Under review as a conference paper at ICLR 2026

AUTOMATING BENCHMARK DESIGN

Anonymous authors
Paper under double-blind review

ABSTRACT

The rapid progress and widespread deployment of LLMs and LLM-powered
agents has outpaced our ability to evaluate them. Hand-crafted, static bench-
marks are the primary tool for assessing model capabilities, but these quickly
become saturated. In contrast, dynamic benchmarks evolve alongside the models
they evaluate, but are expensive to create and continuously update. To address
these challenges, we develop BeTaL (Benchmark Tuning with an LLM-in-the-
loop), a framework that leverages environment design principles to automate the
process of dynamic benchmark design. Be TaL works by parametrizing key de-
sign choices in base benchmark templates and uses LLMs to reason through the
parameter space to obtain target properties (such as difficulty and realism) in a
cost-efficient manner. We use our approach to generate a new and challenging
spatial reasoning benchmark and to develop new tasks for popular agentic tasks
like 7-bench. We carry out extensive experiments on three datasets, at different
benchmark target performance (difficulty) levels, and show that BeTaL achieves
the lowest performance gap, as low as 0.4% and up to 5% in most settings; sig-
nificantly improving over competing LLM and non-LLM based baselines. These
experiments demonstrate that BeTaL opens the door to a new paradigm of self-
adaptive, continually improving evaluation systems.

1 INTRODUCTION

New developments in LLMs, particularly in powering agents via advanced planning, reasoning, and
tool-use capabilities Valmeekam et al. (2023; 2024); Ferrag et al. (2025), have outpaced current
methods for evaluation. Static, human-curated benchmarks, such as GPQA Rein et al. (2024) or
HLE Phan et al. (2025), remain popular, but are costly to develop and quickly become obsolete as
models continue to improve. This is challenging for model developers, as increasingly saturated
benchmarks make it impossible to differentiate between the performance of state-of-the-art models.

To address these challenges, researchers have turned to dynamic benchmarks that can be updated
over time. These benchmarks avoid saturation via re-calibration or the introduction of new and
harder data; this also limits the risk of contamination. For example, LiveBench White et al. (2024)
periodically introduces new questions and harder tasks. However, these types of benchmarks still
largely rely on unscalable human authoring and manual updates. Increasingly popular agentic tasks
exacerbate this problem, as simulated environments must be carefully crafted; repeatedly designing
and implementing new environments promises to be even more labor-intensive.

How can we build dynamic benchmarks for frontier LLMs without the expense and inefficiency of
ongoing manual design and implementation? Unsupervised Environment Design (UED) methods
Jiang et al. (2021a) work with environments that are built from abstract task templates with a set of
configurable parameters. These parameters can be tuned to produce new and higher utility versions
of the benchmark, thus enabling dynamic re-use. In practice, however, we find that the search
space over such parameters is intractable for non-trivial environments. Naively sampling random
configurations is inefficient, as many will be trivial or unsolvable.

We overcome these obstacles via a new approach, Benchmark Tuning with LLM-in-the-loop
(BeTal), that performs dynamic benchmark design. BeTaL leverages the capabilities of large
reasoning models playing the role of designers. Central to our approach is the use of a powerful
designer LLM tasked with reasoning over the space of possible parameter values, design choices, or
tasks. The designer is prompted to consider the various parameters of an under-specified benchmark

Under review as a conference paper at ICLR 2026

Step 1 Step 2
Generate Simulate
parameters problems
—>
Designer Environment Target model
Step 6) Step 3
Provide Loop I times Rollouts from
feedback Step5 Step 4 target model
Measure Evaluate
v performance responses
v X
—
v ‘
Feedback Measure Gap Evaluation

Figure 1: BeTaL automates the process of designing and adjusting dynamic benchmarks to meet
target criteria.

or environment and to propose instances or values that expected to be high utility. This is set up as an
interactive and iterative process: after the designer has specified an environment, a simulator creates
tasks, and the model or agent being evaluated attempts the tasks, with results provided back to the
designer. After each round, the designer must reason over choices and results and make changes to
increase utility while maintaining the realism and integrity of the basic tasks. This closed-loop
multi-round strategy allows the benchmark to dynamically adjust over time to meet the objectives.

We hypothesize that the strong zero-shot or few-shot reasoning capabilities of frontier models en-
able the designer to understand the factors that influence usefulness (e.g., task difficulty) and design
benchmarks that meet all desirable criteria (e.g., tasks that are just outside of a weaker model’s cur-
rent capabilities). This framework design reduces the burden of designing and continually updating
benchmarks to meet the demands of ever improving models. In addition, it permits re-purposing of
existing static benchmarks - breathing new life into datasets long considered outdated.

Our contributions are:

* Dynamic benchmark generation and design: We formulate the benchmark design pro-
cess as an optimization problem, where the goal is to maximize utility or usefulness, and
we introduce BeTaL as an agentic-driven design process for automatically producing and
evolving benchmarks.

« Efficient task synthesis: We develop strategies to make BeTal cost-effective and
sample-efficient and compare our approach to baseline methods under a similar compu-
tation budget.

* New benchmarks and empirical validation: Using BeTaL we modify existing bench-
marks to meet new requirements for dataset-level difficulty, and we introduce new bench-
marks that focus on mathematical and spatial reasoning. Our empirical results show
BeTal -consistently obtains benchmarks with any given target difficulty, achieving a per-
formance gap of as low as 0.4% and up to 5% in several settings, a significant improvement
over baselines.

2 RELATED WORK

Automating benchmark design. Recent work automates task generation, verification, and evo-
lution to reduce cost and improve controllability. BENCHMAKER (Yuan et al., 2025) and
CHASE (Patel et al., 2025) leverage LLMs for systematic or compositional task building, while
graph-based generators validate code tasks via self-consistency (Farchi et al., 2024). Other ap-
proaches evolve tasks through perturbation or probing (Wang et al., 2024), employ multi-agent co-
ordination (Butt et al., 2024), or use co-evolutionary loops without seed data (Huang et al., 2025).
However, existing methods rarely adapt benchmark difficulty in step with advancing models.

Environment design lineage. Automated benchmark synthesis parallels Unsupervised Environ-
ment Design (UED) in RL, where tasks must remain solvable yet challenging. Approaches such
as PAIRED (Dennis et al., 2021), PLR (Jiang et al., 2021b), and ACCEL (Parker-Holder et al.,

Under review as a conference paper at ICLR 2026

2023) formalize task selection as an optimization or curation problem. LLM-driven variants like
EnvGen (Zala et al., 2024) and LLM-POET (Aki et al., 2024) extend these ideas, emphasizing adap-
tive curricula that scale with capability.

Scaling environments and datasets. Complementary work builds looks to scale environments in
a principled manner, either through synthetic data or manual annotation, to advance agentic intelli-
gence, e.g., AgentScaler (Fang et al., 2025), APIGen (Liu et al., 2024), ToolACE (Liu et al., 2025),
and ARE/Gaia2 (Andrews et al., 2025). These emphasize agentic capabilities, whereas our focus is
capability-agnostic.

3 METHODOLOGY

We propose BeTaL , anovel framework that uses an LLM-in-the-loop to iteratively design dynamic
benchmarks that meet desired objectives. We briefly describe some necessary preliminaries and
continue on to explain our method in detail.

3.1 PRELIMINARIES

We describe the key components of our system. We start with an initial template or sketch for an
environment. We then obtain a (i) a simulator, (ii) a target model to be evaluated, (iii) a set of target
properties, and (iv) a designer model that will perform the design process.

Under-specified environment. The user begins with a high-level description of the task that they
wish to realize/instantiate as an evaluation environment or benchmark. Consider the case of a spatial
reasoning benchmark, where problems are based on queries about the position of objects on a grid
world after applying some operations on the objects. Intuitively, the complexity of problems depends
on several factors such as grid size, number of actions, types of operations, etc. While the exact
details of the environment remain unspecified, we assume an environment can be characterized by a
finite set of parameters P = {py,po, ..., Pk}, taking values from sets V1, V5, ..., Vj, respectively.

Problem/Task Generator. We also assume access to a simulator that can instantiate the environ-
ment for any given parameter configuration from V = V; x V5 x ... x V},. With a given instantiated
environment, the simulator is used to generate sets of problems with ground truth. It is expected that
the simulated problems adhere to the constraints specified by the parameter values. In this work, we
focus on environments with verifiable or procedurally generated solutions, allowing us to assume
that the generated ground truth is correct. This forms the dataset that will be used for evaluating
models.

Target model. This component covers the model (off-the-shelf or proprietary) or system (e.g.,
multi-agent system) to be evaluated.

Target performance. Along with the target model, the user also specifies a target performance level
p € R and a distance measure d. The objective is to output a benchmark on which the target model’s
performance will be close to p. The exact definition of p is left to the user; for instance p could be
accuracy, diversity, or an aggregate of multiple measures. In this work, we use target difficulty as
our measure of performance of the generated benchmarks, as we seek to overcome the challenge of
benchmark saturation.

