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Abstract

Air pollution was responsible for 2.6 million deaths across South Asia in 2021 alone,
with brick manufacturing contributing significantly to this burden. In particular,
the Indo-Gangetic Plain; a densely populated and highly polluted region spanning
northern India, Pakistan, Bangladesh, and parts of Afghanistan sees brick kilns con-
tributing 8—-14% of ambient air pollution. Traditional monitoring approaches, such
as field surveys and manual annotation using tools like Google Earth Pro, are time
and labor-intensive. Prior ML-based efforts for automated detection have relied
on costly high-resolution commercial imagery and non-public datasets, limiting
reproducibility and scalability. In this work, we introduce SENTINELKILNDB, a
publicly available, hand-validated benchmark of 62,671 brick kilns spanning three
kiln types Fixed Chimney Bull’s Trench Kiln (FCBK), Circular FCBK (CFCBK),
and Zigzag kilns - annotated with oriented bounding boxes (OBBs) across 2.8
million km? using free and globally accessible Sentinel-2 imagery. We benchmark
state-of-the-art oriented object detection models and evaluate generalization across
in-region, out-of-region, and super-resolution settings. SENTINELKILNDB enables
rigorous evaluation of geospatial generalization and robustness for low-resolution
object detection, and provides a new testbed for ML models addressing real-world
environmental and remote sensing challenges at a continental scale. Datasets
and code are available in [SentinelKilnDB Dataset/ and |SentinelKilnDB Bench-
mark, under the Creative Commons Attribution—-NonCommercial 4.0 International
License.

1 Introduction

Air pollution is responsible for seven million deaths annually. In 2021, 15% of all global deaths among
children under five were linked to air pollution [60], with India alone accounting for 22% of these
casualties [59]. Nearly 2.3 billion people across South-East Asia are exposed to hazardous levels of air
quality. To understand and mitigate this impact, air quality researchers rely on physics-based chemical
transport models, such as CAMx [[L], which require accurate emission inventories [[18]]. Brick kilns
are among the major contributors to ambient air pollution in the Indo-Gangetic Plain, accounting for
8-14% of total emissions in South Asia [67]. Beyond their environmental footprint, brick kilns are
also socio-economically significant, employing an estimated 15 million workers, including children,
thus intersecting directly with UN Sustainable Development Goal 8.7 on ending forced labor and
child exploitation [42] 6]]. In India, approximately 45% of brick production is concentrated in the
Indo-Gangetic Plain (IGP), commonly referred to as the “brick belt” of the country. The region is
home to three primary kiln types: Circular Fixed Chimney Bull’s Trench Kilns (CFCBK3s), Fixed
Chimney Bull’s Trench Kilns (FCBKs), and Zigzag kilns. FCBKs are the most prevalent, accounting
for 70-75% of kilns, while Zigzag kilns make up 20-25%. Zigzag kilns are estimated to be up to
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40% more fuel-efficient than FCBKSs, making them a target for cleaner technology transition. In
Bangladesh, significant shifts have occurred with the number of Zigzag kilns rising from 150 to 4,247
and FCBKs declining from 4,500 to 2,373 between 2009 and 2017 [49]. Pakistan, the third-largest
brick producer in Asia, had around 20,000 kilns as of 2021 [13]], while Afghanistan primarily relies
on traditional kiln methods [13]]. Monitoring small, unregulated brick kilns through traditional field
surveys is labor-intensive, resource-consuming, and inherently unscalable. To maintain emission
inventories, air quality experts manually annotate satellite imagery. According to domain experts,
scanning and labeling an area of 3,600 km? can take 6-8 hours, implying over 7,000 hours of manual
effort to cover India. The dynamic nature of kiln locations further complicates repeat surveys. Recent
studies [29] have explored transfer learning using pretrained CNNs such as VGG16 [22], ResNet [21]],
and EfficientNet [53] for brick kiln classification from satellite imagery. However, classification
approaches require an additional post-processing step to localize kilns spatially. In contrast, object
detection models provide an end-to-end solution for both identification and geo-localization. Prior
work [35}16] has used axis-aligned object detectors for this task, but has not leveraged recent advances
in oriented bounding box (OBB) detection. OBBs allow for more accurate estimation of kiln area and
spatial extent—critical for downstream tasks such as estimating production capacity and emission
factors. In our previous research work, Space to Policy [38]], we detected 30,638 brick kilns using
Planet imagery [41] across five Indo-Gangetic states, covering an area of 520K km?. We did not
release the dataset due to Planet Labs’ policy, which is open to educational and research purposes
but limited to non-commercial and non-shareable [58, 40]. Our paper focuses on building a large-
scale dataset of brick kilns in the Indian subcontinent with oriented bounding box (OBB) labels in
low-resolution Sentinel-2 imagery. We use satellite images from Sentinel-2 (10 m/pixel), covering
a total area of approximately 2.8 M km?. We begin with the dataset from our previous work [38],
which identified 30,638 brick kilns across five Indian states using Planet Imagery [41]. We trained
the YOLOvV11L-OBB model [27] and predicted in our area of interest. We manually validated the
model’s predictions using Esri Wayback imagery [2]]. Our brick kiln detection pipeline follows an
iterative process consisting of: (i) training, (ii) prediction, (iii) manual validation of the predicted
labels, and (iv) appending the validated results to the existing dataset. Through four rounds of this
process, we expanded the dataset to 62,671 brick Kkilns across India, Bangladesh, Pakistan, and
Afghanistan. For accurate label creation, we utilized moderate-resolution Planet imagery [39] and
mapped the identified brick kilns onto corresponding Sentinel-2 imagery to compile the final dataset.
To the best of our knowledge, no prior work has provided oriented bounding box (OBB) annotations
on low-resolution satellite imagery with hand validation. We release the Sentinel-2 imagery with
OBB labels in YOLO OBB format, axis-aligned (AA) labels in YOLO and DOTA [70] formats.

To assess the utility of SENTINELKILNDB for real-world deployment and model development, we
benchmark several state-of-the-art object detection models. Our evaluation spans multiple tasks:
(1) in-region detection, where models are tested on regions included in the training distribution; (ii)
out-of-region generalization, to assess robustness on geographically unseen areas; (iii) temporal
generalization, where we evaluate robustness to seasonal dynamics using data from all four seasons
in the Lucknow airshed: Winter (W), Pre-Monsoon (PM), Monsoon (M), and Post-Monsoon (PoM);
and (iv) super-resolution adaptation, where we evaluate model performance on enhanced-resolution
imagery to quantify the gains achievable through super-resolution techniques. This multi-task
evaluation framework enables a rigorous analysis of both detection performance and geospatial
generalization, critical for scalable and transferable applications in low-resolution remote sensing.
Our dataset has broad utility across both environmental science and machine learning research. From
a domain perspective, the oriented bounding box (OBB) annotations allow for precise estimation of
kiln area, which can be used to estimate emissions at the individual Kiln level and enhance regional
emission inventories. This supports more accurate air quality modeling and policy interventions. The
main contributions of this paper are:

1. We introduce SENTINELKILNDB, a Sentinel-2 benchmark containing bounding boxes of
62,671 brick kilns across South Asia to facilitate training and evaluation of object detection
models on satellite imagery (see Section [4.4).

