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Abstract

Large Language Models (LLMs) have be-
come integral components of production
systems, with applications ranging from
chatbots like ChatGPT to tasks such
as summarisation and question answer-
ing. However, a significant challenge with
LLMs is the unpredictability of response
length, which is particularly problematic
in tasks requiring varying levels of de-
tail, such as document summarisation.
Here we present a method to adapt ex-
isting LLMs to allow control of response
length. We achieve this by extending
the length-difference positional encoding
(LDPE) proposed by (Takase and Okazaki,
2019) to decoder-only transformer archi-
tectures. Our approach, termed offset re-
verse positional encoding (ORPE), uses a
positional encoding that counts down from
a predetermined response length. Fine-
tuning with ORPE enables the model to
learn to structure its responses to termi-
nate at a given length. Our results, ob-
tained from tasks such as question answer-
ing and document summarisation, demon-
strate that ORPE provides precise control
of the response length during inference.

1 Introduction

In recent years, Large Language Models (LLMs)
have become essential components of various pro-
duction systems, revolutionising the way we in-
teract with technology. From chatbots like Chat-
GPT to applications in document summarisation,
question answering, and content rewriting, LLMs
have demonstrated remarkable capabilities in un-
derstanding and generating human-like text (De-
vlin et al., 2018; Brown et al., 2020). These mod-
els, trained on vast amounts of data, have the po-
tential to transform industries and enhance user
experiences across a wide range of domains.

However, despite their impressive performance,
LLMs are unpredictable in terms of the length
of their generated responses even when prompted
with length specifications. This is particularly

problematic in tasks that require varying levels of
detail, such as document summarisation (Gamb-
hir and Gupta, 2017). In situations where con-
cise summaries are needed, an LLM might generate
overly lengthy responses, while in cases where more
comprehensive summaries are desired, the model
might produce insufficient detail. This lack of con-
trol over response length limits the practical appli-
cability of LLMs in real-world scenarios.

To address this limitation, we present a novel
method to adapt existing LLMs and enable the
control of output length. Our approach, termed
offset reverse positional encoding (ORPE), ex-
tends the length-difference positional encoding
(LDPE) proposed by (Takase and Okazaki, 2019)
to decoder-only transformer architectures. This is
achieved by incorporating a countdown mechanism
that starts from a predetermined response length.
During the training process the model considers
this countdown as a signal and implicitly learns
the concept of “token budget”, i.e. how many to-
kens are remaining to generate an appropriate re-
sponse. A user-specified token budget can then be
provided at inference time, thereby facilitating the
generation of responses with specified lengths for
downstream tasks.

The main contributions of our paper are as fol-
lows:

1. We introduce ORPE, a method to adapt ex-
isting LLMs for controlling output length by
extending LDPE to decoder-only transformer
architectures.

2. We demonstrate the effectiveness of our ap-
proach through experiments on various tasks,
including question answering and document
summarisation.

3. Our results confirm that ORPE successfully
controls response length and generates var-
ied response versions with specified lengths,
enhancing the flexibility and applicability of
LLMs in real-world scenarios.

The remainder of this paper is organised as fol-
lows. Section 2 provides an overview of related



work in the field of LLMs and output length con-
trol. Section 3 describes our proposed methodol-
ogy, including the inversion of positional encod-
ings and the countdown mechanism. Section 4 de-
tails our experimental setup and the tasks used for
evaluation. Section 5 presents and discusses the
results obtained from our experiments. Section 6
concludes the paper and outlines potential future
directions for research. Finally, Section 7 details
some of the limitations of the work which could be
addressed to improve the method.

2 Related Work

Positional encoding is used to directly provide
transformers with information about the absolute
or relative position of each token (Vaswani et al.,
2017; Shaw et al., 2018). Multiple techniques have
been proposed to augment the standard positional
encoding with a secondary encoding containing
useful positional information. For example using
a secondary encoding to align digit positions of
operands has been shown to provide greatly im-
proved numerical calculation capabilities (McLeish
et al., 2024). More generally, an additional learned
context dependent encoding allows models to per-
form a variety of tasks requiring different lev-
els of positional understanding (Golovneva et al.,
2024). Here we explore using a secondary encod-
ing scheme to allow direct control over the models
response length.

