

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

AUTOMATING BENCHMARK DESIGN

Anonymous authors

Paper under double-blind review

ABSTRACT

The rapid progress and widespread deployment of LLMs and LLM-powered agents has outpaced our ability to evaluate them. Hand-crafted, static benchmarks are the primary tool for assessing model capabilities, but these quickly become saturated. In contrast, *dynamic benchmarks* evolve alongside the models they evaluate, but are expensive to create and continuously update. To address these challenges, we develop BeTaL (Benchmark Tuning with an LLM-in-the-loop), a framework that leverages environment design principles to *automate the process of dynamic benchmark design*. BeTaL works by parameterizing key design choices in base benchmark templates and uses LLMs to reason through the resulting parameter space to obtain target properties (such as difficulty and realism) in a cost-efficient manner. We validate this approach on its ability to create benchmarks with desired difficulty levels. Using BeTaL, we create two new benchmarks and extend a popular agentic benchmark τ -bench. Extensive evaluation on these three tasks and multiple target difficulty levels shows that BeTaL produces benchmarks much closer to the desired difficulty, with average deviations ranging from 5.3% to 13.2% — a 2-4 \times improvement over the baselines.

1 INTRODUCTION

New developments in LLMs, particularly in powering agents via advanced planning, reasoning, and tool-use capabilities (Valmeeckam et al., 2023; 2024; Ferrag et al., 2025), have outpaced current methods for evaluation. Static, human-curated benchmarks, such as GPQA (Rein et al., 2024) or HLE (Phan et al., 2025), remain popular, but are costly to develop and quickly become obsolete as models continue to improve. This is challenging for model developers, as increasingly saturated benchmarks make it impossible to differentiate between the performance of state-of-the-art models.

To address these challenges, researchers have turned to *dynamic benchmarks* that can be updated over time. These benchmarks avoid saturation via re-calibration or the introduction of new and harder data; this also limits the risk of train-test *contamination*. For example, LiveBench (White et al., 2024) periodically introduces new questions and harder tasks. However, these types of benchmarks still largely rely on *unscalable human authoring and manual updates*. Increasingly popular agentic tasks exacerbate this problem, as simulated environments must be carefully crafted; repeatedly designing and implementing new environments promises to be even more labor-intensive.

How can we build dynamic benchmarks for frontier LLMs without the expense and inefficiency of ongoing manual design and implementation? Unsupervised environment design (UED) methods (Jiang et al., 2021a) work with environments that are built from abstract task templates with a set of configurable parameters. These parameters can be tuned to produce new and higher utility versions of the benchmark, thus enabling dynamic re-use. In practice, however, we find that the search space over such parameters is intractable for non-trivial environments. Naively sampling random configurations is inefficient, as many will be trivial or unsolvable.

We overcome these obstacles via a new approach, **Benchmark Tuning with an LLM-in-the-loop** (BeTaL), that performs dynamic benchmark design. BeTaL leverages the capabilities of large reasoning models playing the role of designers. Central to our approach is the use of a powerful **designer LLM** tasked with reasoning over the space of possible parameter values, design choices, or tasks. The designer is prompted to consider the various parameters of an under-specified benchmark or environment and to propose instances or values that are expected to be high utility. This is set up as an interactive and iterative process: after the designer has specified an environment, a simulator

Figure 1: BeTaL automates the process of designing and adjusting *dynamic benchmarks* to meet target criteria.

creates a sample benchmark (problems with ground truth answers), and the model or agent being evaluated attempts this benchmark, with results provided back to the designer. After each round, the designer must reason over choices and results and make *changes in the parameter values so that the new parameters will result in a benchmark with desired objectives (such as difficulty or realism)*. This closed-loop multi-round strategy allows the benchmark to dynamically adjust over time to meet the objectives. While the procedure is flexible to incorporate several types of objectives and combinations thereof, here we focus on the objective of creating a benchmark with a given target difficulty level.

We hypothesize that the strong zero-shot or few-shot reasoning capabilities of frontier models enable the designer to understand the factors that influence usefulness (e.g., task difficulty) and design benchmarks that meet all desirable criteria (e.g., tasks that are just outside of a weaker model’s current capabilities). This framework design reduces the burden of designing and continually updating benchmarks to meet the demands of ever-improving models. In addition, it permits re-purposing of existing static benchmarks - breathing new life into datasets long considered outdated.

Our contributions are:

- **A flexible framework for automating benchmark design.** We posit that benchmark properties such as complexity are determined by a set of underlying benchmark parameters. With this insight, we formulate the design process as an optimization problem over the space of benchmark parameters to obtain settings that will result in a benchmark having desired properties, e.g., difficulty level.
- **An efficient LLM-based procedure to solve the optimization.** Leveraging the reasoning capabilities of frontier large language models, we introduce Benchmark Tuning with an LLM-in-the-loop (BeTaL) to efficiently solve the above optimization problem for benchmark design.
- **New benchmarks and empirical validation:** Using BeTaL, we modify existing benchmarks to meet new requirements for dataset-level difficulty, and we introduce new benchmarks that focus on mathematical and spatial reasoning. Our extensive empirical evaluation of BeTaL on these settings reveals BeTaL consistently obtains benchmarks with low deviation (5.3% - 13.2%) between observed and target difficulty — a 2-4× improvement over baselines across all tasks.

2 METHODOLOGY

We propose BeTaL, a novel framework that uses an LLM-in-the-loop to iteratively design dynamic benchmarks that achieve user-specified goals. Before describing the algorithm, we outline the key building blocks of the system.

108

Algorithm 1 Benchmark Tuning with an LLM-in-the-loop (BeTaL)

```

109 1: Input: Under-specified Environment Description, Parameter Set  $P$ , Target Performance  $\rho$ , Tar-
110 get Model  $M_t$ , Designer Model  $M_d$ , Number of Iterations  $I$ .
111 2: Initialize  $i^* \leftarrow 0$ ,  $v_{i^*} \leftarrow \emptyset$ , minimum gap  $\hat{g}_{i^*} \leftarrow \infty$ 
112 3: for  $i = 1$  to  $I$  do
113 4:   Prompt  $\leftarrow$  Template with Environment description,  $P, \rho$ 
114 5:   if  $i > 1$  then
115 6:     Prompt  $\leftarrow$  Prompt + Summary of previous iterations
116 7:   end if
117 8:    $v_i \leftarrow M_d(\text{Prompt})$                                  $\triangleright$  Get parameters from Designer Model
118 9:    $v_i \leftarrow \text{ProjectToDomain}(v_i, \mathcal{V})$ 
119 10:   $D_i \leftarrow \text{InstantiateSimulator}(v_i)$                    $\triangleright$  Generate problems with simulator
120 11:   $\hat{\rho}_i \leftarrow \text{EvaluateModel}(M_t, D_i)$                    $\triangleright$  Evaluate Target Model
121 12:   $\hat{g}_i \leftarrow |\hat{\rho}_i - \rho|$ 
122 13:  Update summary of previous iterations with  $v_i$  and  $\hat{\rho}_i$    $\triangleright$  Step 4: Prepare feedback for next
123 14:  if  $\hat{g}_i < \hat{g}_{i^*}$  then
124 15:     $i^* \leftarrow i$ 
125 16:     $\hat{g}_{i^*} \leftarrow \hat{g}_i$ 
126 17:  end if
127 18: end for
128 19: Return:  $v_{i^*}$ 

```

129

130

131

132

133

2.1 PRELIMINARIES

134

135

136

Our approach assumes a loosely defined environment template that can be refined and instantiated into concrete benchmarks. The system consists of the following components:

137

138

Underspecified environment. The user begins with a high-level description of the benchmark they want to create—for example, a spatial reasoning benchmark where questions involve tracking objects on a grid after a sequence of transformations. Intuitively, the complexity of problems depends on several factors such as grid size, number of actions, types of operations, etc. We begin with an underspecified environment, wherein the environment is characterized by a finite set controllable parameters $P = \{p_1, p_2, \dots, p_k\}$, $p_i \in V_i$, so that the overall design space is $\mathcal{V} = V_1 \times V_2 \times \dots \times V_k$.

139

140

141

142

143

Problem/Task Generator. We assume access to a simulator that, given a parameter configuration $v \in V$, can instantiate the environment and generate a dataset $D = \{(x_j, y_j)\}$ of problems with ground-truth solutions. It is expected that the simulated problems adhere to the constraints specified by the parameter values. In this work, we focus on environments with verifiable or procedurally generated solutions, allowing us to assume that the generated ground truth is correct.

144

145

146

147

148

149

Target model. A model or system to be evaluated, e.g., an off-the-shelf LLM, a proprietary API, or a multi-agent pipeline.

150

151

152

Target performance. Along with the target model, the user also specifies a target performance level $\rho \in \mathbb{R}$ and a distance measure d . The objective is to output a benchmark on which the target model’s performance will be close to ρ . The exact definition of ρ is left to the user; for instance ρ could be accuracy, diversity, or an aggregate of multiple measures. In this work, we use target difficulty as our measure of performance of the generated benchmarks, as we seek to overcome the challenge of benchmark saturation.

153

154

155

156

157

Designer model. A sufficiently powerful model, such as large reasoning models (LRMs), that can understand the underspecified environment description, the set of free parameters and constraints that influence the environment’s complexity. We expect such a model to be able to reason about the design space and propose specific values to the parameters that result in an environment of given target complexity.

162
163

2.2 BeTaL: BENCHMARK TUNING WITH LLM-IN-THE-LOOP

164
165
166
167
168

BeTaL is built on two key ideas: first, strengthening grounding through explicit feedback from real rollouts of the designed benchmarks; and second, leveraging LLM reasoning to systematically explore and refine the design space. This process mirrors how humans design benchmarks; through an iterative loop of experimentation and observation, where both elements are essential for effective benchmark creation. We describe the process in Alg. 1, and explain it in detail below.

169
170
171
172
173
174

Step 1: Parameter generation (LLM-Guided). In step one of the BeTaL, the designer model, an LRM, is prompted to obtain a parameter configuration v_i . Since these values are generated by a language model, they may be out of the domain \mathcal{V} . We found designer models occasionally hallucinated out of domain configurations in roughly 4% of proposals. Verification is therefore necessary to ascertain that $v_i \in \mathcal{V}$, and, if not, this process is repeated until the generated v_i falls in \mathcal{V} . In the end, v_i is projected to \mathcal{V} if it is still out-of-domain.

175
176
177
178

Step 2: Environment instantiation and problem/task generation. A simulator is instantiated with the parameter configuration obtained in Step 1, which is then used to generate a small set of problems/tasks, with ground truth answers for evaluation, i.e. $D_i = \{(x_j, y_j)\}_{j=1}^{n_s}$.

179
180
181

Step 3: Performance evaluation. The target model is evaluated on D_i to yield performance $\hat{\rho}_i$. When the ground truth is not available, $\hat{\rho}_i$ could be estimated by evaluating using LLM-as-a-Judge (Gu et al., 2024) or Program-as-a-Judge (Huang et al., 2025a).

182
183
184
185

Step 4: Feedback and iteration. The iteration details, including the parameter choices and the resulting performance, are summarized in natural language to the LRM, including v_i and $\hat{\rho}_i$. This feedback is appended to the next prompt, enabling the model to reason about the impact of its prior choices and propose improved parameters in subsequent iterations.

186
187
188

Step 5: Termination and selection. In each iteration, we keep track of the observed performance gap $\hat{g}_i = |\hat{\rho}_i - \rho|$ and keep track of the iteration i^* that results in the smallest gap. After I iterations, the method exits and returns v_{i^*} .

