over baselines.

2 RELATED WORK

Automating benchmark design. Recent work automates task generation, verification, and evo-
lution to reduce cost and improve controllability. BENCHMAKER (Yuan et al., 2025) and
CHASE (Patel et al., 2025) leverage LLMs for systematic or compositional task building, while
graph-based generators validate code tasks via self-consistency (Farchi et al., 2024). Other ap-
proaches evolve tasks through perturbation or probing (Wang et al., 2024), employ multi-agent co-
ordination (Butt et al., 2024), or use co-evolutionary loops without seed data (Huang et al., 2025).
However, existing methods rarely adapt benchmark difficulty in step with advancing models.

Environment design lineage. Automated benchmark synthesis parallels Unsupervised Environ-
ment Design (UED) in RL, where tasks must remain solvable yet challenging. Approaches such
as PAIRED (Dennis et al., 2021), PLR (Jiang et al., 2021b), and ACCEL (Parker-Holder et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2023) formalize task selection as an optimization or curation problem. LLM-driven variants like
EnvGen (Zala et al., 2024) and LLM-POET (Aki et al., 2024) extend these ideas, emphasizing adap-
tive curricula that scale with capability.

Scaling environments and datasets. Complementary work builds looks to scale environments in
a principled manner, either through synthetic data or manual annotation, to advance agentic intelli-
gence, e.g., AgentScaler (Fang et al., 2025), APIGen (Liu et al., 2024), ToolACE (Liu et al., 2025),
and ARE/Gaia2 (Andrews et al., 2025). These emphasize agentic capabilities, whereas our focus is
capability-agnostic.

3 METHODOLOGY

We proposeBeTaL , a novel framework that uses an LLM-in-the-loop to iteratively design dynamic
benchmarks that meet desired objectives. We briefly describe some necessary preliminaries and
continue on to explain our method in detail.

3.1 PRELIMINARIES

We describe the key components of our system. We start with an initial template or sketch for an
environment. We then obtain a (i) a simulator, (ii) a target model to be evaluated, (iii) a set of target
properties, and (iv) a designer model that will perform the design process.

Under-specified environment. The user begins with a high-level description of the task that they
wish to realize/instantiate as an evaluation environment or benchmark. Consider the case of a spatial
reasoning benchmark, where problems are based on queries about the position of objects on a grid
world after applying some operations on the objects. Intuitively, the complexity of problems depends
on several factors such as grid size, number of actions, types of operations, etc. While the exact
details of the environment remain unspecified, we assume an environment can be characterized by a
finite set of parameters P = {p1, p2, . . . , pk}, taking values from sets V1, V2, . . . , Vk respectively.

Problem/Task Generator. We also assume access to a simulator that can instantiate the environ-
ment for any given parameter configuration from V = V1×V2× . . .×Vk. With a given instantiated
environment, the simulator is used to generate sets of problems with ground truth. It is expected that
the simulated problems adhere to the constraints specified by the parameter values. In this work, we
focus on environments with verifiable or procedurally generated solutions, allowing us to assume
that the generated ground truth is correct. This forms the dataset that will be used for evaluating
models.

Target model. This component covers the model (off-the-shelf or proprietary) or system (e.g.,
multi-agent system) to be evaluated.

Target performance. Along with the target model, the user also specifies a target performance level
ρ ∈ R and a distance measure d. The objective is to output a benchmark on which the target model’s
performance will be close to ρ. The exact definition of ρ is left to the user; for instance ρ could be
accuracy, diversity, or an aggregate of multiple measures. In this work, we use target difficulty as
our measure of performance of the generated benchmarks, as we seek to overcome the challenge of
benchmark saturation.

Designer model. A sufficiently powerful model that can understand the under-specified environ-
ment description and the set of free parameters and constraints that influence the environment’s
complexity. We expect such a model to be able to reason about the design space defined by the
high-level environment descriptions, parameters, and their domains and output specific values to the
parameters that will result in an environment of given target complexity. We use recent state-of-the-
art large reasoning models (LRMs) such as GPT-5, Grok 4, and Claude Opus 4.1.

3.2 BETAL : BENCHMARK TUNING WITH LLM-IN-THE-LOOP

Now that we are equipped with all the ingredients, we will describe BeTaL ’s operation. This is
shown in Alg. 1, and is explained in detail below.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Benchmark Tuning with LLM-in-the-loop (BeTaL)

1: Input: Under-specified Environment Description, Parameter Set P , Target Performance ρ, Tar-
get Model Mt, Designer Model Md, Number of Iterations I .

2: Initialize i∗ ← 0, vi∗ ← ∅, minimum gap ĝi∗ ←∞
3: for i = 1 to I do
4: Prompt← Template with Environment description, P , ρ
5: if i > 1 then
6: Prompt← Prompt + Summary of previous iterations
7: end if
8: vi ←MD(Prompt) ▷ Get parameters from Designer Model
9: vi ← ProjectToDomain(vi,V)

10: Di ← InstantiateSimulator(vi) ▷ Generate problems with simulator
11: ρ̂i ← EvaluateModel(MT , Di) ▷ Evaluate Target Model
12: ĝi ← |ρ̂i − ρ|
13: Update summary of previous iterations with vi and ρ̂i ▷ Step 4: Prepare feedback for next

iteration
14: if ĝi < ĝi∗ then
15: i∗ ← i
16: ĝi∗ ← ĝi
17: end if
18: end for
19: Return: vi∗

Step 1: Parameter Generation (LLM-Guided). In step one of BeTaL , the designer model,
an LRM, is prompted to obtain a parameter configuration vi. Since these values are generated by
a language model, it is possible that they may be out of the domain V . Verification is therefore
necessary to ascertain that vi ∈ V , and, if not, this process is repeated until the generated vi falls in
V . In the end, vi is projected to V if it still out-of-domain.

Step 2: Environment Instantiation and Problem/Task Generation. A simulator is instantiated
with the parameter configuration obtained in Step 1, which is then used to generate a small set of
problems/tasks, with ground truth answers for evaluation, i.e. Di = {(xj , yj)}ns

j=1.

Step 3: Performance Evaluation. The target model is evaluated on Di to yield performance ρ̂i.

Step 4: Feedback and Iteration. The iteration details are summarized in natural language to the
LRM, including vi and ρi. This summary is included in the prompt as feedback to the LRM to
produce the next round of parameters.