Previous approaches for length control in text
generation have primarily focused on encoder-
decoder models for tasks like summarisation. For
instance, (Kikuchi et al., 2016) proposed meth-
ods to initialise the LSTM cell of the decoder
with a learnable vector based on the desired
length (LenInit) or input an embedding represent-
ing the remaining length at each decoding step
(LenEmb). This work was extended in (Yu et al.,
2021) (LenAtten) to separate the length informa-
tion from the decoder hidden states to better ex-
ploit the remaining length information.

Most relevant to our work, (Takase and Okazaki,
2019) introduced the length-difference positional
encoding (LDPE), which modifies the sinusoidal
positional encoding in transformer models to in-
corporate the remaining length to the terminal po-
sition.

While effective for encoder-decoder architec-
tures, these methods are not directly applicable to
the decoder-only LLMs that have become prevalent
in recent years. Decoder-only LLMs like GPT-3
(Brown et al., 2020) do not have an explicit length
input during generation, making length control
more challenging. Some recent work has explored
length control in LLMs in the context of dialogue
generation. (Roller et al., 2021) used a special end-
of-text token to control response length, penalising

or encouraging its generation based on the desired
length. However, this provides only coarse-grained
control and may lead to unnatural responses.

Work has also been performed exploring prompt-
based methods of controlling LLM output lengths.
For example, (Jie et al., 2023) uses reinforcement
learning to finetune decoder only LLMs using a
rule-based reward model. The type of prompt
(more than, less than, equal to, between) deter-
mines the reward function, which is calculated us-
ing the target and output length. One limitation
of this model is that it does not explicitly encode
any information about the remaining token bud-
get at each generation step, which could lead to
less semantically complete responses.

3 Method

In this section, we describe our proposed method
for controlling the output length of LLMs by
adapting the length-difference positional encoding
(LDPE) proposed by (Takase and Okazaki, 2019)
to the decoder-only transformer architecture. Our
approach consists of two main components: (1)
adding offset reverse positional encodings during
the fine-tuning process and (2) utilising the offset
reverse positional encodings at inference time to
control the length of the generated response.

3.1 Offset Reverse Positional Encodings

In the transformer architecture (Vaswani et al.,
2017), positional encodings are used to provide in-
formation about the position of each token in the
input sequence. The LDPE scheme, as introduced
by (Takase and Okazaki, 2019), encodes the re-
maining distance to the end of the generated se-
quence. We propose an offset reverse positional en-
coding (ORPE) that adapts LDPE to the decoder-
only LLM setting.

To represent the reverse positional encodings in
the embedding space of a LLM we use the standard
sinusoidal encodings (Takase and Okazaki, 2019;
Vaswani et al., 2017):

PE(i,2k) = sin

(
i

10000
2k
d

)
, (1)

PE(i,2k+1) = cos

(
i

10000
2k
d

)
. (2)

Here i represents the tokens position in the text
sequence, k is the index within the embedding di-
mension, and d is the total number of dimensions
in the embedding.

In order to utilise the ORPE we adjust the or-
der that the positional encodings are used by firstly
reversing them to count down towards i = 1, and
secondly introducing an offset so that the count-
down starts from the end of the input prompt.



Figure 1: A simplified diagram of ORPE encoding for a target response length of 100 tokens and a
question length of 5 tokens (i.e. L = 100 and n = 5). Offset reverse positional encodings PE(ri,k) are
added to the input token embeddings with a encoding of ri = 1 added to each token in the prompt part
of the text, and a countdown from ri = L+ 1 to ri = 2 added to the response.

Formally, let (X,Y ) = x1, . . . , xn, yn+1, . . . yn+L

be a sequence of tokens consisting of a prompt and
response, where n is the prompt length and L is the
response length. We augment the ith token embed-
ding by adding the corresponding ORPE encoding,
ORPEi = PE(ri,k), where ri is given by:

ri =

{
1, if i ≤ n
L− (i− n) + 2, otherwise

(3)

Here L is the desired length of the generated re-
sponse and n+ 1 is the position where the model’s
response begins. By offsetting the start of the re-
verse positional encoding to coincide with the be-
ginning of the model’s response, we ensure that the
countdown only applies to the generated text, not
the input prompt. This allows the model to distin-
guish between the context it is conditioning on and
the text it should generate, while still benefiting
from the length-controlling properties of LDPE.