189
190
191

3 EXPERIMENTAL SETUP

192
193
194
195

In this section, we describe our setup for the experiments. First, we give high-level details of the benchmarking tasks, then discuss the baseline methods, our choices of designer and target models, evaluation metrics, and the protocol to run the experiments.

196
197
198

3.1 BENCHMARKING TASKS

199
200
201
202

We consider a range of tasks based on arithmetic, spatial reasoning, and airline customer service agents. Each of these settings has a rich design space with several free parameters that govern the complexity of the benchmark, making them good candidates for evaluating our method. We briefly discuss these tasks and defer the details to the Appendix A.1.

203
204
205
206
207
208
209

Arithmetic sequences task. Given an input number $x \in \mathbb{R}$ and an output number $y \in \mathbb{R}$, an agent must return the sequence of arithmetic operations $o_1, o_2 \dots o_N$ that, when applied recursively to the intermediate results, yield $y := (o_N \circ o_{N-1} \circ \dots \circ o_1)(x)$. At inference time, the target model, an LLM agent, is provided access to the arithmetic operators, as tools, to determine the sequence of operators that transform x to y . The predicted operator sequence is verified by executing the sequence and comparing it with the ground truth y . Task difficulty depends on several factors such as operator choice, sequence length, range of the input x , and others.

210
211
212
213
214
215

Spatial reasoning task. We design multiple spatial reasoning tasks involving a 2D square grid (board) with particles placed on it. The board and particles can both rotate, while the particles can additionally move positions. A series of such actions is applied, after which the model is queried about the final positions and orientations of the particles. The target LLM receives a description of the environment and action sequence, and its responses are compared against programmatically computed ground truth. The complexity is controlled by parameters such as board size, the number and types of actions allowed.

216 **τ -bench “airline” task.** This is an interactive evaluation environment for customer service agents in
 217 simulated airline scenarios, where the agent must use available tools to query and update a database
 218 to fulfill user requests (Yao et al., 2024). The reward is computed by comparing the final database
 219 state with the database state following a series of golden actions. Building on this setup, we de-
 220 sign a rule-based task generator that randomly samples action sequences and corresponding user
 221 instructions. The generator is parameterized both by tool-related variables—such as the number of
 222 passengers when booking a flight—and by behavioral parameters derived from real user instructions.

223 On all three problems, our objective is to identify parameter configurations that yield benchmarks
 224 with desired difficulty levels. For further details on these tasks and associated parameters, see Ap-
 225 pendix A.1.

227 3.2 BASELINES

229 We briefly discuss the baselines for evaluation. Details are provided in Appendix A.2.

230 **Random sampling with prioritized parameter replay (RS+PPR).** Inspired by Prioritized Level
 231 Replay (PLR) (Jiang et al., 2021b), we develop a baseline RS+PPR, that maintains a buffer of
 232 favorable environment parameters. In each iteration, it samples a parameter configuration $v_i \in \mathcal{V}$
 233 either uniformly at random (with probability p) or, with probability $1 - p$, as a noisy variant of
 234 parameters drawn from the buffer. Then the performance gap \hat{g}_i is estimated with v_i , and it is added
 235 to the buffer if $\hat{g}_i \leq \Delta$.

236 **Best-of-N variations.** We use best-of- N (BoN) Snell et al. (2024); Beirami et al. (2025), where N
 237 responses are sampled and the best response selected according to a reward model. We consider the
 238 reward for a parameter configuration to be the negative of its observed performance gap. In the first
 239 variant, we consider **BoN-ML**, with our verifier as a predictive model trained offline using standard
 240 machine learning methods on parameter–performance-gap pairs. In the second variant, **BoN-TM**,
 241 we collect a small number of rollouts with the target model, and select the response with the smallest
 242 measured performance gap.

244 3.3 DESIGNER AND TARGET MODELS

246 We use the latest reasoning models: GPT-5, Claude Opus 4.1, and Grok 4 as designer models and
 247 o4-mini as the target model in all settings. We evaluate the resulting benchmarks on three models:
 248 o4-mini, Gemini 2.5 Flash, and Claude 3.7 Sonnet. Whenever applicable, we configure the designer
 249 model with temperature 0.5 and a reasoning budget of 4096 tokens for exploration, while the other
 250 models use temperature 0.0 with a reasoning budget of 1024 tokens. Details of model configurations
 251 are in Appendix A.3.

252 3.4 METRICS

254 Each benchmarking task can have its own notion of performance ρ (e.g., accuracy, pass@k, etc.).
 255 We assume this measure is inversely proportional to the task difficulty, and define the following
 256 metric:

257 **Performance gap.** If a method is run with a given target performance level ρ , and say that it results
 258 in a benchmark on which the target model has performance $\hat{\rho}$, then its performance gap is $\hat{g} = |\hat{\rho} - \rho|$.

260 3.5 EXPERIMENT PROTOCOL

262 We evaluate the methods across two phases: parameter search and evaluation. During parameter
 263 search, iterative methods are run for 10 iterations, while non-iterative methods sample 10 config-
 264urations. The best parameters obtained from each method are then used to generate a larger eval-
 265 uation dataset. To assess each designer’s ability to produce benchmarks with controlled difficulty,
 266 we define four target performance levels: Hard ($\rho^{\text{hard}} = 0.25$), Medium ($\rho^{\text{medium}} = 0.50$), Easy
 267 ($\rho^{\text{easy}} = 0.75$), and Trivial ($\rho^{\text{trivial}} = 0.90$). The primary evaluation metric is the average per-
 268 formance gap, \hat{g} , computed at each level. All experiments are repeated three times with different
 269 random seeds, and results are reported with 95% confidence intervals based on the Student’s-t dis-
 tribution with three degrees of freedom.

270 Table 1: BeTaL consistently outperforms the iterative and Best-of-N baselines in both parameter
 271 search and evaluation phases across all three tasks and all three designer models. Reported numbers
 272 are $\hat{g}(\%)$ with o4-mini as the target model. For parameter search, we run either 10 samples or 10
 273 iterations and report the best result for a fair comparison. More experimental details can be found in
 274 Appendix A.

276 Designer	Method	Arith. Seq.		Spatial Reasoning		τ-Bench Airline	
		Param Search	Eval	Param Search	Eval	Param Search	Eval
278 N/A	RS+PPR	15.8 \pm 2.43	13.11 \pm 11.6	6.6 \pm 12.7	8.36 \pm 10.45	18.3 \pm 21	21.3 \pm 10.6
279 GPT-5	BoN-TM	8.3 \pm 4.64	11.67 \pm 7.67	28.34 \pm 41.19	30.26 \pm 42.77	12.5 \pm 2.1	20.8 \pm 8.0
	BoN-ML	30.0 \pm 12.63	22.17 \pm 17.99	21.66 \pm 19.67	31.20 \pm 43.49	21.4 \pm 11.5	16.7 \pm 10.4
	BeTaL	5.8\pm4.77	9.0\pm 8.49	0.4\pm0.35	5.34\pm12.77	5.3\pm3.2	13.2\pm10.3
283 Opus-4.1	BoN-TM	20.0 \pm 12.12	18.94 \pm 18.72	26.93 \pm 41.32	31.07 \pm 43.27	3.6\pm3.2	10.0 \pm 12.4
	BoN-ML	31.7 \pm 6.20	29.17 \pm 6.06	20.49 \pm 19.13	32.76 \pm 43.76	11.7 \pm 7.5	9.7 \pm 7.6
	BeTaL	12.5\pm4.42	11.78\pm10.5	3.82\pm5.58	7.35\pm5.49	5.0 \pm 2.1	7.7\pm5.2
286 GROK 4	BoN-TM	20.0 \pm 11.70	21.44 \pm 11.05	25.36 \pm 39.60	29.76 \pm 43.64	15.0 \pm 11.5	18.5 \pm 7.7
	BoN-ML	32.5 \pm 15.58	33.11 \pm 20.22	21.24 \pm 19.44	33.81 \pm 46.05	34.2 \pm 14.3	20.2 \pm 3.1
	BeTaL	4.2\pm3.26	8.28 \pm 4.30	1.36\pm2.72	4.98\pm8.13	3.9\pm3.2	10.3\pm12.4
290 Designer Avg.	BoN-TM	16.11 \pm 6.16	17.35 \pm 6.03	26.88 \pm 40.70	30.36 \pm 43.23	10.37 \pm 4.17	16.4 \pm 4.89
	BoN-ML	31.39 \pm 8.89	26.81 \pm 8.22	21.13 \pm 19.41	32.59 \pm 44.44	22.41 \pm 7.88	15.5 \pm 4.67
	BeTaL	7.50\pm2.57	9.69\pm2.93	1.86\pm2.88	5.89\pm8.80	4.72\pm1.86	10.39\pm3.18

294 Table 2: Chain-of-thought (CoT) prompting does not consistently yield strong designer-model per-
 295 formance. While Claude Opus-4.1 achieves competitive results on the arithmetic sequence and
 296 τ -Bench tasks, state-of-the-art LLMs often struggle to outperform a random sampling baseline. Re-
 297 ported values are $\hat{g}(\%)$ with o4-mini as the target model.

Method	Arith. Seq.	Spatial Reasoning	τ-Bench Airline
300 Random Sampling	21.17 \pm 51.5	25.4 \pm 9.6	37.3 \pm 17.2
301 CoT Prompting (GPT-5)	28.33 \pm 25.8	45.3 \pm 26.3	23.6 \pm 16.1
302 CoT Prompting (Opus-4.1)	11.67 \pm 7.2	26.1 \pm 17.9	11.9 \pm 10.4
303 CoT Prompting (Grok-4)	20.83 \pm 3.6	39.1 \pm 25.5	31.9 \pm 13.3

306 4 RESULTS AND DISCUSSION

308 In this section, we present our main results and discussion. We provide an in-depth discussion on
 309 BeTaL’s effectiveness in designing benchmarks for any given target difficulty.

311 C1: BeTaL outperforms baselines in creating benchmarks with any target performance level.

312 Our hypothesis is that while LLMs are highly capable, a single round of prompting, even with
 313 a large reasoning budget, is less effective than an iterative framework like BeTaL, which incor-
 314 porates feedback from previous rounds. Drawing inspiration from recent work framing LLMs as
 315 optimizers (Yang et al., 2023; Nie et al., 2024), we expect BeTaL’s feedback-driven search to
 316 yield stronger performance than non-iterative baselines. The results in Table 1 strongly support this
 317 hypothesis. We summarize the key findings below.

318 *i) BeTaL versus other multi-round methods.* We compare BeTaL with multi-round baselines,
 319 including RS+PPR and the variations of Best-of-N. From our results (Table 1), it is evident that
 320 BeTaL outperforms these baselines by a wide margin, across benchmarks and designer models.
 321 We attribute this advantage to the reasoning capacity of LLM-based designers, which enables them
 322 to iteratively refine parameters using feedback from previous rounds. In contrast, other baselines,
 323 including those that receive feedback, fail to exploit it as effectively. BeTaL’s capabilities in iter-
 324 atively finding the target parameters can be further seen in Figure 3 and Figure 11 in the Appendix.

Figure 2: Evaluation results on o4-mini with BeTaL (with GPT-5 as the designer model, and o4-mini as the target model during parameter search) perform robustly at different target difficulty levels, compared to baselines on Arithmetic Sequences, Spatial Reasoning, and τ -Bench. A similar performance is noted using Claude Opus 4.1 and Grok-4 as Designers, in Figure 9 in the Appendix.