2. We provide a benchmark of 28 state-of-the-art object detection models developed over the
past decade, along with standard evaluation (see Table .

3. We show that pre-training remote sensing foundation models on satellite imagery yields
significant gains over prior models on benchmarks and downstream tasks (see Table|3).



4. We present insights into out-of-region generalization, seasonal dynamics, and super-
resolution performance (see Section [4.4).

Our work is fully reproducible. All code and experimental details are available in our GitHub
repository{ﬂ Our dataset and metadata are available on KaggleE] under the Creative Commons
Attribution—-NonCommercial 4.0 International License [10].

2 Background & Related work

In this section, we provide a background on brick kilns and the pertinent relevant work.

2.1 Brick Kilns

Approximately 45% of India’s brick production is concentrated in the Indo-Gangetic Plain (IGP), one
of South Asia’s most densely populated and polluted regions [56]]. Kilns are mainly CFCBK (oldest,
fuel-intensive, high emissions), FCBK (newer, more efficient), and Zigzag (natural/forced draft), with
Zigzag cutting energy use and emissions by ~ 40% compared to FCBK but adopted by only 25-30%
of kilns [56]. In India, FCBKSs produce 60-70% of bricks, with more than 30,000 kilns across the
IGP [4]. Bangladesh has a high share of Zigzag kilns due to policy push, while Afghanistan and
Pakistan (especially Punjab) remain FCBK-dominant but are transitioning to Zigzag.

2.2 Related Work

Object Detection for Aerial Imagery: Object detection in aerial imagery has recently captured
attention in the object detection community. It is hard for two main reasons: i) targets are often sparse
and non-uniformly distributed, making detection inefficient, and ii) focal objects like pedestrians
are very small and blend into the surrounding backgrounds unlike natural images in MS COCO
dataset [32]] where objects are easily identifiable. Our dataset has similar challenges and thus falls
within the area of ‘object detection from aerial imagery’.

Remote Sensing OBB Datasets: Popular remote sensing datasets such as VEDAI, HRSC2016,
DOTA, FGSD, and DIOR-R [43| 33} (70, [7} 8] primarily focus on object categories like vehicles,
ships, and urban infrastructure. However, they give limited attention to industrial emissions—an
increasingly critical issue in the context of global warming and climate policy. Our dataset fills this
gap by uniquely representing large-scale, unorganized sources of air pollution such as brick kilns.

Oriented Object Detection: Detecting objects with arbitrary orientations (Oriented Bounding Boxes
(OBB) remains a challenging task in remote sensing. In recent years, significant advancements have
been made in object detection, including notable progress in oriented object detection [[65 76 14} 19}
85 183]]. However, most existing methods benchmark their performance on high-resolution datasets
such as HRSC-2016 [33] and DOTA [70]. While these datasets are valuable, their high resolution
makes it comparatively easier to identify object orientations. In contrast, detecting orientation in
low-resolution imagery is more difficult due to reduced spatial detail. Our dataset provides a valuable
benchmark for advancing research in Oriented Object Box (OBB) Detection in Low-Resolution
Remote Sensing Imagery.

Brick Kiln Detection from Satellite Imagery: Machine learning techniques applied to satellite
imagery have been utilized to identify brick kilns in South Asian regions. A recent work [35]
employs a gated neural network that decouples classification and object detection tasks to identify
brick kilns. The study utilizes a deep learning architecture inspired by Inception-ResNet [52]] and
the You Only Look Once (YOLO) [44] object detector to locate brick kilns and evaluate it over a
3300 km? area. In contrast, we evaluate our models on more than 2.8M km? region. A study by
Lee et al. (2021) for brick kiln classification in Bangladesh, identifying 3,345 non-geotagged brick
kilns [29]. A recent work [6] uses YOLOV3 axis-aligned bounding box model to detect the FCBK
kilns in the Indo-Gangetic plain. Another notable work, SustainBench [81], is a benchmark for kiln
detection using Sentinel-2 imagery. It framed the task as tile-level classification over 64x64x13
patches (6,329 positives, 67,284 negatives; Bangladesh, 2018—19). In contrast, our dataset provides
oriented bounding boxes, capturing the direction and shape of each kiln accurately with positive
samples.
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ESA WorldCover v200: For negative examples, we curated 41,068 Sentinel-2 tiles using ESA
WorldCover v200 [84], selecting land-cover—pure regions with at least 99.90% class confidence
across eight relevant classes. All candidate tiles were manually verified against Esri basemaps, and
any image containing visible kilns was discarded.

3 SentinelKilnDB Dataset
This section outlines the dataset construction process and key statistics.

3.1 Imagery Sources

Sentinel Imagery: Sentinel-2 [66] provides optical imagery at 10-60 m resolution across 13 spectral
bands. Each tile spans 110 x 110 km [12]. Using Google Earth Engine (GEE), we accessed the
Sentinel-2 Surface Reflectance product (COPERNICUS/S2_SR_HARMONIZED), retrieving bands B4
(Red), B3 (Green), and B2 (Blue) at 10 m resolution with <1% cloud cover and masking clouds
via QA60. We focused on November 2023—February 2024, when brick kilns are most active and
contrast with surrounding farmland is highest. We empirically set a patch size of 128 x 128 pixels
with a 0.0027° (=30-pixel) sliding window (overlaps) to capture edge kilns and later deduplicated by
geographic coordinates. The pipeline first downloads 11,000 x 11,000-pixel Sentinel-2 tiles, then
splits them into overlapping 128 x 128 patches, yielding the image samples shown in Figure[I]

Planet Imagery: We utilize satellite imagery from Planet Labs [28]], which offers high-cadence
imagery products 4.77-meter monthly and quarterly mosaicsﬂ The imagery is accessed through
Planet’s Research and Education Program and downloaded via the Mosaics API [3]. To preserve
object integrity, large 4096 x 4096 images are split into overlapping 640 x 640 crops with 64-pixel
overlap. We use imagery from Q1 2024 to ensure cloud-free conditions during peak kiln activity.

Esri Wayback Imagery: Esri provides high-resolution (up to 30 cm) timestamped basemaps via a
Web Map Service (WMS) [16]. We used imagery same time window to match the Planet Q1 mosaics.
Due to WMS limitations, this imagery was not used for training and does not support bulk downloads.

ESA WorldCover v200: For negative examples, we curated 41,068 Sentinel-2 tiles using ESA
WorldCover v200 [84], selecting land-cover—pure regions with at least 99.90% class confidence
across eight relevant classes. All candidate tiles were manually verified against Esri basemaps, and
any image containing visible kilns was discarded. Representative negative sample images are shown
in Figure[I3]in the Appendix.