Step 5: Termination and Selection. In each iteration, we keep track of the observed performance
gap ĝi = |ρ̂i−ρ| and keep track of the iteration i∗ that results in the smallest gap. After I iterations,
the method exits and returns vi∗ .

4 EXPERIMENTAL SETUP

In this section, we describe our setup for the experiments. First, we give high-level details of the
benchmarking tasks, then discuss the baseline methods, our choices of designer and target models,
evaluation metrics, and the protocol to run the experiments.

4.1 BENCHMARKING TASKS

We consider a range of tasks based on arithmetic, spatial reasoning, and airline customer service
agents. Each of these settings has rich design space with several free parameters that govern the
complexity of the benchmark. This makes them good candidates for evaluating our method. We
discuss these tasks briefly here and defer the details to the Appendix.

Arithmetic Sequences. Given an input number x and an output number y, an agent must return the
sequence of unary arithmetic operations that, when applied recursively to the intermediate results,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

yield y; that is,
y = (oN ◦ oN−1 ◦ · · · ◦ o1)(x).

The benchmark space is constrained to simple operations of add, subtract, multiply, divide, square-
root, and power(2). At inference time, the agent is given access to arithmetic operator tools to reason
about the problem and come up with a sequence of operators.

Spatial Reasoning. We design a high-level description for a broad category of spatial reasoning
tasks. In this setting, there is a 2D square grid (board) with some particles on it; the board and
particles can rotate and move around. The questions are about the location and orientations of these
objects after certain number of actions. Figure 6 shows an example of a 4x4 grid with two particles
on it and the resulting states of the objects after applying some actions. This spatial reasoning
environment can be made arbitrarily complex or simple with the choices of several parameters such
as board size, types and number of of actions allowed, etc. Here, our goal is to come up with specific
values to these parameters such that when we instantiate the environment with those values, it will
result in a benchmark with target difficulty level.

τ -bench Airline. It is an interactive evaluation environment for customer service agents in simu-
lated airline scenarios, where the agent must use tools to interact with a database and satisfy user
requests (Yao et al., 2024). The reward is determined by checking the final database state against
the database state following a series of golden actions. Using its setup, we construct a rule-based
scenario generator that randomly samples action chains and corresponding user instructions. We
parametrize the scenario generator both by parameters for the tools, such as number of passengers
when booking a flight, and by parameters we discover through existing user instructions, such as
whether the customer prioritizes the cheapest or the fastest flight.

For further details on these tasks and associated parameters, see Appendix A.1.

4.2 BASELINES

We briefly discuss the baselines for evaluation. For details, please see the Appendix.

Random Sampling with Prioritized Parameter Replay (RS + PPR) It is inspired by Prioritized
Level Replay (PLR) (Jiang et al., 2021b) in reinforcement learning literature. It works iteratively. In
each iteration, it draws a sample vi ∈ V randomly with probability p and with probability 1 − p it
draws a noisy sample from a buffer of “good” parameters it found in previous iterations. Similar to
BeTaL vi are evaluated to observe the performance gap ĝi and if ĝi ≤ ∆, then vi is added to the
buffer. It also keeps track of the best parameters similar to BeTaL and returns them in the end.

LLM Prompting Strategies. We explore baselines where LLM can be prompted to obtain param-
eter values. We use variations of best-of-N (BoN) (?Beirami et al., 2025) with our notion of reward
and choices of reward “oracles”. Here, the reward for any given parameter values is defined as the
negative of the observed performance gap. We use two empirical reward oracles, one based on an
ML model trained offline with supervised learning and the other one based on simulation and eval-
uation with the target model as in BeTaL . We call the first variation BoN-ML and the second one
BoN-TM. Chain of thought prompting (Wei et al., 2023) is used for both strategies.

4.3 DESIGNER AND TARGET MODELS

We test the latest reasoning models from three providers: OpenAI (GPT-5), Anthropic (Claude Opus
4.1), and xAI (Grok 4) as designer models. We use o4-mini as the target model in all the settings. We
finally evaluate benchmarks developed by each method on three models: o4-mini, Gemini 2.5 Flash,
and Claude 3.7 Sonnet. Whenever applicable, we configure the designer model with temperature 0.5
and a high reasoning budget (4096 tokens budget) for exploration, while the rollout and evaluation
models use temperature 0.0 with a low reasoning budget (1024 tokens budget) for efficiency.

4.4 METRICS

Each benchmarking task can have its own notion of performance ρ (e.g., accuracy, pass@k, etc.). We
assume this measure of performance is inversely proportional to the hardness of the task. We abstract
out benchmark-specific measures and define the following metric to measure the effectiveness.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Chain-of-thought (CoT) prompting does not consistently yield strong designer-model per-
formance. While Opus-4.1 achieves competitive results on the arithmetic sequence and τ -Bench
tasks, state-of-the-art LLMs often struggle to outperform a random sampling baseline. Reported
values are ¯̂g(%) with o4-mini as the target model, averaged over three independent runs and pre-
sented with 95% confidence intervals (CI).

Method Arith. Seq. Spatial Reasoning τ -Bench Airline
Random Sampling 21.17±51.5 25.4±9.6 37.3±17.2

CoT Prompting (GPT-5) 28.33±25.8 45.3 ±26.3 23.6±16.1

CoT Prompting (Opus-4.1) 11.67±7.2 26.1±17.9 11.9±10.4

CoT Prompting (Grok-4) 20.83±3.6 39.1±25.5 31.9±13.3

Performance Gap. If a method is run with a given target performance level ρ, and say it results in
a benchmark on which the target model has performance ρ̂, then its performance gap is ĝ = |ρ̂− ρ|.

4.5 EXPERIMENT PROTOCOL

We run 10 iterations for iterative methods and sample 10 times for non-iterative ones. To evaluate a
designer’s ability to produce benchmarks with varying levels of complexity, we consider four target
performance levels: Hard (ρhard = 0.25), Medium (ρmedium = 0.50), Easy (ρeasy = 0.75), and
Trivial (ρtrivial = 0.90). We report the average performance gap ¯̂g across these levels as the primary
effectiveness metric. All experiments are repeated three times with different random seeds. The sizes
of parameter-search rollouts and evaluation datasets are adjusted according to the requirements of
each task. See Appendix A for additional details.

5 RESULTS AND DISCUSSION

In this section, we present our main results and discussion. First, we study the effectiveness of simple
chain-of-thought prompting against random sampling and then provide an in-depth discussion on
BeTaL ’s effectiveness in designing benchmarks for any given target difficulty.

