Under review as a conference paper at ICLR 2026

AUTOMATING BENCHMARK DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid progress and widespread deployment of LLMs and LLM-powered
agents has outpaced our ability to evaluate them. Hand-crafted, static benchmarks
are the primary tool for assessing model capabilities, but these quickly become
saturated. In contrast, dynamic benchmarks evolve alongside the models they
evaluate, but are expensive to create and continuously update. To address these
challenges, we develop BeTaL (Benchmark Tuning with an LLM-in-the-loop),
a framework that leverages environment design principles to automate the pro-
cess of dynamic benchmark design. Be T aL works by parameterizing key design
choices in base benchmark templates and uses LLMs to reason through the result-
ing parameter space to obtain target properties (such as difficulty and realism) in
a cost-efficient manner. We validate this approach on its ability to create bench-
marks with desired difficulty levels. Using BeTal, we create two new bench-
marks and extend a popular agentic benchmark 7-bench. Extensive evaluation on
these three tasks and multiple target difficulty levels shows that BeTaL produces
benchmarks much closer to the desired difficulty, with average deviations ranging
from 5.3% to 13.2% — a 2-4x improvement over the baselines.

1 INTRODUCTION

New developments in LLMs, particularly in powering agents via advanced planning, reasoning, and
tool-use capabilities (Valmeekam et al., 2023; 2024; Ferrag et al., 2025), have outpaced current
methods for evaluation. Static, human-curated benchmarks, such as GPQA (Rein et al., 2024) or
HLE (Phan et al., 2025), remain popular, but are costly to develop and quickly become obsolete
as models continue to improve. This is challenging for model developers, as increasingly saturated
benchmarks make it impossible to differentiate between the performance of state-of-the-art models.

To address these challenges, researchers have turned to dynamic benchmarks that can be updated
over time. These benchmarks avoid saturation via re-calibration or the introduction of new and
harder data; this also limits the risk of train-test contamination. For example, LiveBench (White
et al., 2024) periodically introduces new questions and harder tasks. However, these types of bench-
marks still largely rely on unscalable human authoring and manual updates. Increasingly popular
agentic tasks exacerbate this problem, as simulated environments must be carefully crafted; repeat-
edly designing and implementing new environments promises to be even more labor-intensive.

How can we build dynamic benchmarks for frontier LLMs without the expense and inefficiency of
ongoing manual design and implementation? Unsupervised environment design (UED) methods
(Jiang et al., 2021a) work with environments that are built from abstract task templates with a set of
configurable parameters. These parameters can be tuned to produce new and higher utility versions
of the benchmark, thus enabling dynamic re-use. In practice, however, we find that the search
space over such parameters is intractable for non-trivial environments. Naively sampling random
configurations is inefficient, as many will be trivial or unsolvable.

We overcome these obstacles via a new approach, Benchmark Tuning with an LLM-in-the-loop
(BeTal), that performs dynamic benchmark design. BeTaL leverages the capabilities of large
reasoning models playing the role of designers. Central to our approach is the use of a powerful
designer LLM tasked with reasoning over the space of possible parameter values, design choices, or
tasks. The designer is prompted to consider the various parameters of an under-specified benchmark
or environment and to propose instances or values that are expected to be high utility. This is set up
as an interactive and iterative process: after the designer has specified an environment, a simulator

Under review as a conference paper at ICLR 2026

Step 1 Step 2 -
Generate Simulate ob
arameters roblems Y EaT
B e, | promems | Rl
e b
Designer Environment Target model
Step 6) Step 3
Provide Loop I times Rollouts from
feedback target model
Step 5 Step 4 9
Measure Evaluate
v performance responses
=E 4
l——— ———————
v
Feedback Measure Gap Evaluation

Figure 1: BeTalL automates the process of designing and adjusting dynamic benchmarks to meet target
criteria.

creates a sample benchmark (problems with ground truth answers), and the model or agent being
evaluated attempts this benchmark, with results provided back to the designer. After each round,
the designer must reason over choices and results and make changes in the parameter values so
that the new parameters will result in a benchmark with desired objectives (such as difficulty or
realism). This closed-loop multi-round strategy allows the benchmark to dynamically adjust over
time to meet the objectives. While the procedure is flexible to incorporate several types of objectives
and combinations thereof, here we focus on the objective of creating a benchmark with a given target
difficulty level.

We hypothesize that the strong zero-shot or few-shot reasoning capabilities of frontier models en-
able the designer to understand the factors that influence usefulness (e.g., task difficulty) and design
benchmarks that meet all desirable criteria (e.g., tasks that are just outside of a weaker model’s cur-
rent capabilities). This framework design reduces the burden of designing and continually updating
benchmarks to meet the demands of ever-improving models. In addition, it permits re-purposing of
existing static benchmarks - breathing new life into datasets long considered outdated.

Our contributions are:

* A flexible framework for automating benchmark design. We posit that benchmark prop-
erties such as complexity are determined by a set of underlying benchmark parameters.
With this insight, we formulate the design process as an optimization problem over the
space of benchmark parameters to obtain settings that will result in a benchmark having
desired properties, e.g., difficulty level.

* An efficient LLM-based procedure to solve the optimization. Leveraging the reasoning
capabilities of frontier large language models, we introduce Benchmark Tuning with an
LLM-in-the-loop (BeTalL) to efficiently solve the above optimization problem for bench-
mark design.

* New benchmarks and empirical validation: Using BeTaL, we modify existing bench-
marks to meet new requirements for dataset-level difficulty, and we introduce new bench-
marks that focus on mathematical and spatial reasoning. Our extensive empirical evaluation
of BeTaL on these settings reveals BeTaL consistently obtains benchmarks with low de-
viation (5.3% - 13.2%) between observed and target difficulty — a 2-4 x improvement over
baselines across all tasks.

2 METHODOLOGY

We propose Be TaL, a novel framework that uses an LLM-in-the-loop to iteratively design dynamic
benchmarks that achieve user-specified goals. Before describing the algorithm, we outline the key
building blocks of the system.

Under review as a conference paper at ICLR 2026

Algorithm 1 Benchmark Tuning with an LLM-in-the-loop (BeTaL)

1: Input: Under-specified Environment Description, Parameter Set P, Target Performance p, Tar-
get Model M;, Designer Model M, Number of Iterations I.

2: Initialize i* < 0, vy« < 0, minimum gap g;+ < 0o

3: fori =1to I do

4: Prompt < Template with Environment description, P, p
5: if i > 1 then
6: Prompt < Prompt + Summary of previous iterations
7 end if
8: v; < Mp(Prompt) > Get parameters from Designer Model
9: v; < ProjectToDomain(v;, V)
10: D; «+ InstantiateSimulator(v;) > Generate problems with simulator
11: pi + EvaluateModel(Mr, D;) > Evaluate Target Model
12: gi < |pi — pl
13: Update summary of previous iterations with v; and p; > Step 4: Prepare feedback for next
iteration
14: if §; < g;» then
15: "1
16: Jix < G
17: end if
18: end for

19: Return: v;-

2.1 PRELIMINARIES

Our approach assumes a loosely defined environment template that can be refined and instantiated
into concrete benchmarks. The system consists of the following components:

Underspecified environment. The user begins with a high-level description of the benchmark they
want to create—for example, a spatial reasoning benchmark where questions involve tracking ob-
jects on a grid after a sequence of transformations. Intuitively, the complexity of problems depends
on several factors such as grid size, number of actions, types of operations, etc. We begin with
an underspecified environment, wherein the environment is characterized by a finite set controllable
parameters P = {p1,pa,...,pr}, i € V;, so that the overall design spaceis V = Vi x Vo x. .. x V.

Problem/Task Generator. We assume access to a simulator that, given a parameter configuration
v € V, can instantiate the environment and generate a dataset D = {(z;,y;)} of problems with
ground-truth solutions. It is expected that the simulated problems adhere to the constraints specified
by the parameter values. In this work, we focus on environments with verifiable or procedurally
generated solutions, allowing us to assume that the generated ground truth is correct.

Target model. A model or system to be evaluated, e.g., an off-the-shelf LLM, a proprietary API, or
a multi-agent pipeline.

Target performance. Along with the target model, the user also specifies a target performance level
p € R and a distance measure d. The objective is to output a benchmark on which the target model’s
performance will be close to p. The exact definition of p is left to the user; for instance p could be
accuracy, diversity, or an aggregate of multiple measures. In this work, we use target difficulty as
our measure of performance of the generated benchmarks, as we seek to overcome the challenge of
benchmark saturation.

Designer model. A sufficiently powerful model, such as large reasoning models (LRMs), that can
understand the underspecified environment description, the set of free parameters and constraints
that influence the environment’s complexity. We expect such a model to be able to reason about the
design space and propose specific values to the parameters that result in an environment of given
target complexity.

Under review as a conference paper at ICLR 2026

2.2 BETAL: BENCHMARK TUNING WITH LLM-IN-THE-LOOP

BeTal is built on two key ideas: first, strengthening grounding through explicit feedback from
real rollouts of the designed benchmarks; and second, leveraging LLM reasoning to systematically
explore and refine the design space. This process mirrors how humans design benchmarks; through
an iterative loop of experimentation and observation, where both elements are essential for effective
benchmark creation. We describe the process in Alg. 1, and explain it in detail below.

Step 1: Parameter generation (LLM-Guided). In step one of the BeTal, the designer model,
an LRM, is prompted to obtain a parameter configuration v;. Since these values are generated
by a language model, they may be out of the domain V. We found designer models occasionally
hallucinated out of domain configurations in roughly 4% of proposals. Verification is therefore
necessary to ascertain that v; € V, and, if not, this process is repeated until the generated v; falls in
V. In the end, v; is projected to V if it is still out-of-domain.

Step 2: Environment instantiation and problem/task generation. A simulator is instantiated
with the parameter configuration obtained in Step 1, which is then used to generate a small set of
problems/tasks, with ground truth answers for evaluation, i.e. D; = {(;,y;)}72;.

Step 3: Performance evaluation. The target model is evaluated on D; to yield performance p;.
When the ground truth is not available, p; could be estimated by evaluating using LLLM-as-a-Judge
(Gu et al., 2024) or Program-as-a-Judge (Huang et al., 2025a).

Step 4: Feedback and iteration. The iteration details, including the parameter choices and the
resulting performance, are summarized in natural language to the LRM, including v; and p;. This
feedback is appended to the next prompt, enabling the model to reason about the impact of its prior
choices and propose improved parameters in subsequent iterations.

Step 5: Termination and selection. In each iteration, we keep track of the observed performance
gap g; = |p: — p| and keep track of the iteration ¢* that results in the smallest gap. After [iterations,
the method exits and returns v;«.

3 EXPERIMENTAL SETUP

In this section, we describe our setup for the experiments. First, we give high-level details of the
benchmarking tasks, then discuss the baseline methods, our choices of designer and target models,
evaluation metrics, and the protocol to run the experiments.

3.1 BENCHMARKING TASKS

We consider a range of tasks based on arithmetic, spatial reasoning, and airline customer service
agents. Each of these settings has a rich design space with several free parameters that govern the
complexity of the benchmark, making them good candidates for evaluating our method. We briefly
discuss these tasks and defer the details to the Appendix A.1.

Arithmetic sequences task. Given an input number z € R and an output number y € R, an agent
must return the sequence of arithmetic operations o1, 0 . . . oy that, when applied recursively to the
intermediate results, yield y := (oy o ony_1 0 -+ 0 01)(x). At inference time, the target model,
an LLM agent, is provided access to the arithmetic operators, as tools, to determine the sequence
of operators that transform x to y. The predicted operator sequence is verified by executing the
sequence and comparing it with the ground truth y. Task difficulty depends on several factors such
as operator choice, sequence length, range of the input z, and others.

Spatial reasoning task. We design multiple spatial reasoning tasks involving a 2D square grid
(board) with particles placed on it. The board and particles can both rotate, while the particles can
additionally move positions. A series of such actions is applied, after which the model is queried
about the final positions and orientations of the particles. The target LLM receives a description
of the environment and action sequence, and its responses are compared against programmatically
computed ground truth. The complexity is controlled by parameters such as board size, the number
and types of actions allowed.

Under review as a conference paper at ICLR 2026

T-bench “airline” task. This is an interactive evaluation environment for customer service agents in
simulated airline scenarios, where the agent must use available tools to query and update a database
to fulfill user requests (Yao et al., 2024). The reward is computed by comparing the final database
state with the database state following a series of golden actions. Building on this setup, we de-
sign a rule-based task generator that randomly samples action sequences and corresponding user
instructions. The generator is parameterized both by tool-related variables—such as the number of
passengers when booking a flight—and by behavioral parameters derived from real user instructions.