3.2 Label Creation Pipeline

Inter-Annotator Agreement to Quantify Labeling Uncertainty: We did not compute formal
inter-annotator agreement, but followed a quality-control workflow inspired by AI-TOD [74,38]]. S1)
Experts created a seed set and a standardized manual; S2) trained volunteers annotated accordingly;
$3) one annotator screened boxes and a second verified tightness and orientation; S4) doubtful cases
were flagged; S5) an air-quality expert adjudicated flags and assigned final labels. While not every
image had multiple annotators, all uncertain cases underwent expert review to ensure consistency and
reduce labeling uncertainty.

Scalable Brick Kiln Mapping through Data Collection and Validation across South Asia In
our previous research, Space to Policy [38]], we identified and annotated 30,638 brick kilns across five
Indo-Gangetic states (Punjab, Bihar, Haryana, Uttar Pradesh, and West Bengal) using Planet imagery.
We trained a model on four manually labeled small airsheds and applied it to predict kilns across all
five states. The bounding boxes and kiln types were then manually validated using Esri Wayback
Imagery [2]]. For the dataset creation process in this paper, we began with the 30,638 labeled brick
kilns and trained our model on that dataset. Using Planet imagery, we subsequently predicted kiln
locations in Rajasthan, Gujarat, Jharkhand, Assam, and Delhi, as well as in three neighboring South
Asian countries (Bangladesh, Pakistan, and Afghanistan), covering 54.76% of South Asia. To ensure
the accuracy of the predicted oriented bounding boxes (OBBs) and kiln type classifications, each
prediction was manually validated using a custom-developed user interface built with Leafmap [69]
for Esri Imagery visualization (see Figure[§). We repeated the brick kiln detection pipeline, namely
(1) training, (ii) prediction, (iii) manual validation, and (iv) appending to the existing data, three times.
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As a result, we expanded our dataset to 62,671 brick kilns, categorized into three types: CFCBK
(1,944), FCBK (33,963), and Zigzag (26,764). The complete dataset is shown in Figure |Z[, with
high-resolution examples included in Appendix Figure 3] [38].

Iteration Limits and Manual Validation Effort We limited the brick-kiln detection pipeline to
three iterations based on diminishing returns, the cost of manual validation, and external validation
indicating dataset completeness Table [1| uses the following notation: M{ is the baseline kiln
count from our prior study [38]; MNFF denotes the newly predicted positives in pass i; AMKX
is the subset confirmed by manual vahdatron The cumulative confirmed kilns after pass ¢ are
ME = MX, + AMX. Finally, M denotes the manual-validation time in pass i, which scales

with MNFF . As shown in Table each successive iteration of the detection pipeline produced fewer

Table 1: Progress across three iterations of the brick kiln detection pipeline, showing predicted
positives, confirmed kilns, and manual hand-validation effort.

Country ME MNP OAME MNP AME MY AME M7 MT MI MK TowlT
India 30638 8799 7,105 6,542 2985 8554 2254 36h08m 27h17m 35h38m 42,982  99h 03m
Bangladesh 0 6399 6200 599 296 692 407 26h40m  2h30m 2h10m 6903  31h20m
Pakistan 0 8786 8051 3334 1417 6534 2709 36h37m 13h57m 27h13m 12,177 77h47m
Overall 30,638 23,984 21,356 10475 4,698 15780 5370 99h25m 43h44m 65h0lm 62,062 208h [0m

newly confirmed kilns per predicted positive, reflecting diminishing returns. For example, in India the
number of newly confirmed kilns decreased from AM{ = 7,105 in the first pass to AME = 2,254
in the third, while in Pakistan the decrease was from AM{ = 8,051 to AME = 2,709. Overall
yield fell from approximately 0.81 kilns per predicted positive in round 1t00.341in round 3, indicating
saturation. Each predicted box also underwent a two-stage manual review with expert adjudication
for edge cases. This rigorous process ensured near-zero false positives (as discussed under sampling
bias) but required substantial human effort, with 62,062 instances manually verified over 208 hours,
underscoring our emphasis on precision and auditability. Finally, strong external validation further
supports the completeness of our dataset: prior work showed that our district-level kiln counts in
Uttar Pradesh align closely with official data from the 2023 Uttar Pradesh Pollution Control Board
survey (19,671 kilns), with a Pearson correlation of r» = 0.94, suggesting low false negatives and
high coverage.

3.3 OBB Label Transfer from Planet to Sentinel-2

After completing the label creation, we overlaid the Planet imagery labels onto the cropped, geo-
referenced Sentinel-2 images. Planet imagery is in the Web Mercator projection (EPSG:3857), while
Sentinel-2 uses the Universal Transverse Mercator (UTM) projection (EPSG:326XX, depending
on the zone). To align the datasets, we reprojected the oriented bounding box (OBB) coordinates
from Web Mercator to the corresponding UTM zone of the Sentinel-2 tiles using spatial reference
transformation based on geolocation metadata. To ensure accurate alignment, we performed both
visual inspections using Geemap [68]] and quantitative validation using Intersection over Union (IoU)
metrics. Note that one can extract geo-referenced bounding boxes of brick kilns from our dataset and
overlay them on any geo-referenced satellite imagery, regardless of its resolution.

Figure 1: A few samples of Sentinel-2 imagery w1th Oriented Bounding Boxes (OBBs) around brick
kilns. CFCBK (Circular Fixed Chimney Bull’s Trench Kiln) is marked in red, FCBK (Fixed Chimney
Bull’s Trench Kiln) in blue, and Zigzag kilns in green.



Table 2: Physically present, unique class-wise kiln counts by country/region (left) and dataset split
summary (right). Image files are .png; label files are . txt. BBoxes denotes the total number of
bounding boxes (the lines across label files).

Country State/Region CFCBK FCBK Zigzag Total Neg. Samples Images Label files No. of
India 9 states 1939 21451 19,592 42,982 30,650 Split_ (png)  (xt)  BBoxes
Bangladesh 8 divisions 2 1461 5440 6,903 5,548 Train 71,856 47,214 63,787
Pakistan 4 provinces 3 10,443 1,731 12,177 3,970 Val 23,952 15,738 21,042
Afghanistan 34 provinces 0 608 1 609 900 Test 18,492 10,278 12,819
Total - 1,944 33,963 26,764 62,671 41,068 Total 114,300 73,239 97,648

3.4 Overall Dataset Statistics

Table [2] summarizes the distribution of brick kilns physically present across South Asia—India,
Bangladesh, Pakistan, and Afghanistan(see Appendix Figs.[d] [ [6] [7)—totaling 62,671 annotated
kilns. India dominates the dataset, contributing over 42,000 kilns, primarily from Uttar Pradesh,
Bihar, and West Bengal. The distribution highlighted a regional preference for different kiln types:
India shows a relatively balanced spread among FCBK and Zigzag kilns, while CFCBKs remain
sparse. In contrast, Bangladesh exhibits a strong dominance of Zigzag kilns, reflecting the country’s
regulatory push toward cleaner technologies. Pakistan, particularly Punjab (Pak), reports a high
number of FCBKs, while Afghanistan’s entries are minimal and largely limited to FCBKSs. This
diverse geographical and typological spread underlines the need for tailored policy and technological
interventions across different regions to effectively monitor and regulate kiln emissions.

