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Abstract

Ill-posed linear inverse problems are frequently encountered in image reconstruc-
tion tasks. Image reconstruction methods that combine the Plug-and-Play (PnP)
priors framework with convolutional neural network (CNN) based denoisers have
shown impressive performances. However, it is non-trivial to guarantee the con-
vergence of such algorithms, which is necessary for sensitive applications such as
medical imaging. It has been shown that PnP algorithms converge when deployed
with a certain class of averaged denoising operators. While such averaged operators
can be built from 1-Lipschitz CNNs, imposing such a constraint on CNNs usually
leads to a severe drop in performance. To mitigate this effect, we propose the use of
deep spline neural networks which benefit from learnable piecewise-linear spline
activation functions. We introduce “slope normalization” to control the Lipschitz
constant of these activation functions. We show that averaged denoising operators
built from 1-Lipschitz deep spline networks consistently outperform those built
from 1-Lipschitz ReLU networks.

1 Introduction

Linear inverse problems are ubiquitous in medical imaging. There, the goal is to reconstruct an
image x ∈ RK from measurements y = Hx + n ∈ RM . The linear operator H : RK → RM

models the acquisition system and n ∈ RM is an additive measurement noise. These problems are
typically ill-posed and additional information about x is required to obtain meaningful solutions. In
the variational framework for solving an inverse problem, one formulates it as an optimization task

x̂ = argmin
x∈RK

E(y,Hx) + λR(x), (1)

where the data-fidelity term E : RM × RM → R+ imposes closeness between the solution estimate
and the acquired measurements, the regularization termR : RK → R+ imposes some prior knowledge
on the image of interest, and λ ∈ R+ is a tunable hyperparameter. The cost functional in (1) is then
typically minimized using proximal algorithms such as forward-backward splitting (FBS) [10] and
the alternating direction method of multipliers (ADMM) [5].

The main idea in the Plug-and-Play (PnP) priors framework [24, 8] is to replace the proximal operator
of R in the iterations of proximal algorithms with some denoiser, even though it might not correspond
to an explicit regularization term. This implicit regularization approach has been shown to yield better
results than conventional variational methods for a variety of inverse problems since it allows the use
of powerful denoisers such as NLM [6], WNNM [13], BM3D [11], and neural networks [25, 17, 20],
which have emerged as state-of-the-art. However, the delicate point that remains is ensuring the
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convergence of these algorithms, which is non-trivial but essential for sensitive applications such as
the ones encountered in medical imaging.

There exist several works that analyze conditions on the denoiser under which PnP algorithms are
guaranteed to converge [18, 21, 7, 19, 12]. For example, Ryu et al. [17] show that PnP-FBS and PnP-
ADMM provably converge to fixed points if the denoiser obeys an appropriate Lipschitz condition.
They then propose a practical way to enforce the derived Lipschitz constraint while training neural
network denoisers. However, their analysis requires the data-fidelity term to be strongly convex and
this unfortunately rules out ill-posed inverse problems. In order to design convergent PnP schemes
for ill-posed problems, stricter conditions need to be enforced on the denoiser. More specifically, it
has been shown that averagedness (firm nonexpansiveness) of the denoiser is sufficient to guarantee
fixed point convergence of PnP-FBS (PnP-ADMM) [3, 14]. The design and training of constrained
neural networks to satisfy the averagedness or firm nonexpansiveness conditions is a challenging task
and is an emerging direction of research [22, 14].

In this work, we look at the problem of training 1-Lipschitz1 (nonexpansive) neural networks in
order to construct averaged denoisers. Several techniques have been proposed in the literature to
control the Lipschitz constant of ReLU networks such as spectral normalization [16] and Parseval
frames [9]. However, it has been observed that constraining ReLU networks may lead to a drop in
denoising performance. While the nonexpansiveness constraint reduces the capacity of the model,
the performance drop could also be imputed to the choice of the model and the training scheme.
Here, we propose to mitigate this drop in performance by using more adaptable models. In particular,
we consider deep spline neural networks [23] where the activation functions are learnable linear
splines. They are known to improve the performance relative to ReLU networks [4] and are amenable
to a control of the Lipschitz constant [2]. We present an efficient way to train 1-Lipschitz deep
spline neural networks using “slope normalization”, which can be viewed as the counterpart of
spectral normalization for activation functions. We then apply our trained denoisers to the PnP-FBS
framework for compressed sensing MRI and show the benefits of our approach.

Contributions. We provide proof of concept that 1-Lipschitz deep spline neural networks with
learnable activation functions improve the performance of provably convergent PnP algorithms for
ill-posed linear inverse problems.