C1: Chain-of-Thought prompting does not make LLMs efficient benchmark designers.

Despite the remarkable reasoning capacity and world knowledge of state-of-the-art LLMs, their
ability to systematically design benchmarks remains unreliable. As shown in Table 1, LRMs given
high reasoning budgets still exhibit high variance when tasked with producing benchmarks of var-
ied complexity. With o4-mini as the target model, Opus-4.1 exceeds the random baseline only on
Arithmetic Sequence and τ -Bench while failing on Spatial Reasoning. GPT-5 and GROK 4 un-
derperform even further. These results demonstrate that chain-of-thought prompting alone does not
endow LLMs with robust or generalizable benchmark design capabilities.

C2: BeTaL is more effective than the baselines in producing benchmarks with any target
performance level.

Our hypothesis here is that while LLMs are highly capable models, a single round of prompting,
even with a sufficiently large reasoning budget, may not be as effective as a procedure like BeTaL
where it is prompted iteratively with feedback on its outputs from the previous rounds.

i) BeTaL versus other iterative methods. We compare BeTaL with RS+PPR to understand if
LLMs are necessary for benchmark design, or iterative feedback alone can achieve the same per-
formance as BeTaL . From our experiments, it is evident that both Reasoning LLMs and iterative
feedback are necessary for an effective designer. Figure 2 shows that BeTaL learns to shrink the
performance gap more strongly than RS+PPR over 10 iterations, with a wide margin (more than
20%) on both τ -Bench and Spatial Reasoning.

iii) Performance at target performance levels. We observe that BeTaL shows robustness, at all
desired target levels, by consistently outperforming baselines.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: BeTaL consistently outperforms the iterative and Best-of-N baselines in both parameter
search and evaluation phases across all three tasks and all three designer models. Reported numbers
are ¯̂g(%) with o4-mini as the target model. For parameter search, we run either 10 samples or
10 iterations and report the best result for a fair comparison. All results are averaged over three
independent runs and presented with 95% confidence intervals. See experimental details in A

Designer Method Arith. Seq. Spatial Reasoning τ -Bench Airline

Param Search Param Search Eval Param Search Eval

– RS+PPR 15.8±2.43 6.6±7.3 8.4 ±6.3 18.3±21 21.3±10.6

GPT-5
BoN-TM 8.3±4.64 28.58±25.66 21.66±41.19 12.5±2.1 20.8±8.0
BoN-ML 30.0±12.63 21.56±12.25 28.33±19.67 21.4±11.5 16.7±10.4
BeTaL 5.8 ±4.77 0.4±0.45 5.3±7.25 5.3± 3.2 13.2± 10.3

Opus-4.1
BoN-TM 20.0±12.12 26.75±23.03 20.48±19.13 3.6± 3.2 10.0±12.4
BoN-ML 31.7±6.20 20.35±12.05 26.93±41.31 11.7±7.5 9.7±7.6
BeTaL 12.5 ±4.42 3.8±5.3 7.3±6.5 5.0±2.1 7.7± 5.2

GROK 4
BoN-TM 20.0±11.70 24.29±24.90 21.23±19.43 15.0±11.5 18.5±7.7
BoN-ML 32.5±15.58 21.17±11.73 25.35±39.60 34.2±14.3 20.2±3.1
BeTaL 4.2 ±3.26 1.4±3.3 4.9±5.8 3.9± 3.2 10.3± 12.4

Figure 2: Convergence of iterative methods during parameter selection on Spatial Reasoning and τ -
Bench benchmarks: BeTaL vs. RS+PPR. Performance gap of BeTaL shrinks faster compared to
RS+PPR, within 10 iterations, indicating LLMs are more efficient than competing iterative methods
at finding favorable environment parameters for benchmark creation.

ii) Performance comparison of designer models. While all three reasoning models outperform their
respective baselines, we find that the choice of reasoning model may depend on the nature of the
benchmark being developed. Comparing between the designers, Grok-4 and GPT-5 do well on the
mathematical and logical reasoning domains of Arithmetic Sequences and Spatial Reasoning. On
the other hand, Claude-Opus-4.1 excels on the real-world agentic benchmark of τ -Bench Airline.

Next, we study the performance across models, at each target performance level. We observe in-
herent difficulty levels in the underlying environment domains, that reflect in the designer’s perfor-
mance. For instance, τ -Bench and Spatial Reasoning, being challenging benchmarks, the perfor-
mance gap is highest on the Trivial and Easy difficulty levels, for all models. Conversely, on the toy
Arithmetic Sequences task, the highest gap is observed at hard and medium difficulty levels.

C3: Environment designed by BeTaL for one target model is transferable to other target
models.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 3: BeTaL performs robustly at different target performance levels, compared to baselines
on τ -Bench and Arithmetic Sequences.

Our analysis demonstrates that environments designed by BeTaL exhibit robust transferability
across different evaluation models. On τ -Bench, environments designed using o4-mini feedback
achieve comparable performance when evaluated on Claude 3.7 Sonnet and Gemini 2.5 Flash (Fig-
ure ??), with BeTaL consistently outperforming baseline approaches across all evaluation models.

We further validate this transferability on Arithmetic Sequences, where BeTaL environments de-
signed with o4-mini feedback were successfully evaluated on both o4-mini and Gemini 2.5 Flash.
The environments maintain their fundamental difficulty characteristics across models: At the hard
25% target, o4-mini achieves a performance gap of 9.7 ± 8.7 % while Gemini 2.5 Flash achieves that
of 22.8 ± 17.4 %. Although absolute performance differs between models - with o4-mini showing
higher accuracy (62.8%) compared to Gemini 2.5 Flash (43.0%) - the relative difficulty calibration
transfers consistently across all target regret levels (25%, 50%, 75%, 90%).

This cross-model consistency across different benchmark domains: agentic planning in real-world
tasks (τ -Bench) and mathematical reasoning (arithmetic sequences) domains provides strong evi-
dence that BeTaL -designed environments test fundamental cognitive capabilities that generalize
across different model architectures and families, rather than exploiting model-specific weaknesses.

C4. Are LLMs also able to generate better parameter space?