The arrangement of the ORPE is demonstrated
in Figure 1, using word-level tokenization for illus-
trative purposes only.

3.2 Fine-tuning with Offset Reverse
Positional Encodings

To incorporate ORPE into the LLM, we propose
a fine-tuning process that includes them as addi-
tional input features. During fine-tuning, we add
ORPE to the token embeddings before passing
them through the transformer layers.

Given a finetuning dataset of prompt-response
pairs D = (X1, Y1), (X2, Y2), . . . , (Xm, Ym), where
Xi is the prompt and Yi is the corresponding target
response, we fine-tune the LLM to minimise the
following loss function:

L = −
m∑
i=1

|Yi|∑
j=1

logP (yi,j |Xi, Ri,<j , yi,<j) (4)

where yi,j is the j-th token of the target response
Yi, and yi,<j denotes the tokens preceding yi,j with
corresponding ORPE encodings Ri,<j . By includ-
ing ORPE during fine-tuning, the LLM learns to
generate responses of the desired length, as the
model can utilise the countdown information pro-
vided by the encodings. To further enhance the

models ability to lock on to the ORPE signal, the
response is considered to start at the instruct to-
ken, as illustrated in Figure 1.

3.2.1 Adapting Existing LLMs

Directly adding ORPE to the token embeddings of
an off-the-shelf LLM may not yield optimal results
due to differences in scale between the learned em-
beddings and the positional encodings. To address
this, we introduce a scaling term that balances the
magnitude of ORPE with the token embeddings.
Let E = e1, e2, . . . , en be the token embeddings
of the input sequence X. We compute the scaled
ORPE R′ as follows:

R′ = R · |E|F
|R|F

(5)

where |E|F and |R|F denote the Frobenius norm
of the token embeddings and ORPE, respectively.

By scaling ORPE with the ratio of the Frobe-
nius norms, we ensure that the positional encod-
ings have a similar magnitude to the token embed-
dings, allowing the LLM to effectively incorporate
the length control signal during fine-tuning and in-
ference.

The final input to the LLM, Ê, is computed by
adding the scaled ORPE to the token embeddings:

Ê = E +R′ (6)

This adaptation allows existing LLMs to bene-
fit from the length-controlling properties of ORPE
without requiring significant modifications to the
model architecture.

3.3 Inference with Length Control

At inference time, we control the length of the
generated response by providing the appropriate
ORPE. Given a prompt X and a desired response
length L, we generate ORPE R and normalize
it according to Equation 5 before adding R to
the token embeddings. The LLM then generates
the response token by token, conditioning on the
prompt, ORPE, and the previously generated to-
kens. The generation process continues until an
end-of-sequence token is generated, which given
the fine-tuning process should be approximately
around the target length. By manipulating ORPE,



we can control the length of the generated re-
sponse, enabling the LLM to produce concise or
verbose answers as required by the application.

3.4 Max New Tokens++

While generating responses with exact lengths can
be useful in certain applications, there are sce-
narios where specifying upper-bound on the de-
sired length is more appropriate. The widely-used
transformers library (Wolf et al., 2019) achieves
this through a simple generation stopping crite-
rion: generated tokens ≥ max new tokens. How-
ever, this approach does not provide the model
with an awareness of its remaining “token budget”
during the generation process, which may lead to
suboptimal response quality.

To address this limitation, we propose a content-
aware length control method that allows the model
to learn when to terminate the response based on
the input prompt and the generated content. Dur-
ing training, we introduce a random shift that is
added to the target response length. This shift is
sampled from a truncated half-normal distribution
HalfNormal(σ), where the truncation point is de-
termined by the maximum allowed response length
Lmax and the true response length L:

shift ∼ min(HalfNormal(σ), Lmax − L) (7)

The sampled shift is then incorporated into the
positional encoding of the response tokens as fol-
lows:

ri =

{
1, if i ≤ n
L− (i− n) + 2 + shift, otherwise

(8)

where n + 1 is the position of the first response
token.