2 Methods

In this work, we focus on the PnP-FBS algorithm. At each iteration, the estimate is updated as

x(t+1) = D
(
x(t) − α∇xE(y,Hx(t))

)
, (2)

where D: RK → RK is the plugged-in denoiser and α ∈ R+ is the gradient step size. We assume
that E : RM × RM → R+ is convex in the second argument and is differentiable with L-Lipschitz
continuous gradient. It has been shown that for α ∈ (0, 2/L), PnP-FBS is guaranteed to converge to a
fixed point if D: RK → RK is an averaged operator D = βR+ (1− β)Id, where R is a 1-Lipschitz
(nonexpansive) operator and β ∈ (0, 1) [3, 14].

Keeping this convergence result in mind, we now consider the problem of training an averaged
denoiser where R is a neural network whose Lipschitz constant must be constrained to be at most one.
We take R to be a simple convolutional deep spline network [23] consisting of a series of alternating
convolutional layers and pointwise nonlinear transformations. In contrast to the standard ReLU
network, we have a learnable piecewise-linear spline activation function for each output channel of
the preceding convolutional layer. The spline nonlinearities are represented using linear B-spline
basis functions that are compactly supported, allowing for an efficient computation of the forward
and backward passes during training [4] (see Appendix for more details).

The Lipschitz constant of the deep spline network is upper-bounded by the product of the Lipschitz
constants of the individual layers. Therefore, in order to ensure that the network is 1-Lipschitz, we
constrain the Lipschitz constants of each convolutional and spline activation functions to be at most
one. To do this during the training process, we use the argument that if an operator T is L-Lipschitz,

1An operator T: RK → RK is L-Lipschitz if ‖T(x) − T(y)‖ ≤ L‖x − y‖ for all x,y ∈ RK . The
smallest value of L is called the Lipschitz constant of T.
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then the normalized operator (1/L)T is 1-Lipschitz. The convolution operation can be viewed as a
matrix-vector product and its Lipschitz constant is the spectral norm (maximum singular value) of
this matrix. We rely on the real spectral normalization (real-SN) method [17] to control the Lipschitz
constant of the convolutional layers. Real-SN uses power iterations (without having to build the
convolution matrix explicitly) to efficiently compute the maximum singular value and normalizes the
convolution kernel accordingly. The Lipschitz constant of a linear spline function is the maximum
absolute value of its derivative. Since our learnable activation functions have a finite number of
pieces, we are able to compute the maximum absolute slope efficiently and normalize the function by
this constant to ensure that it is 1-Lipschitz. We term this process “slope normalization”: it is the
activation-function counterpart of spectral normalization.

3 Experimental Results

We now present some experimental results to demonstrate the advantages of the 1-Lipschitz deep
spline networks over the corresponding ReLU versions. We tackle the compressed sensing MRI
(CS-MRI) problem [17] using the PnP-FBS algorithm with neural networks trained for Gaussian
noise suppression that are constrained to be averaged operators. We first evaluate the performances
of the deep spline and ReLU based denoisers in Section 3.1. The performances of these denoisers for
the CS-MRI problem are reported in Section 3.2.

3.1 Evaluation of Gaussian Denoisers

We train Gaussian denoisers of the form D = βR + (1 − β)Id, with R being a CNN. The CNN
is chosen to be of the form R(x) = CQ ◦ · · · ◦ σq ◦Cq ◦ · · · ◦ σ1 ◦C1(x), where Cq denotes a
linear convolutional layer and σq denotes a pointwise nonlinear activation function. We consider
three different denoisers characterized by three CNNs: an unconstrained ReLU network (ReLU-U),
a 1-Lipschitz ReLU network (ReLU-L), and a 1-Lipschitz deep spline network (DS-L). Because
the ReLU-U denoiser is not guaranteed to be an averaged operator (unconstrained CNN), it only
serves as a baseline for comparing constrained cases (ReLU-L and DS-L). We fix β = 0.5 for all
models. This value could have been optimized by grid search, but the goal is to compare the relative
performance between ReLU-L and DS-L.