On all three problems, our objective is to identify parameter configurations that yield benchmarks
with desired difficulty levels. For further details on these tasks and associated parameters, see Ap-
pendix A.1.

3.2 BASELINES

We briefly discuss the baselines for evaluation. Details are provided in Appendix A.2.

Random sampling with prioritized parameter replay (RS+PPR). Inspired by Prioritized Level
Replay (PLR) (Jiang et al., 2021b), we develop a baseline RS+PPR, that maintains a buffer of
favorable environment parameters. In each iteration, it samples a parameter configuration v; € V
either uniformly at random (with probability p) or, with probability 1 — p, as a noisy variant of
parameters drawn from the buffer. Then the performance gap g; is estimated with v;, and it is added
to the buffer if §; < A.

Best-of-N variations. We use best-of-N (BoN) Snell et al. (2024); Beirami et al. (2025), where N
responses are sampled and the best response selected according to a reward model. We consider the
reward for a parameter configuration to be the negative of its observed performance gap. In the first
variant, we consider BON-ML, with our verifier as a predictive model trained offline using standard
machine learning methods on parameter—performance-gap pairs. In the second variant, BON-TM,
we collect a small number of rollouts with the target model, and select the response with the smallest
measured performance gap.

3.3 DESIGNER AND TARGET MODELS

We use the latest reasoning models: GPT-5, Claude Opus 4.1, and Grok 4 as designer models and
o4-mini as the target model in all settings. We evaluate the resulting benchmarks on three models:
04-mini, Gemini 2.5 Flash, and Claude 3.7 Sonnet. Whenever applicable, we configure the designer
model with temperature 0.5 and a reasoning budget of 4096 tokens for exploration, while the other
models use temperature 0.0 with a reasoning budget of 1024 tokens. Details of model configurations
are in Appendix A.3.

3.4 METRICS

Each benchmarking task can have its own notion of performance p (e.g., accuracy, pass @k, etc.).
We assume this measure is inversely proportional to the task difficulty, and define the following
metric:

Performance gap. If a method is run with a given target performance level p, and say that it results
in a benchmark on which the target model has performance p, then its performance gapis § = |p—p|.

3.5 EXPERIMENT PROTOCOL

We evaluate the methods across two phases: parameter search and evaluation. During parameter
search, iterative methods are run for 10 iterations, while non-iterative methods sample 10 config-
urations. The best parameters obtained from each method are then used to generate a larger eval-
uation dataset. To assess each designer’s ability to produce benchmarks with controlled difficulty,
we define four target performance levels: Hard (p"*¢ = 0.25), Medium (p™°di"™ = (.50), Easy
(p*®Y = 0.75), and Trivial (p'*i2l = (.90). The primary evaluation metric is the average per-
formance gap, ¢, computed at each level. All experiments are repeated three times with different
random seeds, and results are reported with 95% confidence intervals based on the Student’s-t dis-
tribution with three degrees of freedom.

Under review as a conference paper at ICLR 2026

Table 1: BeTalL consistently outperforms the iterative and Best-of-N baselines in both parameter
search and evaluation phases across all three tasks and all three designer models. Reported numbers
are §(%) with o4-mini as the target model. For parameter search, we run either 10 samples or 10
iterations and report the best result for a fair comparison. More experimental details can be found in
Appendix A.

Designer Method Arith. Seq. Spatial Reasoning 7-Bench Airline
Param Search Eval Param Search Eval Param Search Eval
N/A RS+PPR 1584243 13.11+11.6 6.6£127 83641045 18.3421 213£10.6
BoN-TM 8.3+4.64 11.6747.67 2834+41.19 302644277 12.542.1 20.88.0
GPT5 BoN-ML 30.0+£12.63 22.17+17.99 21.66+£19.67 312044349 2144115 16.7410.4
BeTal 5.8+4.77 9.0+ 8.49 044035 534+12.77 53432 132+10.3
BoN-TM 20.0+12.12 1894+ 1872 2693+4132 31.0744327 3.6+32 10.0+£12.4
Opus-4.1 BoN-ML 3174620 29.17+ 6.06 20.49+19.13 327644376 11.747.5 9.7+7.6
BeTal 1254442 11784105 3.8245.58 7.35+5.49 5.0£2.1 77452
BoN-TM 200+£11.70 21.44£11.05 2536+£39.60 29.76+43.64 15.0+11.5 18.5+7.7
GROK 4 BoN-ML 32.5+15.58 33.11£20.22 212441944 33.81+4605 34.2+143 20.2+3.1
BeTal 424326 828+430 1364272 4.98+8.13 3.943.2 10.3+12.4
BoN-TM 16.1146.16 17.35+6.03 26.88+40.70 30.36£43.23 1037+4.17 16.4+4.89
Designer Ave. - g NCML 31394889 26814822 211341941 325044444 22414788 15.544.67

BeTalL 7.50+£2.57 9.69+2.93 1.86+2.88 5.89+8.80 4.72+1.86 10.39+3.18

Table 2: Chain-of-thought (CoT) prompting does not consistently yield strong designer-model per-
formance. While Claude Opus-4.1 achieves competitive results on the arithmetic sequence and
7-Bench tasks, state-of-the-art LLMs often struggle to outperform a random sampling baseline. Re-
ported values are §(%) with o4-mini as the target model.

Method Arith. Seq. Spatial Reasoning 7-Bench Airline
Random Sampling 21.17451.5 2544+ 9.6 37.3+17.2
CoT Prompting (GPT-5) 28.331+25.8 45.34+26.3 23.6+16.1
CoT Prompting (Opus-4.1) 11.67+7.2 26.1+ 17.9 11.9+10.4
CoT Prompting (Grok-4) 20.834+3.6 39.1+ 25.5 31.9+13.3

4 RESULTS AND DISCUSSION

In this section, we present our main results and discussion. We provide an in-depth discussion on
BeTal’s effectiveness in designing benchmarks for any given target difficulty.

C1: BeTaL outperforms baselines in creating benchmarks with any target performance level.

Our hypothesis is that while LLMs are highly capable, a single round of prompting, even with
a large reasoning budget, is less effective than an iterative framework like BeTaL, which incor-
porates feedback from previous rounds. Drawing inspiration from recent work framing LLMs as
optimizers (Yang et al., 2023; Nie et al., 2024), we expect BeTaL’s feedback-driven search to
yield stronger performance than non-iterative baselines. The results in Table 1 strongly support this
hypothesis. We summarize the key findings below.

i) BeTaL versus other multi-round methods. We compare BeTal with multi-round baselines,
including RS+PPR and the variations of Best-of-N. From our results (Table 1), it is evident that
BeTalL outperforms these baselines by a wide margin, across benchmarks and designer models.
We attribute this advantage to the reasoning capacity of LLM-based designers, which enables them
to iteratively refine parameters using feedback from previous rounds. In contrast, other baselines,
including those that receive feedback, fail to exploit it as effectively. BeTaL’s capabilities in itera-
tively finding the target parameters can be further seen in Figure 3 and Figure 11 in the Appendix.

Under review as a conference paper at ICLR 2026

Performance Gap by Target Difficulty (o4-mini Evaluation, GPT-5 Designer)

Arithmetic Sequences Spatial Reasoning T-bench
T 70% 70% 70%{ W= RS+PPR
< . BoN-TM
2 60% 60% | 60% BoN-ML
[‘ m BeTalL
Y s0% 50%
c
: |
£ 40% 40% . 1
£
: |
E 30% 30%
¢ |
© 20% I 20%
g I \ \ s
@ 10%] [l 10%
>
< & - _
0% - — 0% - " - "y
Hard Medium Easy Trivial Hard Medium Easy Trivial Hard Medium Easy Trivial
Target Difficulty Target Difficulty Target Difficulty

Figure 2: Evaluation results on o4-mini with BeTaL (with GPT-5 as the designer model, and 04-mini as
the target model during parameter search) perform robustly at different target difficulty levels, compared to
baselines on Arithmetic Sequences, Spatial Reasoning, and 7-Bench. A similar performance is noted using
Claude Opus 4.1 and Grok-4 as Designers, in Figure 9 in the Appendix.

It shows that BeTaL shrinks the performance gap more strongly than RS+PPR over 10 iterations,
with a wide margin (more than 20%) on both 7-Bench and Spatial Reasoning.

ii) Performance at target difficulty levels.

We eXpeCt an effeCtive benChmaIk deSigner BeTalL vs RS+PPR Performance Gap Convergence (Averaged Across Designers)
to optimize for any specified target diffi- .00 = BeTar (spatint Resbening:
culty level. Figure 2 presents the observed S SeLcviany o

80.0% —+- RS+PPR (1-bench)

performance gap for each target difficulty
level. BeTalL demonstrates strong robust-
ness, consistently outperforming all baselines
at each difficulty level.

60.0%

40.0%

Performance Gap (%)

20.0%

We also observe inherent difficulty differ-
ences across benchmark domains, which are 0.0%
reflected in the performance gaps. For ex- fteration

ample, 7-Bench and Spatial Reasoning are

inherently challenging, with the largest gaps Figure 3: Convergence of iterative methods during
appearing at the Trivial difficulty level for parameter selection on Spatial Reasoning and 7-Bench
all LLM designers. In contrast, the Arith- benchmarks: BeTaL vs. RS+PPR. Performance gap of
metic Sequence task, Containing several de- BeTalL shrinks faster compared to RS+PPR, within 10
iterations, indicating LLMs are more efficient than com-
peting iterative methods at finding favorable environment
parameters for benchmark creation. Results are averaged
over difficulty levels and designer models.

generate solutions, shows the largest gap at
the Hard difficulty level (see Figure 10 in the
Appendix).

iii) Performance comparison of designer

models. While BeTalL achieves strong performance with all three designer (reasoning) models,
we find that the choice of reasoning model may depend on the nature of the benchmark being de-
veloped. Comparing between the designers, Grok-4 and GPT-5 do well on the mathematical and
logical reasoning domains of Arithmetic Sequences and Spatial Reasoning. On the other hand,
Claude-Opus-4.1 excels on the real-world agentic benchmark of 7-Bench Airline, with a perfor-
mance gap of 7.7 & 5.2% compared to 13.2 £ 10.3% and 10.3 + 12.4% by GPT-5 and Grok-4,
respectively (Table 2).

C2: Benchmark created by BeTaL for one target model is transferable to other target models.

A benchmark designed for a target model (here, 04-mini) can also be used to evaluate other mod-
els. When the target and evaluation models coincide, Be TaL produces benchmarks with minimal
performance gaps. However, when evaluated on models different from the target, performance nat-
urally varies with model capability. For instance, a benchmark that is hard for the target model may
appear of medium difficulty to a stronger model, and vice versa. Consequently, models with similar
capabilities to the target are expected to exhibit comparable performance gaps, whereas stronger (or
weaker) models should follow the same performance trends across target difficulty levels but with
larger (or smaller) magnitudes.

Under review as a conference paper at ICLR 2026

Evaluation Analysis: Observed vs Target Accuracy

GPT-5 Grok-4 Opus-4.1
100% - "//m 100% — 100% —
g /. . /./. —
o ¥ 80%- s 80% i, /‘ 80% 3
£ 3 3 —— —
€ o & ”
o s F
8 3 60%- 60% 60%
3
9 8
z < &
s 3
= 5 40%- 40% 40% ~#~ Claude 3.7 Sonnet
] —i— Gemini 2.5 Flash
o 2 -#- Mistral Small 3.2
O 20%- 20% " 20% —v— Qwen 2.5 728
o —o od-mini
Perfect match
0% 0% 0%
20% 30% 40% 50% 60% 70% 80% 90% 20% 30% 40% 50% 60% 70% 80% 90% 20% 30% 40% 50% 60% 70% 80% 90%
100%- 100% 100%

80%-

60%-

Z
40% -

P i
i

20%- 20%

T-Bench
Observed Accuracy (%)

0% 0%
20% 30% 40% 50% 60% 70% 80% 90% 20% 30% 40% 50% 60% 70% 80% 90% 20% 30% 40% 50% 60% 70% 80% 90%
100% - 100% . 100% £
/ .7
80%- . 80% pe / 80% »
J Y)\ '
/ Z'/
60% < ¢ 60% 60%
- e ¥ " —
| Z ‘/
i
Y
-

0% 0% 0%
30% 30% 40% 50% 60% 70% 80% 90% 20% 30% 40% 50% 60% 70% 80% 90% 20% 30% 40% 50% 60% 70% 80% 90%
Target Accuracy (%) Target Accuracy (%) Target Accuracy (%)

40%-

Arithmetic Sequence
Observed Accuracy (%)

20%-

A\
\

o

Pt

Figure 4: Evaluation generalization across designer models and datasets. Colored lines represent individual
model eval performance (see legend for models) with respect to target accuracy. Observed versus target accu-
racy for o4-mini target trained by different designers (columns: GPT-5, Grok-4, Opus-4.1) on three benchmarks
(rows: Spatial Reasoning, 7-Bench, Arithmetic Sequence). The black dashed line indicates perfect alignment.