Designer model. A sufficiently powerful model that can understand the under-specified environ-
ment description and the set of free parameters and constraints that influence the environment’s
complexity. We expect such a model to be able to reason about the design space defined by the
high-level environment descriptions, parameters, and their domains and output specific values to the
parameters that will result in an environment of given target complexity. We use recent state-of-the-
art large reasoning models (LRMs) such as GPT-5, Grok 4, and Claude Opus 4.1.

3.2 BETAL : BENCHMARK TUNING WITH LLM-IN-THE-LOOP

Now that we are equipped with all the ingredients, we will describe BeTaL ’s operation. This is
shown in Alg. 1, and is explained in detail below.

Under review as a conference paper at ICLR 2026

Algorithm 1 Benchmark Tuning with LLM-in-the-loop (BeTaL)

1: Input: Under-specified Environment Description, Parameter Set P, Target Performance p, Tar-
get Model M;, Designer Model M, Number of Iterations 1.

2: Initialize i* < 0, v« < 0, minimum gap g;+ < 0o

3: fori =1to I do

4: Prompt < Template with Environment description, P, p
5: if i > 1 then
6: Prompt < Prompt + Summary of previous iterations
7 end if
8: v; < Mp(Prompt) > Get parameters from Designer Model
9: v; < ProjectToDomain(v;, V)
10: D; + InstantiateSimulator(v;) > Generate problems with simulator
11: pi + EvaluateModel(Mr, D;) > Evaluate Target Model
12: gi < |pi — pl
13: Update summary of previous iterations with v; and p; > Step 4: Prepare feedback for next
iteration
14: if §; < g;» then
15: "1
16: Jix < G
17: end if
18: end for

19: Return: v;-

Step 1: Parameter Generation (LLM-Guided). In step one of BeTaL , the designer model,
an LRM, is prompted to obtain a parameter configuration v;. Since these values are generated by
a language model, it is possible that they may be out of the domain V. Verification is therefore
necessary to ascertain that v; € V, and, if not, this process is repeated until the generated v; falls in
V. In the end, v; is projected to V if it still out-of-domain.

Step 2: Environment Instantiation and Problem/Task Generation. A simulator is instantiated
with the parameter configuration obtained in Step 1, which is then used to generate a small set of
problems/tasks, with ground truth answers for evaluation, i.e. D; = {(;,y;)}72;.

Step 3: Performance Evaluation. The target model is evaluated on D; to yield performance p;.

Step 4: Feedback and Iteration. The iteration details are summarized in natural language to the
LRM, including v; and p;. This summary is included in the prompt as feedback to the LRM to
produce the next round of parameters.

Step 5: Termination and Selection. In each iteration, we keep track of the observed performance
gap g; = |p: — p| and keep track of the iteration ¢* that results in the smallest gap. After [iterations,
the method exits and returns v;«.

4 EXPERIMENTAL SETUP

In this section, we describe our setup for the experiments. First, we give high-level details of the
benchmarking tasks, then discuss the baseline methods, our choices of designer and target models,
evaluation metrics, and the protocol to run the experiments.

4.1 BENCHMARKING TASKS

We consider a range of tasks based on arithmetic, spatial reasoning, and airline customer service
agents. Each of these settings has rich design space with several free parameters that govern the
complexity of the benchmark. This makes them good candidates for evaluating our method. We
discuss these tasks briefly here and defer the details to the Appendix.

Arithmetic Sequences. Given an input number x and an output number y, an agent must return the
sequence of unary arithmetic operations that, when applied recursively to the intermediate results,

Under review as a conference paper at ICLR 2026

yield y; that is,
y=(on 0oN_10---001)(x).

The benchmark space is constrained to simple operations of add, subtract, multiply, divide, square-
root, and power(2). At inference time, the agent is given access to arithmetic operator tools to reason
about the problem and come up with a sequence of operators.

Spatial Reasoning. We design a high-level description for a broad category of spatial reasoning
tasks. In this setting, there is a 2D square grid (board) with some particles on it; the board and
particles can rotate and move around. The questions are about the location and orientations of these
objects after certain number of actions. Figure 6 shows an example of a 4x4 grid with two particles
on it and the resulting states of the objects after applying some actions. This spatial reasoning
environment can be made arbitrarily complex or simple with the choices of several parameters such
as board size, types and number of of actions allowed, etc. Here, our goal is to come up with specific
values to these parameters such that when we instantiate the environment with those values, it will
result in a benchmark with target difficulty level.

7-bench Airline. It is an interactive evaluation environment for customer service agents in simu-
lated airline scenarios, where the agent must use tools to interact with a database and satisfy user
requests (Yao et al., 2024). The reward is determined by checking the final database state against
the database state following a series of golden actions. Using its setup, we construct a rule-based
scenario generator that randomly samples action chains and corresponding user instructions. We
parametrize the scenario generator both by parameters for the tools, such as number of passengers
when booking a flight, and by parameters we discover through existing user instructions, such as
whether the customer prioritizes the cheapest or the fastest flight.

For further details on these tasks and associated parameters, see Appendix A.1.

4.2 BASELINES

We briefly discuss the baselines for evaluation. For details, please see the Appendix.

Random Sampling with Prioritized Parameter Replay (RS + PPR) It is inspired by Prioritized
Level Replay (PLR) (Jiang et al., 2021b) in reinforcement learning literature. It works iteratively. In
each iteration, it draws a sample v; € V randomly with probability p and with probability 1 — p it
draws a noisy sample from a buffer of “good” parameters it found in previous iterations. Similar to
BeTal wv; are evaluated to observe the performance gap §; and if §; < A, then v; is added to the

buffer. It also keeps track of the best parameters similar to BeTaL and returns them in the end.

LLM Prompting Strategies. We explore baselines where LLM can be prompted to obtain param-
eter values. We use variations of best-of-N (BoN) (?Beirami et al., 2025) with our notion of reward
and choices of reward “oracles”. Here, the reward for any given parameter values is defined as the
negative of the observed performance gap. We use two empirical reward oracles, one based on an
ML model trained offline with supervised learning and the other one based on simulation and eval-
uation with the target model as in BeTaL . We call the first variation BON-ML and the second one
BoN-TM. Chain of thought prompting (Wei et al., 2023) is used for both strategies.

4.3 DESIGNER AND TARGET MODELS

We test the latest reasoning models from three providers: OpenAl (GPT-5), Anthropic (Claude Opus
4.1), and xAI (Grok 4) as designer models. We use 0o4-mini as the target model in all the settings. We
finally evaluate benchmarks developed by each method on three models: 04-mini, Gemini 2.5 Flash,
and Claude 3.7 Sonnet. Whenever applicable, we configure the designer model with temperature 0.5
and a high reasoning budget (4096 tokens budget) for exploration, while the rollout and evaluation
models use temperature 0.0 with a low reasoning budget (1024 tokens budget) for efficiency.

4.4 METRICS

Each benchmarking task can have its own notion of performance p (e.g., accuracy, pass @k, etc.). We
assume this measure of performance is inversely proportional to the hardness of the task. We abstract
out benchmark-specific measures and define the following metric to measure the effectiveness.

Under review as a conference paper at ICLR 2026

Table 1: Chain-of-thought (CoT) prompting does not consistently yield strong designer-model per-
formance. While Opus-4.1 achieves competitive results on the arithmetic sequence and 7-Bench
tasks, state-of-the-art LLMs often struggle to outperform a random sampling baseline. Reported
values are §(%) with o4-mini as the target model, averaged over three independent runs and pre-
sented with 95% confidence intervals (CI).

Method Arith. Seq. Spatial Reasoning 7-Bench Airline
Random Sampling 21.17£51.5 25.4+9.6 37.3+17.2
CoT Prompting (GPT-5) 28.33+£25.8 453 £26.3 23.6£16.1
CoT Prompting (Opus-4.1) 11.67£7.2 26.1+17.9 11.9+10.4
CoT Prompting (Grok-4) 20.831+3.6 39.1£25.5 31.9+13.3

Performance Gap. If a method is run with a given target performance level p, and say it results in
a benchmark on which the target model has performance p, then its performance gap is § = |p — p|.

4.5 EXPERIMENT PROTOCOL

We run 10 iterations for iterative methods and sample 10 times for non-iterative ones. To evaluate a
designer’s ability to produce benchmarks with varying levels of complexity, we consider four target
performance levels: Hard (phard = 0.25), Medium (pmedi“m = 0.50), Easy (p***%¥ = 0.75), and
Trivial (p™™V1al = 0.90). We report the average performance gap § across these levels as the primary
effectiveness metric. All experiments are repeated three times with different random seeds. The sizes
of parameter-search rollouts and evaluation datasets are adjusted according to the requirements of
each task. See Appendix A for additional details.

5 RESULTS AND DISCUSSION

In this section, we present our main results and discussion. First, we study the effectiveness of simple
chain-of-thought prompting against random sampling and then provide an in-depth discussion on
BeTal ’s effectiveness in designing benchmarks for any given target difficulty.

C1: Chain-of-Thought prompting does not make LLMs efficient benchmark designers.