Despite LLMs’ strong performance of generating arbitrarily complex benchmarks through BeTaL ,
the parameter spaces for the three tasks we experiment on are still manually designed by human. We
further explore the next level of benchmark design autonomy by prompting Opus 4.1 to design the
parameter space for τ -bench. We then manually implement feasible parameters into the scenario
generator and experiment BeTaL on the AI generated parameter space. According to Figure 5,
BeTaL iterated on AI design parameter space performs decently on generating Medium or Hard
level benchmarks yet underperforms to human generated parameter space on Easy and Trivial level
benchmarks.

6 CONCLUSION

We introduced BeTaL , an LLM-in-the-loop dynamic benchmark design framework. BeTaL is a
method for dynamic benchmark generation and design that adaptively matches target performance
levels, incorporates strategies for efficient task synthesis that improve cost-effectiveness compared
to baselines, and can be used to create new benchmarks and empirical validation. We showed that
iterative design with LLMs is consistently more effective than non-iterative or random baselines.

Limitations. BeTaL assumes access to parameterized and verifiable simulators, which may not
always exist. Its effectiveness depends on the reasoning strength of the designer model and care-
ful prompt construction. Moreover, our evaluation is limited to a small set of domains, leaving
multimodal and more subjective tasks unexplored.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 4: Performance of all evaluation models (o4-mini, Claude Sonnet 3.7, and Gemini-2.5-Flash
on τ -Bench. (BeTaL) using feedback from o4-mini sees comparable performances on Claude 3.7
Sonnet and Gemini 2.5 Flash.

Figure 5: Performance of BeTaL on τ -bench parameter space generated by Opus 4.1 versus by
human. BeTaL on AI generated parameter space is acceptably small performance gap for medium
and hard benchmarks, yet still generally underperforms to that generated by human.

Future work. A natural direction is to use environment scaling more explicitly as a knob, enabling
smooth transitions from simple to complex environments as models improve. Extending BeTaL
to automatically propose new parameters, exploring multi-agent or co-evolutionary design loops,
and incorporating human-in-the-loop oversight could further enhance adaptability and reliability.
Ultimately, we envision self-adaptive benchmarks that evolve continuously with the systems they
evaluate, ensuring robust and meaningful assessment as AI capabilities advance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Fuma Aki, Riku Ikeda, Takumi Saito, Ciaran Regan, and Mizuki Oka. Llm-poet: Evolving complex
environments using large language models. arXiv preprint arXiv:2406.04663, 2024.

Pierre Andrews, Amine Benhalloum, Gerard Moreno-Torres Bertran, Matteo Bettini, Amar Budhi-
raja, Ricardo Silveira Cabral, Virginie Do, Romain Froger, Emilien Garreau, Jean-Baptiste Gaya,
Hugo Laurençon, Maxime Lecanu, Kunal Malkan, Dheeraj Mekala, Pierre Ménard, Grégoire Mi-
alon, Ulyana Piterbarg, Mikhail Plekhanov, Mathieu Rita, Andrey Rusakov, Thomas Scialom,
Vladislav Vorotilov, Mengjue Wang, and Ian Yu. Are: Scaling up agent environments and evalu-
ations. arXiv preprint arXiv:2509.17158, 2025.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander Nicholas D’Amour, Jacob Eisenstein,
Chirag Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment
policy. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=u3U8qzFV7w.

Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachan-
dran. Benchagents: Automated benchmark creation with agent interaction. arXiv preprint
arXiv:2410.22584, 2024.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. arXiv preprint arXiv:2012.02096, 2021.

Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xi-
aobin Wang, Liangcai Su, Zhen Zhang, Shibin Wu, Zhengwei Tao, Yong Jiang, Pengjun Xie, Fei
Huang, and Jingren Zhou. Towards general agentic intelligence via environment scaling. arXiv
preprint arXiv:2509.13311, 2025.

Eitan Farchi, Shmulik Froimovich, Rami Katan, and Orna Raz. Automatic generation of benchmarks
and reliable llm judgment for code tasks. arXiv preprint arXiv:2410.21071, 2024.

Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to au-
tonomous ai agents: A comprehensive review. arXiv preprint arXiv:2504.19678, 2025.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. arXiv
preprint arXiv:2508.05004, 2025.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884–1897, 2021a.

Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. arXiv preprint
arXiv:2010.03934, 2021b.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning the
points of llm function calling. arXiv preprint arXiv:2409.00920, 2025.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline for
generating verifiable and diverse function-calling datasets. arXiv preprint arXiv:2406.18518,
2024.

Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design.
arXiv preprint arXiv:2203.01302, 2023.

10

https://openreview.net/forum?id=u3U8qzFV7w
https://openreview.net/forum?id=u3U8qzFV7w

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Arkil Patel, Siva Reddy, and Dzmitry Bahdanau. How to get your llm to generate challenging
problems for evaluation. arXiv preprint arXiv:2502.14678, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36:38975–
38987, 2023.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can lrms? a
preliminary evaluation of openai’s o1 on planbench. arXiv preprint arXiv:2409.13373, 2024.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Bench-
mark self-evolving: A multi-agent framework for dynamic llm evaluation. arXiv preprint
arXiv:2402.11443, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 4, 2024.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Yueqi Zhang, Jiayi Shi, Chuyi Tan, Boyuan
Pan, Yao Hu, and Kan Li. Llm-powered benchmark factory: Reliable, generic, and efficient. arXiv
preprint arXiv:2502.01683, 2025.

Abhay Zala, Jaemin Cho, Han Lin, Jaehong Yoon, and Mohit Bansal. Envgen: Generating and
adapting environments via llms for training embodied agents. arXiv preprint arXiv:2403.12014,
2024.

11

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

0 2 4
X Position

0

2

4

Y
Po

sit
io

n

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

Initial State

0 2 4
X Position

0

2

4

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

Moved Particle P1 Forward 1

P1 P2

0 2 4
X Position

0

2

4

1 2 3 4

8 7 6 5

9 10 11 12

16 15 14 13

Rotated Particle P2 90 degrees

0 2 4

0

2

4

1

2

3

4

8

7

6

5

9

10

11

12

16

15

14

13

Rotated Board 90 degrees

Figure 6: Illustration of objects and actions in spatial reasoning tasks. Here the board is 4x4 and
initially oriented towards north (black arrow). There are two particles P1 and P2 oriented towards
west and south respectively. The first action moved the particle forward by one step, second action
rotated the particle by 90 degrees and the last action shows rotation of the board by 90 degrees. The
board rotations are w.r.t. to its center and when a board rotates or moves the particles on it also
rotoate and move along with it.