Region
3 Afghanistan (644,345 km?)
[ Pakistan (806,374 km?)
B India (1,202,598 km?)
[ Bangladesh (139,852 km?)

10° 10! 10? 10° 10* 10°
Kiln Count
(a) Coverage of our dataset over various countries (b) Brick kiln count per state

(c) CFCBK (d) FCBK (e) Zigzag

Figure 2: Spatial distribution of brick kilns across South Asia. (a) Dataset extent covering Afghanistan,
Pakistan, India, and Bangladesh. (b) State-wise kiln counts (log scale). (c—e) Distribution by type:
CFCBKs concentrated in Uttar Pradesh, Bihar, and West Bengal; FCBKs widespread; Zigzags absent
in Afghanistan.

3.5 Dataset Format

We release the Sentinel-2 patches of size 128 x 128 with 10 meter-per-pixel native resolution and
corresponding bounding boxes as the dataset. The images are provided in .png format and are saved
with lat,lon.png naming convention where lat and lon are the center coordinates of the images.
The labels are provided in both OBB and AABB formats, following the YOLO [45], DOTA



format. The labels are saved in lat,lon.txt format to match the corresponding lat,lon.png
image. We will release our dataset under CC BY NC 4.0 license.

4 SentinelKilnDB Benchmark

In this section, we discuss the benchmarking of models on our dataset across different tasks.

4.1 Benchmarks

T1: In-region detection We benchmarked detectors for localizing and segregation of kilns in 10
m Sentinel-2 imagery, where a 300 m kiln spans 30 pixels. We fine-tuned one-stage, two-stage,
transformer-based, and remote-sensing foundation models with Faster R-CNN heads for OBB and
AA variants. One-/two-stage detectors and Faster R-CNN-based foundation models require NMS
to prune duplicates; DETR-style transformers output a fixed set without NMS. All models were
evaluated using their standard training inference pipelines.

T2: Out-of-the-region detection Geographic domain adaptation is an important experiment in
remote sensing data, as the RGB distribution in satellite imagery can change across different regions.
After we identified the best-performing models on our dataset, we tested how well these models work
in different geographic regions. We first trained and tested the models on the same region to measure
in-region performance. Then, we trained the models on one region and tested them on a different
region to measure out-of-region performance.

T3: Temporal Generalization Seasonal variation plays a crucial role in remote sensing analysis,
as land-cover appearance and atmospheric conditions change throughout the year. To assess model
robustness under such temporal dynamics, we designed two complementary setups: (i) a leave-one-
season-out (LOSO) experiment using data from Winter (W), Pre-Monsoon (PM), Monsoon (M), and
Post-Monsoon (PoM), and (ii) a Winter-trained model (the peak brick kiln activity period) evaluated
across the remaining seasons. Together, these setups capture the challenge of achieving reliable,
year-round monitoring of brick kilns under diverse seasonal conditions.

T4: Super resolution Sentinel-2 imagery is low resolution. We applied super-resolution methods
using only pretrained models at inference on our Sentinel-2 data (see Appendix Figure[16). This
addresses resolution limits without requiring costly high-resolution commercial imagery. We then
evaluated the best-performing detector on the enhanced images to test whether super resolution
improved detection performance.

4.2 Models

In this section, we discuss about various models to perform benchmark on our dataset. We chose
the set of models as per the following criteria: i) OBB v/s AA bounding box support; ii) two-stage
methods; iii) one-stage methods; iv) DETR-based methods; and v) remote sensing foundation models.
Below, we provide a brief summary of each model used for benchmarking.

One-Stage Methods:  One-stage oriented object detection methods provide efficient frameworks
for localizing objects while addressing the challenges of angle discontinuity and annotation costs.
Phase-Shifting Coder (PSC) [82] reformulates angle prediction as a periodic problem, using discrete
circular representations to predict accurate oriented bounding box (OBB) detection. H2ZRBox [79]
leverages only horizontal box supervision, bridging the gap between easy annotation and precise
localization through hybrid representations. Rol Transformer [15] further improves alignment
by learning transformations that match rotated regions of interest with objects, thereby resolving
misalignment between horizontal proposals and rotated targets.

Two-Stage Methods: Two-stage detectors generate region proposals in the first stage and refine
them in the second for classification and bounding box regression. Rotated FCOS [55]] is an anchor-
free detector that predicts object angles together with center points and sizes, while DCFL [73]] adopts
a two-stage learning strategy that first identifies coarse locations and then refines them. CSL [73]]
reformulates angle regression as classification with circular smooth labels to mitigate periodicity
issues. Rotated RetinaNet [31] builds on an anchor-based framework by incorporating orientation
prediction for rotated object detection. GWD [77] introduces a loss based on Gaussian Wasserstein
Distance to capture geometric differences between oriented boxes. R3Det [76] progressively refines
region proposals with rotation-aware losses, while S2A-Net [20] integrates spatial feature alignment
and angle-sensitive mechanisms. More recent architectures include ConvNeXt [34]], which adapts con-



volutional networks with transformer design elements for dense prediction tasks; YOLO-World [9],
which enables open-vocabulary detection via vision-language pretraining; YOLOv12L [54], op-
timized for real-time high-resolution inference; and YOLO-OBB [25]], which extends YOLO to
oriented bounding box detection by predicting object rotations. Recent loss-based enhancements
such as KFIoU [80] and KLD [78], further improve orientation-aware regression by incorporating
geometric and probabilistic modeling techniques.

DETR-Based Methods: DETR-based detectors formulate object detection as a direct set predic-
tion problem, where a fixed number of object queries attend to image features through transformers
to produce bounding boxes and classifications without the need for anchors or non-maximum sup-
pression. Several extensions refine this framework. DETA [89] modifies object-query matching to
stabilize training and improve accuracy without complex post-processing. RT-DETR [88] combines
convolutional backbones with lightweight transformers to enable real-time detection. RF-DETR [47]]
adopts a region-focused strategy that enhances query assignment, improving performance on dense
and small-object detection tasks.

Remote Sensing Foundation Models:  Foundation models for remote sensing aim to learn
transferable representations from large-scale, multi-modal Earth observation data. SatMAE [11]
extends masked autoencoders to temporal and multi-spectral imagery. TerraMind [24] introduces
dual-scale generative modeling across nine modalities for zero- and few-shot transfer. Galileo [|57/]]
uses masked modeling with contrastive losses for multi-scale feature learning. DOFA [72] employs
a dynamic hypernetwork to integrate diverse sensors, including unseen modalities. CROMA [17]]
fuses optical and SAR data through contrastive and reconstruction objectives with attention-biasing
strategies. CopernicusFM [64]] leverages an 18.7M-image dataset from Sentinel missions with
dynamic hypernetworks and a systematic benchmark for EO, weather, and climate tasks.