It shows that BeTaL shrinks the performance gap more strongly than RS+PPR over 10 iterations, with a wide margin (more than 20%) on both τ -Bench and Spatial Reasoning.

ii) Performance at target difficulty levels.

We expect an effective benchmark designer to optimize for any specified target difficulty level. Figure 2 presents the observed performance gap for each target difficulty level. BeTaL demonstrates strong robustness, consistently outperforming all baselines at each difficulty level.

We also observe inherent difficulty differences across benchmark domains, which are reflected in the performance gaps. For example, τ -Bench and Spatial Reasoning are inherently challenging, with the largest gaps appearing at the Trivial difficulty level for all LLM designers. In contrast, the Arithmetic Sequence task, containing several degenerate solutions, shows the largest gap at the Hard difficulty level (see Figure 10 in the Appendix).

iii) Performance comparison of designer models.

While BeTaL achieves strong performance with all three designer (reasoning) models, we find that the choice of reasoning model may depend on the nature of the benchmark being developed. Comparing between the designers, Grok-4 and GPT-5 do well on the mathematical and logical reasoning domains of Arithmetic Sequences and Spatial Reasoning. On the other hand, Claude-Opus-4.1 excels on the real-world agentic benchmark of τ -Bench Airline, with a performance gap of $7.7 \pm 5.2\%$ compared to $13.2 \pm 10.3\%$ and $10.3 \pm 12.4\%$ by GPT-5 and Grok-4, respectively (Table 2).

C2: Benchmark created by BeTaL for one target model is transferable to other target models.

A benchmark designed for a target model (here, o4-mini) can also be used to evaluate other models. When the target and evaluation models coincide, BeTaL produces benchmarks with minimal performance gaps. However, when evaluated on models different from the target, performance naturally varies with model capability. For instance, a benchmark that is hard for the target model may appear of medium difficulty to a stronger model, and vice versa. Consequently, models with similar capabilities to the target are expected to exhibit comparable performance gaps, whereas stronger (or weaker) models should follow the same performance trends across target difficulty levels but with larger (or smaller) magnitudes.

Figure 4: Evaluation generalization across designer models and datasets. Colored lines represent individual model eval performance (see legend for models) with respect to target accuracy. Observed versus target accuracy for o4-mini target trained by different designers (columns: GPT-5, Grok-4, Opus-4.1) on three benchmarks (rows: Spatial Reasoning, τ -Bench, Arithmetic Sequence). The black dashed line indicates perfect alignment.

Figure 5: Results on different evaluation models. The left figure shows aggregate results for all methods, and the right figure focuses on BeTaL’s results, showing the observed accuracies at different target difficulty levels. All results are averaged across Designer Models.

Our results in Figure 4 and 5 and confirm that benchmarks designed by BeTaL exhibit robust transferability across evaluation models. On τ -Bench, benchmarks generated using o4-mini feedback yield comparable performance when evaluated on Claude 3.7 Sonnet and Gemini 2.5 Flash, with BeTaL consistently outperforming all baselines across evaluation models.

This cross-model consistency across different benchmark domains: agentic planning in real-world tasks (τ -Bench) and mathematical reasoning (Arithmetic Sequences) domains provides strong evidence that BeTaL-designed environments test fundamental cognitive capabilities that generalize across different model architectures and families, rather than exploiting model-specific weaknesses.

432 **C3: Chain-of-Thought alone is insufficient for efficient benchmark design.**
 433

434 Despite the remarkable reasoning capacity and extensive world knowledge of state-of-the-art LLMs,
 435 their ability to systematically design benchmarks, using prompting alone, remains unreliable. As
 436 shown in Table 2, even with high reasoning budgets, LLMs exhibit *high variance* when tasked with
 437 producing benchmarks of varying complexity. Using o4-mini as the target model, Claude Opus-
 438 4.1 surpasses the random baseline only on Arithmetic Sequence and τ -Bench, but fails on Spatial
 439 Reasoning. GPT-5 and GROK 4 underperform even further. These results demonstrate that Chain-
 440 of-Thought prompting alone does not endow LLMs with robust or generalizable benchmark design
 441 capabilities.

442 **C4. Can LLMs also generate better parameter spaces?**
 443

455 Figure 6: Performance of BeTaL on τ -bench parameter space generated by Opus 4.1 versus by hu-
 456 man. BeTaL on AI-generated parameter space is an acceptably small performance gap for medium
 457 and hard benchmarks, yet still generally underperforms to that generated by humans.

458
 459 Given LLMs’ strong ability to generate complex and diverse benchmarks through BeTaL, a natural
 460 question is whether they can also design the underlying *parameter spaces* themselves. To test this,
 461 we prompt Claude Opus-4.1, the best performing designer model on τ -Bench, to generate a complete
 462 parameter space for τ -Bench, then manually implement the feasible parameters in the task generator.
 463 Opus 4.1 adds additional parameters based on user interactions to the design space – including
 464 cooperation level, and clarifying preferences (whether explicit or implicit). Detailed parameters and
 465 prompts can be seen in Appendix A.1 and Appendix B.

466 As shown in Figure 6, BeTaL applied to the AI-generated parameter space performs comparably
 467 well on *Medium* and *Hard* benchmarks, achieving \hat{g} as low as 1.1% and 1.7%, respectively. This
 468 demonstrates that LLMs can capture key structural patterns needed to produce challenging and well-
 469 calibrated benchmarks. However, a substantial gap remains relative to human-designed parameter
 470 spaces on *Trivial* and *Easy* benchmarks, reaching up to 24.4% and 23.3% performance gaps for
 471 GPT-5 and Opus-4.1, compared to 15.6% and 13.3% from the human-generated space. These gaps
 472 indicate limited flexibility and controllability in the LLM-generated parameter space, particularly in
 473 achieving smooth difficulty scaling across the full range of target performances.

474 Overall, these findings suggest that while current LLMs exhibit partial autonomy in environment de-
 475 sign, fully self-sufficient parameter-space generation remains an open challenge for future systems.

476
 477 **5 RELATED WORK**
 478

479 **Automating benchmark design.** Recent work streamlines benchmark creation by automating gen-
 480 eration, verification, and evolution. AUTOBENCHER (Li et al., 2025) introduces a declarative
 481 framework that automates benchmark construction by optimizing over benchmark desiderata to scal-
 482 ably discover new capability and safety weaknesses in language models. BENCHMAKER (Yuan
 483 et al., 2025) and CHASE (Patel et al., 2025) leverage LLMs for systematic or compositional task
 484 construction, with BENCHMAKER emphasizing structured evaluation and CHASE building harder
 485 problems from simpler components. In the code domain, graph-based generators validate solutions
 via loop-derived self-consistency and help train reliable LLM-as-judge proxies (Farchi et al., 2024).

486 Other approaches extend beyond static generation: tasks can evolve through perturbation, probing,
 487 or alternation (Wang et al., 2024), and multi-agent frameworks coordinate specialized roles for di-
 488 verse benchmark creation (Butt et al., 2024). Despite this progress, most methods operate directly
 489 at the task level—fixing difficulty or other heuristics to guide evolution—without abstracting the
 490 environment design space that underlies task instantiation. This makes it hard to adapt benchmarks
 491 across new domains. Our approach instead parameterizes the benchmark and closes the loop with
 492 target model feedback, enabling flexible benchmark tuning.

493 **Environment design for curriculum learning.** Automated benchmark design parallels Unsuper-
 494 vised Environment Design (UED) in reinforcement learning, where tasks must remain solvable
 495 yet challenging as agents improve. UED methods adapt environments through adversarial gen-
 496 eration (Dennis et al., 2021), replay-based curation (Jiang et al., 2021b), or evolutionary muta-
 497 tion (Parker-Holder et al., 2023). These approaches formalize environment design as optimization
 498 or curation to sustain adaptive curricula. Extending this idea, LLM-driven variants such as En-
 499 vGen (Zala et al., 2024) and LLM-POET (Aki et al., 2024) employ language models to generate
 500 or mutate RL environments, while co-evolutionary loops like R-Zero (Huang et al., 2025b) pair a
 501 Challenger and Solver in an adversarial, self-improving curriculum on language tasks. Although
 502 these methods share the goal of adapting difficulty in step with capability, BeTaL avoids the need
 503 for a training loop, enabling adaptive benchmark generation with open and closed models alike.

504 **Scaling environments and datasets.** A complementary line of work scales environments and
 505 datasets to advance agentic intelligence, often through synthetic generation or curated annotations.
 506 AgentScaler (Fang et al., 2025) builds large collections of verifiable, API-derived environments to
 507 train function-calling agents, while APIGen (Liu et al., 2024) and ToolACE (Liu et al., 2025) syn-
 508 thesize diverse, verifiable function-calling datasets through automated generation and multi-stage
 509 verification. More recently, ARE and its Gaia2 benchmark (Andrews et al., 2025) provide scalable,
 510 asynchronous environments that test adaptability and robustness. These efforts emphasize agentic
 511 capabilities, whereas our focus is on automating evaluation.

512 **LLMs as optimizers.** Our work fundamentally treats benchmark design as an optimization problem,
 513 with reasoning models as optimizers. Similar work has been explored in OPRO (Yang et al., 2024)
 514 and evolutionary variants such as LEO (Brahmachary et al., 2024) and Guo et al. (2025) to solve
 515 mathematical tasks and optimize prompts. Our work uniquely applies to benchmark design.

516 6 CONCLUSION, LIMITATIONS AND FUTURE WORK

517 We introduced BeTaL, an LLM-in-the-loop framework for dynamic benchmark design. Un-
 518 like static or manually maintained live benchmarks, BeTaL adaptively generates benchmarks that
 519 evolve with model capabilities. By reasoning over parameterized design spaces, it efficiently
 520 achieves target performance levels with minimal human input. Across arithmetic, spatial reasoning,
 521 and agentic domains, BeTaL consistently reduces performance gaps by 2-4 \times compared to LLM
 522 and non-LLM baselines. These results highlight BeTaL’s potential to enable evaluation systems
 523 that evolve alongside advancing models. In light of BeTaL’s adaptive and targeted task-generation
 524 capabilities, we note that its underlying ideas naturally relate to curriculum learning and could po-
 525 tentially inform curriculum based training strategies.

526 One of the drawbacks of BeTaL is that it assumes access to parameterized and verifiable task
 527 generators, which may not always exist. Its effectiveness depends on the reasoning strength of the
 528 designer model and careful prompt construction. Moreover, our evaluation is limited to a small
 529 set of domains, leaving multimodal and more subjective tasks unexplored. Although BeTaL is
 530 an evaluation based benchmarking framework rather than a training method, it appears structurally
 531 compatible with curriculum learning based training, but confirming this empirically is left for future
 532 work.

533 Future work could extend BeTaL to optimize multiple objectives, including realism and diversity,
 534 explore multi-agent or co-evolutionary design loops, and incorporate human-in-the-loop oversight
 535 to further enhance adaptability and reliability. Given its adaptive design, BeTaL also provides a
 536 promising basis for exploring *curriculum-based data selection* strategies. Ultimately, we envision
 537 adaptive benchmarks that evolve with the systems they evaluate, ensuring robust and meaningful
 538 assessment as AI capabilities advance.

540 REFERENCES
541

542 Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
543 hampati. Planbench: An extensible benchmark for evaluating large language models on planning
544 and reasoning about change. *Advances in Neural Information Processing Systems*, 36:38975–
545 38987, 2023.

546 Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can't plan; can lrms? a
547 preliminary evaluation of openai's o1 on planbench. *arXiv preprint arXiv:2409.13373*, 2024.

548 Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to au-
549 tonomous ai agents: A comprehensive review. *arXiv preprint arXiv:2504.19678*, 2025.