Despite the remarkable reasoning capacity and world knowledge of state-of-the-art LLMs, their
ability to systematically design benchmarks remains unreliable. As shown in Table 1, LRMs given
high reasoning budgets still exhibit high variance when tasked with producing benchmarks of var-
ied complexity. With 0o4-mini as the target model, Opus-4.1 exceeds the random baseline only on
Arithmetic Sequence and 7-Bench while failing on Spatial Reasoning. GPT-5 and GROK 4 un-
derperform even further. These results demonstrate that chain-of-thought prompting alone does not
endow LLMs with robust or generalizable benchmark design capabilities.

C2: BeTalL is more effective than the baselines in producing benchmarks with any target
performance level.

Our hypothesis here is that while LLMs are highly capable models, a single round of prompting,
even with a sufficiently large reasoning budget, may not be as effective as a procedure like Be TaL
where it is prompted iteratively with feedback on its outputs from the previous rounds.

i) BeTaL versus other iterative methods. We compare BeTaL with RS+PPR to understand if
LLMs are necessary for benchmark design, or iterative feedback alone can achieve the same per-
formance as BeTaL . From our experiments, it is evident that both Reasoning LLMs and iterative
feedback are necessary for an effective designer. Figure 2 shows that BeTaL learns to shrink the
performance gap more strongly than RS+PPR over 10 iterations, with a wide margin (more than
20%) on both T7-Bench and Spatial Reasoning.

iii) Performance at target performance levels. We observe that Be TaL shows robustness, at all
desired target levels, by consistently outperforming baselines.

Under review as a conference paper at ICLR 2026

Table 2: BeTalL consistently outperforms the iterative and Best-of-N baselines in both parameter
search and evaluation phases across all three tasks and all three designer models. Reported numbers
are §(%) with o4-mini as the target model. For parameter search, we run either 10 samples or
10 iterations and report the best result for a fair comparison. All results are averaged over three
independent runs and presented with 95% confidence intervals. See experimental details in A

Designer Method Arith. Seq. Spatial Reasoning T-Bench Airline
Param Search Param Search Eval Param Search Eval
- RS+PPR 15.8+£2.43 6.6+7.3 8.4 £6.3 18.34+21 21.3+£10.6
BoN-TM 8.3+4.64 28.584+25.66 21.66+41.19 12.5+2.1 20.8+8.0
GPT-5 BoN-ML 30.0412.63 21.564+12.25 28.33+19.67 21.44+11.5 16.7£10.4
BeTalL 5.8 +£4.77 0.4+0.45 5.3+7.25 5.3+32 13.24+10.3
BoN-TM 20.0+12.12 26.75+£23.03 20.484+19.13 3.6 3.2 10.0£12.4
Opus-4.1 BoN-ML 31.746.20 20.354+12.05 26.93+41.31 11.7£7.5 9.7+7.6
BeTal 12.5 +4.42 3.8+5.3 7.3+6.5 5.0+2.1 77+52
BoN-TM 20.0+11.70 24.29+24.90 21.234+19.43 15.0£11.5 18.5£7.7
GROK 4 BoN-ML 32.54+15.58 21.17+£11.73 25.35439.60 34.2+14.3 20.2+3.1
BeTal 4.2 +3.26 1.4+3.3 4.9+5.8 3.9+32 10.3+124
BeTalL vs RS+PPR Performance Gap Convergence
100.0% 1 —e— BeTal (Spatial Reasoning)
—e- RS+PPR (Spatial Reasoning)
—+— BeTal (t-bench)
T 80.0%; -*- RS+PPR (t-bench)
P
©
O 60.0%
]
(%]
c
©
£ 40.0%
1
3
€
[
o 20.0%
0.0% 1

Iteration

Figure 2: Convergence of iterative methods during parameter selection on Spatial Reasoning and 7-
Bench benchmarks: BeTaL vs. RS+PPR. Performance gap of Be TaL shrinks faster compared to
RS+PPR, within 10 iterations, indicating LLMs are more efficient than competing iterative methods
at finding favorable environment parameters for benchmark creation.

ii) Performance comparison of designer models. While all three reasoning models outperform their
respective baselines, we find that the choice of reasoning model may depend on the nature of the
benchmark being developed. Comparing between the designers, Grok-4 and GPT-5 do well on the
mathematical and logical reasoning domains of Arithmetic Sequences and Spatial Reasoning. On
the other hand, Claude-Opus-4.1 excels on the real-world agentic benchmark of 7-Bench Airline.

Next, we study the performance across models, at each target performance level. We observe in-
herent difficulty levels in the underlying environment domains, that reflect in the designer’s perfor-
mance. For instance, 7-Bench and Spatial Reasoning, being challenging benchmarks, the perfor-
mance gap is highest on the Trivial and Easy difficulty levels, for all models. Conversely, on the toy
Arithmetic Sequences task, the highest gap is observed at hard and medium difficulty levels.

C3: Environment designed by BeTaL for one target model is transferable to other target
models.

Under review as a conference paper at ICLR 2026

Average Performance Gap by Target Difficulty for od-mini on T-Bench Average Performance Gap by Target Difficulty for od-mini on Arithmetic Sequence
(Lower is Better) (Lower is Better)

—Rs+PPR T rserrn
= poNTM - oM
= on-HL - oML
- peTl 07] m= meal

ed Easy Medium
Target Difficulty ‘Target Difficulty

Figure 3: BeTaL performs robustly at different target performance levels, compared to baselines
on 7-Bench and Arithmetic Sequences.

Our analysis demonstrates that environments designed by BeTaL exhibit robust transferability
across different evaluation models. On 7-Bench, environments designed using o4-mini feedback
achieve comparable performance when evaluated on Claude 3.7 Sonnet and Gemini 2.5 Flash (Fig-
ure ??), with BeTaL consistently outperforming baseline approaches across all evaluation models.

We further validate this transferability on Arithmetic Sequences, where Be TaL environments de-
signed with o4-mini feedback were successfully evaluated on both 04-mini and Gemini 2.5 Flash.
The environments maintain their fundamental difficulty characteristics across models: At the hard
25% target, o4-mini achieves a performance gap of 9.7 + 8.7 % while Gemini 2.5 Flash achieves that
of 22.8 + 17.4 %. Although absolute performance differs between models - with 04-mini showing
higher accuracy (62.8%) compared to Gemini 2.5 Flash (43.0%) - the relative difficulty calibration
transfers consistently across all target regret levels (25%, 50%, 75%, 90%).

This cross-model consistency across different benchmark domains: agentic planning in real-world
tasks (7-Bench) and mathematical reasoning (arithmetic sequences) domains provides strong evi-
dence that BeTaL -designed environments test fundamental cognitive capabilities that generalize
across different model architectures and families, rather than exploiting model-specific weaknesses.

C4. Are LLMs also able to generate better parameter space?

Despite LLMs’ strong performance of generating arbitrarily complex benchmarks through BeTaL ,
the parameter spaces for the three tasks we experiment on are still manually designed by human. We
further explore the next level of benchmark design autonomy by prompting Opus 4.1 to design the
parameter space for 7-bench. We then manually implement feasible parameters into the scenario
generator and experiment BeTaL on the Al generated parameter space. According to Figure 5,
BeTal iterated on Al design parameter space performs decently on generating Medium or Hard
level benchmarks yet underperforms to human generated parameter space on Easy and Trivial level
benchmarks.

6 CONCLUSION

We introduced BeTaL , an LLM-in-the-loop dynamic benchmark design framework. BeTaL is a
method for dynamic benchmark generation and design that adaptively matches target performance
levels, incorporates strategies for efficient task synthesis that improve cost-effectiveness compared
to baselines, and can be used to create new benchmarks and empirical validation. We showed that
iterative design with LLMs is consistently more effective than non-iterative or random baselines.

Limitations. BeTal assumes access to parameterized and verifiable simulators, which may not
always exist. Its effectiveness depends on the reasoning strength of the designer model and care-
ful prompt construction. Moreover, our evaluation is limited to a small set of domains, leaving
multimodal and more subjective tasks unexplored.

Under review as a conference paper at ICLR 2026

Average Performance Gap % of Evaluation Models on T-Bench
(Lower is Better)

354

25

Average Performance Gap %

2090

16.8

Method

Evaluation Model
I claude_3_7
I gemini_2.5_flash
B o4_mini

152

Figure 4: Performance of all evaluation models (04-mini, Claude Sonnet 3.7, and Gemini-2.5-Flash
on 7-Bench. (BeTalL) using feedback from 04-mini sees comparable performances on Claude 3.7

Sonnet and Gemini 2.5 Flash.

BeTalL Performance Comparison: Al vs Human Designed Parameter Spaces

Al Designed Param Space

Human Designed Param Space

24.4
40

w
o

9.4

Performance Gap (%)
N
<]

=
o

Target Performance Levels
Trivial
== Easy
= Medium
== Hard

22 2.8 1 2.8 28 2.8 25 2.8
1.7 1.7 1.7 1.7
N | N == = | colm_ || mE_L, in ___ Blmm m___ - HE 0-0 it __
5 v o) v g
o' ov® oo &t opes ™ oo

Designer Model

Figure 5: Performance of BeTaL on 7-bench parameter space generated by Opus 4.1 versus by
human. BeTaL on Al generated parameter space is acceptably small performance gap for medium
and hard benchmarks, yet still generally underperforms to that generated by human.