Average Performance Gap % of Evaluation Models on t-Bench BeTal Observed Accuracies by Target Difficulty on T-Bench
100%
Method Target Difficulty
= RS+PPR - Trivial
35% W BoN-TM - Easy
- = BoN-ML 80% = Medium
o o Hard
O 30% [beTaL - o a.o% T04% e 1%
9 213% g
£ I~
4 3 60%
£ g
é 17.8% 1759 <
°
g $
o £ a0%
o
H 2
4 °
2
z 20%

0%

Claude 3.7 Sonnet Gemini 2.5 Flash
Evaluation Model

Claude 3.7 Sonnet Gemini 2.5 Flash
Evaluation Model

(a) Results averaged over the difficulty levels. (b) BeTalL results at different target difficulty levels.

Figure 5: Results on different evaluation models. The left figure shows aggregate results for all
methods, and the right figure focuses on BeTaL’s results, showing the observed accuracies at dif-
ferent target difficulty levels. All results are averaged across Designer Models.

Our results in Figure 4 and 5 and confirm that benchmarks designed by BeTalL exhibit robust
transferability across evaluation models. On 7-Bench, benchmarks generated using o4-mini feed-
back yield comparable performance when evaluated on Claude 3.7 Sonnet and Gemini 2.5 Flash,
with BeTaL consistently outperforming all baselines across evaluation models.

This cross-model consistency across different benchmark domains: agentic planning in real-world
tasks (7-Bench) and mathematical reasoning (Arithmetic Sequences) domains provides strong ev-
idence that BeTaL-designed environments test fundamental cognitive capabilities that generalize
across different model architectures and families, rather than exploiting model-specific weaknesses.

Under review as a conference paper at ICLR 2026

C3: Chain-of-Thought alone is insufficient for efficient benchmark design.

Despite the remarkable reasoning capacity and extensive world knowledge of state-of-the-art LLMs,
their ability to systematically design benchmarks, using prompting alone, remains unreliable. As
shown in Table 2, even with high reasoning budgets, LLMs exhibit high variance when tasked with
producing benchmarks of varying complexity. Using o4-mini as the target model, Claude Opus-
4.1 surpasses the random baseline only on Arithmetic Sequence and 7-Bench, but fails on Spatial
Reasoning. GPT-5 and GROK 4 underperform even further. These results demonstrate that Chain-
of-Thought prompting alone does not endow LLMs with robust or generalizable benchmark design
capabilities.

C4. Can LLMs also generate better parameter spaces?

Al Designed Param Space Human Designed Param Space

50%

50%

24.4% . Medium
d

S
o
X

w
Q
X

23.3%

40% Har

15.6%

13.3%

11.1%

N
13
X

=
Q
X
|

2.8% 29 2.8%

1.1%

1.7%

GPT-5

1.1%

1.7%

Opus 4.1
Designer Model

Average Performance Gap
©
3

1.7%
0.0%

1.7%
0.0% o

Q
X

0%

grok-4 Opus 4.1

Designer Model

grok-4

Figure 6: Performance of Be TaL on 7-bench parameter space generated by Opus 4.1 versus by hu-
man. BeTaL on Al-generated parameter space is an acceptably small performance gap for medium
and hard benchmarks, yet still generally underperforms to that generated by humans.

Given LLMs’ strong ability to generate complex and diverse benchmarks through Be TaL, a natural
question is whether they can also design the underlying parameter spaces themselves. To test this,
we prompt Claude Opus-4.1, the best performing designer model on 7-Bench, to generate a complete
parameter space for 7-Bench, then manually implement the feasible parameters in the task generator.
Opus 4.1 adds additional parameters based on user interactions to the design space — including
cooperation level, and clarifying preferences (whether explicit or implicit). Detailed parameters and
prompts can be seen in Appendix A.1 and Appendix B.

As shown in Figure 6, BeTaL applied to the Al-generated parameter space performs comparably
well on Medium and Hard benchmarks, achieving ¢ as low as 1.1% and 1.7%, respectively. This
demonstrates that LLMs can capture key structural patterns needed to produce challenging and well-
calibrated benchmarks. However, a substantial gap remains relative to human-designed parameter
spaces on Trivial and Easy benchmarks, reaching up to 24.4% and 23.3% performance gaps for
GPT-5 and Opus-4.1, compared to 15.6% and 13.3% from the human-generated space. These gaps
indicate limited flexibility and controllability in the LLM-generated parameter space, particularly in
achieving smooth difficulty scaling across the full range of target performances.

Overall, these findings suggest that while current LLMs exhibit partial autonomy in environment de-
sign, fully self-sufficient parameter-space generation remains an open challenge for future systems.

5 RELATED WORK

Automating benchmark design. Recent work streamlines benchmark creation by automating gen-
eration, verification, and evolution. AUTOBENCHER (Li et al., 2025) introduces a declarative
framework that automates benchmark construction by optimizing over benchmark desiderata to scal-
ably discover new capability and safety weaknesses in language models. BENCHMAKER (Yuan
et al., 2025) and CHASE (Patel et al., 2025) leverage LLMs for systematic or compositional task
construction, with BENCHMAKER emphasizing structured evaluation and CHASE building harder
problems from simpler components. In the code domain, graph-based generators validate solutions
via loop-derived self-consistency and help train reliable LLM-as-judge proxies (Farchi et al., 2024).

Under review as a conference paper at ICLR 2026

Other approaches extend beyond static generation: tasks can evolve through perturbation, probing,
or alternation (Wang et al., 2024), and multi-agent frameworks coordinate specialized roles for di-
verse benchmark creation (Butt et al., 2024). Despite this progress, most methods operate directly
at the task level—fixing difficulty or other heuristics to guide evolution—without abstracting the
environment design space that underlies task instantiation. This makes it hard to adapt benchmarks
across new domains. Our approach instead parameterizes the benchmark and closes the loop with
target model feedback, enabling flexible benchmark tuning.

Environment design for curriculum learning. Automated benchmark design parallels Unsuper-
vised Environment Design (UED) in reinforcement learning, where tasks must remain solvable
yet challenging as agents improve. UED methods adapt environments through adversarial gen-
eration (Dennis et al., 2021), replay-based curation (Jiang et al., 2021b), or evolutionary muta-
tion (Parker-Holder et al., 2023). These approaches formalize environment design as optimization
or curation to sustain adaptive curricula. Extending this idea, LLM-driven variants such as En-
vGen (Zala et al., 2024) and LLM-POET (Aki et al., 2024) employ language models to generate
or mutate RL environments, while co-evolutionary loops like R-Zero (Huang et al., 2025b) pair a
Challenger and Solver in an adversarial, self-improving curriculum on language tasks. Although
these methods share the goal of adapting difficulty in step with capability, Be TaL avoids the need
for a training loop, enabling adaptive benchmark generation with open and closed models alike.

Scaling environments and datasets. A complementary line of work scales environments and
datasets to advance agentic intelligence, often through synthetic generation or curated annotations.
AgentScaler (Fang et al., 2025) builds large collections of verifiable, API-derived environments to
train function-calling agents, while APIGen (Liu et al., 2024) and ToolACE (Liu et al., 2025) syn-
thesize diverse, verifiable function-calling datasets through automated generation and multi-stage
verification. More recently, ARE and its Gaia2 benchmark (Andrews et al., 2025) provide scalable,
asynchronous environments that test adaptability and robustness. These efforts emphasize agentic
capabilities, whereas our focus is on automating evaluation.

LLMs as optimizers. Our work fundamentally treats benchmark design as an optimization problem,
with reasoning models as optimizers. Similar work has been explored in OPRO (Yang et al., 2024)
and evolutionary variants such as LEO (Brahmachary et al., 2024) and Guo et al. (2025) to solve
mathematical tasks and optimize prompts. Our work uniquely applies to benchmark design.

6 CONCLUSION, LIMITATIONS AND FUTURE WORK

We introduced BeTal, an LLM-in-the-loop framework for dynamic benchmark design. Un-
like static or manually maintained live benchmarks, Be TaL adaptively generates benchmarks that
evolve with model capabilities. By reasoning over parameterized design spaces, it efficiently
achieves target performance levels with minimal human input. Across arithmetic, spatial reasoning,
and agentic domains, BeTaL consistently reduces performance gaps by 2-4x compared to LLM
and non-LLM baselines. These results highlight BeTaL’s potential to enable evaluation systems
that evolve alongside advancing models. In light of BeTaL’s adaptive and targeted task-generation
capabilities, we note that its underlying ideas naturally relate to curriculum learning and could po-
tentially inform curriculum based training strategies.

One of the drawbacks of BeTal is that it assumes access to parameterized and verifiable task
generators, which may not always exist. Its effectiveness depends on the reasoning strength of the
designer model and careful prompt construction. Moreover, our evaluation is limited to a small
set of domains, leaving multimodal and more subjective tasks unexplored. Although BeTalL is
an evaluation based benchmarking framework rather than a training method, it appears structurally
compatible with curriculum learning based training, but confirming this empirically is left for future
work.

Future work could extend BeTaL to optimize multiple objectives, including realism and diversity,
explore multi-agent or co-evolutionary design loops, and incorporate human-in-the-loop oversight
to further enhance adaptability and reliability. Given its adaptive design, BeTaL also provides a
promising basis for exploring curriculum-based data selection strategies. Ultimately, we envision
adaptive benchmarks that evolve with the systems they evaluate, ensuring robust and meaningful
assessment as Al capabilities advance.

10

Under review as a conference paper at ICLR 2026

REFERENCES

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning

and reasoning about change. Advances in Neural Information Processing Systems, 36:38975—
38987, 2023.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can Irms? a
preliminary evaluation of openai’s ol on planbench. arXiv preprint arXiv:2409.13373, 2024.

Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to au-
tonomous ai agents: A comprehensive review. arXiv preprint arXiv:2504.19678, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 4, 2024.

Mingqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktédschel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884-1897, 2021a.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. arXiv preprint
arXiv:2411.15594, 2024.

Tzu-Heng Huang, Harit Vishwakarma, and Frederic Sala. Time to impeach 1lm-as-a-judge: Pro-
grams are the future of evaluation. arXiv preprint arXiv:2506.10403, 2025a.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024.

Mingqi Jiang, Edward Grefenstette, and Tim Rocktédschel. Prioritized level replay. arXiv preprint
arXiv:2010.03934, 2021b.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander Nicholas D’ Amour, Jacob Eisenstein,
Chirag Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment
policy. In Forty-second International Conference on Machine Learning, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2023.

Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. The importance of direc-
tional feedback for llm-based optimizers. arXiv preprint arXiv:2405.16434, 2024.

Xiang Lisa Li, Farzaan Kaiyom, Evan Zheran Liu, Yifan Mai, Percy Liang, and Tatsunori
Hashimoto. Autobencher: Towards declarative benchmark construction, 2025. URL https:
//arxiv.org/abs/2407.08351.

Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Yueqi Zhang, Jiayi Shi, Chuyi Tan, Boyuan
Pan, Yao Hu, and Kan Li. LIm-powered benchmark factory: Reliable, generic, and efficient. arXiv
preprint arXiv:2502.01683, 2025.

11

https://arxiv.org/abs/2407.08351
https://arxiv.org/abs/2407.08351

Under review as a conference paper at ICLR 2026

Arkil Patel, Siva Reddy, and Dzmitry Bahdanau. How to get your llm to generate challenging
problems for evaluation. arXiv preprint arXiv:2502.14678, 2025.

Eitan Farchi, Shmulik Froimovich, Rami Katan, and Orna Raz. Automatic generation of benchmarks
and reliable llm judgment for code tasks. arXiv preprint arXiv:2410.21071, 2024.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Bench-
mark self-evolving: A multi-agent framework for dynamic llm evaluation. arXiv preprint
arXiv:2402.11443, 2024.

Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachan-
dran. Benchagents: Automated benchmark creation with agent interaction. arXiv preprint
arXiv:2410.22584, 2024.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. arXiv preprint arXiv:2012.02096, 2021.

Jack Parker-Holder, Minqgi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktidschel. Evolving curricula with regret-based environment design.
arXiv preprint arXiv:2203.01302, 2023.

Abhay Zala, Jaemin Cho, Han Lin, Jachong Yoon, and Mohit Bansal. Envgen: Generating and
adapting environments via llms for training embodied agents. arXiv preprint arXiv:2403.12014,
2024.

Fuma Aki, Riku Ikeda, Takumi Saito, Ciaran Regan, and Mizuki Oka. Llm-poet: Evolving complex
environments using large language models. arXiv preprint arXiv:2406.04663, 2024.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. arXiv
preprint arXiv:2508.05004, 2025b.

Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xi-
aobin Wang, Liangcai Su, Zhen Zhang, Shibin Wu, Zhengwei Tao, Yong Jiang, Pengjun Xie, Fei
Huang, and Jingren Zhou. Towards general agentic intelligence via environment scaling. arXiv
preprint arXiv:2509.13311, 2025.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline for
generating verifiable and diverse function-calling datasets. arXiv preprint arXiv:2406.18518,
2024.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning the
points of llm function calling. arXiv preprint arXiv:2409.00920, 2025.

Pierre Andrews, Amine Benhalloum, Gerard Moreno-Torres Bertran, Matteo Bettini, Amar Budhi-
raja, Ricardo Silveira Cabral, Virginie Do, Romain Froger, Emilien Garreau, Jean-Baptiste Gaya,
Hugo Laurengon, Maxime Lecanu, Kunal Malkan, Dheeraj Mekala, Pierre Ménard, Grégoire
Mialon, and et al. Are: Scaling up agent environments and evaluations. arXiv preprint
arXiv:2509.17158, 2025.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024.

Shuvayan Brahmachary, Subodh M. Joshi, Aniruddha Panda, Kaushik Koneripalli, Arun Kumar
Sagotra, Harshil Patel, Ankush Sharma, Ameya D. Jagtap, and Kaushic Kalyanaraman. Large
language model-based evolutionary optimizer: Reasoning with elitism, 2024.

12

Under review as a conference paper at ICLR 2026

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and
Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt
optimizers, 2025.

13

Under review as a conference paper at ICLR 2026

Initial State Moved Particle P1 Forward 1 Rotated Particle P2 90 degrees Rotated Board 90 degrees
® F1 W P2

4 4 4 4 :
< <o : -0 :) ">
32 2 2 2
&
i t

0 0 0 0

0 2 4 0 2 3 0 2 4 0 2 4
X Position X Position X Position

Figure 7: Illustration of particles and actions in spatial reasoning tasks. Here the board is 4x4 and
initially oriented towards north (black arrow). There are two particles P1 and P2 oriented towards
west and south respectively. The first action moved the particle P1 forward by one step, second
action rotated the particle P2 by 90 degrees and the last action shows rotation of the board by 90
degrees. The board rotations are w.r.t. to its center and when a board rotates or moves the particles
on it also rotate and move along with it.

A ADDITIONAL EXPERIMENTS AND DETAILS

A.1 DETAILS OF BENCHMARKING TASKS

Arithmetic sequences task. Given an input number z € R and an output number y € R, an agent
must return the sequence of arithmetic operations o1, 0 . . . oy that, when applied recursively to the
intermediate results, yield y; i.e,

Y= (ON OON—-10"---0 Ol)(.’L’).

The benchmark space is constrained to simple operations of addition (4), subtraction (—), multi-
plication (), division (<), square root (/"), and power of two ((-)?). For binary operators, both
operands are the same. At inference time, the target model, an LLM agent, has access to the arith-
metic operators, as tools, to determine the sequence of operators that transform z to y. The predicted
operator sequence o'y, oy _1, ..., 0] is verified by executing the sequence to generate

y = (dyooy_yo---00y)(x),
and comparing it with the ground truth y.

Task difficulty depends on factors such as operator choice, sequence length, range of the input z,
and whether z is integer or floating-point. Operators like subtraction or division tend to collapse
y toward zero, whereas multiplication and exponentiation operators cause exponential growth. Our
automated benchmark design evaluates whether reasoning models can strategically select parameters
to generate problems at specified difficulty levels.

Spatial Reasoning. Figure 7 illustrates an example of a sample from the spatial reasoning environ-
ment. On such samples, we ask 4 types of queries. i) Absolute location (x,y) co-ordinates of the
particle or the board. The board’s location is defined as the location of its center. ii) The tile number
on which a specific particle is located. iii) The orientation of a given particle (north, east, west, or
south), and iv) the relative location of a particle or board with respect to another particle or board.
When an LLM is prompted with such problems, we instruct it to produce structured outputs along
with its reasoning traces. The structured output is verified easily with the ground truth computed
programmatically.

The parameter space includes board_-size, an integer between 5 and 100. Boolean flags
board._rotates, particle_rotates, board moves, and particle moves indicating
whether board and particle rotations and movements are allowed or not. If particle rota-
tions are allowed, then allowed particle_rotations should be a non-empty subset of
{0,90, 180, 270, 360}, where each of these numbers indicates counter-clockwise rotation in degrees.
If particle movements are allowed, then allowed-particle movements should be a non-
empty subset of {LEFT, RIGHT, FORWARD, BACKWARD}, indicating the entity moves 1 unit in the
stipulated direction w.r.t its orientation (see Figure 7). Similarly, allowed board_rotations

14

Under review as a conference paper at ICLR 2026

and allowed_-board-movements should be set if their corresponding flags are on; otherwise,
they should be empty sets. The parameter space also includes the numbers of each kind of actions
to be applied, i.e., number_of board.rotations, number_of_particle_rotations,
number_of_board.movements, and number_of_particle_movements. Each of these
must range between 0 to 15. Lastly, a flag wrap_around indicates whether the board’s bound-
aries allow the overflowing movement of a particle to wrap around from the opposite side.

The descriptions of parameters and actions are provided in the prompt (Appendix B) for the designer
model.

Human Designed 7-bench Airline. The parameter descriptions and expected behaviors are spec-
ified in the designer prompt (Appendix B). Each sample corresponds to an airline itinerary plan-
ning scenario parameterized by a small set of discrete controls. The parameter space includes nu-
merical factors such as num_actions (1-6), num_passengers (1-3), and num_baggages
(0-3), as well as categorical attributes like booking_strategy (“cheapest’/“earliest_arrival”),
is_direct, is_.round_trip, cabin (“economy”/“business”), and insurance (“yes’/“no”).
These parameters jointly control itinerary complexity: increasing action count, passengers, or bags
expands the combinatorial search space, while enabling multiple strategies, connecting flights, or
round-trip requirements adds additional reasoning constraints. When prompted with such parame-
terized tasks, the LLM designer is instructed to output both a thought process describing how does
the configuration achieve the target failure rate and the final parameter values in structured JSON.
This structured output can be programmatically validated against the student model’s measured fail-
ure rate.

Opus 4.1 Designed 7-bench Airline.

The parameter space in the Opus 4.1 designed 7-Bench extends beyond structural com-
plexity (e.g., num.actions € [1,6], numpassengers € [1,3]) to include be-
havioral and informational dimensions. Categorical controls specify booking prefer-
ences (booking_strategy: ‘“cheapest”/“earliest_arrival”), routing options (is_direct,
is_round-trip), cabin composition (cabin_.mix: economy, business, or mixed), and
environment conditions such as information_completeness (whether all data is pro-
vided upfront), information_pattern (upfront, gradual, reactive revelation of details),
cooperation_level (helpful/demanding/uncooperative agents), and preference_clarity
(explicit vs. implicit preferences). Together, these parameters modulate combinatorial difficulty, rea-
soning burden, and dialogue complexity, allowing fine-grained control of task hardness to steer the
target model’s empirical failure rate towards the target. The designer model receives a target failure
rate pg,; and is asked to generate task parameters that achieve 1 — pass@1 = pg,;. Structured
outputs include both the parameter configuration and a thought process explaining why it should
achieve the desired difficulty level.

A.2 DETAILED BASELINES

RS+PPR. The parameter p is the probability to sample from the buffer of good parameters and A
is the gap below which the parameters are considered good. We use p = 0.5 and A = 0.1 in all the
settings.

BoN-ML Model Training and Selection. As part of the BoN-ML experiments, we trained and
compared classical machine learning models to predict regret efficiently. Across all three domains,
we explored over 800 different parameter configurations and architectures. Given the relatively
small datasets (100 samples per domain), with feature counts ranging from 13 to 74, we applied
5-fold cross-validation to obtain reliable performance estimates.

All features were derived directly from the environment parameters, ensuring the predictors re-
mained lightweight and domain-specific. Models were selected based on the highest cross-validation
R? score, and the best candidates were saved for deployment. Performance was domain-specific:
small neural networks performed best for Arithmetic Sequences, Random Forests excelled in Spa-
tial Reasoning, and gradient boosting worked best for 7-Bench. This process yielded fast, domain-
tailored predictors to guide BoN-ML parameter selection effectively. Table 3 summarizes the cross-
validation R? training results.

15

Under review as a conference paper at ICLR 2026

Table 3: BoN-ML regret prediction training results (5-fold CV on 100 samples per domain).

Domain Features Best Model CV R?

Arithmetic Seq. 74 Neural Network (74 — 2 — 1, a=1.0) 0.52 +0.08
Spatial Reasoning 28 Random Forest (n=50, d=10) 0.43 £ 0.05
7-Bench 13 Gradient Boosting (n=20, Ir=0.1, d=2) 0.17 £ 0.24

A.3 DETAILS OF LLM MODELS

LLM Versions GPT-5: undisclosed - the latest GPT-5 version as of Sep 25, 2025 Opus 4.1: claude-
opus-4-1-20250805 Grok 4: grok-4-0709 o4-mini: 04-mini-2025-04-16 claude3.7: claude-3-7-
sonnet-20250219 gemini-2.5-flash: gemini-2.5-flash

LLM Inference Parameters The default temperature for designer models is 0.5, and for target mod-
els is 0.0. However, claude-opus-4-1-20250805 and claude-3-7-sonnet-20250219 are only available
with a temperature of 1. On the Arithmetic Sequence, which is an agentic task, the target model
uses a time horizon of 16 steps.

The default reasoning budget for designer models is 4096 tokens, and for target models is 1024.
However, grok-4-0709 does not support a configurable reasoning budget.

A.4 DATASET SIZES

During parameter search, the rollout dataset sizes are 10, 30, and 250 for Arithmetic Sequence, -
Bench, and Spatial Reasoning, respectively. For evaluation, we generate datasets using the selected
parameters, with sizes of 75, 50, and 500 for Arithmetic Sequence, 7-Bench, and Spatial Reasoning,
respectively.

A.5 CONVERGENCE RATE ANALYSIS

Figure 8 shows the rolling standard deviation (3-iteration window) of performance gap across all
teacher models and target difficulty levels, comparing BeTaL and RS+PPR convergence stability.
Despite vast differences in parameter spaces of the datasets, BeTaL consistently exhibits lower
variability than RS+PPR. BeTaL ’s standard deviation remains between 5-20% throughout param-
eter search, while RS+PPR maintains approximately 25% variability with minimal improvement
over time. This demonstrates that BeTaL not only converges faster but does so more predictably
and reliably.

Atiteration ¢ (for t > 2), the rolling standard deviation uses a 3-iteration backward-looking window:
Uroll(t) = Std(Gt_Q U Gt—l U Gt) (1)

where G; represents performance gaps at iteration ¢ across all target accuracies, averaged across
seeds within each teacher model. Results shown for ¢ > 2 to ensure full windows.

A.6 ADDITIONAL RESULTS

Figure 9 shows the observed average performance gaps when Claude Opus-4.1 and Grok-4 models
are used as designer models. These results show BeTal achieves low performance gaps across
different designer models. We also provide a comparison of BeTaL with all designer models on all
datasets and target difficulty levels in Figure 12. We see all three designer models achieve similar
results across the settings.

We study the convergence behavior of iterative methods in settings ranging from trivial to hard
difficulty levels (Figure 11). Except for a few settings, we see BeTalL iteratively improves its
parameter estimates and converges to the desired performance gap after a few iterations. These
results provide further evidence in support of LLMs’ effectiveness as optimizers (Yang et al., 2024).