A ADDITIONAL EXPERIMENTS AND DETAILS

A.1 DETAILS OF BENCHMARKING TASKS

Spatial Reasoning. The descriptions of parameters and actions are provided in the prompt (Ap-
pendix B) for the designer model. Figure 6 illustrates an example of a sample from the spatial
reasoning environment. On such samples, we ask 4 types of queries. i) Absolute location (x,y)
co-ordinates of the particle or the board. The board’s location is defined as the location of its center.
ii) The tile number on which a specific particle is located. iii) The orientation of a given particle.
It could be north, east, west, or south. iv) Relative location of a particle or board with respect to
another particle or board. When an LLM is prompted with such problems, we instruct it to produce
structured outputs along with its reasoning traces. The structured output is verified easily with the
groundtruth computed programmatically.

Human Designed Tau Bench Airline. The parameter descriptions and expected behaviors are
specified in the designer prompt (Appendix B). Each sample corresponds to an airline itinerary
planning scenario parameterized by a small set of discrete controls. The parameter space includes
numerical factors such as num actions (1–6), num passengers (1–3), and num baggages
(0–3), as well as categorical attributes like booking strategy (“cheapest”/“earliest arrival”),
is direct, is round trip, cabin (“economy”/“business”), and insurance (“yes”/“no”).
These parameters jointly control itinerary complexity: increasing action count, passengers, or bags
expands the combinatorial search space, while enabling multiple strategies, connecting flights, or
round-trip requirements adds additional reasoning constraints. When prompted with such parame-
terized tasks, the LLM designer is instructed to output both a thought process describing how the
configuration achieves the target failure rate and the final parameter values in structured JSON. This
structured output can be programmatically validated against the student model’s measured failure
rate.

Opus 4.1 Designed Tau Bench Airline. The designer model receives a target failure rate ρfail
and is asked to generate task parameters that achieve 1 − pass@1 ≈ ρfail. The parameter
space extends beyond structural complexity (e.g., num actions ∈ [1, 6], num passengers
∈ [1, 3]) to include behavioral and informational dimensions. Categorical controls specify booking
preferences (booking strategy: “cheapest”/“earliest arrival”), routing options (is direct,
is round trip), cabin composition (cabin mix: economy, business, or mixed), and environ-
ment conditions such as information completeness (whether all data is provided upfront),
cooperation level (helpful/demanding/uncooperative agents), information pattern
(upfront, gradual, reactive revelation of details), and preference clarity (explicit vs. im-
plicit preferences). Together, these parameters modulate combinatorial difficulty, reasoning burden,
and dialogue complexity, allowing fine-grained control of task hardness to steer the student model’s
empirical failure rate toward ρfail. Structured outputs include both the parameter configuration and
a thought process explaining why it should achieve the desired difficulty level.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 DETAILED BASELINES

BoN-ML and BoN-TM. These are inspired from the best-of-n alignment technique Beirami et al.
(2025). The key idea here is to generate n configurations v1, v2, ldots, vn from LLM in parallel
and then select the ones that yield the highest “reward”. Here, our notion of reward is based on the
proximity to the target performance level ρ.

More precisely, a reward oracle in our setting is a function r : V 7→ R that predicts the performance
gap for any v ∈ V . Here, we realize such a reward oracle in two ways. First, based on an offline
trained classical ML model, and second, based on online estimation by drawing samples and evalu-
ating them. The steps to estimate performance in the second approach are the same as steps 2 and
3 of the BeTaL . The variation of BoN using this oracle is referred to as BoN-TM, and the other
one is called BoN-ML. The ML model for BoN-ML is trained in two steps: 1) draw a set of random
configurations ṽ1, ṽ2, . . . ṽs. For each of these configurations, obtain simulated datasets D̃i and ρ̃i
by evaluating the target model Mt on D̃i. 2) Train multiple classical supervised learning models on
{ṽi, ρ̃i}si=1 and pick the best one with cross-validation. In the end, we expect to get a good predic-
tor f̂ : V 7→ R that can predict performance for any given v ∈ V , and define the reward function
r(v) = −|ρ− f̂(v)|.
BoN-ML Model Training and Selection. As part of the BoN-ML experiments, we trained and
compared models to predict regret efficiently. Across all three domains, we explored over 800 dif-
ferent parameter configurations and architectures. Given the relatively small datasets (100 samples
per domain, with feature counts ranging from 13 to 74), we applied 5-fold cross-validation to obtain
reliable performance estimates.

All features were derived directly from the environment parameters, ensuring the predictors re-
mained lightweight and domain-specific. Models were selected based on the highest cross-validation
R² score, and the best candidates were saved for deployment. Performance was domain-specific:
small neural networks performed best for Arithmetic Sequences, Random Forests excelled in Spa-
tial Reasoning, and gradient boosting worked best for τ -Bench. This process yielded fast, domain-
tailored predictors to guide BoN-ML parameter selection effectively.

A.3 DETAILS OF LLM MODELS

LLM Versions GPT-5: undisclosed - the latest GPT-5 version as of Sep 25, 2025 Opus 4.1: claude-
opus-4-1-20250805 Grok 4: grok-4-0709 o4-mini: o4-mini-2025-04-16 claude3.7: claude-3-7-
sonnet-20250219 gemini-2.5-flash: gemini-2.5-flash

LLM Inference Parameters The default temperature for designer models is 0.5 and for target mod-
els is 0.0. However, claude-opus-4-1-20250805 and claude-3-7-sonnet-20250219 are only available
with a temperature of 1.

The default reasoning budget for designer models is 4096 tokens and for target models is 1024.
However, grok-4-0709 do not support configurable reasoning budget.

A.4 ADDITIONAL RESULTS

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Figure 7: Performance of all methods on Arithmetic Sequences during Parameter Learning Phase,
(BeTaL) has the lowest performance gap among competing methods, across target difficulty levels.

Figure 8: Performance of all methods on τ -bench on Claude 3.7 Sonnet evaluation, (BeTaL) has
the lowest performance gap among competing methods, across target difficulty levels.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Figure 9: Performance of all methods on τ -bench on Gemini 2.5 Flash evaluation, (BeTaL) has
the lowest performance gap among competing methods, across target difficulty levels.

Figure 10: Average performance gap with respect to teacher model for Arithmetic Sequences.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 11: BeTaL vs. DR-PLR convergence on Arithmetic Sequences across target accuracies.

