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ABSTRACT

Frontier model developers aim to train models continually to possess emergent, di-
verse capabilities. To extend capabilities, the current pre-training and post-training
paradigm requires manually starting training runs with static datasets or reward
functions every time. Addressing this limitation, our work pursues the insight that
open-endedness (via the coevolution of models and tasks) can discover models
with increasingly novel skills in a single run. We introduce a new model devel-
opment framework that extends coevolution to large language model (LLM) dis-
covery, open-ended Assessment Coevolving with Diverse Capabilities (AC/DC).
AC/DC evolves both LLMs via model merging and natural language tasks via syn-
thetic data generation. AC/DC discovers growing archives of LLMs that surpass
the capabilities of larger LLMs while taking up less GPU memory. In particular,
our LLM populations achieve a broader Coverage of expertise than other curated
models or baselines on downstream benchmarks, without any explicit benchmark
optimization. Furthermore, AC/DC improves Coverage over time, continually in-
novates on tasks and models, and improves performance in multi-agent best-of-N
selection. Our findings highlight the potential of coevolution as a means of dis-
covering broader sets of capabilities from base LLMs. Overall, AC/DC brings us
one step closer to a profoundly new paradigm of LLM development, where con-
tinual improvements to the diversity of model capabilities can be accelerated by
leveraging existing models as stepping stones to increasingly powerful models.

1 INTRODUCTION

LLMs and foundation models (Brown et al., 2020; Bommasani et al., 2021; Kaddour et al., 2023)
underpin key advances in AI for open-ended discovery and innovation (Nguyen et al., 2016; Lehman
et al., 2023; Zhang et al., 2023; Lu et al., 2024). Such innovation capacity in future AI systems,
innate to human civilization, would not only have profound implications for automated scientific
discovery, but would also accelerate AI research itself. How do we get closer to LLMs as engines
of knowledge accumulation and serendipitous discovery, with the ability to stumble upon greatness
(Stanley & Lehman, 2015) and drive paradigm shifts (e.g., the Transformer (Vaswani et al., 2017))?
Additionally, how do we imbue LLMs with innovation capacity and broader capabilities, given the
prohibitively expensive costs and inaccessibility of running bigger and bigger models (Pan & Wang,
2025) or obtaining more data (Muennighoff et al., 2023), especially for typical ML researchers?

While excitement grows around LLMs for scientific discovery (Romera-Paredes et al., 2023;
Novikov et al., 2025), the current paradigm of LLM development struggles to keep up with the
accumulation of knowledge on learnable or discovered data. Developers must continually adapt to
incremental improvements in static datasets (Albalak et al., 2024; Kandpal et al., 2025), environ-
ments (Intellect, 2025; Lambert et al., 2024; Novikov et al., 2025), learning algorithms (Shao et al.,
2024; Liu et al., 2025b), and architectures (Yang et al., 2025; Muennighoff et al., 2024), to push the
boundaries of frontier models. Continually training on synthetic data (Wang et al., 2023d; Xu et al.,
2023; Maini et al., 2024; Havrilla et al., 2024) and broad-domain reward signals (Zhao et al., 2025)
brings us closer to self-improving LLMs. Still, only one model is produced at a time. Trusting
a single big static model to solve all real-world problems would therefore be challenging, due to
concerns about fractured entangled representations (Kumar et al., 2025) and costs (Li et al., 2025).
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Model-Task Coevolution Final Task Force–Diversity Matters

63.99%
62.41%

Figure 1: Method Overview. AC/DC coevolves an increasing set of diverse LLMs alongside an
increasingly diverse and complex set of tasks, measuring the discovered models’ capabilities. Our
discovered collective of models covers more skills than baselines across a wide range of benchmarks.
Moreover, AC/DC discovers improved single model performance (as seen by MMLU (Hendrycks
et al., 2021a) performance) and demonstrates improvement over time (shown as an average of
MMLU and MMLU Pro (Wang et al., 2024) accuracy).