4.3 Evaluation

For task T1, we conducted experiments using the data setup shown in Table[2] For fair evaluation, we
created a clean test set that does not share any .png, .txt, or bounding boxes BBoX with the train
and validation sets. For task T2, we use two setups: (i) Region-wise: Uttar Pradesh data split 60:20:20
(stratified) for train/val/test, evaluating in-region (UP) and out-of-region (Dhaka, Bangladesh; Punjab,
Pakistan); (ii) Leave-One-Country-Out (LOCO): among four countries, hold out one for testing and
train on the remaining three. For T3, we conduct a LOSO experiment using Winter (W), Pre-Monsoon
(PM), Monsoon (M), and Post-Monsoon (PoM) data, with a Winter-trained model tested on other
seasons. This setup reflects the practical challenge of year-round kiln monitoring under seasonal
variability in the Lucknow airshed (3,962 km? [38]]). For task T4, we apply various super-resolution
methods to Sentinel-2 images across the Delhi-NCR dataset (60:20:20 stratified train/val/test) and
evaluate our best-performing detector on the enhanced imagery. We report class-agnostic mAPsg
and class-aware AP5( across three classes. Model hyperparameters are provided in the appendix. All
experiments were run on an NVIDIA A100 GPU.

4.4 Results

T1: Benchmarking of Different Models: Table 3] (see Appendix Fig.[9) summarizes results across
detector families. Two-stage methods (e.g., Rol Transformer) achieve moderate performance (CA
mAP5¢ = 70.74), one-stage YOLO variants improve further (YOLOvVSL-WORLDv2: 80.07), and
DETR-based models raise the bar (RTDETR: 86.17). Remote-sensing foundation models outperform
generic detectors: Galileo and TerraMind lead, with TerraMind achieving the highest CA mAPs5q
(86.91) and strong class-wise APsg, especially for Zigzag (75.55). Overall, AA-based models
consistently surpass OBB-specific designs; Zigzag is the easiest class, while CFCBK remains the
hardest due to limited ground-truth examples. DETR-style heads and ViT backbones drive the largest
gains, and remote-sensing pretraining provides the strongest lift, particularly for minority classes.
Notably, existing models still struggle with certain classes in low-resolution imagery, highlighting
opportunities for unified AA/OBB formulations, label-efficient learning.

T2: Spatial Shift Performance: Table [ represents the region-wise experiments showing that AA-
based detectors with transformer backbones generalize more effectively across different regions than
OBB-specific and two-stage designs, with YOLO models providing stable performance as competitive
baselines. LOCO validation further confirms that models leveraging ViT architectures transfer more
robustly across countries, whereas older convolutional approaches exhibit clear limitations. These
results highlight that transformer-based AA detectors are better suited for spatial generalization across



Table 3: Comparison of different object detection methods based on AA (Axis-Aligned) and OBB
(Oriented Bounding Box). The CA mAP5, refers to the class-agnostic mAP value, while CFCBK,
FCBK, and Zigzag indicate class-wise AP5( scores. In the table, we mark the highest score in bold
and underline the second-highest score in each column.

Category Method Publication Backbone BBoX CA mAP;, T Class-wise AP5 1
CFCBK FCBK Zigzag
Two PSC (821 CVPR23 ResS0  OBB 3195 1576 1657 2141
stage H2RBox [79 ICLR23  ResS0  OBB 4591 2381 2885 30.81
Rol Transformer [13] CVPR-19 SwinT  OBB 7074 4045 51.84 5523
CSL 75 ECCV-20 ResS0  OBB 18.19 880 948 1035
DCFL [73] CVPR-23 ResS0  OBB 2236 001 1001 13.98
Rotated FCOS {55 ICCV-19  ResSO  OBB 3028 1661 17.82 20.67
KFIoU + Rotated-Retinanet [80] ArXiv-22 Res50 OBB 30.63 0.09 10.89 22.59
One Rotated-Retinanet [31] ICCV-17  ResS0  OBB 3562 12.89 1891 2426
stage R®Det [76] AAAL21  ResS0  OBB 4337 002 2468 29.08
GWD [77] ICML-21  ResS0  OBB 4418 012 2285 2841
KLD + Rotated-Retinanet [78] ~ NeurIPS-22 Res50  OBB 5142 3731 29.51 36.80
S2A-Net [20] TGRS-21 ResS0  OBB 5655 3112 3299 4371
ConvNeXt [34] CVPR-22 ResS0  OBB 6632 2811 4110 46.12
YOLOV11L-OBB [26] arXiv-24  CSPDr53 OBB 7556 59.19 56.87 5091
YOLOvI2L 54 arXiv-25  CSPDIS3 AA 7817 5205 56.52 47.62
YOLOVSL-WORLDv2 9] CVPR-24  CSPDrS3 AA 80.07 5528 60.81 54.26
DETR DETA (56 ICCV23  Ress0  AA 6631 4476 49.56 6121
Based RFDETR [47 arXiv-25 Dinov2 AA 81.24 63.07 59.19 65.78
RTDETR [88 CVPR24 Resl0l  AA 86.17 5838 62.46 61.34
SatMAE++ [36 CVPR-24 VITL  AA 36.63 2743 2101 2974
CROMA [I7 NeurlPS23 VILB  AA 6389 1769 44.66 56.40
_ Prithvi [23] arXiv-23  VITL  AA 5926 1686 40.63 5277
Remote Sensing  p,,551ic0n 61 CVPR-25 VITB  AA 7487 4313 5061 55.11
Foundation Model - g, \jAE ) NeurlPS22 VITLL  AA 7636 4065 5072 56.03
CopernicusFM [64] ICCV-25  VITB  AA 7722 6109 5973 6778
Scale-MAE [46] ICCV-23  VITL  AA 7843 5210 6077 65.18
Galileo [57 ICML25 ViTB  AA 86.66 7202 69.81 72.19
TerraMind [24] ICCV-25  VITB  AA 8691 69.04 7054 7555

regions and national boundaries. Looking forward, future research could explore domain adaptation
strategies to reduce cross-region performance gaps, integrate multi-sensor inputs for robustness, and
develop unified AA/OBB frameworks to strengthen transferability under varying geographic contexts.

Table 4: Summary of results: (a) region-wise performance, (b) LOCO validation where I = India,
P = Pakistan, B = Bangladesh, and A = Afghanistan, and (c) seasonal generalization. In seasonal
generalization (Winter-only), models are trained on winter (Nov—Feb) and tested across other seasons.
Reported metrics are class-agnostic mAP50 (CA, mAP50 7). The best results are shown in bold, and
the second-best are underlined.