Next, in Figure 10 we show results over multiple evaluation models across different datasets. As the
benchmarks were designed with o4-mini as the target model, we see a low performance gap when

16

Under review as a conference paper at ICLR 2026

BeTal vs RS+PPR: 3-Iteration Rolling Std (Backward-Looking, Combined Across All Targets)

Arithmetic Sequences Spatial Reasoning T-bench
80% 80% 80%
8- BeTal 8- BeTal 8- BeTal
_7o% 0= RS+PPR 0% IR - RS+PPR
g g g
< 60% < 60% = 60%
2 2 2
o
& 50% 5 50% 5 50%
H H H
2 a0% 2 a0% 2 a0%
T 30% T 30% T 30%
] Sy pm =t ——__, | T e =t —__, | B POEE Satui alutul dubuie sl dutnte alnbel 4
£ 20% £ 20% 5 20%
- - - -
7] T [[
10% 10% .\‘\-—.__._./'—. 10% .\-—.—.—./'—P_-
0% 0% 0%
2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 3 a 5 6 7 8 9
Iteration Iteration Iteration

Figure 8: Three-iteration backward-looking rolling standard deviation comparing BeTaL and
RS+PPR convergence stability across datasets (iterations 2-9), combined across all target accuracy
levels. BeTaL (blue) exhibits consistently lower variability compared to RS+PPR (purple), indi-
cating more stable and predictable convergence behavior.

Performance Gap by Target Difficulty (o4-mini Evaluation)

Arithmetic Sequences Spatial Reasoning T-bench
- . 80% 80%
< S == RS+PPR
" = 70% 70% | == BoN-TM
a
3 T = BoN-ML
=3 0 60% 60% | mem BeTalL
o o
] £ 50% 50%
T [
3 § 40% 40%
U T 30%
[
@ 20% 20%
g
5 10% 10%
>
< o% 0%
Medium Trivial Medium Trivial Hard Medium Easy Trivial
. 80% 80%
5
%70% 70%
O 60% 60%
4
2 50% 50%
3 &
M £ 40% 40%
[
&5 E 30% 30%
© o
@ 20% 20%
=3
g 10% 10%
< o% - — 0% - L 0% - —
Hard Medium Easy Trivial Hard Medium Easy Trivial Hard Medium Easy Trivial
Target Difficulty Target Difficulty Target Difficulty

Figure 9: Evaluation results on 04-mini with BeTaL (with Claude Opus 4.1 or Grok-4 as the de-
signer model, and o4-mini as the target model during parameter search) perform robustly at different
target difficulty levels, compared to baselines on Arithmetic Sequences, Spatial Reasoning, and 7-
Bench.

evaluated on o4-mini. In the 7—Bench setting, we see similar performance across different evalua-
tion models. In the Spatial reasoning and Arithmetic sequences setups, there is a larger performance
gap on evaluation models different from o4-mini; however, the range of observed accuracies (or
regret) still reflects the relative hardness levels inherent in the benchmarks.

We also analyze the evolution of different parameters over the Be TaL iterations. Figures 13, 14, 15,
16 show the parameter evolution in the spatial reasoning setting with hard, medium, easy, and trivial
difficulty levels, respectively. The results show the designer models start off with random (generally
high) values of the parameters and gradually tweak them so that the performance gap is minimized.
The evolution patterns for individual parameters matches with our intuitive understanding of the
spatial reasoning environment. The models prefer larger board sizes, larger numbers and types of
actions to increase the difficulty, and conversely smaller values to reduce the complexity. They also
prioritize reducing/disabling board actions to reduce complexity, since an action on a board also
triggers actions on the particles.

17

Under review as a conference paper at ICLR 2026

BeTal Performance Gap by Designer Model Across Target Accuracy Levels

Arithmetic S Spatial R i T-bench

s Hard
= Medium
= Easy
- Trivial

28.4% 27.9%

0%
Claude Opus 4.1 GPT-5 Grok-4 Claude Opus 4.1 Claude Opus 4.1 GPT-5 Grok-4
Designer Model Designer Model Designer Model

Figure 10: BeTaL performance by the designer model during parameter search across three bench-
mark domains. Each panel represents one dataset (Arithmetic Sequence, Spatial Reasoning, 7-
Bench) and compares three designer models (GPT-5, Grok-4, Opus-4.1) across four target perfor-
mance levels: Hard (p"*d = 0.25), Medium (p™°"™ = (.50), Easy (p°*¥ = 0.75), and Trivial
(ptvial = 0.90), shown as grouped bars. Bars show mean performance gap (difference between
target and observed target performance), with 04-mini as target model, averaged over training itera-
tions. Error bars show standard error.

18

Under review as a conference paper at ICLR 2026

60%

Hard

40%

0%

Medium

40%

0%

60%

Performance Gap (%)

40%

Easy

0%

80%

60%

Trivial

0%

BeTal vs RS+PPR Performance Gap Convergence (Averaged Across Designers)

Arithmetic Sequences

Spatial Reasoning

T-bench

60%

40%

80%

60%

40%

~—e— BeTalL
~—e— RS+PPR
--- Target 0% Gap

Iteration

Iteration

0% 0%
2 4 6 8 o 2 4 6 8 4 6 8
80% 80%
60% 60%
40% 40%
- Qﬁ\}_/ ” m
0% 0%
2 4 6 8] 2 a4 6 8 4 6 8
80% 80%
60% 60%
40% 40%
W . N
0% 0%
2 4 6 8 (] 2 4 6 8 4 6 8
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
2 4 6 8 [2 4 6 8 4 6 8

Iteration

Figure 11: BeTaL vs. RS+PPR convergence during parameter search across datasets and target

difficulty levels.

Each panel shows the mean performance gap (difference between target and

observed target performance) over training iterations for two design approaches: BeTalL (our
method) and RS+PPR (baseline). Rows indicate target performance (Hard (phard = 0.25), Medium
(pmedivm — 0 50), Easy (p°®Y = 0.75), and Trivial (p*Vi&! = 0.90)). Columns show three bench-
mark domains (Arithmetic Sequence, Spatial Reasoning, 7-Bench). BeTaL results are averaged
across designer models (GPT-5, Grok-4, Opus-4.1). All results use o4-mini as the target model,
with shaded regions showing standard error across seeds.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Hard

Medium

Easy

Trivial

Performance Gap (%)

Designer Model Performance Across Datasets and Difficulty Levels

Arithmetic Sequences

Spatial Reasoning

T-bench

a7.6% a7.2% ar.4% 46.9%

aa.9%

m=s BoN-ML
= BeTaL
== BOoN-TM

17%

Claude Opus 4.1

7.2%

8.3% .74 p—

17%

GPT-5 Grok-4

Claude Opus 4.1

215% 22.0% 1.6 216% 21.0% 21.9%

10.6%
63% 7.0%

Claude Opus 4.1 GPT-5

10%

0.0%
Claude Opus 4.1

0%
Claude Opus 4.1

13.0% 5% 12.0%

GPT-5

.4% 11.8%

Claude Opus 4.1

GPT-5

Claude Opus 4.1
Designer Model

GPT-5

Grok-4

0%
Claude Opus 4.1

GPT-5
Designer Model

Grok-4

0%
Claude Opus 4.1
Designer Model

GPT-5 Grok-4

Figure 12: Designer model performance during parameter search across datasets and target difficulty
levels. Each panel shows the mean performance gap (difference between target and observed target
performance) for different design approaches: BeTaL, BoN-ML, and BoN-TM. Rows indicate
target performance (Hard (p"®d = 0.25), Medium (p™°d"™ = 0.50), Easy (p°*¥ = 0.75), and
Trivial (p**Vi2! = 0.90)). Columns show three benchmark domains (Arithmetic Sequence, Spatial
Reasoning, 7-Bench). All results use o4-mini as the target model, averaged over each iteration.

20

Under review as a conference paper at ICLR 2026

Target Difficulty: Hard
—8— gpt-5 —— grok-4 = —A— 0pus-4-1]

Board Width Wrap Around Board Rotation Actions

15

=)
N}
©
=)
N

4 6 4 6 8
Iteration Iteration Iteration

Width
N W s w o
s & & & 3
Proportion
o o o o o =
o N » o ®» o
Count
=
« 53
o
N
IS
®

Board Movement Actions Particle Rotation Actions Particle Movement Actions

o
N}

4 6 8 [2 4 6 8
Iteration Iteration

Count
eoe N
w o &G o
Count
- = N
w 5 G S
Count
soR NN
s &G S »
o
N
IS
o
©

Iteration

Total Actions Absolute Gap # Enabled Capabilities (Actions)

0 2 4 6 8

Count
N » @ ©
5 s 3 3
Gap (%)
LN oW e ou oo
Count
,N W s

o
N}

4 6 8 0 2 4 6 8
Iteration Iteration Iteration

gpt-5 grok-4 opus-4-1

- IEEREEEEE -CHERERRREE - -EEEREDEEE
- IHECRERRRE -BERRECARRE -HERERERRCEER
- IASEENCEEE -HEARCSREEEE - AREEERRRRE
-IGEEEEEERE -EREECREEEE -EERECRECEE
o 1 2 3 6 7 8 9

Iteratlon Iteratlon

Iteration

Figure 13: Parameter evolution over iterations in the hard difficulty setting. The sub-
plots show average values of the different design parameters at each iteration chosen by the de-
signer models (GPT-5, Grok-4, Opus-4-1). Row 1 shows board_size (width), wrap_around
and number_of_board._rotation. Row 2 shows number_of_board.movements,
number_of_particle_rotations and number_of _particle movements. Next row
presents the sum of these number of actions (total actions), absolute performance gap as ob-
served on the o4-mini target model and the number of enabled capabilities (types of rota-
tions and movements), here BM, BR are the sizes of sets allowed board.movements and
allowed_board.-rotations and PM, PR similarly reflect the sizes of action sets corresponding
to the particles. We can see to obtain a hard configuration, models generally prefer a larger board
size and a higher number of capabilities and actions. Among the models, GPT-5 does it more ag-
gressively and achieves the lowest performance gap as well.

21

Under review as a conference paper at ICLR 2026

Target Difficulty: Medium
—8— gpt-5 —#— grok-4 —&— opus-4-1

Board Width Wrap Around Board Rotation Actions
13 1.0 3.0
12 08 25
11 s 2.0
s 206 =
S10 s 315
= S04 o
9 o 1.0
8 02 05
7 0.0 0.0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iteration Iteration Iteration
Board Movement Actions Particle Rotation Actions Particle Movement Actions
35
3 3.0 45
4.0
. 25 .
g g 20 § 35
] o~ [¥]
3.0
1 15
2.5
1.0
0 2.0
0 2 4 6 8 [2 4 6 8 0 2 4 6 8
Iteration Iteration Iteration
Total Actions Absolute Gap # Enabled Capabilities (Actions)
14 25
4
12 20
3
g1 g1 £
S H
2 =3 22
8
] 8 o]

o
.

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iteration Iteration Iteration
gpt-5 grok-4 opus-4-1
BM ' o o o o o o o o o BM 0.6 o o o o 04 04 04 BM o 0.4 o 02 04 04 04 02 04 04

H B T) ! . ’ H..... ...
o 1 2 3 6 7 8 9

a s 3 4 5 6 2 a s
Iteration Iteration Iteration

Figure 14: Parameter evolution over iterations in the medium difficulty setting. The sub-
plots show average values of the different design parameters at each iteration chosen by the de-
signer models (GPT-5, Grok-4, Opus-4-1). Row 1 shows board_size (width), wrap_around
and number_of board.rotation. Row 2 shows number_of_board movements,
number_of_particle_rotations and number_of _particle movements. Next row
presents the sum of these number of actions (total actions), absolute performance gap as ob-
served on the o4-mini target model and the number of enabled capabilities (types of rota-
tions and movements), here BM, BR are the sizes of sets allowed board_movements and
allowed_board.rotations and PM, PR similarly reflect the sizes of action sets corresponding
to the particles. We can see that, to obtain a medium difficulty configuration, models prefer much
smaller board sizes and number and types of actions as compared to the hard setting in Figure 13.
Also consistent with the expectations, the models reduce the number of board actions close to 0 but
allow a decent number of particle actions.