The training dataset consists of 400 images from the BSD500 dataset [1] divided into 238, 400 non-
overlapping patches of size 40× 40. From the remaining images, we create a validation dataset of 12
images and a test dataset of 68 images. The images take values between [0, 1]. We consider three
noise levels σ = 5/255, 10/255 and 20/255, where σ is the standard deviation of the Gaussian noise
added to the datasets. For each level of noise, we trained all denoising models considered (ReLU-U,
ReLU-L, and DS-L) with Q = {3, 5, 7, 9} (number of layers). The kernels for the convolutional
layers are of size (3 × 3) and the number of channels in the intermediate convolutional layers
is fixed to 32. For DS-L, the grid size for the learnable nonlinearities is 0.2 and the number of
knots is 51 (refer to Appendix A for details). All denoisers were trained for 200 epochs using an
ADAM optimizer [15] with a learning rate of 10−5 and a batch size of 128. The loss function is the
mean-square error (MSE). For DS-L, the loss function has a regularization term that penalizes the
second-order derivative of the learnable spline activation functions (refer to Appendix A for details).
The corresponding regularization parameter is set to 10−5.

The denoising results for σ = 5/255 are shown in Figure 1 while the results for σ = 10/255 and
20/255 are shown in Appendix B (Figures 2 and 3). As expected, we observe that for any value
of σ and Q, enforcing the 1-Lipschitz condition on the ReLU CNN leads to a drop in performance
(ReLU-U vs. ReLU-L in Figure 1). The DS-L denoiser is a more adaptable model and improves
in performance over the ReLU-L denoiser. Interestingly, the DS-L denoiser with only three layers
consistently outperforms the ReLU-L denoiser with nine layers even though it has fewer learnable
parameters. This shows that increasing the capacity of the model by learning activation functions
seems to be more beneficial than increasing the number of layers for such constrained training tasks.

3.2 Compressed Sensing MRI

We now look at the CS-MRI problem of recovering an image x ∈ RK from its measurements
y = MFx+ n ∈ CM , where M is a subsampling mask (identity matrix with some missing entries),
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Figure 1: Denoising test performances (PSNR and SSIM) of the three models considered (ReLU-U,
ReLU-L, and DS-L) for the noise level σ = 5/255.

Table 1: PSNR values for the CS-MRI experiment for σn = 10/255, Q = 5, and σ = 5/255

Subsampling mask Random Radial Cartesian
Image type Brain Bust Brain Bust Brain Bust

Zero-filling 12.72 11.49 12.15 9.51 10.99 9.15
ReLU-L 20.25 17.05 19.02 16.22 13.70 12.85
DS-L 20.78 17.76 19.51 17.00 14.23 13.53

F is the discrete Fourier transform and n is a complex Gaussian noise with variance σ2
n (not to be

confused with σ, the noise variance used for training the denoisers) for both the real and imaginary
parts. We use PnP-FBS with the trained denoisers described in the previous section to solve this
inverse problem. Since we are interested in a convergent PnP-FBS algorithm, we compare the
performances of the ReLU-L and DS-L denoisers only.

The data-fidelity term is chosen as E(y,MFx) = (1/2)‖y −MFx‖2. We run the CS-MRI
experiment on two images of size 256× 256 and which take values between [0, 1]. We consider three
kinds of subsampling masks (random, radial and cartesian) [17], each with a subsampling ratio of
0.3. Further, we also consider three levels of noise σn = 10/255, 20/255, and 30/255. The step size
α for PnP-FBS is set to 10−5. This value is chosen based on the Lipschitz constant of the gradient of
the data-fidelity term (Section 2). The PnP-FBS algorithm is initialized with the zero-filled estimate,
obtained by taking the inverse discrete Fourier transform of the zero-filled subsampled measurements.

We use ReLU-L and DS-L denoisers with Q = 5. For each experimental setup (subsampling mask
and image type), we evaluate the performance of these denoisers in terms of PSNR for different
values of σ (denoising strength) and report the best models. The results for σn = 10/255 are
presented in Table 1. The results for the other two noise levels as well the reconstructed images
are provided in Appendix B (Tables 2 and 3 and Figures 4, 5 and 6). We observe that the DS-L
denoiser systematically yields better image reconstructions than the ReLU-L denoiser. Thus, the
improvement in denoising performance is translated to the CS-MRI problem, highlighting the benefits
of the proposed approach.

4 Conclusion

In this work, we looked at the problem of building averaged (denoising) operators using 1-Lipschitz
CNNs for provably convergent PnP algorithms that are used for solving ill-posed linear inverse
problems. To mitigate the drop in performance resulting from such a constraint, we proposed the
use of deep spline networks whose piecewise-linear spline activation functions can be trained while
guaranteeing a controlled Lipschitz constant. To this end, we introduced “slope normalization”
as the counterpart to spectral normalization. We showed that averaged denoising operators built
from 1-Lipschitz deep spline networks consistently outperformed those built from 1-Lipschitz ReLU
networks for both denoising and CS-MRI. Our findings suggest that deep spline networks have higher
expressivity under Lipschitz constraints than ReLU networks, even with fewer trainable parameters.
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A Deep Spline Neural Networks

In deep spline neural networks, besides the linear weights or convolution kernels, we also have learnable
nonlinearities that are piecewise-linear splines. This choice stems from a functional formulation of the training
of a neural network with free-form activation functions. If the cost functional for the training process includes a
regularization term that penalizes the second-order total-variations of the activation functions, then the optimal
activation functions are known to be adaptive piecewise-linear splines [23].