Spatial Shift Temporal Shift
(a) Region-wise (b) LOCO Validation (c) Seasonal Generalization
YOLO- RT- YOLOVSL-
Model UP Dhaka Punjab|Train—Test OBB11L DETR WORLDvV2 | Train—Test CA (mAP50 1)
CA (mAP50 1) CA (mAP50 1)
YOLOvVSL-WORLDV2 83.11 59.64 68.84 |I+B+P—A  46.34 53.11 53.70  |W(2024)—PM(2024) 55.56
YOLOvI11L-OBB 79.49 5149 67.81 [I+B+A—P  75.02 84.40 7822 |W(2024)—M(2024) 60.21
RTDETR 84.71 61.50 75.58 [I+A+P—B  72.20 86.66 78.92  |W(2024)—PoM(2024) 60.02
Rol Transformer 63.83 13.68 27.24 |B+A+P—I 53.39 57.63 58.94  |W(2024)—W(2023) 79.21

T3: Temporal Shift Performance: Table [] shows that models trained on a single season generalize
poorly to unseen periods, underscoring strong seasonal variability in satellite imagery. Multi-season
training enhances robustness (see Appendix Table [§|and Fig.[T4), although performance gaps remain
when compared to in-season evaluations. Maintaining reliable kiln detection across atmospheric
and land-surface changes remains difficult. Future work can explore domain adaptation, temporal
ensembling, and physics-informed augmentations to capture seasonal dynamics. Integrating cross-
year data and temporal self-supervised learning may further strengthen year-round generalization.

T4: Super-Resolution: Table[5see Appendix Fig.[IT)) highlights the effectiveness of scaling and
super-resolution techniques in improving detection performance on low-resolution satellite imagery.
Both interpolation-based and learned super-resolution methods significantly enhance model accuracy,
with advanced approaches like HiT achieving substantial gains across all kiln categories. These
findings suggest that incorporating super-resolution as a pre-processing step is a promising direction
for scaling object detection in low-resolution, resource-constrained remote sensing scenarios.



mAP 1 Table 5: Super-resolution

Methods Resolution PSNR 1 SSIM 1

CAmAP CFCBK FCBK Zigzag methods on our dataset: CA
Original resolution ~ 128x128 6502 000  0.00 63.18 - - mAP;5; and Class-wise AP5g
Bilinear interpolation  512x512 87.64 2277  34.00 86.11 - - :
Stable Diffusion [48] 512x512 8346  38.50 27.04 79.60 2671 0.6785 CFCBK, FCBK, Zigzag for
SwinIR [30] 512x512 8952 3701 4811 8654 2714 07780 the YOLOvI11L-OBB model
ESRGAN [63] 512512 90.12 4743 4289 8735 2716 05678 -
HiT 87 512x512 9074 5379 5388 8828 3444 o0o168  and perceptual quality (PSNR,

SSIM).

5 Applications

Our dataset opens new opportunities for the ML and domain applications.

A Benchmark Dataset for Oriented Object Detection: We propose that our dataset can serve as a
benchmark for evaluating various oriented object detection (OBB) models. As shown in Table[6] the
released dataset is comparable in scale to widely used benchmarks such as HRSC2016 and DOTA. To
the best of our knowledge, this is the first publicly available dataset designed specifically to support
the development and evaluation of OBB methods in low-resolution satellite imagery.

Dataset Imagery Classes Quantity Instances GSD . .

VEDAI [43 Aerial Imagery 9 1,210 3,640 0.125m Table 6: Comparlson of O'U.r dataset
HRSC2016 [33 Google Earth 25 1070 2976 04~2m  with other well-known object detec-
DOTA-V1.0 [70} Google Earth 15 2,806 188,282 0.1 ~4.5m 1

FGSD [7) Google Earth 43 5,634 2,612 0.12 ~1.93m tion datase,ts' We have the ]argGSt
DIOR-R [8] Google Earth 20 23463 192518  05~1m  number of images compared to the
SENTINELKILNDB (Ours) Sentinel-2 3 1,14300 97,648 10m speciﬁed datasets.

Geographical Domain Adaptation and Active Learning: Models trained in one region often
degrade in distant geographies due to distribution shifts. Our dataset enables rigorous study of
geographic robustness and development of geography-aware SSL [5]] for cross-region consistency.
Given extensive hand-validation and severe class imbalance (many negatives), it also serves as a
strong benchmark for active learning in object detection to cut labeling cost while preserving accuracy.

Air Quality Modeling: Air quality modeling often requires well-maintained emission inventories.
Accuracy of the conventional Chemical Transport Models (CTMs) [1] heavily depends on the quality
of the emission inventory. Due to the dynamic nature of the brick kilns, it is hard to maintain inventory
by manual annotations. Air quality experts can take the data and methods proposed in this paper to
maintain a dynamic inventory; they can further use the areas of the identified brick kiln and their type
to accurately estimate the emission factors.

6 Limitations and Future Work

SentinelKilnDB dataset is constructed using freely available Sentinel-2 imagery to enable scalable
and reproducible research. While 10 m resolution limits fine-grained detail, it reflects practical
constraints in large-scale environmental monitoring. Future work could explore combining Sentinel-2
with high-resolution sources for hybrid detection or multi-scale fusion. Temporally, our dataset
focuses on peak kiln activity (Nov 2023—-Feb 2024); extending to multiple seasons can support
time-series analysis and kiln lifecycle modeling. From a benchmarking standpoint, while we evaluate
in-region, out-of-region, and super-resolution settings, further work may incorporate uncertainty
quantification, geography-aware learning, and human-in-the-loop active learning.

7 Conclusion and Broader Impact

In this paper, we release a dataset containing 62,671 brick kilns along with their subtypes across
South Asia. To the best of our knowledge, this is the largest publicly available hand-validated dataset
related to brick kilns. We benchmark the dataset using various object detection methods, including
both oriented and axis-aligned bounding box models, on low-resolution imagery. The results show
strong baseline performance but indicate room for improvement, particularly in class-wise detection
under low-resolution settings. The dataset supports future work in machine learning and geospatial
research across environmental monitoring, policy design, and cross-border impact analysis, serving
as a resource for both academic and applied studies.
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A Benchmarking Models and Hyperparameters

1) PSC: Phase-Shifting Coder (PSC) [82] proposed a novel angle coding method that accurately
predicted object orientation. PSC encoded angles in a periodic manner to resolve the boundary
discontinuity problem. In this work, we used the Faster PSC with a ResNet-50 backbone pre-trained
on the ImageNet dataset. The model was trained using the SGD optimizer with a learning rate of
0.005, momentum of 0.9, and weight decay of 0.0001.

2) H2RBox: H2RBox [79]] was a weakly supervised oriented object detection framework that learned
rotated bounding boxes (RBox) from horizontal box (HBox) annotations. It utilized a dual-branch
architecture combining weak and self-supervised learning to predict object orientations by enforcing
consistency between different views. We employed the H2RBox model with a ResNet-50 backbone.
The model was fine-tuned on our dataset using the AdamW optimizer with a learning rate of 0.0001,
B =1(0.9,0.999), and a weight decay of 0.05.

3) Rol Transformer: Rol Transformer [15] was an OBB detection framework that addressed
the misalignment between horizontal region proposals and objects with arbitrary orientations. It
introduced a Rotated Rol (RRol) learner that transformed Horizontal Rols (HRols) into Rotated Rols,
enabling more accurate localization of oriented objects. We utilized the Rol Transformer with a Swin
Transformer (Swin-T) backbone. The model was trained using the AdamW optimizer with a learning
rate of 0.0001 and 8 = (0.9, 0.999).