By exposing the model to various target response
lengths for the same input prompt during training,
we encourage it to learn to generate coherent and
relevant responses that can be shorter than the
true response length. The half-normal distribu-
tion is chosen because it yields non-negative shifts
with a higher probability for smaller values, ensur-
ing that the model still observes the original tar-
get lengths more frequently, providing a valuable
learning signal.

To further improve the model’s ability to gen-
erate responses with varying lengths, we employ a
curriculum learning approach (Bengio et al., 2009)
by gradually increasing the scale parameter σ of
the half-normal distribution throughout the train-
ing process. Initially, σ is set to a small value,
resulting in shifts that are close to zero. This en-
courages the model to focus on learning to gener-
ate responses that closely match the true response

length. As training progresses, σ is slowly in-
creased according to an exponential schedule:

σt = σ0 exp

(
t

T
log

(
σmax

σ0

))
(9)

where σ0 and σmax are the initial and maximum
values of σ, respectively, t is the current training
step, and T is the total number of training steps.
The values of σ0 and σmax are treated as hyper-
parameters and can be tuned to control the level
of length variability and the trade-off between con-
ciseness and informativeness.

Our updated max new tokens++ method offers a
principled approach to generating responses with a
desired maximum length while allowing the model
to learn when to terminate the response based on
the input prompt and generated content. This en-
ables the model to produce more concise and rel-
evant responses compared to the naive generation
stopping criterion, enhancing the flexibility and ap-
plicability of language models in real-world scenar-
ios.

4 Experimental Setup

This section provides an overview of the models,
data and hyperparameters used to evaluate the
performance of the proposed ORPE method.

Data A combination of the OpenOrca (Lian
et al., 2023) and MMLU (Hendrycks et al., 2021)
datasets was used for training. A training set
of 110,000 samples was constructed by combin-
ing 100,000 OpenOrca samples with 10,000 MMLU
samples (from across all topics). These datasets
were combined to cover a wider range of topics and
sequence lengths, and to utilise both human and
synthetically generated data. An evaluation set
of 200 samples was constructed in the same man-
ner, taking 100 samples from each dataset. All
training and evaluation data was in English, in-
cluding the datasets and benchmarks discussed in
Sections 5.1.2 and 5.1.3.

Models Experiments were performed by fine-
tuning both Mistral 7B (Jiang et al., 2023) and
Llama3 8B (Meta, 2024). These models were cho-
sen as they are exemplary representations of mod-
ern LLMs with robust architectures and significant
parameter counts, whilst still being small enough
to train on a single NVIDIA RTX A6000 GPU.
The instruct versions of both models were used,
and their forward pass methods were modified to
add the appropriate ORPE encodings.

Baseline Models As a baseline for general
model response quality we simply used the pre-
trained Mistral 7B Instruct and Llama3 8B In-
struct models (without ORPE added). Addition-
ally as a baseline method of length control we fine-



tuned Mistral with the target response length in-
cluded in the prompt, for example “Answer the
following question in 112 tokens:”.

Hyperparameters Both models were trained
for a single epoch using the entire training dataset
and a batch size of 1 with gradient accumulation of
5. All models were trained using the AdamW opti-
miser (Loshchilov and Hutter, 2019) with β1 = 0.9,
β2 = 0.99 and ε = 1×10−8, with a learning rate of
0.0003 and a linear learning rate schedule. These
hyperparameter settings were obtained via manual
experimentation and evaluation until satisfactory
results were obtained.

Low Rank Adaptation Low Rank Adaptation
(LoRA) (Hu et al., 2021) was employed to effi-
ciently train all models. LoRA allows for efficient
incorporation of the ORPE without overwriting
the pretraining weights. A rank of 16, an α of
32 and a dropout rate of 0.05 was used to train all
models.

5 Results

5.1 Exact Length Control

5.1.1 Q&A

To demonstrate the effectiveness of our method
we evaluated its performance on the OpenOrca
dataset. A set of 20 samples were selected and
different length responses were generated for each,
ranging from 10 to 200 tokens. The generated
responses length was then compared to the tar-
get length. This analysis was performed for three
different approaches: prompting without length
control, fine-tuned prompting, and our proposed
ORPE method. Figure 2 presents the results of
this comparison.