Figure 12: Comprehensive Teacher Performance for Arithmetic Sequences

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 13: Average performance gap with respect to teacher model for Spatial Reasoning.

Figure 14: BeTaL vs. DR-PLR convergence on Spatial Reasoning across target accuracies.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 15: Comprehensive Teacher Performance for Spatial Reasoning

Figure 16: Average performance gap with respect to teacher model for τ -bench.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 17: Performance of different models on evaluation datasets on Arithmetic Sequences

Figure 18: Performance of different models on evaluation datasets on Spatial Reasoning.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 19: BeTaL vs. DR-PLR convergence on τ -bench across target accuracies.

Figure 20: Comprehensive Teacher Performance for τ -bench

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B PROMPTS

LLM Designer Prompt for Arithmetic Sequence

The math problem is to apply a sequence of operators on a number to produce a final an-
swer. The sequence of operators are applied recursively on intermediate results, i.e., num
= operator(num) for each operator in the sequence. The operators only take in one
number as input.
You should target the given model regret at {target regret}, so that the parameters can
generate a math problem for the model at the desired regret level. A high regret indicates a
challenging environment (1 for unsolvable), while a low regret indicates an easy environment
(0 for easy).
Here is the feedback from the previous iterations, which you can use to generate new param-
eters: {feedback}
First, reason about the feedback from previous iterations. Specifically note what parameter-
s/aspects made previous environments challenging or trivial.
Then, given a list of common math operators {operators}, your task is to generate values
for the given parameters:

1. feedback summary: your summary of the feedback from the previous itera-
tions.

2. thought process: your thought process for generating the parameters.
3. max range of nums: the upper bound of range the input number can take on,

i.e. (1, max range of nums). Pick a number between 5 and 50.
4. N: the length of the sequence of operators to apply on a number (between 5 and 10)
5. K: The maximum number of times an operator can be repeated in the sequence

(between 1 and 5)
6. type of nums: the type of numbers in the input (int or float)
7. operator sequence: elect 3 operators from the list above, to generate a se-

quence of operators of length N to apply on a number, where each operator can be
repeated at most K times.

Output format (JSON):

{
” feedback summary ” : s t r ,
” t h o u g h t p r o c e s s ” : s t r ,
” max range of nums ” : i n t ,
”N” : i n t ,
”K” : i n t ,
” t y p e o f n u m s ” : s t r ,
” o p e r a t o r s e q u e n c e ” : l i s t [s t r]

}

LLM Designer Prompt for the Spatial Reasoning Environment

You are an expert in designing spatial reasoning environments. The environment is a 2D grid
world. It consists of a square board and a two particles on the board. The board’s dimensions
can be from 5 to 100. The board is divided into tiles of size 1x1. The particles are at the
center of the tiles.

Each object (board and particles) in the environment has an orientation and a location. The
orientation is the direction in which the object is facing, which can be one of the following:
NORTH, EAST, SOUTH, WEST. The location of particle is given by the 2D coordinates of

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

the center of the tile on which the particle is located. The orientation and location of particle
are initialized randomly. The location of the board is the 2D coordinates of the center of the
board. The orientation of the board is the orientation of its center. It is always initialized to
NORTH.

The environments complexity can be controlled by the following parameters:

- The board size determined by the width parameter.
- The board can either allow particles to wrap around the edges or not. It is determined by

the wrap around parameter. If it is true, then the particles can wrap around the edges of
the board. If it is false, then the particles cannot wrap around the edges of the board.

- The movements allowed for the objects (board and particles). Each object can have a
subset of the following movements: LEFT, RIGHT, FORWARD, BACKWARD.

- The rotations allowed for the objects (board and particles). Each object can have a subset
of the following rotations: 0, 90, 180, 270, 360. If the rotation is 0, then the object is
not rotated. If the rotation is 90, then the object is rotated 90 degrees counter-clockwise.
If the rotation is 180, then the object is rotated 180 degrees counter-clockwise. If the
rotation is 270, then the object is rotated 270 degrees counter-clockwise. If the rotation
is 360, then the object is rotated 360 degrees counter-clockwise.

You are given a list of parameters for a board and a list of parameters for a particle. You
are also given a list of parameters for actions that can be performed on the board and the
particle. You need to design a spatial reasoning environment that is sufficiently challenging
and an average language model can achieve a target accuracy of <accuracy>.

Response format - JSON schema You must get the final answer and convert it to the
following JSON data structure. Follow the schema exactly.

Key: thought process
Type: String,
Description: Your thought process when designing the environment.

Key: ‘wrap around‘
Type: Boolean,
Description: Whether the board can wrap around the edges.

Key: ‘width‘
Type: Integer,
Description: The width of the board.

Key: ‘board moves‘
Type: Boolean,
Description: Whether the board can move.

Key: ‘board allowed moves‘
Type: List of Strings,
Description: The movements allowed for the board, must be subset of: LEFT, RIGHT,
FORWARD, BACKWARD.

Key: ‘board rotates‘
Type: Boolean,
Description: Whether the board can rotate.

Key: ‘board allowed rotations‘
Type: List of Integers,
Description: The rotations allowed for the board, must be subset of: 0, 90, 180, 270, 360.

Key: ‘particle moves‘
Type: Boolean,
Description: Whether the particle can move.

Key: ‘particle allowed moves‘
Type: List of Strings,

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Description: The movements allowed for the particle, must be subset of: LEFT, RIGHT,
FORWARD, BACKWARD.

Key: ‘particle rotates‘
Type: Boolean,
Description: Whether the particle can rotate.

Key: ‘particle allowed rotations‘
Type: List of Integers,
Description: The rotations allowed for the particle, must be subset of: 0, 90, 180, 270, 360.

Key: ‘number of board rotation actions‘
Type: Integer,
Description: The number of times the board can be rotated if board rotates is true.

Key: ‘number of particle rotation actions‘
Type: Integer,
Description: The number of times the particles can be rotated if particle rotates is true.

Key: ‘number of board movement actions‘
Type: Integer,
Description: The number of times the board can be moved if board moves is true.

Key: ‘number of particle movement actions‘
Type: Integer,
Description: The number of times the particles can be moved if particle moves is true.

LLM Designer Prompt for Tau Bench Airline Environment

You are an expert in designing airline-booking tasks for language-model agents.