Future work. A natural direction is to use environment scaling more explicitly as a knob, enabling
smooth transitions from simple to complex environments as models improve. Extending BeTaL
to automatically propose new parameters, exploring multi-agent or co-evolutionary design loops,
and incorporating human-in-the-loop oversight could further enhance adaptability and reliability.
Ultimately, we envision self-adaptive benchmarks that evolve continuously with the systems they
evaluate, ensuring robust and meaningful assessment as Al capabilities advance.

Under review as a conference paper at ICLR 2026

REFERENCES

Fuma Aki, Riku Ikeda, Takumi Saito, Ciaran Regan, and Mizuki Oka. Llm-poet: Evolving complex
environments using large language models. arXiv preprint arXiv:2406.04663, 2024.

Pierre Andrews, Amine Benhalloum, Gerard Moreno-Torres Bertran, Matteo Bettini, Amar Budhi-
raja, Ricardo Silveira Cabral, Virginie Do, Romain Froger, Emilien Garreau, Jean-Baptiste Gaya,
Hugo Laurengon, Maxime Lecanu, Kunal Malkan, Dheeraj Mekala, Pierre Ménard, Grégoire Mi-
alon, Ulyana Piterbarg, Mikhail Plekhanov, Mathieu Rita, Andrey Rusakov, Thomas Scialom,
Vladislav Vorotilov, Mengjue Wang, and Ian Yu. Are: Scaling up agent environments and evalu-
ations. arXiv preprint arXiv:2509.17158, 2025.

Ahmad Beirami, Alekh Agarwal, Jonathan Berant, Alexander Nicholas D’ Amour, Jacob Eisenstein,
Chirag Nagpal, and Ananda Theertha Suresh. Theoretical guarantees on the best-of-n alignment
policy. In Forty-second International Conference on Machine Learning, 2025. URL https:
//openreview.net/forum?id=u3U8gzFV7w.

Natasha Butt, Varun Chandrasekaran, Neel Joshi, Besmira Nushi, and Vidhisha Balachan-
dran. Benchagents: Automated benchmark creation with agent interaction. arXiv preprint
arXiv:2410.22584, 2024.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. arXiv preprint arXiv:2012.02096, 2021.

Runnan Fang, Shihao Cai, Baixuan Li, Jialong Wu, Guangyu Li, Wenbiao Yin, Xinyu Wang, Xi-
aobin Wang, Liangcai Su, Zhen Zhang, Shibin Wu, Zhengwei Tao, Yong Jiang, Pengjun Xie, Fei
Huang, and Jingren Zhou. Towards general agentic intelligence via environment scaling. arXiv
preprint arXiv:2509.13311, 2025.

Eitan Farchi, Shmulik Froimovich, Rami Katan, and Orna Raz. Automatic generation of benchmarks
and reliable 1lm judgment for code tasks. arXiv preprint arXiv:2410.21071, 2024.

Mohamed Amine Ferrag, Norbert Tihanyi, and Merouane Debbah. From llm reasoning to au-
tonomous ai agents: A comprehensive review. arXiv preprint arXiv:2504.19678, 2025.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. arXiv
preprint arXiv:2508.05004, 2025.

Mingqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktischel. Replay-guided adversarial environment design. Advances in Neural Information
Processing Systems, 34:1884—1897, 2021a.

Mingi Jiang, Edward Grefenstette, and Tim Rocktédschel. Prioritized level replay. arXiv preprint
arXiv:2010.03934, 2021b.

Weiwen Liu, Xu Huang, Xingshan Zeng, Xinlong Hao, Shuai Yu, Dexun Li, Shuai Wang, Weinan
Gan, Zhengying Liu, Yuanqing Yu, Zezhong Wang, Yuxian Wang, Wu Ning, Yutai Hou, Bin
Wang, Chuhan Wu, Xinzhi Wang, Yong Liu, Yasheng Wang, Duyu Tang, Dandan Tu, Lifeng
Shang, Xin Jiang, Ruiming Tang, Defu Lian, Qun Liu, and Enhong Chen. Toolace: Winning the
points of llm function calling. arXiv preprint arXiv:2409.00920, 2025.

Zuxin Liu, Thai Hoang, Jianguo Zhang, Ming Zhu, Tian Lan, Shirley Kokane, Juntao Tan, Weiran
Yao, Zhiwei Liu, Yihao Feng, Rithesh Murthy, Liangwei Yang, Silvio Savarese, Juan Carlos
Niebles, Huan Wang, Shelby Heinecke, and Caiming Xiong. Apigen: Automated pipeline for
generating verifiable and diverse function-calling datasets. arXiv preprint arXiv:2406.18518,
2024.

Jack Parker-Holder, Mingi Jiang, Michael Dennis, Mikayel Samvelyan, Jakob Foerster, Edward
Grefenstette, and Tim Rocktédschel. Evolving curricula with regret-based environment design.
arXiv preprint arXiv:2203.01302, 2023.

10

https://openreview.net/forum?id=u3U8qzFV7w
https://openreview.net/forum?id=u3U8qzFV7w

Under review as a conference paper at ICLR 2026

Arkil Patel, Siva Reddy, and Dzmitry Bahdanau. How to get your llm to generate challenging
problems for evaluation. arXiv preprint arXiv:2502.14678, 2025.

Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
Zhang, Mohamed Shaaban, John Ling, Sean Shi, et al. Humanity’s last exam. arXiv preprint
arXiv:2501.14249, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In First Conference on Language Modeling, 2024.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning

and reasoning about change. Advances in Neural Information Processing Systems, 36:38975—
38987, 2023.

Karthik Valmeekam, Kaya Stechly, and Subbarao Kambhampati. Llms still can’t plan; can Irms? a
preliminary evaluation of openai’s ol on planbench. arXiv preprint arXiv:2409.13373, 2024.

Siyuan Wang, Zhuohan Long, Zhihao Fan, Zhongyu Wei, and Xuanjing Huang. Bench-
mark self-evolving: A multi-agent framework for dynamic llm evaluation. arXiv preprint
arXiv:2402.11443,2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 4, 2024.

Shunyu Yao, Noah Shinn, Pedram Razavi, and Karthik Narasimhan. 7-bench: A benchmark for
tool-agent-user interaction in real-world domains, 2024. URL https://arxiv.org/abs/
2406.12045.

Peiwen Yuan, Shaoxiong Feng, Yiwei Li, Xinglin Wang, Yueqi Zhang, Jiayi Shi, Chuyi Tan, Boyuan
Pan, Yao Hu, and Kan Li. LIm-powered benchmark factory: Reliable, generic, and efficient. arXiv
preprint arXiv:2502.01683, 2025.

Abhay Zala, Jaemin Cho, Han Lin, Jachong Yoon, and Mohit Bansal. Envgen: Generating and
adapting environments via llms for training embodied agents. arXiv preprint arXiv:2403.12014,
2024.

11

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2406.12045

Under review as a conference paper at ICLR 2026

Initial State Moved Particle P1 Forward 1 Rotated Particle P2 90 degrees Rotated Board 90 degrees
® F1 W P2

4 4 4 4 :
< <o : -0 :) ">
32 2 2 2
&
i t

0 0 0 0

0 2 4 0 2 3 0 2 4 0 2 4
X Position X Position X Position

Figure 6: Illustration of objects and actions in spatial reasoning tasks. Here the board is 4x4 and
initially oriented towards north (black arrow). There are two particles P1 and P2 oriented towards
west and south respectively. The first action moved the particle forward by one step, second action
rotated the particle by 90 degrees and the last action shows rotation of the board by 90 degrees. The
board rotations are w.r.t. to its center and when a board rotates or moves the particles on it also
rotoate and move along with it.

A ADDITIONAL EXPERIMENTS AND DETAILS

A.1 DETAILS OF BENCHMARKING TASKS

Spatial Reasoning. The descriptions of parameters and actions are provided in the prompt (Ap-
pendix B) for the designer model. Figure 6 illustrates an example of a sample from the spatial
reasoning environment. On such samples, we ask 4 types of queries. i) Absolute location (x,y)
co-ordinates of the particle or the board. The board’s location is defined as the location of its center.
ii) The tile number on which a specific particle is located. iii) The orientation of a given particle.
It could be north, east, west, or south. iv) Relative location of a particle or board with respect to
another particle or board. When an LLM is prompted with such problems, we instruct it to produce
structured outputs along with its reasoning traces. The structured output is verified easily with the
groundtruth computed programmatically.

Human Designed Tau Bench Airline. The parameter descriptions and expected behaviors are
specified in the designer prompt (Appendix B). Each sample corresponds to an airline itinerary
planning scenario parameterized by a small set of discrete controls. The parameter space includes
numerical factors such as num_actions (1-6), num_passengers (1-3), and num_baggages
(0-3), as well as categorical attributes like booking_strategy (“cheapest”/“earliest_arrival”),
is_direct, is_.round_trip, cabin (“economy”/*business”), and insurance (“yes’/“no”).
These parameters jointly control itinerary complexity: increasing action count, passengers, or bags
expands the combinatorial search space, while enabling multiple strategies, connecting flights, or
round-trip requirements adds additional reasoning constraints. When prompted with such parame-
terized tasks, the LLM designer is instructed to output both a thought process describing how the
configuration achieves the target failure rate and the final parameter values in structured JSON. This
structured output can be programmatically validated against the student model’s measured failure
rate.