In contrast to individual models, collective intelligence (CI) (exemplified by human civilization) is
capable of endlessly achieving feats far greater than any single human could (Mitchell, 2009). CI has
even inspired new paradigms in AI (Ha & Tang, 2022) and multi-agent LLM systems (Liang et al.,
2023; Inoue et al., 2025), making them more robust during test-time scaling. By discovering whole
collectives of small and accessible LLMs with diverse capabilities, we can overcome the limitations
and weaknesses of any single trained model or the need to train different models separately.

To overcome the challenge of CI discovery, open-endedness (OE) is an emerging paradigm aiming
for never-ending discovery via open-ended algorithms (Stanley et al., 2017). Pursuing such AI-
generating algorithms (Clune, 2020), open-ended coevolution takes inspiration from the creativity
explosion of natural evolution and human innovation, and pursues ever-changing learning environ-
ments for populations of increasingly intelligent agents to gain diverse capabilities (Wang et al.,
2019; Dennis et al., 2020). Leveraging recent advances in OE through LLMs (Faldor et al., 2024;
Aki et al., 2024; Nisioti et al., 2024), we introduce a new framework to discover a whole popu-
lation of expert LLMs through open-ended Assessment Coevolving with (/w) Diverse Capabilities
(AC/DC). AC/DC combines evolutionary model merging (Akiba et al., 2025) and synthetic data
generation (Lu et al., 2025) to enable LLM populations to continually adapt to novel challenges that
are generated, while satisfying minimal criteria for model and task quality (Brant & Stanley, 2017),
all without explicit benchmark optimization (Lehman & Stanley, 2011a).

Following coevolution via AC/DC, we discovered a broad array of LLMs with diverse expertise
and response styles that solve synthetic tasks spanning engineering, the sciences, and creative writ-
ing. When we selected a fixed-size subset of LLMs that make up the broadest skill coverage on
synthetic tasks, and then evaluated them on various LLM benchmarks that are out-of-distribution
(OOD) to synthetic tasks at test time, we found that our population of smaller evolved LLMs (with
a combined lower LLM parameter count than compared baseline models) was able to solve and
cover more benchmark tasks than bigger LLMs of the same model family, as well as the initial
seed LLM population. Our results also suggest that our LLM collectives surpass or reach GPT-4o
(Hurst et al., 2024) levels of knowledge covered with a significantly lower proportion of collective
model parameters. Furthermore, a single evolved model achieved better MMLU (Hendrycks et al.,
2021b) performance than the best starting seed model (cf. Fig. 1), more iterations of coevolution led
to continually improved model population performance at test time, and cooperative final answer
(Best-of-N) selection was more often successful with our LLM collectives than with baselines.

In short, our main contributions are (1) the AC/DC method applying coevolution to a novel joint
LLM-and-synthetic-data discovery framework, (2) a demonstration of autonomous discovery of di-
verse LLM experts solving OOD tasks more broadly than baseline methods (some directly optimiz-
ing for benchmarks) and off-the-shelf models, and (3) evidence of a path to open-ended improvement
of LLMs without explicit benchmark optimization, through an analysis of AC/DC.
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2 BACKGROUND AND PRELIMINARIES

This section introduces key concepts central to AC/DC: model merging operations that enable evo-
lutionary discovery of LLM populations, Coverage metrics that quantify collective capabilities, and
quality-diversity (QD) principles that guide our coevolutionary process.

Evolutionary Model Merging. Model merging combines multiple existing LLMs to produce new
models with lower resource requirements than training from scratch (Wortsman et al., 2022; Il-
harco et al., 2023). Akiba et al. (2025) introduced evolutionary model merge (EvoMerge), which
automates the merging process through evolutionary optimization using CMA-ES (Hansen & Os-
termeier, 2001). Building on this foundation, we employ two key evolutionary operations:

Crossover: We sample two parent LLMs randomly and merge them using weighted linear interpo-
lation of their task vectors, following Kuroki et al. (2025). The task vector τpi = θparenti − θbase
represents the difference between parent LLM i and a base LLM (see Appendix Sec. M for more
details).