550 David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
551 rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
552 mark. In *First Conference on Language Modeling*, 2024.

553 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
554 Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity's last exam. *arXiv preprint
555 arXiv:2501.14249*, 2025.

556 Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
557 Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
558 free llm benchmark. *arXiv preprint arXiv:2406.19314*, 4, 2024.

559 Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
560 Rocktäschel. Replay-guided adversarial environment design. *Advances in Neural Information
561 Processing Systems*, 34:1884–1897, 2021a.

562 Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Ying-
563 han Shen, Shengjie Ma, Honghao Liu, et al. A survey on llm-as-a-judge. *arXiv preprint
564 arXiv:2411.15594*, 2024.

565 Tzu-Heng Huang, Harit Vishwakarma, and Frederic Sala. Time to impeach llm-as-a-judge: Pro-
566 grams are the future of evaluation. *arXiv preprint arXiv:2506.10403*, 2025a.

567 Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. τ -bench: A benchmark for
568 tool-agent-user interaction in real-world domains, 2024.

569 Minqi Jiang, Edward Grefenstette, and Tim Rocktäschel. Prioritized level replay. *arXiv preprint
570 arXiv:2010.03934*, 2021b.

571 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
572 can be more effective than scaling model parameters, 2024.

573 Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander Nicholas D'Amour, Jacob Eisenstein,
574 Chirag Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment
575 policy. In *Forty-second International Conference on Machine Learning*, 2025.

576 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
577 Chen. Large language models as optimizers. In *The Twelfth International Conference on Learning
578 Representations*, 2023.

579 Allen Nie, Ching-An Cheng, Andrey Kolobov, and Adith Swaminathan. The importance of direc-
580 tional feedback for llm-based optimizers. *arXiv preprint arXiv:2405.16434*, 2024.

581 Xiang Lisa Li, Farzaan Kaiyom, Evan Zheran Liu, Yifan Mai, Percy Liang, and Tatsunori
582 Hashimoto. Autobencher: Towards declarative benchmark construction, 2025. URL <https://arxiv.org/abs/2407.08351>.

583 Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Yueqi Zhang, Jiayi Shi, Chuyi Tan, Boyuan
584 Pan, Yao Hu, and Kan Li. Llm-powered benchmark factory: Reliable, generic, and efficient. *arXiv
585 preprint arXiv:2502.01683*, 2025.

594 Arkil Patel, Siva Reddy, and Dzmitry Bahdanau. How to get your llm to generate challenging
 595 problems for evaluation. *arXiv preprint arXiv:2502.14678*, 2025.
 596

597 Eitan Farchi, Shmulik Froimovich, Rami Katan, and Orna Raz. Automatic generation of benchmarks
 598 and reliable llm judgment for code tasks. *arXiv preprint arXiv:2410.21071*, 2024.
 599

600 Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Benchmark
 601 self-evolving: A multi-agent framework for dynamic llm evaluation. *arXiv preprint
 602 arXiv:2402.11443*, 2024.
 602

603 Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachan-
 604 dran. Benchagents: Automated benchmark creation with agent interaction. *arXiv preprint
 605 arXiv:2410.22584*, 2024.
 606

607 Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
 608 and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
 609 design. *arXiv preprint arXiv:2012.02096*, 2021.
 610

611 Jack Parker-Holder, Minqi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
 612 Grefenstette, and Tim Rocktäschel. Evolving curricula with regret-based environment design.
 613 *arXiv preprint arXiv:2203.01302*, 2023.
 614

615 Abhay Zala, Jaemin Cho, Han Lin, Jaehong Yoon, and Mohit Bansal. Envgen: Generating and
 616 adapting environments via llms for training embodied agents. *arXiv preprint arXiv:2403.12014*,
 617 2024.
 618

619 Fuma Aki, Riku Ikeda, Takumi Saito, Ciaran Regan, and Mizuki Oka. Llm-poet: Evolving complex
 620 environments using large language models. *arXiv preprint arXiv:2406.04663*, 2024.
 621

622 Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
 623 Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. *arXiv
 624 preprint arXiv:2508.05004*, 2025b.
 625

626 Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xi-
 627 aobin Wang, Liangcai Su, Zhen Zhang, Shebin Wu, Zhengwei Tao, Yong Jiang, Pengjun Xie, Fei
 628 Huang, and Jingren Zhou. Towards general agentic intelligence via environment scaling. *arXiv
 629 preprint arXiv:2509.13311*, 2025.
 630

631 Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
 632 Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos
 633 Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline for
 634 generating verifiable and diverse function-calling datasets. *arXiv preprint arXiv:2406.18518*,
 635 2024.
 636

637 Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
 638 Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
 639 Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
 640 Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning the
 641 points of llm function calling. *arXiv preprint arXiv:2409.00920*, 2025.
 642

643 Pierre Andrews, Amine Benhalloum, Gerard Moreno-Torres Bertran, Matteo Bettini, Amar Budhi-
 644 raja, Ricardo Silveira Cabral, Virginie Do, Romain Frogier, Emilien Garreau, Jean-Baptiste Gaya,
 645 Hugo Laurençon, Maxime Lecanu, Kunal Malkan, Dheeraj Mekala, Pierre Ménard, Grégoire
 646 Mialon, and et al. Are: Scaling up agent environments and evaluations. *arXiv preprint
 647 arXiv:2509.17158*, 2025.
 648

649 Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
 650 Chen. Large language models as optimizers, 2024.
 651

652 Shuvayan Brahmachary, Subodh M. Joshi, Aniruddha Panda, Kaushik Koneripalli, Arun Kumar
 653 Sagotra, Harshil Patel, Ankush Sharma, Ameya D. Jagtap, and Kaushik Kalyanaraman. Large
 654 language model-based evolutionary optimizer: Reasoning with elitism, 2024.
 655

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang Bian, and Yujiu Yang. Evoprompt: Connecting llms with evolutionary algorithms yields powerful prompt optimizers, 2025.

Figure 7: Illustration of particles and actions in spatial reasoning tasks. Here the board is 4x4 and initially oriented towards north (black arrow). There are two particles $P1$ and $P2$ oriented towards west and south respectively. The first action moved the particle $P1$ forward by one step, second action rotated the particle $P2$ by 90 degrees and the last action shows rotation of the board by 90 degrees. The board rotations are w.r.t. to its center and when a board rotates or moves the particles on it also rotate and move along with it.

A ADDITIONAL EXPERIMENTS AND DETAILS

A.1 DETAILS OF BENCHMARKING TASKS

Arithmetic sequences task. Given an input number $x \in \mathbb{R}$ and an output number $y \in \mathbb{R}$, an agent must return the sequence of arithmetic operations $o_1, o_2 \dots o_N$ that, when applied recursively to the intermediate results, yield y ; i.e,

$$y = (o_N \circ o_{N-1} \circ \dots \circ o_1)(x).$$

The benchmark space is constrained to simple operations of addition (+), subtraction (-), multiplication (\times), division (\div), square root ($\sqrt{}$), and power of two ($(\cdot)^2$). For binary operators, both operands are the same. At inference time, the target model, an LLM agent, has access to the arithmetic operators, as tools, to determine the sequence of operators that transform x to y . The predicted operator sequence $o'_N, o'_{N-1}, \dots, o'_1$ is verified by executing the sequence to generate

$$y' = (o'_N \circ o'_{N-1} \circ \dots \circ o'_1)(x),$$

and comparing it with the ground truth y .

Task difficulty depends on factors such as operator choice, sequence length, range of the input x , and whether x is integer or floating-point. Operators like subtraction or division tend to collapse y toward zero, whereas multiplication and exponentiation operators cause exponential growth. Our automated benchmark design evaluates whether reasoning models can strategically select parameters to generate problems at specified difficulty levels.

Spatial Reasoning. Figure 7 illustrates an example of a sample from the spatial reasoning environment. On such samples, we ask 4 types of queries. i) Absolute location (x,y) co-ordinates of the particle or the board. The board’s location is defined as the location of its center. ii) The tile number on which a specific particle is located. iii) The orientation of a given particle (north, east, west, or south), and iv) the relative location of a particle or board with respect to another particle or board. When an LLM is prompted with such problems, we instruct it to produce structured outputs along with its reasoning traces. The structured output is verified easily with the ground truth computed programmatically.

The parameter space includes `board_size`, an integer between 5 and 100. Boolean flags `board_rotates`, `particle_rotates`, `board_moves`, and `particle_moves` indicating whether board and particle rotations and movements are allowed or not. If particle rotations are allowed, then `allowed_particle_rotations` should be a non-empty subset of $\{0, 90, 180, 270, 360\}$, where each of these numbers indicates counter-clockwise rotation in degrees. If particle movements are allowed, then `allowed_particle_movements` should be a non-empty subset of $\{\text{LEFT}, \text{RIGHT}, \text{FORWARD}, \text{BACKWARD}\}$, indicating the entity moves 1 unit in the stipulated direction w.r.t its orientation (see Figure 7). Similarly, `allowed_board_rotations`

756 and `allowed_board_movements` should be set if their corresponding flags are on; otherwise,
 757 they should be empty sets. The parameter space also includes the numbers of each kind of actions
 758 to be applied, i.e., `number_of_board_rotations`, `number_of_particle_rotations`,
 759 `number_of_board_movements`, and `number_of_particle_movements`. Each of these
 760 must range between 0 to 15. Lastly, a flag `wrap_around` indicates whether the board’s bound-
 761 aries allow the overflowing movement of a particle to wrap around from the opposite side.

762 The descriptions of parameters and actions are provided in the prompt (Appendix B) for the designer
 763 model.

764 **Human Designed τ -bench Airline.** The parameter descriptions and expected behaviors are spec-
 765 ified in the designer prompt (Appendix B). Each sample corresponds to an airline itinerary plan-
 766 ning scenario parameterized by a small set of discrete controls. The parameter space includes nu-
 767 matical factors such as `num_actions` (1–6), `num_passengers` (1–3), and `num_baggages`
 768 (0–3), as well as categorical attributes like `booking_strategy` (“cheapest”/“earliest_arrival”),
 769 `is_direct`, `is_round_trip`, `cabin` (“economy”/“business”), and `insurance` (“yes”/“no”).
 770 These parameters jointly control itinerary complexity: increasing action count, passengers, or bags
 771 expands the combinatorial search space, while enabling multiple strategies, connecting flights, or
 772 round-trip requirements adds additional reasoning constraints. When prompted with such parame-
 773 terized tasks, the LLM designer is instructed to output both a *thought process* describing how does
 774 the configuration achieve the target failure rate and the final parameter values in structured JSON.
 775 This structured output can be programmatically validated against the student model’s measured fail-
 776 ure rate.

777 **Opus 4.1 Designed τ -bench Airline.**

778 The parameter space in the Opus 4.1 designed τ -Bench extends beyond structural com-
 779 plexity (e.g., `num_actions` $\in [1, 6]$, `num_passengers` $\in [1, 3]$) to include be-
 780 havioral and informational dimensions. Categorical controls specify booking prefer-
 781 ences (`booking_strategy`: “cheapest”/“earliest_arrival”), routing options (`is_direct`,
 782 `is_round_trip`), cabin composition (`cabin_mix`: economy, business, or mixed), and
 783 environment conditions such as `information_completeness` (whether all data is pro-
 784 vided upfront), `information_pattern` (upfront, gradual, reactive revelation of details),
 785 `cooperation_level` (helpful/demanding/uncooperative agents), and `preference_clarity`
 786 (explicit vs. implicit preferences). Together, these parameters modulate combinatorial difficulty, rea-
 787 soning burden, and dialogue complexity, allowing fine-grained control of task hardness to steer the
 788 target model’s empirical failure rate towards the target. The designer model receives a target failure
 789 rate ρ_{fail} and is asked to generate task parameters that achieve $1 - \text{pass}@1 \approx \rho_{\text{fail}}$. Structured
 790 outputs include both the parameter configuration and a *thought process* explaining why it should
 791 achieve the desired difficulty level.