Opus 4.1 Designed Tau Bench Airline. The designer model receives a target failure rate pg.y
and is asked to generate task parameters that achieve 1 — pass@1 = pg,;. The parameter
space extends beyond structural complexity (e.g., num_actions € [1,6], num_passengers
€ [1, 3]) to include behavioral and informational dimensions. Categorical controls specify booking
preferences (booking_strategy: “cheapest”/“earliest_arrival”), routing options (is_direct,
is_round-trip), cabin composition (cabin_mix: economy, business, or mixed), and environ-
ment conditions such as information_completeness (whether all data is provided upfront),
cooperation_level (helpful/demanding/uncooperative agents), information_pattern
(upfront, gradual, reactive revelation of details), and preference_clarity (explicit vs. im-
plicit preferences). Together, these parameters modulate combinatorial difficulty, reasoning burden,
and dialogue complexity, allowing fine-grained control of task hardness to steer the student model’s
empirical failure rate toward pg,j. Structured outputs include both the parameter configuration and
a thought process explaining why it should achieve the desired difficulty level.

12

Under review as a conference paper at ICLR 2026

A.2 DETAILED BASELINES

BoN-ML and BoN-TM. These are inspired from the best-of-n alignment technique Beirami et al.
(2025). The key idea here is to generate n configurations vy, v, ldots, v, from LLM in parallel
and then select the ones that yield the highest “reward”. Here, our notion of reward is based on the
proximity to the target performance level p.

More precisely, a reward oracle in our setting is a function r : V' +— R that predicts the performance
gap for any v € V. Here, we realize such a reward oracle in two ways. First, based on an offline
trained classical ML model, and second, based on online estimation by drawing samples and evalu-
ating them. The steps to estimate performance in the second approach are the same as steps 2 and
3 of the BeTaL . The variation of BoN using this oracle is referred to as BoON-TM, and the other
one is called BoON-ML. The ML model for BoN-ML is trained in two steps: 1) draw a set of random
configurations v1, U9, . .. Us. For each of these configurations, obtain simulated datasets D; and p;
by evaluating the target model M; on D;. 2) Train multiple classical supervised learning models on
{0, pi }i_, and pick the best one with cross-validation. In the end, we expect to get a good predic-

tor f : V — R that can predict performance for any given v € V, and define the reward function
r(v) = —lp— f(v)l.

BoN-ML Model Training and Selection. As part of the BoN-ML experiments, we trained and
compared models to predict regret efficiently. Across all three domains, we explored over 800 dif-
ferent parameter configurations and architectures. Given the relatively small datasets (100 samples

per domain, with feature counts ranging from 13 to 74), we applied 5-fold cross-validation to obtain
reliable performance estimates.

All features were derived directly from the environment parameters, ensuring the predictors re-
mained lightweight and domain-specific. Models were selected based on the highest cross-validation
R? score, and the best candidates were saved for deployment. Performance was domain-specific:
small neural networks performed best for Arithmetic Sequences, Random Forests excelled in Spa-
tial Reasoning, and gradient boosting worked best for 7-Bench. This process yielded fast, domain-
tailored predictors to guide BoN-ML parameter selection effectively.

A.3 DETAILS OF LLM MODELS

LLM Versions GPT-5: undisclosed - the latest GPT-5 version as of Sep 25, 2025 Opus 4.1: claude-
opus-4-1-20250805 Grok 4: grok-4-0709 o4-mini: 04-mini-2025-04-16 claude3.7: claude-3-7-
sonnet-20250219 gemini-2.5-flash: gemini-2.5-flash

LLM Inference Parameters The default temperature for designer models is 0.5 and for target mod-
els is 0.0. However, claude-opus-4-1-20250805 and claude-3-7-sonnet-20250219 are only available
with a temperature of 1.

The default reasoning budget for designer models is 4096 tokens and for target models is 1024.
However, grok-4-0709 do not support configurable reasoning budget.

A.4 ADDITIONAL RESULTS

13

Under review as a conference paper at ICLR 2026

702
703
704
705
706 Average Pe(r;f_:m:l::esg:tggy Approach Peﬁormar}iiv(swzf i:yB?t:gf)t Difficulty
707

708
709
710
71
712
713
714
715
716
77
718
719
720

0.8

RANDOM-1ID
DR-PLR
BEST-OF-N
COT-Z2S

CED

0.7

Average Performance Gap
Average Performance Gap

721 RANDOM-IID. BEST-OF-N 025 05
Approach Target Difficulty
722

723 Figure 7: Performance of all methods on Arithmetic Sequences during Parameter Learning Phase,

724 (BeTal) has the lowest performance gap among competing methods, across target difficulty levels.
725

726
727
728
729
730
731
732

733
Average Performance Gap by Approach for claude_3_7 Average Performance Gap by Target Difficulty for claude_3_7
734 (Lower is Better) (Lower is Better)

735 od
736
737
738
739
740
741
742
743
744
745 010
746

747

748

749 Apf::::ch e " Target Difficulty

750
751 Figure 8: Performance of all methods on 7-bench on Claude 3.7 Sonnet evaluation, (BeTaL) has

752 the lowest performance gap among competing methods, across target difficulty levels.

s RS+PPR
mm CoT-ZS
= CED

035

°
w
&

°
I
b

0.19p33

o
G
Average Performance Gap

Average Performance Gap
g
8

753
754
755

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Average Performance Gap by Approach for gemini_2.5_flash
(Lower is Better)

Average Performance Gap by Target Difficulty for gemini_2.5_flash
(Lower is Better)

0.30

Average Performance Gap

CoT-ZS

Approach

0.2p67

RS+PPR

s RS+PPR
mm CoT-ZS
= CED

0.4

o
@

Average Performance Gap
°
S

0.1

00

Target Difficulty

Figure 9: Performance of all methods on 7-bench on Gemini 2.5 Flash evaluation, (BeTaL) has
the lowest performance gap among competing methods, across target difficulty levels.

BeTal Performance Gap by Teacher Model Across Target Accuracy Levels

~
[=]

Average Performance Gap (%)
N w 4]
s & & ¢ 8

=
o

Claude Opus 4.1

I Target 25% Accuracy
¥ Target 50% Accuracy
I Target 75% Accuracy
EEE Target 90% Accuracy

GPT-5
Teacher Model

Figure 10: Average performance gap with respect to teacher model for Arithmetic Sequences.

15

Under review as a conference paper at ICLR 2026

100%
90%
80%
70%

50%
40%
30%

Observed Accuracy (%)

20%

10%

100%
90%
80%

Observed Accuracy (%)

BeTal vs RS+PPR Accuracy Convergence - Hard (p_hard = 0.25)

—e— BeTaL
—e— RS+PPR
--- Target 25% Accuracy

0 2 a
Iteration

BeTal vs RS+PPR Accuracy Convergence - Easy (p_easy = 0.75)

Aa

B A S

Figure 11: BeTal

80.0%
70.0%

~ 60.0%

80.0%

70.0%

g 8
g 3

40.0%

Performance Gap (%)
N oW
e 9
Y
g 3

§

—e— BeTaL

—e— RS+PPR

--- Target 75% Accuracy

o 2 a 6 8
Iteration

Teacher Model Performance - Hard (p_hard = 0.25)

s BoN-ML
= BeTaL
== BoN-TM

55.0%

Claude Opus 4.1 GPT-!
Teacher Model

Teacher Model Performance - Easy (p_easy = 0.75)

=== BoN-ML
W BeTal
=== BoN-TM

41.7%

25,00 24:3% 25.7%

0.0%

Claude Opus 4.1

GPT- Grok-4
Teacher Model

Observed Accuracy (%)

100%
90%

BeTaL vs RS+PPR Accuracy Convergence - Medium (p_medium = 0.50)

—~— W
po— N
—e— BeTalL
—e— RS+PPR
--~- Target 50% Accuracy
o 2 4 6 8
Iteration

BeTal vs RS+PPR Accuracy Convergence - Trivial (p_trivial = 0.90)

80%

Observed Accuracy (%)

80.0%
70.0%

~ 60.0%

80.0%

70.0%

g 8
9 9
S

40.0%

u:
8 8
3 3

Performance Gap (%)
N
°

3

—
b\
—e— BeTaL
—e— RS+PPR
--- Target 90% Accuracy
o 2 a 6 8
Iteration

vs. DR-PLR convergence on Arithmetic Sequences across target accuracies.