A.1 B-Spline Representation

For each nonlinearity in the network, we consider a linear spline s with K knots on a finite grid of size T . We
assume that K is odd. Let kmin = −(K − 1)/2 and kmax = (K − 1)/2. The function s is then represented as

s(x) =


ckmin +

1
T
(ckmin − ckmin−1)(x− kminT ), x ∈ (−∞, kminT )

kmax+1∑
k=kmin−1

ckϕT (x− kT ), x ∈ [kminT, kmaxT ]

ckmax +
1
T
(ckmax+1 − ckmax)(x− kmaxT ), x ∈ (kmaxT,∞),

(3)

where ϕT is the triangle-shaped B-spline

ϕT (x) =

{
1−

∣∣ x
T

∣∣, −T ≤ x ≤ T,
0, otherwise,

(4)

and the B-spline coefficients c = (ck) are the adjustable quantities during the training process. The last two
coefficients on either side - (kmin−1, kmin) and (kmax, kmax+1) - are responsible for handling the linear extensions
beyond the interval [kminT, kmaxT ].

The second-order total-variations for the regularization term in the cost function can be computed as TV(2)(s) =
‖Lc‖1, where

L =
1

T



1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
...

...
. . .

. . .
. . . 0

0 · · · · · · 0 1 −2 1

 . (5)

This regularization term promotes sparsification of the knots in the linear spline.
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Figure 2: Denoising test performances (PSNR and SSIM) of the three models considered (ReLU-U,
ReLU-L, and DS-L) for the noise level σ = 10/255.
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Figure 3: Denoising test performances ( PSNR and SSIM) of the three models considered (ReLU-U,
ReLU-L, and DS-L) for the noise level σ = 20/255.

A.2 Computation of the Lipschitz Constant

The Lipschitz constant of the linear spline s is the maximum absolute value of its gradient and can be computed
as sLip = ‖Dc‖∞, where

D =
1

T



−1 1 0 0 · · · 0
0 −1 1 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
. . .

. . . 0
0 · · · · · · 0 −1 1

 . (6)

Thus, the Lipschitz constant of the linear spline activation functions can be computed in an efficient manner in
order to perform slope normalization.

B Additional Results

Here, we present additional results for both the Gaussian denoising and compressed sensing MRI tasks.

B.1 Evaluation of Gaussian Denoisers

Figures 2 and 3 show the denoising results for Gaussian noises with variances σ = 10/255 and σ = 20/255,
respectively.

B.2 Compressed Sensing MRI

In Tables 2 and 3, we present the results for CS-MRI for σn = 20/255 and σn = 30/255, respectively. Also,
we show the reconstructed images for all the different settings in Figures 4, 5 and 6.
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Table 2: PSNR values for the CS-MRI experiment for σn = 20/255, Q = 5, and σ = 5/255

Subsampling mask Random Radial Cartesian
Image type Brain Bust Brain Bust Brain Bust

Zero-filling 11.27 9.21 10.86 7.95 9.98 7.70
ReLU-L 18.21 14.93 17.40 14.39 13.23 12.10
DS-L 18.60 15.55 17.84 15.00 13.73 12.67

Table 3: PSNR values for the CS-MRI experiment for σn = 30/255, Q = 5, and σ = 5/255

Subsampling mask Random Radial Cartesian
Image type Brain Bust Brain Bust Brain Bust

Zero-filling 9.58 7.04 9.27 6.18 8.66 6.01
ReLU-L 16.09 12.82 15.51 12.56 12.55 11.02
DS-L 16.39 13.27 15.83 13.04 12.94 11.48
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Figure 4: Two types of images (brain and bust) reconstructed for the CS-MRI experiment with three
subsampling masks (random, radial and Cartesian) for σn = 10/255 and σ = 5/255.
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Figure 5: Two types of images (brain and bust) reconstructed for the CS-MRI experiment with three
subsampling masks (random, radial and Cartesian) for σn = 20/255 and σ = 5/255.
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Figure 6: Two types of images (brain and bust) reconstructed for the CS-MRI experiment with three
subsampling masks (random, radial and Cartesian) for σn = 30/255 and σ = 5/255.
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