Your goal is to propose task parameters that drive a student model to a target failure rate of
0.75. Here, the failure rate is defined as 1−pass@1 for the student model, i.e., the probability
that the student fails to solve the task on the first attempt. You are directly rewarded for
minimizing the absolute distance to the 0.75 failure rate, so choose parameters that make the
task challenging enough to approach this target as closely as possible.

The task setting is an airline-shopping environment where an agent must construct an
itinerary subject to constraints (e.g., number of actions, bags, cabin class, routing).

Controllable parameters and intended complexity effects:
- num actions (1--6): Upper bound on primitive planning/interaction steps. Start

simple with fewer actions; increase to raise difficulty.
- num passengers (1--3): More passengers typically increases combinatorial con-

straints and price/timing trade-offs.
- num baggages (0--3): More bags interact with fare rules and cabin choices; higher

values generally increase difficulty.
- booking strategy: Subset of {“cheapest”, “earliest arrival”}. Multiple strategies

introduce objective trade-offs.
- is direct: Boolean. Allowing false admits connections and routing search com-

plexity.
- is round trip: Boolean. Round-trips add coupling between outbound/return con-

straints.
- cabin: Subset of {“economy”, “business”}. More options broaden fare/rule search

space.
- insurance: One of {“yes”, “no”}. Insurance interacts with cost-focused strategies and

can add goal ambiguity.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Tune these parameters to steer the student model’s 1− pass@1 toward 0.75.

Response format — JSON schema
You must get the final answer and convert it to the following JSON data structure. Follow
the schema exactly.

Key: thought_process
Type: String
Description: Concise reasoning explaining how the chosen parameters are expected to yield
a failure rate near 0.75; reference how each parameter affects difficulty.

Key: num_actions
Type: Integer (range: 1–6)
Description: Maximum number of allowed actions/steps.

Key: num_passengers
Type: Integer (range: 1–3)
Description: Number of travelers to book.

Key: num_baggages
Type: Integer (range: 0–3)
Description: Total checked bags across passengers.

Key: booking_strategy
Type: List of Strings (subset of: {“cheapest”, “earliest arrival”})
Description: Allowed objective(s) for the student; may include one or both.

Key: is_direct
Type: Boolean
Description: If true, only nonstop itineraries are valid; if false, connections are al-
lowed.

Key: is_round_trip
Type: Boolean
Description: Whether the itinerary must include return travel.

Key: cabin
Type: List of Strings (subset of: {“economy”, “business”})
Description: Allowed cabin classes.

Key: insurance
Type: String (one of: “yes”, “no”)
Description: Whether trip insurance is part of the task constraints.

Example of a Question in the Spatial Reasoning Setting

Following is the description of the spatial reasoning environment. Go through it carefully
and then answer the question in the requested format.

Environment

Setup
All locations are pairs of real numbers (x, y). North corresponds to increasing y, and South
corresponds to decreasing y. East corresponds to increasing x, and West corresponds to
decreasing x. Orientation is a direction, and can be one of the following: North, East, South,
or West. Orientation is also measured in degrees, and can be one of the following: 0, 90,
180, 270. Where 0 means East, 90 means North, 180 means West, and 270 means South.

A board’s rotation is defined as the rotation of the board around its center. When a board
rotates, the orientation of the board changes, and the tiles and particles on the board also
rotate along with it. A particle’s rotation changes the orientation of the particle, but does not

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

change the location of the particle. As a general rule, any entity’s rotation can change the
orientation of the entity, but does not change the location of the entity.

A board’s location is defined as the location of its center. A board’s movement changes the
location of the board, and the tiles and particles on the board also move along with it. For
example, if a board moves forward 1 unit, the center of the board and the tiles and particles on
the board all move 1 unit along the orientation of the board. A particle’s movement changes
the location of the particle For example, if a particle moves forward 1 unit, the location of
the particle changes by 1 unit along the orientation of the particle.

If the movement of particles results in the particle moving beyond the boundary of the board,
then the particle will either wrap around the boundary of the board or remain at the current
tile. It depends on the board’s wrap around settings, which are described in the description
of the board. As a general rule, any entity’s movement can change the location of the entity,
but does not change the orientation of the entity. The orientation of an entity can be thought
of as the direction in which the entity is facing. This determines the meaning of forward,
backward, left, right, etc., for the entity.

Entities

The environment contains the following entities:

Board B1

Setup A board is 12.0 units wide and 12.0 units tall, and contains 2 particle(s). It is
centered at (0.0, 0.0). Its orientation is defined as the center’s orientation, which is NORTH.
Initially, the board is oriented NORTH.
The board has four sides: SIDE-1, SIDE-2, SIDE-3, SIDE-4 The side from the south west
corner to south east corner is the bottom side of the board. It is called SIDE-1 The side from
the south east corner to north east corner is the right side of the board. It is called SIDE-2
The side from the north east corner to north west corner is the top side of the board. It is
called SIDE-3 The side from the north west corner to south west corner is the left side of the
board. It is called SIDE-4

Boundaries

In the event the particle move results in the particle moving beyond the boundary of the
board, the resulting location is decided as follows:

When a particle is on a tile, it means its location is the tile’s centroid. The SIDE-1 of the
board can be crossed when approaching from the SIDE-3, and the particle(s) will move to
the opposite tile on the SIDE-3. The SIDE-2 of the board can be crossed when approaching
from the SIDE-4, and the particle(s) will move to the opposite tile on the SIDE-4. The
SIDE-3 of the board can be crossed when approaching from the SIDE-1, and the particle(s)
will move to the opposite tile on the SIDE-1. The SIDE-4 of the board can be crossed
when approaching from the SIDE-2, and the particle(s) will move to the opposite tile on the
SIDE-2.

Tiles on the board

The board is divided into square tiles of size 1 units by 1 units. Tiles are numbered from 1
to (width * height), starting from the bottom left corner in a zigzag pattern. Going from left
to right, then right to left, and so on. For example, for a 3x3 board, the tiles are numbered as
follows: 9 8 7 6 5 4 1 2 3

Allowed moves

The following moves are allowed for the board: FORWARD - board moves forward 1 unit.
BACKWARD - board moves backwards 1 unit. Orientation remains the same. LEFT - board
sidesteps 1 unit to the left. Orientation remains the same. RIGHT - board sidesteps 1 unit to
the right. Orientation remains the same.

Allowed rotations

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The following rotations are allowed for the board: 90 - board rotates 90 degrees. 180 - board
rotates 180 degrees. 270 - board rotates 270 degrees.