Teacher Model Performance - Medium (p_medium = 0.50)

s BoN-ML
= BeTaL
s BoN-TM

44.9% 41.7%

Claude Opus 4.1

GPT-
Teacher Model

Teacher Model Performance - Trivial (p_trivial = 0.90)

=== BoN-ML
W BeTal
=== BoN-TM

133% 11.7%

0.0%

Claude Opus 4.1

GPT-
Teacher Model

Figure 12: Comprehensive Teacher Performance for Arithmetic Sequences

16

Under review as a conference paper at ICLR 2026

Observed Accuracy (%)

Observed Accuracy (%)

Average Performance Gap (%)

100%

100%

BeTal Performance Gap by Teacher Model Across Target Accuracy Levels

30
I Target 25% Accuracy

0 Target 50% Accuracy
I Target 75% Accuracy
BN Target 90% Accuracy

25 1

gpt-5

grok-4
Teacher Model

21.3%

20.1%

Claude Opus 4.1

Figure 13: Average performance gap with respect to teacher model for Spatial Reasoning.

BeTal vs RS+PPR Accuracy Convergence - Hard (p_hard = 0.25)

—e— BeTaL
20% —s— RS+PPR

80%

--- Target 25% Accuracy

Iteration

BeTal vs RS+PPR Accuracy Convergence - Easy (p_easy = 0.75)

—e— BeTaL
—e— RS+PPR
--- Target 75% Accuracy

o 2 a 6 8
Iteration

Observed Accuracy (%)

Observed Accuracy (%)

100%
920%
80%
70%
60%

BeTaL vs RS+PPR Accuracy Convergence - Medium (p_medium = 0.50)

—e— BeTaL
—e— RS+PPR
--- Target 50% Accuracy
/AN -
Se====seccoco
) 2 a 6 8
Iteration

BeTal vs RS+PPR Accuracy Convergence - Trivial (p_trivial = 0.90)

—e— BeTaL
| —e— RS+PPR
--- Target 90% Accuracy

Iteration

Figure 14: BeTaL vs. DR-PLR convergence on Spatial Reasoning across target accuracies.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941

942
943
944
945
946
947
948
949
950
951

952
953
954
955
956
957
958
959
960
961

962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

80.0%

70.0%

g 8 8
33

30.0%

Performance Gap (%

s 8
2 3

o
2
2

w
4]

w
o

Average Performance Gap (%)

N
8]

N
o

=
L8}

=
=]

w

Teacher Model Performance - Hard (p_hard = 0.25) Teacher Model Performance - Medium (p_medium = 0.50)
== BoN-ML 80.0% == BoN-ML
mmm BeTal == BeTal
== BoN-TM 70.0% == BoN-TM
o 47.6% 9
47.2% 47.4% 46.9% 44.9% § 60.0%
0 50.0%
8
g 40:0% 21.6% 21.6% 21.0% 21.9% 21.5% 22.0%
E
s
t
o
a

gpt-5 grok-4 Claude Opus 4.1 gpt-5 grok-4 Claude Opus 4.1
Teacher Model Teacher Model
Teacher Model Performance - Easy (p_easy = 0.75) Teacher Model Performance - Trivial (p_trivial = 0.90)
m=E BoN-ML 80.0% m=m BoN-ML
B BeTaL B BeTaL
=== BoN-TM 70.0% === BoN-TM
X
< 60.0%
a
[
0 50.0%
o
£ 40.0%
E 40.!
E 30.0% 14.0% 15.0% B2% 13.9% 14.1% 13.9%
13.5% 17.1% 2 20.0%
1% g5y 13.0% 13.0% “pP* 12.0% 10.7% 12.2%
10.0%
0.0%
gpt-5 Claude Opus 4.1 gpt-5 Claude Opus 4.1

grok-4 grok-4
Teacher Model Teacher Model

Figure 15: Comprehensive Teacher Performance for Spatial Reasoning

BeTal Performance Gap by Teacher Model Across Target Accuracy Levels

IE Target 25% Accuracy
1 0 Target 50% Accuracy
I Target 75% Accuracy 28.4% 27.9%
{1 EEE Target 90% Accuracy

Claude Opus 4.1 GPT-5
Teacher Model

Figure 16: Average performance gap with respect to teacher model for 7-bench.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

BeTaL Performance Gap Across Evaluation Models
on Arithmetic Sequences (Lower is Better)

BeTaL Observed Accuracy Across Evaluation Models
on Arithmetic Sequences (Higher is Better)

0.970

Evaluation Model Evaluation Model
05 gemini-2.5-flash gemini-2.5-flash
= od-mini = od-mini
04 08 0.957
0.446
>
203 =06
© 0.36a 0.266 4
P 2 0.333 0.526
S S
E <
£ 0714 K]
<
g 0.2 g
o 0.4
a 0.1s9 E]
° 0332
0.131
0.110 0.459
0.1 0.981
0.966 o0.183
02
00
T T T T 0.0
Trivial (0.10) Easy (0.25) Medium (0.50) Hard (0.75) Trivial (0.10) Easy (0.25) Medium (0.50) Hard (0.75)

Target Difficulty Level

Target Difficulty Level

Figure 17: Performance of different models on evaluation datasets on Arithmetic Sequences

0.150

0125

0.100

Performance Gap
g
S
o

0.050

0.025

0.000

Performance Gap Across Evaluation Models
on Spatial Reasoning (Lower is Better)

Observed Accuracy Across Evaluation Models
on Spatial Reasoning (Higher is Better)

Evaluation Model
s BETAL + o4-mini
m== RS_PPR + od-mini
mmm BETAL + claude-3-7-sonnet
mmm RS _PPR + claude-3-7-sonnet

Observed Accuracy

BeTal RS+PPR

Approach

0.8

°
S

°
=

02

0.0

Approach + Eval Model
== BETAL + o4-mini

= RS_PPR + 0d-mini

m== BETAL + claude-3-7-sonnet
mmm RS_PPR + claude-3-7-sonnet

Approach

Figure 18: Performance of different models on evaluation datasets on Spatial Reasoning.

19

Under review as a conference paper at ICLR 2026

BeTal vs RS+PPR Accuracy Convergence - Hard (p_hard = 0.25)

100%

—e— BeTaL
—s— RS+PPR
Target 25% Accuracy

Observed Accuracy (%)

a
Iteration

BeTal vs RS+PPR Accuracy Convergence - Easy (p_easy = 0.75)

100%
90%

—e— BeTaL
—e— RS+PPR
Target 75% Accuracy

70%

60%

Observed Accuracy (%)

a
Iteration

100%
90%

80%

Observed Accuracy (%)

100%

BeTaL vs RS+PPR Accuracy Convergence - Medium (p_medium = 0.50)

—e— BeTaL
—e— RS+PPR
--- Target 50% Accuracy

4
Iteration

BeTal vs RS+PPR Accuracy Convergence - Trivial (p_trivial = 0.90)

—e— BeTalL
—e— RS+PPR

90%

70%

60%

Observed Accuracy (%)

--- Target 90% Accuracy

o 2 a 6 8
Iteration

Figure 19: BeTaL vs. DR-PLR convergence on 7-bench across target accuracies.

Teacher Model Performance - Hard (p_hard = 0.25)

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

Performance Gap (%)

20.0%

10.0%

0.0%

Claude Opus 4.1

GPT-
Teacher Model

Teacher Model Performance - Easy (p_easy = 0.75)

s BoN-ML
== BeTaL
s BoN-TM

17.2%

7.0% 6.1%

Grok-4

80.0%

70.0%

g 8
9 9
S

40.0%

Performance Gap (%)
g 8

Y
g 3

N
oS

9.4% 11.8%
6.1%

§

0.0%

Claude Opus 4.1

25.0%

20.6%

GPT-
Teacher Model

=== BoN-ML
W BeTal
=== BoN-TM

43.9%

19.4%

16.4%

Grok-4

80.0%

70.0%

60.0%

50.0%

40.0%

30.0%

Performance Gap (%)

20.0%

10.0%

0.0%

80.0%

70.0%

g 8
9 9
S

40.0%

u:
8 8
3 3

Performance Gap (%)
N
°

3

Teacher Model Performance - Medium (p_medium = 0.50)

s BoN-ML
= BeTaL
s BoN-TM

11.8%
5.6%

10.2% 10.0% 11.2%

4.4%

0.0%
Claude Opus 4.1

0.0%

GPT- Grok-4
Teacher Model

Teacher Model Performance - Trivial (p_trivial = 0.90)

65.6% mmE BoN-ML
W BeTal

=== BoN-TM

28.4% 27.8%

0.0%

Claude Opus 4.1

GPT-
Teacher Model

Figure 20: Comprehensive Teacher Performance for 7-bench

20

Under review as a conference paper at ICLR 2026

B PROMPTS

LLM Designer Prompt for Arithmetic Sequence

The math problem is to apply a sequence of operators on a number to produce a final an-
swer. The sequence of operators are applied recursively on intermediate results, i.e., num
= operator (num) for each operator in the sequence. The operators only take in one
number as input.

You should target the given model regret at {t arget _regret}, so that the parameters can
generate a math problem for the model at the desired regret level. A high regret indicates a
challenging environment (1 for unsolvable), while a low regret indicates an easy environment
(O for easy).