792

793 **A.2 DETAILED BASELINES**

794 **RS+PPR.** The parameter p is the probability to sample from the buffer of *good* parameters and Δ
 795 is the gap below which the parameters are considered *good*. We use $p = 0.5$ and $\Delta = 0.1$ in all the
 796 settings.

797 **BoN-ML Model Training and Selection.** As part of the BoN-ML experiments, we trained and
 798 compared classical machine learning models to predict regret efficiently. Across all three domains,
 799 we explored over 800 different parameter configurations and architectures. Given the relatively
 800 small datasets (100 samples per domain), with feature counts ranging from 13 to 74, we applied
 801 5-fold cross-validation to obtain reliable performance estimates.

802 All features were derived directly from the environment parameters, ensuring the predictors re-
 803 mained lightweight and domain-specific. Models were selected based on the highest cross-validation
 804 R^2 score, and the best candidates were saved for deployment. Performance was domain-specific:
 805 small neural networks performed best for Arithmetic Sequences, Random Forests excelled in Spa-
 806 tial Reasoning, and gradient boosting worked best for τ -Bench. This process yielded fast, domain-
 807 tailored predictors to guide BoN-ML parameter selection effectively. Table 3 summarizes the cross-
 808 validation R^2 training results.

810 Table 3: BoN-ML regret prediction training results (5-fold CV on 100 samples per domain).
811

812 Domain	813 Features	814 Best Model	815 CV R²
816 Arithmetic Seq.	817 74	818 Neural Network (74 – 2 – 1, $\alpha=1.0$)	819 0.52 ± 0.08
820 Spatial Reasoning	821 28	822 Random Forest ($n=50, d=10$)	823 0.43 ± 0.05
824 τ -Bench	825 13	826 Gradient Boosting ($n=20, lr=0.1, d=2$)	827 0.17 ± 0.24

817
818 **A.3 DETAILS OF LLM MODELS**819
820 **LLM Versions** GPT-5: undisclosed - the latest GPT-5 version as of Sep 25, 2025 Opus 4.1: claude-
821 opus-4-1-20250805 Grok 4: grok-4-0709 o4-mini: o4-mini-2025-04-16 claude3.7: claude-3-7-
822 sonnet-20250219 gemini-2.5-flash: gemini-2.5-flash823 **LLM Inference Parameters** The default temperature for designer models is 0.5, and for target mod-
824 els is 0.0. However, claude-opus-4-1-20250805 and claude-3-7-sonnet-20250219 are only available
825 with a temperature of 1. On the Arithmetic Sequence, which is an agentic task, the target model
826 uses a time horizon of 16 steps.827 The default reasoning budget for designer models is 4096 tokens, and for target models is 1024.
828 However, grok-4-0709 does not support a configurable reasoning budget.
829830 **A.4 DATASET SIZES**
831832 During parameter search, the rollout dataset sizes are 10, 30, and 250 for Arithmetic Sequence, τ -
833 Bench, and Spatial Reasoning, respectively. For evaluation, we generate datasets using the selected
834 parameters, with sizes of 75, 50, and 500 for Arithmetic Sequence, τ -Bench, and Spatial Reasoning,
835 respectively.836
837 **A.5 CONVERGENCE RATE ANALYSIS**838 Figure 8 shows the rolling standard deviation (3-iteration window) of performance gap across all
839 teacher models and target difficulty levels, comparing BeTaL and RS+PPR convergence stability.
840 Despite vast differences in parameter spaces of the datasets, BeTaL consistently exhibits lower
841 variability than RS+PPR. BeTaL’s standard deviation remains between 5-20% throughout param-
842 eter search, while RS+PPR maintains approximately 25% variability with minimal improvement
843 over time. This demonstrates that BeTaL not only converges faster but does so more predictably
844 and reliably.845 At iteration t (for $t \geq 2$), the rolling standard deviation uses a 3-iteration backward-looking window:
846

847
$$\sigma_{\text{roll}}(t) = \text{std}(G_{t-2} \cup G_{t-1} \cup G_t) \quad (1)$$

848

849 where G_i represents performance gaps at iteration i across all target accuracies, averaged across
850 seeds within each teacher model. Results shown for $t \geq 2$ to ensure full windows.851
852 **A.6 ADDITIONAL RESULTS**853 Figure 9 shows the observed average performance gaps when Claude Opus-4.1 and Grok-4 models
854 are used as designer models. These results show BeTaL achieves low performance gaps across
855 different designer models. We also provide a comparison of BeTaL with all designer models on all
856 datasets and target difficulty levels in Figure 12. We see all three designer models achieve similar
857 results across the settings.858 We study the convergence behavior of iterative methods in settings ranging from trivial to hard
859 difficulty levels (Figure 11). Except for a few settings, we see BeTaL iteratively improves its
860 parameter estimates and converges to the desired performance gap after a few iterations. These
861 results provide further evidence in support of LLMs’ effectiveness as optimizers (Yang et al., 2024).862 Next, in Figure 10 we show results over multiple evaluation models across different datasets. As the
863 benchmarks were designed with o4-mini as the target model, we see a low performance gap when

Performance Gap by Target Difficulty (o4-mini Evaluation)

evaluated on o4-mini. In the τ -Bench setting, we see similar performance across different evaluation models. In the Spatial reasoning and Arithmetic sequences setups, there is a larger performance gap on evaluation models different from o4-mini; however, the range of observed accuracies (or regret) still reflects the relative hardness levels inherent in the benchmarks.

We also analyze the evolution of different parameters over the BeTaL iterations. Figures 13, 14, 15, 16 show the parameter evolution in the spatial reasoning setting with hard, medium, easy, and trivial difficulty levels, respectively. The results show the designer models start off with random (generally high) values of the parameters and gradually tweak them so that the performance gap is minimized. The evolution patterns for individual parameters matches with our intuitive understanding of the spatial reasoning environment. The models prefer larger board sizes, larger numbers and types of actions to increase the difficulty, and conversely smaller values to reduce the complexity. They also prioritize reducing/disabling board actions to reduce complexity, since an action on a board also triggers actions on the particles.

918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937

947 Figure 10: BeTaL performance by the designer model during parameter search across three benchmark domains. Each panel represents one dataset (Arithmetic Sequence, Spatial Reasoning, τ -
 948 Bench) and compares three designer models (GPT-5, Grok-4, Opus-4.1) across four target performance
 949 levels: Hard ($\rho^{\text{hard}} = 0.25$), Medium ($\rho^{\text{medium}} = 0.50$), Easy ($\rho^{\text{easy}} = 0.75$), and Trivial
 950 ($\rho^{\text{trivial}} = 0.90$), shown as grouped bars. Bars show mean performance gap (difference between
 951 target and observed target performance), with o4-mini as target model, averaged over training itera-
 952 tions. Error bars show standard error.
 953

954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971

Figure 11: BeTaL vs. RS+PPR convergence during parameter search across datasets and target difficulty levels. Each panel shows the mean performance gap (difference between target and observed target performance) over training iterations for two design approaches: BeTaL (our method) and RS+PPR (baseline). Rows indicate target performance (Hard ($\rho^{\text{hard}} = 0.25$), Medium ($\rho^{\text{medium}} = 0.50$), Easy ($\rho^{\text{easy}} = 0.75$), and Trivial ($\rho^{\text{trivial}} = 0.90$)). Columns show three benchmark domains (Arithmetic Sequence, Spatial Reasoning, τ -Bench). BeTaL results are averaged across designer models (GPT-5, Grok-4, Opus-4.1). All results use o4-mini as the target model, with shaded regions showing standard error across seeds.

Figure 13: **Parameter evolution over iterations in the hard difficulty setting.** The subplots show average values of the different design parameters at each iteration chosen by the designer models (GPT-5, Grok-4, Opus-4-1). Row 1 shows board_size (width), wrap_around and number_of_board_rotation. Row 2 shows number_of_board_movements, number_of_particle_rotations and number_of_particle_movements. Next row presents the sum of these number of actions (total actions), absolute performance gap as observed on the o4-mini target model and the number of enabled capabilities (types of rotations and movements), here BM, BR are the sizes of sets allowed_board_movements and allowed_board_rotations and PM, PR similarly reflect the sizes of action sets corresponding to the particles. We can see to obtain a hard configuration, models generally prefer a larger board size and a higher number of capabilities and actions. Among the models, GPT-5 does it more aggressively and achieves the lowest performance gap as well.

Figure 14: **Parameter evolution over iterations in the medium difficulty setting.** The subplots show average values of the different design parameters at each iteration chosen by the designer models (GPT-5, Grok-4, Opus-4-1). Row 1 shows board_size (width), wrapAround and number_of_board_rotation. Row 2 shows number_of_board_movements, number_of_particle_rotations and number_of_particle_movements. Next row presents the sum of these number of actions (total actions), absolute performance gap as observed on the o4-mini target model and the number of enabled capabilities (types of rotations and movements), here BM, BR are the sizes of sets allowed_board_movements and allowed_board_rotations and PM, PR similarly reflect the sizes of action sets corresponding to the particles. We can see that, to obtain a medium difficulty configuration, models prefer much smaller board sizes and number and types of actions as compared to the hard setting in Figure 13. Also consistent with the expectations, the models reduce the number of board actions close to 0 but allow a decent number of particle actions.

Figure 15: **Parameter evolution over iterations in the medium difficulty setting.** The subplots show average values of the different design parameters at each iteration chosen by the designer models (GPT-5, Grok-4, Opus-4-1). Row 1 shows `board_size` (width), `wrap_around` and `number_of_board_rotation`. Row 2 shows `number_of_board_movements`, `number_of_particle_rotations` and `number_of_particle_movements`. Next row presents the sum of these number of actions (total actions), absolute performance gap as observed on the o4-mini target model and the number of enabled capabilities (types of rotations and movements), here BM, BR are the sizes of sets `allowed_board_movements` and `allowed_board_rotations` and PM, PR similarly reflect the sizes of action sets corresponding to the particles. We can see, to obtain a medium difficulty configuration, models prefer much smaller board sizes and number and types of actions as compared to the hard setting in Figure 13. Also consistent with the expectations the models reduce the number of board actions close to 0 but allow a decent number of particles actions.

Figure 16: **Parameter evolution over iterations in the trivial difficulty setting.** The subplots show average values of the different design parameters at each iteration chosen by the designer models (GPT-5, Grok-4, Opus-4-1). Row 1 shows `board_size` (width), `wrap_around` and `number_of_board_rotation`. Row 2 shows `number_of_board_movements`, `number_of_particle_rotations` and `number_of_particle_movements`. Next row presents the sum of these number of actions (total actions), absolute performance gap as observed on the o4-mini target model and the number of enabled capabilities (types of rotations and movements), here `BM`, `BR` are the sizes of sets `allowed_board_movements` and `allowed_board_rotations` and `PM`, `PR` similarly reflect the sizes of action sets corresponding to the particles. We can see that, to obtain an easy difficulty configuration, models prefer smaller board sizes and number and types of actions as compared to the medium and easy settings in Figures 14 and 15. Also consistent with the expectations, the models reduce the number of board actions close to 0, but allow a few actions on particles.