22

Under review as a conference paper at ICLR 2026

Target Difficulty: Easy
—— gpt-5 -~ grok-4 = —h— opus-4-1|

Board Width Wrap Around Board Rotation Actions
14 1.0 2.5
12 08 20
s 15
£10 £06 g2
2 S 3
= S04 0 1.0
8 a
0.2 0.5
6
0.0 0.0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iteration Iteration Iteration
Board Movement Actions Particle Rotation Actions Particle Movement Actions
6
15
3 5
» 1.0 o =4
€ € €
3 52 3
2 3 a3
o o (]
0.5 N ,
0.0 0 1
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iteration Iteration Iteration
Total Actions Absolute Gap # Enabled Capabilities (Actions)
14
4
12 40
10 30 3
€8 8 g
3 250 32
O 6 8 o
4 10 1
2
0 0
0 2 6 8 0 2 6 8 0 2 4 6 8
Iteration Iteration Iteration
gpt-5 grok-4 opus-4-1
BM.Ouunucuuﬂ BM 0 o o o o0 o0 0 0 0 o0 BM 0 0o o o o0 o 0o o 0 o

BR 02 02 02 02 02 02 02 02 02 o o o 03 BR L2 06 02 04 02 02 02 02 02 02

o 1 2 3 a 5 6 7 8 9

o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
Iteration Iteration Iteration

12 12 12

PR 1 02 02 02 02 04 04 04 04

Figure 15: Parameter evolution over iterations in the medium difficulty setting. The sub-
plots show average values of the different design parameters at each iteration chosen by the de-
signer models (GPT-5, Grok-4, Opus-4-1). Row 1 shows board-size (width), wrap_around
and number_of_board._rotation. Row 2 shows number_of_board.movements,
number_of particle_rotations and number_of particle movements. Next row
presents the sum of these number of actions (total actions), absolute performance gap as ob-
served on the o4-mini target model and the number of enabled capabilities (types of rota-
tions and movements), here BM, BR are the sizes of sets allowed board_movements and
allowed board-rotations and PM, PR similarly reflect the sizes of action sets correspond-
ing to the particles. We can see, to obtain a medium difficulty configuration, models prefer much
smaller board sizes and number and types of actions as compared to the hard setting in Figure 13.
Also consistent with the expectations the models reduce the number of board actions close to 0 but
allow a decent number of particles actions.

23

Under review as a conference paper at ICLR 2026

Target Difficulty: Trivial
—o— gpt-5 - grok-4 —k— opus-4-1J

Board Width Wrap Around Board Rotation Actions
1.0
10 0.8 15
s
< 206 u
5 8 £ gl,o
B S04 S
I
0.5
6 0.2
0.0 0.0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iteration Iteration Iteration
Board Movement Actions Particle Rotation Actions Particle Movement Actions
1.25 4
6
1.00 3
= o ”
So0.75 5 Sa
o 22 o
o o o
0.50
2
0.25 :
0.00 0 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iteration Iteration Iteration
Total Actions Absolute Gap # Enabled Capabilities (Actions)
15.0
50 4
12.5
40 3
o 100 S o
3 s 530 3,
1 o
o ° o o
O 20
5.0 ,
10
2.5
0 0
0 2 4 6 8 0 2 4 6 8 0 2 4 6 8
Iteration Iteration Iteration
gpt-5 grok-4 opus-4-1
BM] o o o o o [o o BM o o o o] [] o o o BM] o o o o] o o o [
BR 06 06 08 06 06 06 06 06 0.6 BR o o o o o 0.2 o 1 o BR 1.2 06 06 06 06 06 06 06 06 0.6

PM 08 1 1 06 06 06

3 4 5 6 7 8 9

12 o 1 2 3 4 5 6 7 8 9 o 1 2 3 4 5 6 7 8 9
Iteration Iteration Iteration

PR

Figure 16: Parameter evolution over iterations in the trivial difficulty setting. The sub-
plots show average values of the different design parameters at each iteration chosen by the de-
signer models (GPT-5, Grok-4, Opus-4-1). Row 1 shows board_size (width), wrap_around
and number_of_board_rotation. Row 2 shows number_of_board.movements,
number of particle_rotations and number_of particle movements. Next row
presents the sum of these number of actions (total actions), absolute performance gap as ob-
served on the o4-mini target model and the number of enabled capabilities (types of rota-
tions and movements), here BM, BR are the sizes of sets allowed_board_movements and
allowed board_-rotations and PM, PR similarly reflect the sizes of action sets corresponding
to the particles. We can see that, to obtain an easy difficulty configuration, models prefer smaller
board sizes and number and types of actions as compared to the medium and easy settings in Figures
14 and 15. Also consistent with the expectations, the models reduce the number of board actions
close to 0, but allow a few actions on particles.

24

Under review as a conference paper at ICLR 2026

B PROMPTS

We provide the prompts provided to the designer models across the three tasks considered in the
paper.

LLM Designer Prompt for Arithmetic Sequence

The math problem is to apply a sequence of operators on a number to produce a final an-
swer. The sequence of operators are applied recursively on intermediate results, i.e., num
= operator (num) for each operator in the sequence. The operators only take in one
number as input.

You should target the given model regret at {target_regret}, so that the parameters can
generate a math problem for the model at the desired regret level. A high regret indicates a
challenging environment (1 for unsolvable), while a low regret indicates an easy environment
(0 for easy).

Here is the feedback from the previous iterations, which you can use to generate new param-
eters: {feedback}

First, reason about the feedback from previous iterations. Specifically note what parameter-
s/aspects made previous environments challenging or trivial.

Then, given a list of common math operators {operators}, your task is to generate values
for the given parameters:

1. feedback_summary: your summary of the feedback from the previous itera-
tions.

2. thought_process: your thought process for generating the parameters.

3. max_range_of_nums: the upper bound of range the input number can take on,
i.e. (1, max_range_of_nums). Pick a number between 5 and 50.

4. N: the length of the sequence of operators to apply on a number (between 5 and 10)

5. K: The maximum number of times an operator can be repeated in the sequence
(between 1 and 5)

6. type_of_nums: the type of numbers in the input (int or float)

7. operator_sequence: select 3 operators from the list above, to generate a se-
quence of operators of length N to apply on a number, where each operator can be
repeated at most K times.

Output format (JSON):
{

”feedback_summary ”: str,
“thought_process”™: str,
”max_range_of_nums”: int,

"N”: int,

"K”: int ,

“type_of _nums”: str,
“operator_sequence ”: list[str]

LLM Designer Prompt for the Spatial Reasoning Environment

You are an expert in designing spatial reasoning environments. The environment is a 2D grid
world. It consists of a square board and a two particles on the board. The board’s dimensions
can be from 5 to 100. The board is divided into tiles of size 1x1. The particles are at the
center of the tiles.

25

Under review as a conference paper at ICLR 2026

Each object (board and particles) in the environment has an orientation and a location. The
orientation is the direction in which the object is facing, which can be one of the following:
NORTH, EAST, SOUTH, WEST. The location of particle is given by the 2D coordinates of
the center of the tile on which the particle is located. The orientation and location of particle
are initialized randomly. The location of the board is the 2D coordinates of the center of the
board. The orientation of the board is the orientation of its center. It is always initialized to
NORTH.

The environments complexity can be controlled by the following parameters:
- The board size determined by the width parameter.

- The board can either allow particles to wrap around the edges or not. It is determined by
the wrap_around parameter. If it is true, then the particles can wrap around the edges of
the board. If it is false, then the particles cannot wrap around the edges of the board.

- The movements allowed for the objects (board and particles). Each object can have a
subset of the following movements: LEFT, RIGHT, FORWARD, BACKWARD.

- The rotations allowed for the objects (board and particles). Each object can have a subset
of the following rotations: 0, 90, 180, 270, 360. If the rotation is O, then the object is
not rotated. If the rotation is 90, then the object is rotated 90 degrees counter-clockwise.
If the rotation is 180, then the object is rotated 180 degrees counter-clockwise. If the
rotation is 270, then the object is rotated 270 degrees counter-clockwise. If the rotation
is 360, then the object is rotated 360 degrees counter-clockwise.

You are given a list of parameters for a board and a list of parameters for a particle. You
are also given a list of parameters for actions that can be performed on the board and the
particle. You need to design a spatial reasoning environment that is sufficiently challenging
and an average language model can achieve a target accuracy of <accuracy>.

Response format - JSON schema You must get the final answer and convert it to the
following JSON data structure. Follow the schema exactly.

Key: thought_process
Type: String,
Description: Your thought process when designing the environment.

Key: ‘wrap_around*
Type: Boolean,
Description: Whether the board can wrap around the edges.

Key: ‘width*
Type: Integer,
Description: The width of the board.

Key: ‘board_moves*
Type: Boolean,
Description: Whether the board can move.

Key: ‘board_allowed_moves*

Type: List of Strings,

Description: The movements allowed for the board, must be subset of: LEFT, RIGHT,
FORWARD, BACKWARD.

Key: ‘board_rotates*
Type: Boolean,
Description: Whether the board can rotate.

Key: ‘board_allowed_rotations*
Type: List of Integers,
Description: The rotations allowed for the board, must be subset of: 0, 90, 180, 270, 360.

Key: ‘particle_moves*
Type: Boolean,

26

Under review as a conference paper at ICLR 2026

Description: Whether the particle can move.

Key: ‘particle_allowed_moves*

Type: List of Strings,

Description: The movements allowed for the particle, must be subset of: LEFT, RIGHT,
FORWARD, BACKWARD.

Key: ‘particle_rotates*
Type: Boolean,
Description: Whether the particle can rotate.

Key: ‘particle_allowed_rotations*
Type: List of Integers,
Description: The rotations allowed for the particle, must be subset of: 0, 90, 180, 270, 360.

Key: ‘number_of_board_rotation_actions*
Type: Integer,
Description: The number of times the board can be rotated if board_rotates is true.

Key: ‘number_of_particle_rotation_actions*
Type: Integer,
Description: The number of times the particles can be rotated if particle_rotates is true.

Key: ‘number_of_board_movement_actions*
Type: Integer,
Description: The number of times the board can be moved if board_moves is true.

Key: ‘number_of_particle_movement_actions*
Type: Integer,
Description: The number of times the particles can be moved if particle_moves is true.

LLM Designer Prompt for 7-bench Airline Environment

You are an expert in designing airline-booking tasks for language-model agents.

Your goal is to propose task parameters that drive a student model to a target failure rate of
0.75. Here, the failure rate is defined as 1 —pass @1 for the student model, i.e., the probability
that the student fails to solve the task on the first attempt. You are directly rewarded for
minimizing the absolute distance to the 0.75 failure rate, so choose parameters that make the
task challenging enough to approach this target as closely as possible.

The task setting is an airline-shopping environment where an agent must construct an
itinerary subject to constraints (e.g., number of actions, bags, cabin class, routing).

Controllable parameters and intended complexity effects:

- num_actions (1--6): Upper bound on primitive planning/interaction steps. Start
simple with fewer actions; increase to raise difficulty.

- num_passengers (1--3): More passengers typically increases combinatorial con-
straints and price/timing trade-offs.

- num_-baggages (0--3): More bags interact with fare rules and cabin choices; higher
values generally increase difficulty.

LEINNT3

- booking_strategy: Subset of {“cheapest”, “earliest_arrival”}. Multiple strategies
introduce objective trade-offs.

- is_direct: Boolean. Allowing false admits connections and routing search com-
plexity.

- is_round_trip: Boolean. Round-trips add coupling between outbound/return con-
straints.

27

Under review as a conference paper at ICLR 2026

- cabin: Subset of {“economy”, “business”}. More options broaden fare/rule search
space.

ELINT3

- insurance: One of {“yes”, “no”}. Insurance interacts with cost-focused strategies and
can add goal ambiguity.

Tune these parameters to steer the student model’s 1 — pass@ 1 toward 0.75.

Response format — JSON schema
You must get the final answer and convert it to the following JSON data structure. Follow
the schema exactly.

Key: thought_process

Type: String

Description: Concise reasoning explaining how the chosen parameters are expected to yield
a failure rate near 0.75; reference how each parameter affects difficulty.

Key: num_actions
Type: Integer (range: 1-6)
Description: Maximum number of allowed actions/steps.

Key: num_passengers
Type: Integer (range: 1-3)
Description: Number of travelers to book.

Key: num_baggages
Type: Integer (range: 0-3)
Description: Total checked bags across passengers.

Key: booking_strategy
Type: List of Strings (subset of: {“cheapest”, “earliest_arrival”})
Description: Allowed objective(s) for the student; may include one or both.

Key: is_direct
Type: Boolean
Description: If t rue, only nonstop itineraries are valid; if false, connections are allowed.

Key: is_round_trip
Type: Boolean
Description: Whether the itinerary must include return travel.

Key: cabin
Type: List of Strings (subset of: {“economy”, “business”})
Description: Allowed cabin classes.