As shown in the top-left panel of Figure 2,
prompting without any length control results in
a wide spread of response lengths, with many
responses significantly deviating from the ideal
length. This highlights the need for an effective
length control mechanism in question-answering
systems. The top-right panel of Figure 2 demon-
strates the performance of fine-tuned prompting,
where the model is fine-tuned with length informa-
tion. While this approach improves the alignment
between the target and response lengths compared
to prompting without length control, there is still a
noticeable deviation from the ideal response length
for many samples. Note that these two experi-
ments were performed with Mistral only as we ex-
pect the performance to be very similar for Llama.

In contrast, our ORPE method, shown in the
bottom panels of Figure 2, achieves a near-perfect
alignment between the target and response lengths.
This showcases the effectiveness of our proposed
method in controlling the exact length of the gen-
erated responses in a question-answering setting.

Some example responses for a range of target
lengths can be seen in Table 1.

5.1.2 Summarisation

To evaluate the performance of our content-aware
length control method, we generated a dataset of
summaries using the CNN/DailyMail dataset (Nal-
lapati et al., 2016). We selected a subset of 25
articles from the training split and generated sum-
maries for each article using five different system
prompts, each targeting a specific summary length
or style:

• A one-sentence summary

• A one-paragraph summary

• A long, detailed summary not exceeding the
original article length

• A 100-word summary

• A short, concise summary

The summaries were generated using the
OpenAI API with the GPT-3.5-turbo-0125
model (OpenAI, 2024). For each combination of
article and system prompt, we recorded the gener-
ated summary, its length, and the corresponding
system prompt and article. The resulting dataset
was then used to evaluate the summarisation
quality of our ORPE finetuned models, as well
as a baseline Mistral model that was finetuned
for prompt based length control. Each model was
prompted to generate a summary of a full article
from the CNN/DailyMail dataset, and the target
length of the summary was set to the length of
each of the 5 GPT-3.5 summaries. For the ORPE
finetuned models the target length was given to
the model only via the ORPE encodings, whereas
for the prompt finetuned model the target length
as was added to the prompt. The quality of the
summary was assessed by calculating the BERT
scores between the generated summary and the
corresponding GPT-3.5 summary.

Figure 3 presents the mean BERT scores for the
summarisation tasks, binned into different target
response length ranges. We compared both the
Mistral and Llama models with the ORPE fine-
tuning, as well as the baseline Mistral model fine-
tuned for length control via prompting (Mistral-
Prompted). The results show that the summary
quality was stable across all three models and for
different response lengths. The average BERT
scores across all summaries were 0.691 for Mistral-
ORPE, 0.687 for Llama-ORPE, and 0.686 the
baseline Mistral-Prompted model. The length ac-
curacy of the summaries was significantly better
for the ORPE finetuned models as shown in Figure
3. The mean length error between the target sum-
mary length and the models summary was 3.6 and



Figure 2: Comparison of target and response lengths for different length control approaches on a question-
answering task. The ideal response length is indicated by the dashed line in each panel. Top left: results
for prompting Mistral without length control. Top right: results for fine-tuned prompting Mistral.
Bottom left: results for ORPE fine tuned Mistral 7B model. Bottom right: results for ORPE fine
tuned Llama3 8B model.

4.6 tokens for Llama-ORPE and Mistral-ORPE
respectively. The mean error for the Mistral-
prompted was an order of magnitude larger at 28.1
tokens. Overall the results suggest that the mod-
els are still capable of generating high-quality sum-
maries after finetuning with ORPE, and have de-
veloped the capability for fine-grained length con-
trol.

5.1.3 Benchmarking Response Quality

To identify any degradation in the quality of the
model’s responses after finetuning, we evaluated
the models against a number of standard bench-
marks. We ran all benchmarks using the LM Eval-
uation Harness (Gao et al., 2023). LM Evaluation
Harness evaluates models against common bench-
marks using the loglikehood of correct or incorrect

responses from the model to score the task. The
benchmarks evaluated were the Abstraction and
Reasoning Corpus (ARC) (Lei et al., 2024), Hel-
laSwag (Zellers et al., 2019), PIQA (Bisk et al.,
2019), and WINOGRANDE (Sakaguchi et al.,
2019).