4) Rotated FCOS: Rotated FCOS [55]] extends the anchor-free FCOS detector to predict oriented
bounding boxes by directly regressing angles, enabling efficient detection of rotated objects. We
implement Rotated FCOS with a ResNet-50 backbone, and the SGD optimizer with a learning rate of
0.0025, momentum of 0.5, and weight decay of 0.0001.

5) DCFL: Dynamic Coarse-to-Fine Learning (DCFL) [73]] enhanced oriented tiny object detection
by addressing label assignment bias. It was implemented through a coarse matching stage followed
by fine refinement. We used the model with a ResNet-50 backbone, trained using the SGD optimizer
with a learning rate of 0.0025, momentum of 0.9, and weight decay of 0.0001.

6) CSL: Circular Smooth Label (CSL) [75]] addressed the boundary discontinuity problem inherent in
angle regression methods by transforming the angle prediction task from regression to classification.
It handled the periodic nature of angles by using a circular smooth label encoding. We implemented
CSL with a ResNet-50 backbone pre-trained on the ImageNet dataset. The model was trained using
the SGD optimizer with a learning rate of 0.0025, momentum of 0.9, and weight decay of 0.0001.

7) Rotated RetinaNet: Rotated RetinaNet [31]]was an extension of the original RetinaNet framework,
designed for detecting oriented bounding boxes (OBBs). It overcame the limitations of axis-aligned
boxes by predicting rotated bounding boxes. The model employed a ResNet-50 backbone with a
Feature Pyramid Network (FPN). Training was conducted using the SGD optimizer with a learning
rate of 0.0025, momentum of 0.9, and weight decay of 0.0001.

8) GWD: Gaussian Wasserstein Distance (GWD) [[77] was a regression loss function designed to
counter the problems of boundary discontinuity and square-like issues. GWD represented rotated
bounding boxes as 2D Gaussian distributions, enabling the computation of a differentiable distance
metric that approximated the rotational IoU loss. In our experiments, we integrated GWD into a
detection framework with a ResNet-50. The model was trained using the SGD optimizer with a
learning rate of 0.0025, momentum of 0.9, and weight decay of 0.0001.

9) R3Det: Refined Single-Stage Detector R3Det [76] introduced a progressive regression strategy that
transitioned from coarse to fine granularity and an approximate SkewloU loss function to facilitate
effective rotation estimation, amplifying localization accuracy for objects with varying orientations.
We implemented R®Det with a ResNet-50 backbone. The model was trained using the SGD optimizer
with a learning rate of 0.005, momentum of 0.9, and weight decay of 0.0005.

10) S2A-Net: Single-shot Alignment Network S2A-Net [20] introduced two key modules: the
Feature Alignment Module (FAM), which adaptively aligned convolutional features with anchor
boxes using an Alignment Convolution, and the Oriented Detection Module (ODM), which employed
active rotating filters to encode orientation information and produced both orientation-sensitive and
orientation-invariant features. In our experiments, we implemented S2A-Net with a ResNet-50
backbone. The model was trained using the SGD optimizer with a learning rate of 0.0025, momentum
of 0.9, and weight decay of 0.0005.
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11) ConvNeXt: ConvNeXt [34] is a modern convolutional network that adapts principles from vision
transformers (ViT) to standard ConvNet architectures, achieving state-of-the-art performance on
image classification and object detection tasks. In our experiments, we implemented ConvNeXt with
a ResNet-50 backbone pre-trained on the ImageNet dataset. The model was trained using the SGD
optimizer with a learning rate of 0.005, momentum of 0.9, and weight decay of 0.0005.

12) YOLO-World: YOLO-World [9] is a recent general-purpose expansion of the YOLO model from
CVPR 2024, built for zero-shot object detection. The YOLO-World model introduces an advanced,
real-time YOLOv8-based approach for Open-Vocabulary Detection tasks. Upon random trials with
our images, it was not able to detect brick kilns in zero-shot. However, to leverage the capabilities of
this model, we used the model pre-trained on Object365 [50]] and CC3M-Lite [51]] and then fine-tuned
it on our dataset with the same hyperparameters as YOLO.

13) YOLO: YOLO (You Only Look Once) models are known for their speed of inference. YOLO
allows detecting objects in a single forward pass. We experimented with the most updated ‘v12L’ [62]
versions of YOLO in this work.

14) YOLO-OBB: YOLO-OBB [25] is a YOLO variant capable of detecting oriented bounding boxes.
The model predicts an additional variable, ‘angle’, along with the center coordinates of the box,
width, and height. We use YOLO-OBB from Ultralytics [25]] pre-trained on the DOTA v1.0 [[70]
dataset. We experiment with four variants of YOLO-OBB in this work: ‘vI11L .

15) DETA: DEtection Transformers with Assignment [37] follows the two-stage DETR frame-
work [89] and replaces the one-to-one Hungarian matching loss with a one-to-many IoU-based
assignment loss in both stages. DETA has precisely the same architecture as its end-to-end counter-
parts and uses NMS (Non-Maximum Suppression) for removing the overlapping bounding boxes.
We have used DETA pretrained on the Objects 365 [86] dataset with a ResNet-50 backbone. We
fine-tuned the model on our dataset for 100 epochs with the AdamW optimizer, using a learning rate
of le-5 for the backbone and le-4 for the rest of the parameters.

16) RT-DETR: Real-Time DEtection Transformer (RT-DETR) [88]] was optimized extension of the
original DETR framework that enhances its speed and performance, particularly for real-time object
detection tasks. RT-DETR introduces an efficient hybrid encoder and a modified decoder that reduces
the computational cost of the attention mechanism. In our experiments, we use RT-DETR with a
ResNet-101 backbone pre-trained on the ImageNet dataset. The model is fine-tuned on our custom
dataset with the AdamW optimizer, a learning rate of 1e-5, and a weight decay of 0.01. This setup
allows for efficient training and inference while ensuring robust detection performance on complex
object detection tasks.

17) Remote Sensing Foundation Model Hyperparameters: All models are trained with Faster
R-CNN detectors using default input resolutions per backbone and 4-level pyramids. Anchor sizes are
32,64, 128, 256 with aspect ratios (0.5, 1.0, 2.0) and ROIAlign of size 7 (sampling 2). Optimization
follows AdamW with backbone and head learning rates in the range of [1 x 1075, 1 x 10™%], weight
decay 0.05, cosine learning rate schedule (T,,x = 50), batch sizes between 4-32, and total 50 training
epochs.

18) KFIoU: KFIoU [80] is a regression loss function designed for rotated object detection, which
improves localization accuracy by considering the geometric properties of rotated bounding boxes.
It enhances the learning of object orientation by incorporating angle-aware IoU calculations. We
implemented KFIoU using the Rotated RetinaNet framework with a ResNet-50 + FPN backbone.
The model was trained using the SGD optimizer with a learning rate of 0.0025, momentum of 0.9,
and weight decay of 0.0001.