Key: insurance
Type: String (one of: “yes”, “no”
Description: Whether trip insurance is part of the task constraints.

LLM Designer Prompt for 7-bench Airline Environment (Parameter Space Generated

by Opus-4.1)

You are an expert in designing airline-booking tasks for language-model agents.

Your goal is to propose task parameters that drive a student model to a target failure rate of
{target_failure rate}. Here, the failure rate is defined as 1 — pass@1 for the student
model, i.e., the probability that the student fails to solve the task on the first attempt. You are
directly rewarded for minimizing the absolute distance to {target_failure_rate}, so
choose parameters that make the task challenging enough to approach this target as closely
as possible.

28

Under review as a conference paper at ICLR 2026

The task setting is an airline-shopping environment where an agent must construct an
itinerary subject to constraints (e.g., number of actions, passengers, bags, cabin class, rout-
ing, information flow, and user cooperation).

Controllable parameters and intended complexity effects:

- num_actions (1--6): Upper bound on primitive planning/interaction steps. Fewer
actions constrain search; increasing actions raises planning depth and error surface.

- num_passengers (1--3): More travelers increase combinatorial constraints (seat
availability, fares), amplifying trade-offs.

- num_-baggages (0--3): More bags interact with fare rules and cabin choices; higher
values generally increase difficulty.

99 <

- booking_strategy: Subset of {“cheapest”, “earliest_arrival”}. Multiple objectives
introduce competing trade-offs and ambiguity.

- is_direct: Boolean. Allowing false admits connections and routing search com-
plexity (layovers, MCT).

- is_round_trip: Boolean. Round-trips couple outbound/return constraints and calen-
daring.

LTINS LTINS

- cabin_mix: Subset of {“economy_only”, “business_only”, “mixed”}. mixed broadens
fare/rule search and cross-cabin reasoning.

- information_completeness: Boolean. If false, key facts are omitted initially,
forcing clarification steps and robustness to uncertainty.

CLINNY3

- cooperation_level: Subset of {“helpful”, “demanding”, “uncooperative”}. Less
cooperative users increase dialogue turns, constraint changes, and error likelihood.

9% ¢

- information_pattern: Subset of {“upfront”, “gradual”, “reactive”}. Non-upfront
patterns stagger constraints and increase planning revisions.

CEINNT3

- preference_clarity: Subset of {“explicit”, “implicit”}. implicit requires in-
ference from hints (e.g., times, budgets), increasing ambiguity.

Tune these parameters to steer the student model’'s 1 — pass@1 toward
{target_failure_rate}.

Response format — JSON schema
You must get the final answer and convert it to the following JSON data structure. Follow
the schema exactly.

Key: thought_process

Type: String

Description: Concise reasoning explaining how the chosen parameters are expected to yield
a failure rate near {target_failure_rate}; reference how each parameter affects dif-
ficulty.

Key: num_actions
Type: Integer (range: 1-6)
Description: Maximum number of allowed actions/steps.

Key: num_passengers

Type: Integer (range: 1-3)

Description: Number of travelers to book.

Key: num_baggages

Type: Integer (range: 0-3)

Description: Total checked bags across passengers.
Key: booking_strategy

Type: List of Strings (subset of: {“cheapest”, “earliest_arrival”})
Description: Allowed objective(s) for the student; may include one or both.

29

Under review as a conference paper at ICLR 2026

Key: is_direct
Type: Boolean
Description: If t rue, only nonstop itineraries are valid; if false, connections are allowed.

Key: is_round_trip
Type: Boolean
Description: Whether the itinerary must include return travel.

Key: cabin_mix
Type: List of Strings (subset of: {“economy_only”, “business_only”, “mixed”})
Description: Allowed cabin configuration scope.

Key: information_completeness

Type: Boolean

Description: If t rue, all necessary details are provided initially; if false, some are with-
held.

Key: cooperation_level
Type: List of Strings (subset of: {“helpful”, “demanding”, “uncooperative”})
Description: Expected user cooperation profile(s).

Key: information_pattern
Type: List of Strings (subset of: {“upfront”, “gradual”, “reactive”})
Description: How and when information is revealed during the interaction.

Key: preference_clarity
Type: List of Strings (subset of: {“explicit”, “implicit”})
Description: Whether preferences are stated clearly or must be inferred.

Example of a Question on the Arithmetic Sequence Task

You are an agent that can use tools via tool calling:
If you have the final answer, respond with: FINAL jsequence of operators as a comma
separated list;,

Given the following input number and final answer, use the functions provided to perform
the correct sequence of operations on the input number to get the final answer.

Input number: 2.4460677252452125
Final answer: 4.423634456186643

Example of a Question in the Spatial Reasoning Setting

Following is the description of the spatial reasoning environment. Go through it carefully
and then answer the question in the requested format.

Environment

Setup

All locations are pairs of real numbers (x, y). North corresponds to increasing y, and South
corresponds to decreasing y. East corresponds to increasing X, and West corresponds to
decreasing x. Orientation is a direction, and can be one of the following: North, East, South,
or West. Orientation is also measured in degrees, and can be one of the following: 0, 90,
180, 270. Where 0 means East, 90 means North, 180 means West, and 270 means South.

A board’s rotation is defined as the rotation of the board around its center. When a board
rotates, the orientation of the board changes, and the tiles and particles on the board also
rotate along with it. A particle’s rotation changes the orientation of the particle, but does not

Under review as a conference paper at ICLR 2026

change the location of the particle. As a general rule, any entity’s rotation can change the
orientation of the entity, but does not change the location of the entity.

A board’s location is defined as the location of its center. A board’s movement changes the
location of the board, and the tiles and particles on the board also move along with it. For
example, if a board moves forward 1 unit, the center of the board and the tiles and particles on
the board all move 1 unit along the orientation of the board. A particle’s movement changes
the location of the particle For example, if a particle moves forward 1 unit, the location of
the particle changes by 1 unit along the orientation of the particle.

If the movement of particles results in the particle moving beyond the boundary of the board,
then the particle will either wrap around the boundary of the board or remain at the current
tile. It depends on the board’s wrap around settings, which are described in the description
of the board. As a general rule, any entity’s movement can change the location of the entity,
but does not change the orientation of the entity. The orientation of an entity can be thought
of as the direction in which the entity is facing. This determines the meaning of forward,
backward, left, right, etc., for the entity.

Entities
The environment contains the following entities:
Board B1

Setup A board is 12.0 units wide and 12.0 units tall, and contains 2 particle(s). It is
centered at (0.0, 0.0). Its orientation is defined as the center’s orientation, which is NORTH.
Initially, the board is oriented NORTH.

The board has four sides: SIDE-1, SIDE-2, SIDE-3, SIDE-4 The side from the south west
corner to south east corner is the bottom side of the board. It is called SIDE-1 The side from
the south east corner to north east corner is the right side of the board. It is called SIDE-2
The side from the north east corner to north west corner is the top side of the board. It is
called SIDE-3 The side from the north west corner to south west corner is the left side of the
board. It is called SIDE-4

Boundaries

In the event the particle move results in the particle moving beyond the boundary of the
board, the resulting location is decided as follows:

When a particle is on a tile, it means its location is the tile’s centroid. The SIDE-1 of the
board can be crossed when approaching from the SIDE-3, and the particle(s) will move to
the opposite tile on the SIDE-3. The SIDE-2 of the board can be crossed when approaching
from the SIDE-4, and the particle(s) will move to the opposite tile on the SIDE-4. The
SIDE-3 of the board can be crossed when approaching from the SIDE-1, and the particle(s)
will move to the opposite tile on the SIDE-1. The SIDE-4 of the board can be crossed
when approaching from the SIDE-2, and the particle(s) will move to the opposite tile on the
SIDE-2.

Tiles on the board

The board is divided into square tiles of size 1 units by 1 units. Tiles are numbered from 1
to (width * height), starting from the bottom left corner in a zigzag pattern. Going from left
to right, then right to left, and so on. For example, for a 3x3 board, the tiles are numbered as
follows: 987654123

Allowed moves

The following moves are allowed for the board: FORWARD - board moves forward 1 unit.
BACKWARD - board moves backwards 1 unit. Orientation remains the same. LEFT - board
sidesteps 1 unit to the left. Orientation remains the same. RIGHT - board sidesteps 1 unit to
the right. Orientation remains the same.

Allowed rotations

31

Under review as a conference paper at ICLR 2026

The following rotations are allowed for the board: 90 - board rotates 90 degrees. 180 - board
rotates 180 degrees. 270 - board rotates 270 degrees.

Particle P1
Initial State

It is located at (3.5, 3.5), and is facing WEST (180 degrees). It is on tile 111. It is on board
BI1.

Allowed moves

The following moves are allowed for this particle: FORWARD - particle moves forward
1 unit. BACKWARD - particle moves backwards 1 unit. Orientation remains the same.
LEFT - particle sidesteps 1 unit to the left. Orientation remains the same. RIGHT - particle
sidesteps 1 unit to the right. Orientation remains the same.

Allowed rotations

The following rotations are allowed for this particle: 90 - particle rotates 90 degrees. 180 -
particle rotates 180 degrees. 270 - particle rotates 270 degrees.

Particle P2
Initial State

It is located at (-0.5, 5.5), and is facing SOUTH (270 degrees). It is on tile 139. It is on board
BI1.

Allowed moves

The following moves are allowed for this particle: FORWARD - particle moves forward
1 unit. BACKWARD - particle moves backwards 1 unit. Orientation remains the same.
LEFT - particle sidesteps 1 unit to the left. Orientation remains the same. RIGHT - particle
sidesteps 1 unit to the right. Orientation remains the same.

Allowed rotations

The following rotations are allowed for this particle: 90 - particle rotates 90 degrees. 180 -
particle rotates 180 degrees. 270 - particle rotates 270 degrees.

Actions

The actions are the following: First, board B1 is rotated by 270 degrees. Then, particle P2
is rotated by 270 degrees. Then, particle P1 is rotated by 270 degrees. Then, particle P1 is
rotated by 90 degrees. Finally, move particle P2 BACKWARD by 1 units.

Question
What is the location of board B1 after all the actions?

Response format - JSON schema You must get the final answer and convert it to the
following JSON data structure. Follow the schema exactly.

Key: ‘board B1_x°
Type: Float,
Description: The x-coordinate of board B1 after all the actions.

Key: ‘board B1_y*
Type: Float,
Description: The y-coordinate of board B1 after all the actions.

Example of a Task in the 7-bench Airline Setting

Following is the description of the airline environment. Go through it carefully and then
answer the question in the requested format.

32

Under review as a conference paper at ICLR 2026

Environment

Setup

The environment simulates a commercial airline booking system. Airports are identified by
IATA codes (e.g., SEA, EWR). Dates are formatted YYYY-MM-DD. Times are HH:MM: SS
in local (EST) for scheduling metadata. Cabins include basic_economy, economy, and
business. Bookings may be one_way or round_trip. Payment instruments include
certificate, gift_card, and credit_card. Baggage may be free or non-free de-
pending on fare rules (not shown here). Insurance is optional.

Capabilities
Agents may:

* Search flights (nonstop or onestop) between an origin and a destination on a speci-
fied date.

* Book reservations with specified flight legs, cabin, passengers, baggages, insur-
ance, and payment methods (in priority order).

* Request issuance of a travel certificate with a specified ID and amount.

Entities

User Ul

User identifier: mohamed_11_7869.

The user’s birthday is present in the profile and should not be requested during the interac-
tion.

Passenger(s)
A single passenger is provided and known to the user:

e first_name: Yusuf, last_name: Thomas, dob: 1966-05-11

Payment Instruments (available to U1)

e gift_card_3525913: amount 27

e gift_card.5876000: amount 176

* gift_card._7716568: amount 237

e credit_card_1922786: amount 139
Preferred payment order: certificate — gift card — credit card.
Demands

Demand 1: Flight Search
Search for an onestop flight from LGA to DTWon 2024-05-25.