1296 **B PROMPTS**
12971298 We provide the prompts provided to the designer models across the three tasks considered in the
1299 paper.
13001301 **LLM Designer Prompt for Arithmetic Sequence**
13021304 The math problem is to apply a sequence of operators on a number to produce a final an-
1305 swer. The sequence of operators are applied recursively on intermediate results, i.e., num
1306 = operator(num) for each operator in the sequence. The operators only take in one
1307 number as input.1308 You should target the given model regret at {target_regret}, so that the parameters can
1309 generate a math problem for the model at the desired regret level. A high regret indicates a
1310 challenging environment (1 for unsolvable), while a low regret indicates an easy environment
1311 (0 for easy).1312 Here is the feedback from the previous iterations, which you can use to generate new par-
1313 ameters: {feedback}1314 First, reason about the feedback from previous iterations. Specifically note what parameter-
1315 s/aspects made previous environments challenging or trivial.1316 Then, given a list of common math operators {operators}, your task is to generate values
1317 for the given parameters:

1. feedback_summary: your summary of the feedback from the previous iter-
ations.
2. thought_process: your thought process for generating the parameters.
3. max_range_of_nums: the upper bound of range the input number can take on,
i.e. (1, max_range_of_nums). Pick a number between 5 and 50.
4. N: the length of the sequence of operators to apply on a number (between 5 and 10)
5. K: The maximum number of times an operator can be repeated in the sequence
(between 1 and 5)
6. type_of_nums: the type of numbers in the input (int or float)
7. operator_sequence: select 3 operators from the list above, to generate a se-
quence of operators of length N to apply on a number, where each operator can be
repeated at most K times.

1331 **Output format (JSON):**

```

1332 {
1333     "feedback_summary": str ,
1334     "thought_process": str ,
1335     "max_range_of_nums": int ,
1336     "N": int ,
1337     "K": int ,
1338     "type_of_nums": str ,
1339     "operator_sequence": list [ str ]
1340 }
```

1343 **LLM Designer Prompt for the Spatial Reasoning Environment**
13441345 You are an expert in designing spatial reasoning environments. The environment is a 2D grid
1346 world. It consists of a square board and two particles on the board. The board's dimensions
1347 can be from 5 to 100. The board is divided into tiles of size 1x1. The particles are at the
1348 center of the tiles.
1349

1350

1351 Each object (board and particles) in the environment has an orientation and a location. The
 1352 orientation is the direction in which the object is facing, which can be one of the following:
 1353 NORTH, EAST, SOUTH, WEST. The location of particle is given by the 2D coordinates of
 1354 the center of the tile on which the particle is located. The orientation and location of particle
 1355 are initialized randomly. The location of the board is the 2D coordinates of the center of the
 1356 board. The orientation of the board is the orientation of its center. It is always initialized to
 1357 NORTH.

1358

The environments complexity can be controlled by the following parameters:

1359

- The board size determined by the width parameter.
- The board can either allow particles to wrap around the edges or not. It is determined by the wrap_around parameter. If it is true, then the particles can wrap around the edges of the board. If it is false, then the particles cannot wrap around the edges of the board.
- The movements allowed for the objects (board and particles). Each object can have a subset of the following movements: LEFT, RIGHT, FORWARD, BACKWARD.
- The rotations allowed for the objects (board and particles). Each object can have a subset of the following rotations: 0, 90, 180, 270, 360. If the rotation is 0, then the object is not rotated. If the rotation is 90, then the object is rotated 90 degrees counter-clockwise. If the rotation is 180, then the object is rotated 180 degrees counter-clockwise. If the rotation is 270, then the object is rotated 270 degrees counter-clockwise. If the rotation is 360, then the object is rotated 360 degrees counter-clockwise.

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

You are given a list of parameters for a board and a list of parameters for a particle. You are also given a list of parameters for actions that can be performed on the board and the particle. You need to design a spatial reasoning environment that is sufficiently challenging and an average language model can achieve a target accuracy of <accuracy>.

Response format - JSON schema You must get the final answer and convert it to the following JSON data structure. Follow the schema exactly.

1378

Key: thought_process

1379

Type: String,

1380

Description: Your thought process when designing the environment.

1381

Key: 'wrap_around'

1382

Type: Boolean,

1383

Description: Whether the board can wrap around the edges.

1384

Key: 'width'

1385

Type: Integer,

1386

Description: The width of the board.

1387

Key: 'board_moves'

1388

Type: Boolean,

1389

Description: Whether the board can move.

1390

Key: 'board_allowed_moves'

1391

Type: List of Strings,

1392

Description: The movements allowed for the board, must be subset of: LEFT, RIGHT, FORWARD, BACKWARD.

1393

Key: 'board_rotates'

1394

Type: Boolean,

1395

Description: Whether the board can rotate.

1396

Key: 'board_allowed_rotations'

1397

Type: List of Integers,

1398

Description: The rotations allowed for the board, must be subset of: 0, 90, 180, 270, 360.

1399

Key: 'particle_moves'

1400

Type: Boolean,

1401

1402

1403

1404
 1405 Description: Whether the particle can move.
 1406 Key: ‘particle_allowed_moves’
 1407 Type: List of Strings,
 1408 Description: The movements allowed for the particle, must be subset of: LEFT, RIGHT,
 1409 FORWARD, BACKWARD.
 1410
 1411 Key: ‘particle_rotates’
 1412 Type: Boolean,
 1413 Description: Whether the particle can rotate.
 1414
 1415 Key: ‘particle_allowed_rotations’
 1416 Type: List of Integers,
 1417 Description: The rotations allowed for the particle, must be subset of: 0, 90, 180, 270, 360.
 1418
 1419 Key: ‘number_of_board_rotation_actions’
 1420 Type: Integer,
 1421 Description: The number of times the board can be rotated if board_rotates is true.
 1422
 1423 Key: ‘number_of_particle_rotation_actions’
 1424 Type: Integer,
 1425 Description: The number of times the particles can be rotated if particle_rotates is true.
 1426
 1427 Key: ‘number_of_board_movement_actions’
 1428 Type: Integer,
 1429 Description: The number of times the board can be moved if board_moves is true.
 1430
 1431
 1432 Key: ‘number_of_particle_movement_actions’
 1433 Type: Integer,
 1434 Description: The number of times the particles can be moved if particle_moves is true.

LLM Designer Prompt for τ -bench Airline Environment

1435 You are an expert in designing airline-booking tasks for language-model agents.
 1436 Your goal is to propose task parameters that drive a student model to a target failure rate of
 1437 0.75. Here, the failure rate is defined as 1 – pass@1 for the student model, i.e., the probability
 1438 that the student fails to solve the task on the first attempt. You are directly rewarded for
 1439 minimizing the absolute distance to the 0.75 failure rate, so choose parameters that make the
 1440 task challenging enough to approach this target as closely as possible.
 1441 The task setting is an airline-shopping environment where an agent must construct an
 1442 itinerary subject to constraints (e.g., number of actions, bags, cabin class, routing).
 1443 Controllable parameters and intended complexity effects:
 1444 - num_actions (1--6): Upper bound on primitive planning/interaction steps. Start
 1445 simple with fewer actions; increase to raise difficulty.
 1446 - num_passengers (1--3): More passengers typically increases combinatorial con-
 1447 straints and price/timing trade-offs.
 1448 - num_baggages (0--3): More bags interact with fare rules and cabin choices; higher
 1449 values generally increase difficulty.
 1450 - booking_strategy: Subset of {“cheapest”, “earliest_arrival”}. Multiple strategies
 1451 introduce objective trade-offs.
 1452 - is_direct: Boolean. Allowing false admits connections and routing search com-
 1453 plexity.
 1454 - is_round_trip: Boolean. Round-trips add coupling between outbound/return con-
 1455 straints.
 1456
 1457

1458
 1459 - cabin: Subset of {"economy", "business"}. More options broaden fare/rule search
 1460 space.
 1461 - insurance: One of {"yes", "no"}. Insurance interacts with cost-focused strategies and
 1462 can add goal ambiguity.
 1463
 1464 Tune these parameters to steer the student model's $1 - \text{pass}@1$ toward 0.75.
 1465 # Response format — JSON schema
 1466 You must get the final answer and convert it to the following JSON data structure. Follow
 1467 the schema exactly.
 1468
 1469 Key: thought_process
 1470 Type: String
 1471 Description: Concise reasoning explaining how the chosen parameters are expected to yield
 1472 a failure rate near 0.75; reference how each parameter affects difficulty.
 1473
 1474 Key: num_actions
 1475 Type: Integer (range: 1–6)
 1476 Description: Maximum number of allowed actions/steps.
 1477
 1478 Key: num_passengers
 1479 Type: Integer (range: 1–3)
 1480 Description: Number of travelers to book.
 1481
 1482 Key: num_baggages
 1483 Type: Integer (range: 0–3)
 1484 Description: Total checked bags across passengers.
 1485
 1486 Key: booking_strategy
 1487 Type: List of Strings (subset of: {"cheapest", "earliest_arrival"})
 1488 Description: Allowed objective(s) for the student; may include one or both.
 1489
 1490 Key: is_direct
 1491 Type: Boolean
 1492 Description: If `true`, only nonstop itineraries are valid; if `false`, connections are allowed.
 1493
 1494 Key: is_round_trip
 1495 Type: Boolean
 1496 Description: Whether the itinerary must include return travel.
 1497
 1498 Key: cabin
 1499 Type: List of Strings (subset of: {"economy", "business"})
 1500 Description: Allowed cabin classes.
 1501
 1502 Key: insurance
 1503 Type: String (one of: "yes", "no")
 1504 Description: Whether trip insurance is part of the task constraints.
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1501 LLM Designer Prompt for τ -bench Airline Environment (Parameter Space Generated
 1502 by Opus-4.1)

1503
 1504 You are an expert in designing airline-booking tasks for language-model agents.
 1505

1506 Your goal is to propose task parameters that drive a student model to a **target failure rate of**
 1507 **{target_failure_rate}**. Here, the failure rate is defined as $1 - \text{pass}@1$ for the student
 1508 model, i.e., the probability that the student fails to solve the task on the first attempt. You are
 1509 directly rewarded for minimizing the absolute distance to **{target_failure_rate}**, so
 1510 choose parameters that make the task challenging enough to approach this target as closely
 1511 as possible.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

The task setting is an airline-shopping environment where an agent must construct an itinerary subject to constraints (e.g., number of actions, passengers, bags, cabin class, routing, information flow, and user cooperation).

Controllable parameters and intended complexity effects:

- `num_actions` (1--6): Upper bound on primitive planning/interaction steps. Fewer actions constrain search; increasing actions raises planning depth and error surface.
- `num_passengers` (1--3): More travelers increase combinatorial constraints (seat availability, fares), amplifying trade-offs.
- `num_baggages` (0--3): More bags interact with fare rules and cabin choices; higher values generally increase difficulty.
- `booking_strategy`: Subset of {"cheapest", "earliest_arrival"}. Multiple objectives introduce competing trade-offs and ambiguity.
- `is_direct`: Boolean. Allowing `false` admits connections and routing search complexity (layovers, MCT).
- `is_round_trip`: Boolean. Round-trips couple outbound/return constraints and calendaring.
- `cabin_mix`: Subset of {"economy_only", "business_only", "mixed"}. `mixed` broadens fare/rule search and cross-cabin reasoning.
- `information_completeness`: Boolean. If `false`, key facts are omitted initially, forcing clarification steps and robustness to uncertainty.
- `cooperation_level`: Subset of {"helpful", "demanding", "uncooperative"}. Less cooperative users increase dialogue turns, constraint changes, and error likelihood.
- `information_pattern`: Subset of {"upfront", "gradual", "reactive"}. Non-upfront patterns stagger constraints and increase planning revisions.
- `preference_clarity`: Subset of {"explicit", "implicit"}. `implicit` requires inference from hints (e.g., times, budgets), increasing ambiguity.