19) KLD: KLD [78] introduces a Kullback-Leibler Divergence-based loss for rotated bounding
box regression, enabling better modeling of uncertainty in object orientation. It improves detection
performance by aligning predicted distributions with ground truth. We used the Rotated RetinaNet
architecture with a ResNet-50 + FPN backbone for KLD-based training. The model was optimized
using SGD with a learning rate of 0.0025, momentum of 0.9, and weight decay of 0.0001.

B Additional figures/tables

The additional figure from our previous research[38]] shows an example of a bounding-box plot over
Esri imagery and Planet Labs imagery.
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(a) CFCBK - (b) CFCBK - (c) FCBK - (d) FCBK - (e) Zigzag - (f) Zigzag -
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Ve @Y
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Figure 3: Satellite view of brick kilns with bounding boxes. CFCBK is Circular Fixed Chimney
Bull’s Trench Kiln, and FCBK is Fixed Chimney Bull’s Trench Kiln. We use Esri’s high-resolution
basemap (zoom level 17-19, 1.19-0.3 m per pixel) to create geo-referenced bounding boxes and
hand-validate the predicted bounding boxes. We use Planet’s moderate-resolution imagery (zoom
level 15, 4.77 m per pixel) to train object detection models. Planet Imagery © 2024 Planet Labs Inc.
Esri imagery © Esri, TomTom, Garmin, Foursquare, METI/NASA, USGS.

Table 7: Class-wise brick kiln counts for all states and provinces covered in our dataset.

Country State/Region CFCBK FCBK  Zigzag Total
Gujarat 57 961 45 1063
Assam 5 1239 109 1353
Jharkhand 17 1229 191 1437
Haryana 1 159 2231 2391
India Rajasthan 34 2137 232 2403
Punjab 1 444 2074 2519
West Bengal 67 1575 2776 4418
Bihar 58 2038 5392 7488
Uttar Pradesh 1699 11669 6542 19910
Sylhet 0 9 216 225
Barisal 0 109 256 365
Mymensingh 0 108 411 519
Rangpur 0 112 894 1006
Bangladesh Khulna 0 388 645 1033
Rajshahi 0 251 880 1131
Dhaka 2 92 1205 1299
Chittagong 0 392 933 1325
Balochistan 1 63 1 65
Sindh 1 788 2 791
Pakistan Khyber Pakhtunkhwa 0 846 2 848
Punjab (PK) 1 8746 1726 10473
Afghanistan 34 Provinces 0 608 1 609
Total 1944 33963 26764 62671

Table 8: Intra-Season Generalization (YOLO11L-OBB). Each model is trained on multi-season
data and tested on the held-out season to assess whether seasonal diversity improves robustness and

year-round performance. Results are reported in class-agnostic mAP5y (CA) and per-class AP5q for
CFCBK, FCBK, and Zigzag.

Per-Class AP5,
CFCBK FCBK Zigzag

Train Data (2024) Test Data (2024) CA mAP;,

W+PM+M PoM 60.62 35.07  29.67 51.83
W + PM + PoM M 61.31 5798 3497 39.92
W +M + PoM PM 66.46 68.39  46.32 56.22
PM + M + PoM \% 52.42 5328  25.06 46.35

B.1 Different Satellite Imagery and Enhanced Image Comparisons

Figure [I6] presents a comparative visualization of super-resolution techniques applied to a specific
patch as captured by Sentinel-2 imagery. The top row includes the original Sentinel-2 image (a),
followed by higher-resolution imagery from ESRI Wayback (b) and Planet Labs (c), serving as
external visual references. The second row features imagery from Google Earth (d), standard bilinear
interpolation (e), and the SwinIR deep learning-based super-resolution model (f). The final row shows
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Figure 4: Spatial Distribution of CFCBK Brick Kilns in our dataset.

Figure 5: Spatial Distribution of FCFCBK Brick Kilns in our dataset.

outputs from ESRGAN (g), HIT (h), and Stable Diffusion (i), representing various state-of-the-art
generative and enhancement models.

This 3x3 grid offers a side-by-side comparison, highlighting visual differences in clarity, structure,
and detail enhancement across traditional and modern super-resolution methods. It underscores the
potential of advanced models to bridge the resolution gap between publicly available low-res satellite
imagery and high-res commercial sources, which is critical for accurate remote sensing applications
such as object detection and environmental monitoring.
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Figure 6: Spatial Distribution of Zigzag Brick Kilns in our dataset.
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Figure 7: Visualization of the regional brick kiln counts across different states/regions, categorized by
kiln classes (CFCBK, FCBK, and Zigzag). The stacked bar chart illustrates the distribution of each
kiln class within each region, while the accompanying pie chart represents the overall proportion of
each kiln class aggregated across all regions, providing a clear comparative overview of the kiln class
distribution at both regional and aggregate levels.
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Figure 8: Snippet of the custom hand-validation interface developed in-house. The interface overlays
bounding box annotations on ESRI Wayback Imagery, displaying a Zigzag brick kiln.
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Figure 9: Comparison of class-agnostic mAP 50 for one-stage, two-stage, and transformer-based
(DETR) object detection methods.
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Figure 10: Comparison of class-agnostic mAP 50 for out-of-region performance experiment using
the Uttar Pradesh dataset. Results are shown on test sets of Uttar Pradesh, Punjab (Pakistan), and
Dhaka using the best-performing methods from TableEl
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Figure 11: Class-agnostic mAP 50 comparison of different super-resolution methods applied to the
YOLOV11L-OBB detection pipeline.
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Figure 12: Cross-country spatial generalization (LOCO) test results for brick kiln detection: class-
agnostic mAP5( performance of three models trained on three South Asian countries and tested on
the fourth (I = India, B = Bangladesh, P = Pakistan, A = Afghanistan).
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Figure 13: Class-agnostic mAP5q evaluation of brick kiln detection models across single-season
train/test splits. Seasons with their years are indicated in parentheses (Season (Year)). Seasonal codes
represent Winter (W), Monsoon (M), Pre-monsoon (PM), and Post-monsoon (PoM).
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Figure 14: Class-agnostic mAPs5, evaluation of brick kiln detection models across multi-seasonal
train/test splits. Seasonal codes represent Winter (W), Monsoon (M), Pre-monsoon (PM), and Post-
monsoon (PoM).
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Figure 15: Visualization of negative examples using ESA WorldCover v200 [84], selecting land-
cover—pure regions with at least 99.90% class confidence across eight relevant classes. All candidate

tiles were manually verified against Esri basemaps, and any image containing visible kilns was
discarded.
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(a) Original Sentinel Imagery (b) ESRI Wayback Imagery (c) Planet Labs Imagery

(f) SwinIR

(g) ESRGAN (h) HIT (i) Stable Diffusion

Figure 16: Comparison of nine images over the same target Sentinel-2 tile: (i) original resolution,
(ii) external sources (ESRI, Planet Labs, Google Earth), and (iii) super-resolution outputs from
interpolation and deep learning methods (Bilinear, SwinIR, ESRGAN, HIT, Stable Diffusion).
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