Demand 2: Booking

Book a one-stop, one-way itinerary from SEA to EWR on 2024-05-30 in business cabin
for 1 passenger with 1 total baggage. Choose the cheapest eligible option. Include insurance.
Use payments in the order: certificate(s) first, then gift card(s), then credit card(s).
Candidate flights presented (for selection during booking):

e LegI:
— flight_number: HAT117, origin: SEA, destination: DFW
— scheduled_departure_time_est: 10:00:00,

scheduled_arrival_time_est: 14:00:00
— status: available, date: 2024-05-30
Seats available: basic_economy 5, economy 0, business 1
Prices: basic_economy 62, economy 119, business 263
e Leg2:
— flight_number: HAT063, origin: DFW, destination: EWR

33

Under review as a conference paper at ICLR 2026

scheduled_departure_time_est: 18:00:00,
scheduled_arrival_time_est: 21:30:00

— status: available, date: 2024-05-30
Seats available: basic_economy 11, economy 15, business 9
Prices: basic_economy 80, economy 137, business 286

Demand 3: Certificate Issuance
Request a certificate with:

e certificate_id: certificate_ 4314319

e amount: 170

Actions
The intended agent actions, in order, are as follows:

1. search_onestop_flight with {origin: PHX, destination: DFW, date: 2024-
05-18}.

2. book_reservation with the provided passenger, baggage, cabin, flight legs
(SEA—DFW, then DFW—EWR on 2024-05-30), one-way, business, cheapest, in-
surance yes, and payment methods listed above in the stated priority order.

3. send_certificate with {certificate_id: certificate_ 4314319, amount:
170}.

Note. Although Demand 1 specifies LGA—DTW (2024-05-25) search, the sample action
shows PHX—DFW (2024-05-18). The agent must honor the stated Demands when resolv-
ing inconsistencies (prefer Demands).

Question

Produce the exact JSON payload(s) for the three API calls in the correct order that satisfy
all Demands above (use LGA—DTW for the search as specified by Demand 1; for booking,
choose the cheapest eligible business one-stop SEA—EWR itinerary from the two legs
provided; include insurance; and apply payment instruments in the order certificate — gift
card(s) — credit card(s)).

Response format - JSON schema
Return a single JSON object with the following keys:

Key: action_sequence
Type: Array of Objects
Description: The ordered list of actions. Each object must have:

* name (string; one of search_onestop_-flight, book_reservation,
send_certificate)

* kwargs (object; the exact arguments for the call)
Key: notes
Type: String
Description: Brief justification for flight choice, insurance inclusion, baggage count, and the
payment breakdown order.

34

Under review as a conference paper at ICLR 2026

C TEACHER MODEL REASONING TRACES

This appendix presents reasoning traces from teacher models designing environments across multi-
ple tasks. Each example shows the Chain-of-Thought reasoning used by the teacher model to select
environment parameters targeting specific difficulty levels.

C.1 ARITHMETIC SEQUENCE

Example 1: Grok-4

Method: BeTaL
Target Accuracy: 25.0%
Task: Arithmetic Sequence

Teacher Model Reasoning at the 3rd iteration:

Feedback Summary: The previous iterations had accuracy of 100.0%,
indicating trivial environments. The sequences involved repeating patterns
of pow, mul, and sqrt or div, which led to cyclic or stable values that were
easy to compute.

Thought Process: The previous environments used float numbers with
operator sequences that resulted in repetitive and predictable patterns,
leading to accuracy of 100.0%. The computations were simple due to
cycling between values. To target a accuracy of 25%, I will use in-
teger numbers and a sequence consisting of many squaring operations
using 'pow' and 'mul' to produce extremely large numbers that are dif-
ficult for the model to compute exactly. I choose N = 8, K = 4,
max_range_of_nums = 40, type = 'int’, operators 'pow', 'mul’, 'sqrt’, but
the sequence will use only 'pow' and 'mul’ to avoid reducing the number.
The sequence will have 4 'pow' and 4 'mul' for 8 squarings, leading to 2.2°6,
which for x ~ 40 has about 411 digits, which should be challenging.

35

Under review as a conference paper at ICLR 2026

Example 2: GPT-5

Method: BoN-TM
Target Accuracy: 25.0%
Task: Arithmetic Sequence

Teacher Model Reasoning:

Goal: Set parameters so that deducing the operator sequence from a single
input-output example is challenging but solvable (target accuracy ~ 0.25).
I will iterate up to two times.

Iteration 1 (rejected): - Tried ops: {pow, div, sqrt}, N = 8, K = 2.
Sampled a sequence mixing pow and sqrt. Observation: pow and sqrt
largely cancel or explode values; multiple reverse paths produce identical
results, leading to high ambiguity. Estimated accuracy ~ 0.1 (too hard).
Iteration 2 (accepted): - Choose ops: {mul, add, sqrt}. Set N =7, K = 3
so each operator can appear at most 3 times. This mix gives nonlinear-
ity via sqrt and moderate growth via mul/add, making reverse inference
nontrivial but feasible. - For sampling only, assume unary meanings com-
monly used in such puzzles: add = 41, mul = X2, sqrt = principal square
root. Type: float to accommodate non-perfect-square roots. Max input
range cap: 20. - Constructed operator_sequence of length 7 with counts
within K: [mul, add, sqrt, mul, add, sqrt, mul] (mulx3, addx2, sqrtx2).
- Sample forward calculation (input = 9): 1) mul: 9 — 18 2) add: 18 —
19 3) sqrt: 19 — ~4.3588989435 4) mul: ~4.3589 — ~8.7177978871 5)
add: ~8.7178 — ~9.7177978871 6) sqrt: ~9.7178 — ~3.1189801054 7)
mul: ~3.1190 — ~6.2379602108 (final) - Reverse reasoning feasibility
(given input 9, final ~6.23796, N = 7, ops € {add, mul, sqrt}): Assume
last op mul — divide by 2: ~3.11898; prior sqrt — square: ~9.7178;
prior add — subtract 1: ~8.7178; prior mul — divide by 2: ~4.3589;
prior sqrt — square: 19; prior add — subtract 1: 18; prior mul — divide
by 2: 9 = input. This reconstructs a consistent and plausible unique path
under constraints, but a model would need nontrivial backtracking/search,
making it challenging. - Difficulty assessment: Branching factor up to 3
with numeric constraints and float noise; sequence length 7; inverse search
with sanity checks is required. This is difficult but solvable. Estimated ac-
curacy ~ (.25.

Conclusion: Use the parameters below with operator_sequence limited to
{mul, add, sqrt}, N = 7, K = 3, float numbers, and input range up to 20
to achieve the target challenge level.

36

Under review as a conference paper at ICLR 2026

Example 3: Claude Opus 4.1

Method: BoN-ML
Target Accuracy: 25.0%
Task: Arithmetic Sequence

Teacher Model Reasoning:

Iteration 1: Starting with moderate complexity - Let’'suse N = 6, K = 2
with operators that create some ambiguity. - Testing: ['mul’, 'sqrt', 'add']
with sequence ['mul’, 'sqrt', 'add’, 'mul’, 'sqrt', 'add']. - With input 4:

4 — 8 (mulx2) — 2.83 (sqrt) — 3.83 (add+1) — 7.66 (mulx2) — 2.77 (sqrt) — 3.f/7 (add+1)

- This is somewhat traceable, maybe too easy for 0.25 accuracy.

Iteration 2: Increasing complexity - N = 7, K = 3, using operators that
interact in complex ways. - Testing: [‘pow', 'div', 'sqrt'] with sequence
['pow', 'sqrt’, 'div', 'pow’, 'sqrt’, 'div’, 'sqrt']. - With input 4:

4 — 16 (pow) — 4 (sqrt) — 2 (div=+2) — 4 (pow) — 2 (sqrt) — 1 (div+-2) — 1 (sqq

~—

- The pow and sqrt operations create multiple possible paths, better for
0.25 accuracy.

Iteration 3: Fine-tuning for target accuracy - N = 8, K = 3, float type
for added precision challenges. - Testing: ['mul’, 'sqrt’, 'pow'] — these op-
erators create exponential growth/reduction patterns. - Sequence: ['mul’,
‘pow’, 'sqrt’, 'mul’, 'sqrt’, 'pow', 'mul’, 'sqrt']. - This creates complex trans-
formations that are difficult but not impossible to reverse-engineer. - The
combination of squaring (pow) and square root operations creates ambi-
guity. - Multiple valid paths could potentially lead to the same result. -
Estimated accuracy: ~ 0.25 (challenging but solvable with careful analy-
sis).

C.2 SPATIAL REASONING

Example 4: Grok-4

Method: BeTaL
Target Accuracy: 75.0%
Task: Spatial Reasoning

Teacher Model Reasoning:

To achieve a target accuracy of 75% for an average language model, 1
designed the environment with a 10x10 board and wrap-around enabled
to introduce moderate complexity in position calculations. The board is
allowed to rotate in 90 and 180 degrees up to 2 times, adding challenge
to the reference frame without overwhelming. Particles can move in all
four directions up to 5 times and rotate in 90, 180, 270 degrees up to 3
times each. This setup requires tracking multiple transformations, leading
to potential errors in about 25% of cases.

37

Under review as a conference paper at ICLR 2026

Example 5: Claude Opus-4.1

Method: BoN-TM
Target Accuracy: 75.0%
Task: Spatial Reasoning

Teacher Model Reasoning:

Designing for 75% accuracy (0.25 regret): Need moderate complexity
with some challenging elements but not overwhelming. Key decisions:
12x12 grid provides good spatial complexity without being too large.
Wrap-around adds edge-case complexity. Board rotation (90, 180) creates
coordinate transformation challenges. Limited board movement (LEFT,
RIGHT) adds another dimension without overwhelming. Particles have
full movement but limited rotation for balanced complexity. Action counts
moderate (2-3) to require multi-step reasoning but not excessive mental
load.

Example 6: Claude Opus-4.1

Method: BoN-ML
Target Accuracy: 75.0%
Task: Spatial Reasoning

Teacher Model Reasoning:

To achieve 75% accuracy (0.25 regret), I need moderate complexity. Af-
ter iterating through options, I've selected an 8x8 grid which is large
enough to be interesting but small enough to track mentally. The key
challenge comes from board rotations (90, 180, 270 degrees) which trans-
form the coordinate system, combined with particle movements (FOR-
WARD/BACKWARD) relative to their orientation. With 2 board rotations
and 3 particle movements, problems require tracking coordinate transfor-
mations and orientations through ~5 steps total, creating moderate diffi-
culty suitable for the target performance level.

C.3 7-BENCH

Example 7: Opus-4.1

Method: BeTaL
Target Accuracy: 75.0%
Task: 7-bench

Teacher Model Reasoning:

Based on the previous results, I observe that num_actions=4
with 2 passengers and 2 baggages gave a failure rate of 0.7, while
num_actions=>5 with 2 passengers and 3 baggages also gave 0.7. Both
are 0.05 away from the target of 0.75. To potentially hit closer to 0.75,
I'll try num_actions=4 with 2 passengers but increase baggages to 3.
This creates a configuration between the tested ones—slightly more com-
plex than the 4-2-2 setup (which gave 0.7) but less complex than the 5-2-3
setup (which also gave 0.7). This intermediate complexity might push the
failure rate slightly higher toward 0.75.

Under review as a conference paper at ICLR 2026

Example 8: GPTS

Method: BoN-TM
Target Accuracy: 75.0%
Task: 7-bench

Teacher Model Reasoning:

To target a 0.75 failure rate (pass@1 0.25), I increased task complexity
via higher action count and maximum passengers, enabled multiple com-
peting criteria and toggles (booking strategy, directness, round-trip, insur-
ance), and limited one dimension (cabin) plus moderate baggage count to
avoid overshooting difficulty.

Example 9: Grok-4

Method: BoN-ML
Target Accuracy: 75.0%
Task: 7-bench

Teacher Model Reasoning:

To target a failure rate of 0.75, I aim for moderate to high complex-
ity. I set num_actions to 4 for some complexity without maxing
out. num_passengers at 2 and num_baggages at 2 add moderate
difficulty. Including both options in arrays for booking_strategy,
is_direct,is_round_trip, cabin, and insurance creates var-
ied and potentially challenging tasks, which could lead to around 75

Note: All reasoning traces show the teacher model’s explanation of why specific parameters
were chosen to achieve the target difficulty level. Different experiments may use “scratchpad” or
“thought_process” field names due to prompt variations; both contain equivalent teacher model rea-
soning.

	Introduction
	Methodology
	Preliminaries
	1.1BeTaL: Benchmark Tuning with LLM-in-the-loop

	Experimental Setup
	Benchmarking Tasks
	Baselines
	Designer and Target Models
	Metrics
	Experiment Protocol

	Results and Discussion
	Related Work
	Conclusion, Limitations and Future Work
	Additional Experiments and Details
	Details of benchmarking tasks
	Detailed Baselines
	Details of LLM Models
	Dataset Sizes
	Convergence Rate Analysis
	Additional Results

	Prompts
	Teacher Model Reasoning Traces
	Arithmetic Sequence
	Spatial Reasoning
	-bench