Tune these parameters to steer the student model's `1 - pass@1` toward `{target_failure_rate}`.

Response format — JSON schema

You must get the final answer and convert it to the following JSON data structure. Follow the schema exactly.

Key: `thought_process`

Type: String

Description: Concise reasoning explaining how the chosen parameters are expected to yield a failure rate near `{target_failure_rate}`; reference how each parameter affects difficulty.

Key: `num_actions`

Type: Integer (range: 1--6)

Description: Maximum number of allowed actions/steps.

Key: `num_passengers`

Type: Integer (range: 1--3)

Description: Number of travelers to book.

Key: `num_baggages`

Type: Integer (range: 0--3)

Description: Total checked bags across passengers.

Key: `booking_strategy`

Type: List of Strings (subset of: {"cheapest", "earliest_arrival"})

Description: Allowed objective(s) for the student; may include one or both.

```

1566
1567 Key: is_direct
1568 Type: Boolean
1569 Description: If true, only nonstop itineraries are valid; if false, connections are allowed.
1570
1571 Key: is_round_trip
1572 Type: Boolean
1573 Description: Whether the itinerary must include return travel.
1574
1575 Key: cabin_mix
1576 Type: List of Strings (subset of: {"economy_only", "business_only", "mixed"})
1577 Description: Allowed cabin configuration scope.
1578
1579 Key: information_completeness
1580 Type: Boolean
1581 Description: If true, all necessary details are provided initially; if false, some are withheld.
1582
1583 Key: cooperation_level
1584 Type: List of Strings (subset of: {"helpful", "demanding", "uncooperative"})
1585 Description: Expected user cooperation profile(s).
1586
1587 Key: information_pattern
1588 Type: List of Strings (subset of: {"upfront", "gradual", "reactive"})
1589 Description: How and when information is revealed during the interaction.
1590
1591
1592 Key: preference_clarity
1593 Type: List of Strings (subset of: {"explicit", "implicit"})
1594 Description: Whether preferences are stated clearly or must be inferred.

```

Example of a Question on the Arithmetic Sequence Task

```

1595 You are an agent that can use tools via tool calling:
1596 If you have the final answer, respond with: FINAL ;sequence of operators as a comma
1597 separated list;
1598 Given the following input number and final answer, use the functions provided to perform
1599 the correct sequence of operations on the input number to get the final answer.
1600 Input number: 2.4460677252452125
1601 Final answer: 4.423634456186643

```

Example of a Question in the Spatial Reasoning Setting

```

1604 Following is the description of the spatial reasoning environment. Go through it carefully
1605 and then answer the question in the requested format.
1606
1607 # Environment
1608
1609 ## Setup
1610 All locations are pairs of real numbers (x, y). North corresponds to increasing y, and South
1611 corresponds to decreasing y. East corresponds to increasing x, and West corresponds to
1612 decreasing x. Orientation is a direction, and can be one of the following: North, East, South,
1613 or West. Orientation is also measured in degrees, and can be one of the following: 0, 90,
1614 180, 270. Where 0 means East, 90 means North, 180 means West, and 270 means South.
1615
1616 A board's rotation is defined as the rotation of the board around its center. When a board
1617 rotates, the orientation of the board changes, and the tiles and particles on the board also
1618 rotate along with it. A particle's rotation changes the orientation of the particle, but does not
1619

```

1620

1621

1622

change the location of the particle. As a general rule, any entity's rotation can change the orientation of the entity, but does not change the location of the entity.

1623

1624

1625

1626

1627

1628

A board's location is defined as the location of its center. A board's movement changes the location of the board, and the tiles and particles on the board also move along with it. For example, if a board moves forward 1 unit, the center of the board and the tiles and particles on the board all move 1 unit along the orientation of the board. A particle's movement changes the location of the particle. For example, if a particle moves forward 1 unit, the location of the particle changes by 1 unit along the orientation of the particle.

1629

1630

1631

1632

1633

1634

1635

If the movement of particles results in the particle moving beyond the boundary of the board, then the particle will either wrap around the boundary of the board or remain at the current tile. It depends on the board's wrap around settings, which are described in the description of the board. As a general rule, any entity's movement can change the location of the entity, but does not change the orientation of the entity. The orientation of an entity can be thought of as the direction in which the entity is facing. This determines the meaning of forward, backward, left, right, etc., for the entity.

Entities

The environment contains the following entities:

Board B1

Setup A board is 12.0 units wide and 12.0 units tall, and contains 2 particle(s). It is centered at (0.0, 0.0). Its orientation is defined as the center's orientation, which is NORTH. Initially, the board is oriented NORTH.

The board has four sides: SIDE-1, SIDE-2, SIDE-3, SIDE-4. The side from the south west corner to south east corner is the bottom side of the board. It is called SIDE-1. The side from the south east corner to north east corner is the right side of the board. It is called SIDE-2. The side from the north east corner to north west corner is the top side of the board. It is called SIDE-3. The side from the north west corner to south west corner is the left side of the board. It is called SIDE-4.

Boundaries

In the event the particle move results in the particle moving beyond the boundary of the board, the resulting location is decided as follows:

When a particle is on a tile, it means its location is the tile's centroid. The SIDE-1 of the board can be crossed when approaching from the SIDE-3, and the particle(s) will move to the opposite tile on the SIDE-3. The SIDE-2 of the board can be crossed when approaching from the SIDE-4, and the particle(s) will move to the opposite tile on the SIDE-4. The SIDE-3 of the board can be crossed when approaching from the SIDE-1, and the particle(s) will move to the opposite tile on the SIDE-1. The SIDE-4 of the board can be crossed when approaching from the SIDE-2, and the particle(s) will move to the opposite tile on the SIDE-2.

Tiles on the board

The board is divided into square tiles of size 1 units by 1 units. Tiles are numbered from 1 to (width * height), starting from the bottom left corner in a zigzag pattern. Going from left to right, then right to left, and so on. For example, for a 3x3 board, the tiles are numbered as follows: 9 8 7 6 5 4 1 2 3

Allowed moves

The following moves are allowed for the board: FORWARD - board moves forward 1 unit. BACKWARD - board moves backwards 1 unit. Orientation remains the same. LEFT - board sidesteps 1 unit to the left. Orientation remains the same. RIGHT - board sidesteps 1 unit to the right. Orientation remains the same.

Allowed rotations

1671

1672

1673

1674
 1675 The following rotations are allowed for the board: 90 - board rotates 90 degrees. 180 - board
 1676 rotates 180 degrees. 270 - board rotates 270 degrees.
 1677 # Particle P1
 1678
 1679 ## Initial State
 1680 It is located at (3.5, 3.5), and is facing WEST (180 degrees). It is on tile 111. It is on board
 1681 B1.
 1682 ## Allowed moves
 1683
 1684 The following moves are allowed for this particle: FORWARD - particle moves forward
 1685 1 unit. BACKWARD - particle moves backwards 1 unit. Orientation remains the same.
 1686 LEFT - particle sidesteps 1 unit to the left. Orientation remains the same. RIGHT - particle
 1687 sidesteps 1 unit to the right. Orientation remains the same.
 1688 ## Allowed rotations
 1689
 1690 The following rotations are allowed for this particle: 90 - particle rotates 90 degrees. 180 -
 1691 particle rotates 180 degrees. 270 - particle rotates 270 degrees.
 1692 # Particle P2
 1693
 1694 ## Initial State
 1695 It is located at (-0.5, 5.5), and is facing SOUTH (270 degrees). It is on tile 139. It is on board
 1696 B1.
 1697 ## Allowed moves
 1698
 1699 The following moves are allowed for this particle: FORWARD - particle moves forward
 1700 1 unit. BACKWARD - particle moves backwards 1 unit. Orientation remains the same.
 1701 LEFT - particle sidesteps 1 unit to the left. Orientation remains the same. RIGHT - particle
 1702 sidesteps 1 unit to the right. Orientation remains the same.
 1703 ## Allowed rotations
 1704
 1705 The following rotations are allowed for this particle: 90 - particle rotates 90 degrees. 180 -
 1706 particle rotates 180 degrees. 270 - particle rotates 270 degrees.
 1707 # Actions
 1708
 1709 The actions are the following: First, board B1 is rotated by 270 degrees. Then, particle P2
 1710 is rotated by 270 degrees. Then, particle P1 is rotated by 270 degrees. Then, particle P1 is
 1711 rotated by 90 degrees. Finally, move particle P2 BACKWARD by 1 units.
 1712 # Question
 1713 What is the location of board B1 after all the actions?
 1714 # Response format - JSON schema You must get the final answer and convert it to the
 1715 following JSON data structure. Follow the schema exactly.
 1716 Key: 'board_B1_x'
 1717 Type: Float,
 1718 Description: The x-coordinate of board B1 after all the actions.
 1719 Key: 'board_B1_y'
 1720 Type: Float,
 1721 Description: The y-coordinate of board B1 after all the actions.

1722 Example of a Task in the τ -bench Airline Setting

1723
 1724
 1725 Following is the description of the airline environment. Go through it carefully and then
 1726 answer the question in the requested format.
 1727

```

1728
1729 # Environment
1730
1731 ## Setup
1732 The environment simulates a commercial airline booking system. Airports are identified by
1733 IATA codes (e.g., SEA, EWR). Dates are formatted YYYY-MM-DD. Times are HH:MM:SS
1734 in local (EST) for scheduling metadata. Cabins include basic_economy, economy, and
1735 business. Bookings may be one-way or round-trip. Payment instruments include
1736 certificate, gift_card, and credit_card. Baggage may be free or non-free de-
1737 pending on fare rules (not shown here). Insurance is optional.
1738 ## Capabilities
1739 Agents may:
1740
1741     • Search flights (nonstop or onestop) between an origin and a destination on a speci-
1742     fied date.
1743
1744     • Book reservations with specified flight legs, cabin, passengers, baggages, insur-
1745     ance, and payment methods (in priority order).
1746
1747     • Request issuance of a travel certificate with a specified ID and amount.
1748
1749 # Entities
1750
1751 ## User U1
1752 User identifier: mohamed_li_7869.
1753 The user's birthday is present in the profile and should not be requested during the interac-
1754 tion.
1755
1756 ## Passenger(s)
1757 A single passenger is provided and known to the user:
1758
1759     • first_name: Yusuf, last_name: Thomas, dob: 1966-05-11
1760
1761 ## Payment Instruments (available to U1)
1762
1763     • gift_card_3525913: amount 27
1764     • gift_card_5876000: amount 176
1765     • gift_card_7716568: amount 237
1766     • credit_card_1922786: amount 139
1767
1768 Preferred payment order: certificate → gift card → credit card.
1769
1770 # Demands
1771
1772 ## Demand 1: Flight Search
1773 Search for an onestop flight from LGA to DTW on 2024-05-25.
1774
1775 ## Demand 2: Booking
1776 Book a one-stop, one-way itinerary from SEA to EWR on 2024-05-30 in business cabin
1777 for 1 passenger with 1 total baggage. Choose the cheapest eligible option. Include insurance.
1778 Use payments in the order: certificate(s) first, then gift card(s), then credit card(s).
1779 Candidate flights presented (for selection during booking):
1780
1781     • Leg 1:
1782         - flight_number: HAT117, origin: SEA, destination: DFW
1783         - scheduled_departure_time_est: 10:00:00,
1784             scheduled_arrival_time_est: 14:00:00
1785         - status: available, date: 2024-05-30
1786         - Seats available: basic_economy 5, economy 0, business 1
1787             - Prices: basic_economy 62, economy 119, business 263
1788
1789     • Leg 2:
1790         - flight_number: HAT063, origin: DFW, destination: EWR