We found that the ORPE finetuned models had
an increased reliance on the instruction tokens
used in finetuning. Thus instruction tokens were
added into the appropriate places for each evalua-
tion task. Futhermore, for question answer (QA)
style tasks such as ARC and PIQA the ORPE fune-
tuned models performed poorly unless the ORPE
encodings were added to the ‘answer’ part of the
evaluation. Likely the poor results were due to the
loglikehood of correct or incorrect response being
dominated by the additional model perplexity due



Figure 3: Results for length the length controlled
summarisation task. Models used are ORPE fine-
tuned Mistral and Llama (-ORPE), as well as
the Mistral baseline model finetuned for prompted
based length control (Mistral-Prompted). top:
BERT scores between summaries and GPT-3.5
ground truth summaries. bottom: Average
length errors for target summary length.

to the lack of ORPE embeddings. Therefore to
evaluate the ORPE models on QA tasks we mod-
ified the LM Evaluation Harness to optionally ap-
ply the ORPE countdown to the answer part of
the queries. Note that this gave the model addi-
tional information about the response length, but
no information about whether a specific question
response pair was correct or incorrect.

The results are shown in Figure 4 for the ORPE
finetuned Mistral and Llama models (Mistral-
ORPE and Llama-ORPE) as well as the base in-
struct versions (-base). The results show that the
ORPE finetuned model’s performance was gener-
aly preserved after finetuning, except for a reduc-
tion in Mistral’s performance on the Hellaswag
benchmarks.

5.2 Max New Tokens++

Figure 5 shows the comparison between the token
limit and response length for a Mistral model fine-
tuned using the max new tokens++ method with
σ0 = 0.1 and σmax = 2048. For shorter token limits
the responses closely follow the identity line, while
for longer token limits there is a deviation towards
shorter responses. Even though there is a shift in
median away from identity the 95% confidence in-

Figure 4: Performance of length controlled and
baseline models against a range of standard bench-
marks. All evaluations used zero-shot prompt-
ing. The labels Mistral and Llama correspond to
Mistral-7B-Instruct and Llama-3-8B-Instruct re-
spectively. The tag -ORPE means the model was
finetuned with the ORPE. Additionally ORPE
were added during the evaluation for QA type tasks
(Arc and Piqa).

terval still follows closely. This indicates that the
model still possesses a notion of “token budget”,
and that it uses this token budget to smoothly ter-
minate the longer responses as they approach the
token limit.

Figure 5: Plot of token limit vs response length
for using a max new tokens++ finetuned Mistral
model on a question-answering task. This tech-
nique has not yet been applied to Llama but we
expect the performance to be similar.

6 Conclusion

In this work, we introduce offset reverse posi-
tional encoding (ORPE), a method for control-
ling the output length of large language models
(LLMs) without arbitrarily truncating the genera-
tion. This is achieved by adding an additional po-



sitional encoding to the transformer architecture,
which counts down from a predetermined response
length rather than counting up to the end of the
sequence as is typically done. During training,
the model learns to use this countdown to struc-
ture its responses to terminate at the end of the
ORPE countdown. Our results demonstrate that
ORPE effectively controls response length without
degrading the underlying performance of the LLM.

Preliminary work was also presented for the max
new tokens++ method, a way of implementing an
upper bound on the number of generated tokens
rather than a target. The results show that this
method is effective at training the model provide
responses that terminate smoothly at or before the
token limit is reached. This prevents the genera-
tion of needlessly long answers in an attempt to
meet the target length imposed by the ORPE en-
coding.

Overall, this work shows that the addition of a
specialized positional encoding during finetuning
enables the model to output specific tokens on com-
mand without degrading response quality. While
we focused on controlling the generation of the
EOS token to terminate the response on command,
this approach could be generalised to control the
generation of other tokens or influence other as-
pects of LLM generation.

7 Limitations

We have identified several limitations in our work
that could be addressed to improve the evaluation
and effectiveness of the proposed length control
method.