Particle P1

Initial State

It is located at (3.5, 3.5), and is facing WEST (180 degrees). It is on tile 111. It is on board
B1.

Allowed moves

The following moves are allowed for this particle: FORWARD - particle moves forward
1 unit. BACKWARD - particle moves backwards 1 unit. Orientation remains the same.
LEFT - particle sidesteps 1 unit to the left. Orientation remains the same. RIGHT - particle
sidesteps 1 unit to the right. Orientation remains the same.

Allowed rotations

The following rotations are allowed for this particle: 90 - particle rotates 90 degrees. 180 -
particle rotates 180 degrees. 270 - particle rotates 270 degrees.

Particle P2

Initial State

It is located at (-0.5, 5.5), and is facing SOUTH (270 degrees). It is on tile 139. It is on board
B1.

Allowed moves

The following moves are allowed for this particle: FORWARD - particle moves forward
1 unit. BACKWARD - particle moves backwards 1 unit. Orientation remains the same.
LEFT - particle sidesteps 1 unit to the left. Orientation remains the same. RIGHT - particle
sidesteps 1 unit to the right. Orientation remains the same.

Allowed rotations

The following rotations are allowed for this particle: 90 - particle rotates 90 degrees. 180 -
particle rotates 180 degrees. 270 - particle rotates 270 degrees.

Actions

The actions are the following: First, board B1 is rotated by 270 degrees. Then, particle P2
is rotated by 270 degrees. Then, particle P1 is rotated by 270 degrees. Then, particle P1 is
rotated by 90 degrees. Finally, move particle P2 BACKWARD by 1 units.

Question

What is the location of board B1 after all the actions?

Response format - JSON schema You must get the final answer and convert it to the
following JSON data structure. Follow the schema exactly.

Key: ‘board B1 x‘
Type: Float,
Description: The x-coordinate of board B1 after all the actions.

Key: ‘board B1 y‘
Type: Float,
Description: The y-coordinate of board B1 after all the actions.

Example of a Task in the Tau-Bench Airline Setting

Following is the description of the airline environment. Go through it carefully and then
answer the question in the requested format.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Environment

Setup
The environment simulates a commercial airline booking system. Airports are identified by
IATA codes (e.g., SEA, EWR). Dates are formatted YYYY-MM-DD. Times are HH:MM:SS
in local (EST) for scheduling metadata. Cabins include basic economy, economy, and
business. Bookings may be one way or round trip. Payment instruments include
certificate, gift card, and credit card. Baggage may be free or non-free de-
pending on fare rules (not shown here). Insurance is optional.

Capabilities
Agents may:

• Search flights (nonstop or onestop) between an origin and a destination on a speci-
fied date.

• Book reservations with specified flight legs, cabin, passengers, baggages, insur-
ance, and payment methods (in priority order).

• Request issuance of a travel certificate with a specified ID and amount.

Entities

User U1
User identifier: mohamed li 7869.
The user’s birthday is present in the profile and should not be requested during the interac-
tion.

Passenger(s)
A single passenger is provided and known to the user:

• first name: Yusuf, last name: Thomas, dob: 1966-05-11

Payment Instruments (available to U1)

• gift card 3525913: amount 27
• gift card 5876000: amount 176
• gift card 7716568: amount 237
• credit card 1922786: amount 139

Preferred payment order: certificate→ gift card→ credit card.

Demands

Demand 1: Flight Search
Search for an onestop flight from LGA to DTW on 2024-05-25.

Demand 2: Booking
Book a one-stop, one-way itinerary from SEA to EWR on 2024-05-30 in business cabin
for 1 passenger with 1 total baggage. Choose the cheapest eligible option. Include insur-
ance. Use payments in the order: certificate(s) first, then gift card(s), then credit card(s).
Candidate flights presented (for selection during booking):

• Leg 1:
– flight number: HAT117, origin: SEA, destination: DFW
– scheduled departure time est: 10:00:00,
scheduled arrival time est: 14:00:00

– status: available, date: 2024-05-30
– Seats available: basic economy 5, economy 0, business 1
– Prices: basic economy 62, economy 119, business 263

• Leg 2:
– flight number: HAT063, origin: DFW, destination: EWR

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

– scheduled departure time est: 18:00:00,
scheduled arrival time est: 21:30:00

– status: available, date: 2024-05-30
– Seats available: basic economy 11, economy 15, business 9
– Prices: basic economy 80, economy 137, business 286

Demand 3: Certificate Issuance
Request a certificate with:

• certificate id: certificate 4314319

• amount: 170

Actions
The intended agent actions, in order, are as follows:

1. search onestop flight with {origin: PHX, destination: DFW, date:
2024-05-18}.

2. book reservation with the provided passenger, baggage, cabin, flight legs
(SEA→DFW, then DFW→EWR on 2024-05-30), one-way, business, cheapest, in-
surance yes, and payment methods listed above in the stated priority order.

3. send certificate with {certificate id: certificate 4314319,
amount: 170}.

Note. Although Demand 1 specifies LGA→DTW (2024-05-25) search, the sample action
shows PHX→DFW (2024-05-18). The agent must honor the stated Demands when resolv-
ing inconsistencies (prefer Demands).

Question
Produce the exact JSON payload(s) for the three API calls in the correct order that satisfy
all Demands above (use LGA→DTW for the search as specified by Demand 1; for booking,
choose the cheapest eligible business one-stop SEA→EWR itinerary from the two legs
provided; include insurance; and apply payment instruments in the order certificate→ gift
card(s)→ credit card(s)).

Response format - JSON schema
Return a single JSON object with the following keys:

Key: action sequence
Type: Array of Objects
Description: The ordered list of actions. Each object must have:

• name (string; one of search onestop flight, book reservation,
send certificate)

• kwargs (object; the exact arguments for the call)

Key: notes
Type: String
Description: Brief justification for flight choice, insurance inclusion, baggage count, and
the payment breakdown order.

28

	Introduction
	Related Work
	Methodology
	Preliminaries
	1.1BeTaL : Benchmark Tuning with LLM-in-the-loop

	Experimental Setup
	Benchmarking Tasks
	Baselines
	Designer and Target Models
	Metrics
	Experiment Protocol

	Results and Discussion
	Conclusion
	Additional Experiments and Details
	Details of benchmarking tasks
	Detailed Baselines
	Details of LLM Models
	Additional Results

	Prompts