```

```

1782
1783     - scheduled_departure_time_est: 18:00:00,
1784     - scheduled_arrival_time_est: 21:30:00
1785     - status: available, date: 2024-05-30
1786     - Seats available: basic_economy 11, economy 15, business 9
1787     - Prices: basic_economy 80, economy 137, business 286
1788
1789 ## Demand 3: Certificate Issuance
1790 Request a certificate with:
1791     • certificate_id: certificate_4314319
1792     • amount: 170
1793
1794 # Actions
1795 The intended agent actions, in order, are as follows:
1796 1. search_onestop_flight with {origin: PHX, destination: DFW, date: 2024-05-18}.
1797 2. book_reservation with the provided passenger, baggage, cabin, flight legs (SEA→DFW, then DFW→EWR on 2024-05-30), one-way, business, cheapest, insurance yes, and payment methods listed above in the stated priority order.
1798 3. send_certificate with {certificate_id: certificate_4314319, amount: 170}.
1799
1800
1801
1802
1803
1804 Note. Although Demand 1 specifies LGA→DTW (2024-05-25) search, the sample action
1805 shows PHX→DFW (2024-05-18). The agent must honor the stated Demands when resolving
1806 inconsistencies (prefer Demands).
1807 # Question
1808 Produce the exact JSON payload(s) for the three API calls in the correct order that satisfy
1809 all Demands above (use LGA→DTW for the search as specified by Demand 1; for booking,
1810 choose the cheapest eligible business one-stop SEA→EWR itinerary from the two legs
1811 provided; include insurance; and apply payment instruments in the order certificate → gift
1812 card(s) → credit card(s)).
1813 # Response format - JSON schema
1814 Return a single JSON object with the following keys:
1815 Key: action_sequence
1816 Type: Array of Objects
1817 Description: The ordered list of actions. Each object must have:
1818     • name (string; one of search_onestop_flight, book_reservation,
1819     - send_certificate)
1820     • kwargs (object; the exact arguments for the call)
1821
1822 Key: notes
1823 Type: String
1824 Description: Brief justification for flight choice, insurance inclusion, baggage count, and the
1825 payment breakdown order.
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

```

1836 C TEACHER MODEL REASONING TRACES
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846 This appendix presents reasoning traces from teacher models designing environments across multi-
1847 ple tasks. Each example shows the Chain-of-Thought reasoning used by the teacher model to select
1848 environment parameters targeting specific difficulty levels.
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862 C.1 ARITHMETIC SEQUENCE
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889**Example 1: Grok-4****Method:** BeTaL**Target Accuracy:** 25.0%**Task:** Arithmetic Sequence*Teacher Model Reasoning at the 3rd iteration:*

Feedback Summary: The previous iterations had accuracy of 100.0%, indicating trivial environments. The sequences involved repeating patterns of pow, mul, and sqrt or div, which led to cyclic or stable values that were easy to compute.

Thought Process: The previous environments used float numbers with operator sequences that resulted in repetitive and predictable patterns, leading to accuracy of 100.0%. The computations were simple due to cycling between values. To target a accuracy of 25%, I will use integer numbers and a sequence consisting of many squaring operations using 'pow' and 'mul' to produce extremely large numbers that are difficult for the model to compute exactly. I choose $N = 8$, $K = 4$, $\text{max_range_of_nums} = 40$, $\text{type} = \text{'int'}$, operators 'pow', 'mul', 'sqrt', but the sequence will use only 'pow' and 'mul' to avoid reducing the number. The sequence will have 4 'pow' and 4 'mul' for 8 squarings, leading to x^{256} , which for $x \approx 40$ has about 411 digits, which should be challenging.

1890

Example 2: GPT-5

1891

1892

Method: BoN-TM

1893

Target Accuracy: 25.0%

1894

Task: Arithmetic Sequence

1895

1896

Teacher Model Reasoning:

1897

1898

1899

Goal: Set parameters so that deducing the operator sequence from a single input-output example is challenging but solvable (target accuracy ~ 0.25). I will iterate up to two times.

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

Iteration 1 (rejected): - Tried ops: $\{\text{pow, div, sqrt}\}$, $N = 8$, $K = 2$. Sampled a sequence mixing pow and sqrt. Observation: pow and sqrt largely cancel or explode values; multiple reverse paths produce identical results, leading to high ambiguity. Estimated accuracy ~ 0.1 (too hard).

Iteration 2 (accepted): - Choose ops: $\{\text{mul, add, sqrt}\}$. Set $N = 7$, $K = 3$ so each operator can appear at most 3 times. This mix gives nonlinearity via sqrt and moderate growth via mul/add, making reverse inference nontrivial but feasible. - For sampling only, assume unary meanings commonly used in such puzzles: add = $+1$, mul = $\times 2$, sqrt = principal square root. Type: float to accommodate non-perfect-square roots. Max input range cap: 20. - Constructed operator_sequence of length 7 with counts within K: [mul, add, sqrt, mul, add, sqrt, mul] (mul $\times 3$, add $\times 2$, sqrt $\times 2$). - Sample forward calculation (input = 9): 1) mul: 9 \rightarrow 18 2) add: 18 \rightarrow 19 3) sqrt: 19 \rightarrow ~ 4.3588989435 4) mul: $\sim 4.3589 \rightarrow \sim 8.7177978871$ 5) add: $\sim 8.7178 \rightarrow \sim 9.7177978871$ 6) sqrt: $\sim 9.7178 \rightarrow \sim 3.1189801054$ 7) mul: $\sim 3.1190 \rightarrow \sim 6.2379602108$ (final) - Reverse reasoning feasibility (given input 9, final ~ 6.23796 , $N = 7$, ops $\in \{\text{add, mul, sqrt}\}$): Assume last op mul \rightarrow divide by 2: ~ 3.11898 ; prior sqrt \rightarrow square: ~ 9.7178 ; prior add \rightarrow subtract 1: ~ 8.7178 ; prior mul \rightarrow divide by 2: ~ 4.3589 ; prior sqrt \rightarrow square: 19; prior add \rightarrow subtract 1: 18; prior mul \rightarrow divide by 2: 9 = input. This reconstructs a consistent and plausible unique path under constraints, but a model would need nontrivial backtracking/search, making it challenging. - Difficulty assessment: Branching factor up to 3 with numeric constraints and float noise; sequence length 7; inverse search with sanity checks is required. This is difficult but solvable. Estimated accuracy ≈ 0.25 .

Conclusion: Use the parameters below with operator_sequence limited to $\{\text{mul, add, sqrt}\}$, $N = 7$, $K = 3$, float numbers, and input range up to 20 to achieve the target challenge level.

1944

1945

1946

1947

1948

1949

1950

Example 3: Claude Opus 4.1**Method:** BoN-ML**Target Accuracy:** 25.0%**Task:** Arithmetic Sequence*Teacher Model Reasoning:*

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

C.2 SPATIAL REASONING

1982

1983

1984

Example 4: Grok-4**Method:** BeTaL**Target Accuracy:** 75.0%**Task:** Spatial Reasoning*Teacher Model Reasoning:*

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

To achieve a target accuracy of 75% for an average language model, I designed the environment with a 10x10 board and wrap-around enabled to introduce moderate complexity in position calculations. The board is allowed to rotate in 90 and 180 degrees up to 2 times, adding challenge to the reference frame without overwhelming. Particles can move in all four directions up to 5 times and rotate in 90, 180, 270 degrees up to 3 times each. This setup requires tracking multiple transformations, leading to potential errors in about 25% of cases.

1998
1999**Example 5: Claude Opus-4.1**2000
2001
2002
2003
2004**Method:** BoN-TM
Target Accuracy: 75.0%
Task: Spatial Reasoning*Teacher Model Reasoning:*2005
2006
2007
2008
2009
2010
2011
2012
2013

Designing for 75% accuracy (0.25 regret): Need moderate complexity with some challenging elements but not overwhelming. Key decisions: 12x12 grid provides good spatial complexity without being too large. Wrap-around adds edge-case complexity. Board rotation (90, 180) creates coordinate transformation challenges. Limited board movement (LEFT, RIGHT) adds another dimension without overwhelming. Particles have full movement but limited rotation for balanced complexity. Action counts moderate (2-3) to require multi-step reasoning but not excessive mental load.

2014
2015**Example 6: Claude Opus-4.1**2016
2017
2018
2019
2020
2021
2022**Method:** BoN-ML
Target Accuracy: 75.0%
Task: Spatial Reasoning*Teacher Model Reasoning:*2023
2024
2025
2026
2027
2028
2029
2030
2031

To achieve 75% accuracy (0.25 regret), I need moderate complexity. After iterating through options, I've selected an 8x8 grid which is large enough to be interesting but small enough to track mentally. The key challenge comes from board rotations (90, 180, 270 degrees) which transform the coordinate system, combined with particle movements (FORWARD/BACKWARD) relative to their orientation. With 2 board rotations and 3 particle movements, problems require tracking coordinate transformations and orientations through ~5 steps total, creating moderate difficulty suitable for the target performance level.

2032
2033**C.3 τ -BENCH**2034
2035**Example 7: Opus-4.1**2036
2037
2038
2039
2040
2041**Method:** BeTaL
Target Accuracy: 75.0%
Task: τ -bench*Teacher Model Reasoning:*2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Based on the previous results, I observe that num_actions=4 with 2 passengers and 2 baggages gave a failure rate of 0.7, while num_actions=5 with 2 passengers and 3 baggages also gave 0.7. Both are 0.05 away from the target of 0.75. To potentially hit closer to 0.75, I'll try num_actions=4 with 2 passengers but increase baggages to 3. This creates a configuration between the tested ones—slightly more complex than the 4-2-2 setup (which gave 0.7) but less complex than the 5-2-3 setup (which also gave 0.7). This intermediate complexity might push the failure rate slightly higher toward 0.75.

2052
2053**Example 8: GPT5**

2054

Method: BoN-TM

2055

Target Accuracy: 75.0%

2056

Task: τ -bench

2057

Teacher Model Reasoning:

2058

To target a 0.75 failure rate (pass@1 0.25), I increased task complexity via higher action count and maximum passengers, enabled multiple competing criteria and toggles (booking strategy, directness, round-trip, insurance), and limited one dimension (cabin) plus moderate baggage count to avoid overshooting difficulty.

2064

2065

2066

Example 9: Grok-4

2067

Method: BoN-ML

2068

Target Accuracy: 75.0%

2069

Task: τ -bench

2070

Teacher Model Reasoning:

2071

2072

To target a failure rate of 0.75, I aim for moderate to high complexity. I set `num_actions` to 4 for some complexity without maxing out. `num_passengers` at 2 and `num_baggages` at 2 add moderate difficulty. Including both options in arrays for `booking_strategy`, `is_direct`, `is_round_trip`, `cabin`, and `insurance` creates varied and potentially challenging tasks, which could lead to around 75

2073

2074

2075

2076

2077

2078

2079

2080

2081

Note: All reasoning traces show the teacher model’s explanation of why specific parameters were chosen to achieve the target difficulty level. Different experiments may use “scratchpad” or “thought_process” field names due to prompt variations; both contain equivalent teacher model reasoning.

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105