Firstly, due to time constraints, we fine-tuned
our models on relatively small question-answer-
focused datasets. The impact of dataset size and
diversity on learning length control remains un-
clear. Secondly, our experiments were limited to
the instruct versions of Mistral 7B and Llama3 8B
models, both within the 7-8B parameter range and
instruction fine-tuned. While this made them suit-
able for further fine-tuning with a QA dataset, it
remains an open question how well the proposed
length control techniques generalise to other mod-
els.

Another limitation is that the countdown mech-
anism in our approach is based on tokens rather
than words or characters, the latter of which may
be more relevant for user applications. Future re-
search could explore using ORPE to count down
words or characters instead of tokens. Addition-
ally, incorporating the relative progress towards
the termination length, rather than the absolute
number of remaining tokens, might enhance the
model’s ability to generalise across various re-
sponse lengths. Investigating dynamic control of
the ORPE weighting within a beam search algo-

rithm could further refine response length accu-
racy.

Finally, we utilised standard sinusoidal posi-
tional encodings in a reverse and offset order
throughout this work. These encodings, originally
designed to provide information about token order-
ing, might not be optimal for our specific use case
where the focus is on counting down to a termina-
tion point.

Addressing these limitations in future work
would provide a more robust evaluation of the pro-
posed length control method and potentially en-
hance its applicability and performance across dif-
ferent models and datasets.
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Appendix

Question

Extract the answer to the question from the following context. Question: What’s the expensive rock mean Context: Bud-
dhist schools vary on the exact nature of the path to liberation, the importance and canonicity of various teachings and
scriptures, and especially their respective practices. Buddhism denies a creator deity and posits that mundane deities such
as Mahabrahma are misperceived to be a creator. The foundations of Buddhist tradition and practice are the Three Jew-
els: the Buddha, the Dharma (the teachings), and the Sangha (the community). Taking ””refuge in the triple gem”” has
traditionally been a declaration and commitment to being on the Buddhist path, and in general distinguishes a Buddhist
from a non-Buddhist. Other practices are Ten Meritorious Deeds including, giving charity to reduce the greediness; following
ethical precepts; renouncing conventional living and becoming a monastic; the development of mindfulness and practice of
meditation; cultivation of higher wisdom and discernment; study of scriptures; devotional practices; ceremonies; and in the
Mahayana tradition, invocation of buddhas and bodhisattvas.

Responses Target
length

Response
length

There is no answer.
10 12

The context does not provide an answer to the question ””What’s the expensive rock mean?”” The
context is about Buddhist schools and their practices, and it does not mention anything about an
expensive rock. Therefore, it is not possible to extract an answer to the question from the given context.
The question seems to be unrelated to the context and requires a separate answer or information that
is not provided in the given context.

90 89

The context does not provide an answer to the question ””What’s the expensive rock mean?”” The
context is about Buddhist schools and their practices, including the Three Jewels, Ten Meritorious
Deeds, and other practices. It also mentions the denial of a creator deity and the importance of
scriptures and teachings in different Buddhist schools. However, there is no mention of an ””expensive
rock”” in the context. Therefore, it is not possible to extract an answer to the question from the
given context. The question seems to be unrelated to the context and requires a separate answer or
information that is not provided in the given context.

150 149

The context provided does not directly answer the question about the expensive rock. However, it
does provide information about the nature of the path to liberation, the importance and canonicity
of various teachings and scriptures, and especially their respective practices in Buddhist schools. The
context also mentions the Three Jewels, which are the Buddha, the Dharma (the teachings), and the
Sangha (the community). Taking ””refuge in the triple gem”” has traditionally been a declaration
and commitment to being on the Buddhist path, and in general distinguishes a Buddhist from a non-
Buddhist. Therefore, the answer to the question about the expensive rock is not provided in the given
context. It is important to note that the context provided is about Buddhist schools and their practices,
and it does not mention anything about an expensive rock. If you have any further questions or if you
would like to know more about Buddhist schools and their practices, feel free to ask.

200 197

Table 1: Example generated responses using ORPE fine tuned Llama3 8B. Note that special tokens,
instruction tokens and linebreaks have been removed from the text but not from the token count.