Here is the feedback from the previous iterations, which you can use to generate new param-
eters: {feedback}

First, reason about the feedback from previous iterations. Specifically note what parameter-
s/aspects made previous environments challenging or trivial.

Then, given a list of common math operators {operators}, your task is to generate values
for the given parameters:

1. feedback_summary: your summary of the feedback from the previous itera-
tions.

2. thought_process: your thought process for generating the parameters.

3. max_range_of_nums: the upper bound of range the input number can take on,
i.e. (1, max_range_of_nums). Pick a number between 5 and 50.

4. N: the length of the sequence of operators to apply on a number (between 5 and 10)

5. K: The maximum number of times an operator can be repeated in the sequence
(between 1 and 5)

6. type_of_nums: the type of numbers in the input (int or float)

7. operator_sequence: elect 3 operators from the list above, to generate a se-
quence of operators of length N to apply on a number, where each operator can be
repeated at most K times.

Output format (JSON):

{
”feedback_summary ”: str,
“thought_process”: str,
”max_range_of_nums”: int,
"N”: int,
"K”: int ,
“type_of _nums”: str,
“operator_sequence ”: list[str]

. J

LLM Designer Prompt for the Spatial Reasoning Environment

You are an expert in designing spatial reasoning environments. The environment is a 2D grid
world. It consists of a square board and a two particles on the board. The board’s dimensions
can be from 5 to 100. The board is divided into tiles of size 1x1. The particles are at the
center of the tiles.

Each object (board and particles) in the environment has an orientation and a location. The
orientation is the direction in which the object is facing, which can be one of the following:
NORTH, EAST, SOUTH, WEST. The location of particle is given by the 2D coordinates of

21

Under review as a conference paper at ICLR 2026

the center of the tile on which the particle is located. The orientation and location of particle
are initialized randomly. The location of the board is the 2D coordinates of the center of the
board. The orientation of the board is the orientation of its center. It is always initialized to
NORTH.

The environments complexity can be controlled by the following parameters:

The board size determined by the width parameter.

The board can either allow particles to wrap around the edges or not. It is determined by
the wrap_around parameter. If it is true, then the particles can wrap around the edges of
the board. If it is false, then the particles cannot wrap around the edges of the board.

The movements allowed for the objects (board and particles). Each object can have a
subset of the following movements: LEFT, RIGHT, FORWARD, BACKWARD.

The rotations allowed for the objects (board and particles). Each object can have a subset
of the following rotations: 0, 90, 180, 270, 360. If the rotation is O, then the object is
not rotated. If the rotation is 90, then the object is rotated 90 degrees counter-clockwise.
If the rotation is 180, then the object is rotated 180 degrees counter-clockwise. If the
rotation is 270, then the object is rotated 270 degrees counter-clockwise. If the rotation
is 360, then the object is rotated 360 degrees counter-clockwise.

You are given a list of parameters for a board and a list of parameters for a particle. You
are also given a list of parameters for actions that can be performed on the board and the
particle. You need to design a spatial reasoning environment that is sufficiently challenging
and an average language model can achieve a target accuracy of <accuracy>.

Response format - JSON schema You must get the final answer and convert it to the
following JSON data structure. Follow the schema exactly.

Key: thought_process
Type: String,
Description: Your thought process when designing the environment.

Key: ‘wrap_around*
Type: Boolean,
Description: Whether the board can wrap around the edges.

Key: ‘width*
Type: Integer,
Description: The width of the board.

Key: ‘board_moves*
Type: Boolean,
Description: Whether the board can move.

Key: ‘board_allowed_moves*

Type: List of Strings,

Description: The movements allowed for the board, must be subset of: LEFT, RIGHT,
FORWARD, BACKWARD.

Key: ‘board_rotates*
Type: Boolean,
Description: Whether the board can rotate.

Key: ‘board_allowed_rotations*
Type: List of Integers,
Description: The rotations allowed for the board, must be subset of: 0, 90, 180, 270, 360.

Key: ‘particle_moves*
Type: Boolean,
Description: Whether the particle can move.

Key: ‘particle_allowed_moves*
Type: List of Strings,

22

Under review as a conference paper at ICLR 2026

Description: The movements allowed for the particle, must be subset of: LEFT, RIGHT,
FORWARD, BACKWARD.

Key: ‘particle_rotates*
Type: Boolean,
Description: Whether the particle can rotate.

Key: ‘particle_allowed_rotations*
Type: List of Integers,
Description: The rotations allowed for the particle, must be subset of: 0, 90, 180, 270, 360.

Key: ‘number_of_board_rotation_actions*
Type: Integer,
Description: The number of times the board can be rotated if board_rotates is true.

Key: ‘number_of_particle_rotation_actions*
Type: Integer,
Description: The number of times the particles can be rotated if particle_rotates is true.

Key: ‘number_of_board_movement_actions*

Type: Integer,

Description: The number of times the board can be moved if board_moves is true.
Key: ‘number_of_particle_movement_actions*

Type: Integer,

Description: The number of times the particles can be moved if particle_moves is true.

\. J

LLM Designer Prompt for Tau Bench Airline Environment

You are an expert in designing airline-booking tasks for language-model agents.

Your goal is to propose fask parameters that drive a student model to a target failure rate of
0.75. Here, the failure rate is defined as 1 —pass @1 for the student model, i.e., the probability
that the student fails to solve the task on the first attempt. You are directly rewarded for
minimizing the absolute distance to the 0.75 failure rate, so choose parameters that make the
task challenging enough to approach this target as closely as possible.

The task setting is an airline-shopping environment where an agent must construct an
itinerary subject to constraints (e.g., number of actions, bags, cabin class, routing).

Controllable parameters and intended complexity effects:

- num.actions (1--6): Upper bound on primitive planning/interaction steps. Start
simple with fewer actions; increase to raise difficulty.

- num_-passengers (1--3): More passengers typically increases combinatorial con-
straints and price/timing trade-offs.

- num_-baggages (0--3): More bags interact with fare rules and cabin choices; higher
values generally increase difficulty.

9% ¢

- booking_strategy: Subset of {“cheapest”, “carliest_arrival”’}. Multiple strategies
introduce objective trade-offs.

- is_direct: Boolean. Allowing false admits connections and routing search com-
plexity.

- is_round_trip: Boolean. Round-trips add coupling between outbound/return con-
straints.

- cabin: Subset of {“economy”, “business”}. More options broaden fare/rule search
space.

ELI3

- insurance: One of {“yes”, “no”}. Insurance interacts with cost-focused strategies and
can add goal ambiguity.

23

Under review as a conference paper at ICLR 2026

Tune these parameters to steer the student model’s 1 — pass@1 toward 0.75.

Response format — JSON schema
You must get the final answer and convert it to the following JSON data structure. Follow
the schema exactly.

Key: thought_process

Type: String

Description: Concise reasoning explaining how the chosen parameters are expected to yield
a failure rate near 0.75; reference how each parameter affects difficulty.

Key: num_actions
Type: Integer (range: 1-6)
Description: Maximum number of allowed actions/steps.

Key: num_passengers
Type: Integer (range: 1-3)
Description: Number of travelers to book.

Key: num_baggages
Type: Integer (range: 0-3)
Description: Total checked bags across passengers.

Key: booking_strategy
Type: List of Strings (subset of: {“cheapest”, “earliest_arrival”})
Description: Allowed objective(s) for the student; may include one or both.

Key: is_direct

Type: Boolean

Description: If true, only nonstop itineraries are valid; if false, connections are al-
lowed.

Key: is_round_trip
Type: Boolean
Description: Whether the itinerary must include return travel.

Key: cabin
Type: List of Strings (subset of: {“economy”, “business”})
Description: Allowed cabin classes.

Key: insurance
Type: String (one of: “yes”, “no”)
Description: Whether trip insurance is part of the task constraints.

. J

Example of a Question in the Spatial Reasoning Setting

Following is the description of the spatial reasoning environment. Go through it carefully
and then answer the question in the requested format.

Environment

Setup

All locations are pairs of real numbers (X, y). North corresponds to increasing y, and South
corresponds to decreasing y. East corresponds to increasing x, and West corresponds to
decreasing x. Orientation is a direction, and can be one of the following: North, East, South,
or West. Orientation is also measured in degrees, and can be one of the following: 0, 90,
180, 270. Where 0 means East, 90 means North, 180 means West, and 270 means South.

A board’s rotation is defined as the rotation of the board around its center. When a board
rotates, the orientation of the board changes, and the tiles and particles on the board also
rotate along with it. A particle’s rotation changes the orientation of the particle, but does not

24

Under review as a conference paper at ICLR 2026

change the location of the particle. As a general rule, any entity’s rotation can change the
orientation of the entity, but does not change the location of the entity.

A board’s location is defined as the location of its center. A board’s movement changes the
location of the board, and the tiles and particles on the board also move along with it. For
example, if a board moves forward 1 unit, the center of the board and the tiles and particles on
the board all move 1 unit along the orientation of the board. A particle’s movement changes
the location of the particle For example, if a particle moves forward 1 unit, the location of
the particle changes by 1 unit along the orientation of the particle.

If the movement of particles results in the particle moving beyond the boundary of the board,
then the particle will either wrap around the boundary of the board or remain at the current
tile. It depends on the board’s wrap around settings, which are described in the description
of the board. As a general rule, any entity’s movement can change the location of the entity,
but does not change the orientation of the entity. The orientation of an entity can be thought
of as the direction in which the entity is facing. This determines the meaning of forward,
backward, left, right, etc., for the entity.

Entities
The environment contains the following entities:
Board B1

Setup A board is 12.0 units wide and 12.0 units tall, and contains 2 particle(s). It is
centered at (0.0, 0.0). Its orientation is defined as the center’s orientation, which is NORTH.
Initially, the board is oriented NORTH.

The board has four sides: SIDE-1, SIDE-2, SIDE-3, SIDE-4 The side from the south west
corner to south east corner is the bottom side of the board. It is called SIDE-1 The side from
the south east corner to north east corner is the right side of the board. It is called SIDE-2
The side from the north east corner to north west corner is the top side of the board. It is
called SIDE-3 The side from the north west corner to south west corner is the left side of the
board. It is called SIDE-4

Boundaries

In the event the particle move results in the particle moving beyond the boundary of the
board, the resulting location is decided as follows:

When a particle is on a tile, it means its location is the tile’s centroid. The SIDE-1 of the
board can be crossed when approaching from the SIDE-3, and the particle(s) will move to
the opposite tile on the SIDE-3. The SIDE-2 of the board can be crossed when approaching
from the SIDE-4, and the particle(s) will move to the opposite tile on the SIDE-4. The
SIDE-3 of the board can be crossed when approaching from the SIDE-1, and the particle(s)
will move to the opposite tile on the SIDE-1. The SIDE-4 of the board can be crossed
when approaching from the SIDE-2, and the particle(s) will move to the opposite tile on the
SIDE-2.

Tiles on the board

The board is divided into square tiles of size 1 units by 1 units. Tiles are numbered from 1
to (width * height), starting from the bottom left corner in a zigzag pattern. Going from left
to right, then right to left, and so on. For example, for a 3x3 board, the tiles are numbered as
follows: 987654123

Allowed moves

The following moves are allowed for the board: FORWARD - board moves forward 1 unit.
BACKWARD - board moves backwards 1 unit. Orientation remains the same. LEFT - board
sidesteps 1 unit to the left. Orientation remains the same. RIGHT - board sidesteps 1 unit to
the right. Orientation remains the same.

Allowed rotations

25

Under review as a conference paper at ICLR 2026

The following rotations are allowed for the board: 90 - board rotates 90 degrees. 180 - board
rotates 180 degrees. 270 - board rotates 270 degrees.

Particle P1
Initial State

It is located at (3.5, 3.5), and is facing WEST (180 degrees). It is on tile 111. It is on board
BI1.

Allowed moves

The following moves are allowed for this particle: FORWARD - particle moves forward
1 unit. BACKWARD - particle moves backwards 1 unit. Orientation remains the same.
LEFT - particle sidesteps 1 unit to the left. Orientation remains the same. RIGHT - particle
sidesteps 1 unit to the right. Orientation remains the same.

Allowed rotations

The following rotations are allowed for this particle: 90 - particle rotates 90 degrees. 180 -
particle rotates 180 degrees. 270 - particle rotates 270 degrees.

Particle P2
Initial State

It is located at (-0.5, 5.5), and is facing SOUTH (270 degrees). It is on tile 139. It is on board
BI1.

Allowed moves

The following moves are allowed for this particle: FORWARD - particle moves forward
1 unit. BACKWARD - particle moves backwards 1 unit. Orientation remains the same.
LEFT - particle sidesteps 1 unit to the left. Orientation remains the same. RIGHT - particle
sidesteps 1 unit to the right. Orientation remains the same.

Allowed rotations

The following rotations are allowed for this particle: 90 - particle rotates 90 degrees. 180 -
particle rotates 180 degrees. 270 - particle rotates 270 degrees.

Actions

The actions are the following: First, board B1 is rotated by 270 degrees. Then, particle P2
is rotated by 270 degrees. Then, particle P1 is rotated by 270 degrees. Then, particle P1 is
rotated by 90 degrees. Finally, move particle P2 BACKWARD by 1 units.

Question
What is the location of board B1 after all the actions?

Response format - JSON schema You must get the final answer and convert it to the
following JSON data structure. Follow the schema exactly.

Key: ‘board B1_x°
Type: Float,
Description: The x-coordinate of board B1 after all the actions.

Key: ‘board B1_y*
Type: Float,
Description: The y-coordinate of board B1 after all the actions.

Example of a Task in the Tau-Bench Airline Setting

Following is the description of the airline environment. Go through it carefully and then
answer the question in the requested format.

26

Under review as a conference paper at ICLR 2026

Environment

Setup

The environment simulates a commercial airline booking system. Airports are identified by
IATA codes (e.g., SEA, EWR). Dates are formatted YYYY-MM-DD. Times are HH:MM: SS
in local (EST) for scheduling metadata. Cabins include basic_economy, economy, and
business. Bookings may be one_way or round_trip. Payment instruments include
certificate, gift_card, and credit_card. Baggage may be free or non-free de-
pending on fare rules (not shown here). Insurance is optional.

Capabilities
Agents may:

* Search flights (nonstop or onestop) between an origin and a destination on a speci-
fied date.

* Book reservations with specified flight legs, cabin, passengers, baggages, insur-
ance, and payment methods (in priority order).

* Request issuance of a travel certificate with a specified ID and amount.

Entities

User Ul

User identifier: mohamed_11_7869.

The user’s birthday is present in the profile and should not be requested during the interac-
tion.

Passenger(s)
A single passenger is provided and known to the user:

e first_name: Yusuf, last_name: Thomas, dob: 1966-05-11

Payment Instruments (available to U1)

e gift_card_3525913: amount 27

* gift_card.5876000: amount 176

* gift_card.7716568: amount 237

e credit_card_1922786: amount 139
Preferred payment order: certificate — gift card — credit card.
Demands

Demand 1: Flight Search
Search for an onestop flight from LGA to DTWon 2024-05-25.

Demand 2: Booking

Book a one-stop, one-way itinerary from SEA to EWR on 2024-05-30 in business cabin
for 1 passenger with 1 total baggage. Choose the cheapest eligible option. Include insur-
ance. Use payments in the order: certificate(s) first, then gift card(s), then credit card(s).
Candidate flights presented (for selection during booking):

e LegI:
— flight_number: HAT117, origin: SEA, destination: DFW
— scheduled_departure_time_est: 10:00:00,

scheduled_arrival_time_est: 14:00:00
— status: available, date: 2024-05-30
Seats available: basic_economy 5, economy 0, business 1
Prices: basic_economy 62, economy 119, business 263
e Leg2:
— flight_number: HAT063, origin: DFW, destination: EWR

27

Under review as a conference paper at ICLR 2026

scheduled_departure_time_est: 18:00:00,
scheduled_arrival_time_est: 21:30:00

— status: available, date: 2024-05-30
Seats available: basic_economy 11, economy 15, business 9
Prices: basic_economy 80, economy 137, business 286

Demand 3: Certificate Issuance
Request a certificate with:

e certificate_id: certificate_ 4314319

e amount: 170

Actions
The intended agent actions, in order, are as follows:

1. search_onestop flight with {origin: PHX, destination: DFW, date:
2024-05-18}.

2. book_reservation with the provided passenger, baggage, cabin, flight legs
(SEA—DFW, then DFW—EWR on 2024-05-30), one-way, business, cheapest, in-
surance yes, and payment methods listed above in the stated priority order.

3. send_certificate with {certificate_id: certificate 4314319,
amount: 170}.

Note. Although Demand 1 specifies LGA—DTW (2024-05-25) search, the sample action
shows PHX—DFW (2024-05-18). The agent must honor the stated Demands when resolv-
ing inconsistencies (prefer Demands).

Question

Produce the exact JSON payload(s) for the three API calls in the correct order that satisfy
all Demands above (use LGA—DTW for the search as specified by Demand 1; for booking,
choose the cheapest eligible business one-stop SEA—EWR itinerary from the two legs
provided; include insurance; and apply payment instruments in the order certificate — gift
card(s) — credit card(s)).

Response format - JSON schema
Return a single JSON object with the following keys:

Key: action_sequence
Type: Array of Objects
Description: The ordered list of actions. Each object must have:

* name (string; one of search_onestop_-flight, book_reservation,
send_certificate)

* kwargs (object; the exact arguments for the call)
Key: notes
Type: String
Description: Brief justification for flight choice, insurance inclusion, baggage count, and
the payment breakdown order.

28

	Introduction
	Related Work
	Methodology
	Preliminaries
	1.1BeTaL : Benchmark Tuning with LLM-in-the-loop

	Experimental Setup
	Benchmarking Tasks
	Baselines
	Designer and Target Models
	Metrics
	Experiment Protocol

	Results and Discussion
	Conclusion
	Additional Experiments and Details
	Details of benchmarking tasks
	Detailed Baselines
	Details of LLM Models
	Additional Results

	Prompts