Mutation: We generalize existing mutation operations by applying noise to the singular values of
weight matrices in merged LLMs. For each weight matrix W , we compute its singular value decom-
position W = UΣV T and apply perturbations to the first k singular values in Σ before reconstruc-
tion, loosely inspired by Sun et al. (2025). This approach modifies the representational structure
while preserving the overall weight matrix geometry (see Appendix Sec. M for more details).

Coverage Metric. Coverage measures the collective problem-solving capacity of LLM populations.
Given Q total number of questions and N number of LLMs, Coverage is:

Coverage =
1

Q

Q∑
q=1

(
N∨
i=1

(xq,i = yq)

)
(1)

where xq,i is the output of LLM i for question q, yq is the ground truth answer for question q,
and

∨N
i=1 denotes the logical OR operation over all N LLMs. Coverage quantifies whether at least

one LLM in the population solves each problem, capturing the collective intelligence potential of
diverse LLM ensembles. Unlike individual LLM accuracy, Coverage emphasizes complementary
capabilities that emerge from LLM diversity.

Skill Vectors. We represent LLM capabilities through binary skill vectors, where each indexed
element indicates task completion status. They serve as behavioral signatures that enable direct
comparison of LLMs without predefining niches (as in MAP-Elites (Mouret & Clune, 2015b)). The
distance between skill vectors informs the diversity of complementary LLM capabilities.

Quality-Diversity (QD). QD generates collections of diverse, high-quality solutions (Pugh et al.,
2016; Lehman & Stanley, 2011b), unlike traditional optimization, which seeks a single optimal
solution. For model selection, we apply Dominated Novelty Search (DNS) (Bahlous-Boldi et al.,
2025), a recent QD algorithm particularly suited to skill vector representations (similar to Meyerson
& Miikkulainen (2017)). DNS computes local competition fitness f̃i by measuring each solution’s
distance from better-performing solutions in the descriptor space. For solution i, f̃i is computed as:

f̃i =

{
1
k

∑
j∈Ki

di,j if |Di| > 0

+∞ otherwise
(2)

whereDi contains solutions fitter than solution i,Ki contains indices of k solutions inDi with small-
est distances di,j between solutions i and j. Local competition encourages diversity by rewarding
solutions that are distant from higher-performing neighbors in the behavioral space.

Open-Ended Coevolution. Brant & Stanley (2017; 2020) demonstrate that defining minimal cri-
teria (MC) for both agents and environments enables more open-ended outcomes in coevolution,
filtering out undesired outcomes while enabling exploration to flourish. AC/DC coevolves popula-
tions of LLMs and synthetic tasks, where models must satisfy quality thresholds while maximizing
quality and behavioral diversity through their skill vector representations. This creates a dynamic en-
vironment where increasingly sophisticated capabilities can emerge through the interplay between
model evolution and task complexity. Related work discussion in Sec. G highlights AC/DC as a
novel system combining concepts from various fields.
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3 AC/DC: ASSESSMENT COEVOLVING WITH DIVERSE CAPABILITIES

Model Archive
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New Models

New Tasks
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Model 1
Task 1: 1
Task 2: 0

…
Task M: 0

Model N

…

Eval Models
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–––––––––
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...
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Figure 2: Algorithm Overview. AC/DC continuously coevolves a model (LLM) and a synthetic
task archive. LLMs are evolved using model merging crossover, and weight noising as a mutation
operation. Tasks are evolved using a large scientist LLM to adapt the existing tasks, generating
increasingly novel and complex tasks. Models are evaluated on this data. We then compute a skill
vector (i.e., signature of quality and diversity) for each model and a pass rate for each task. Based
on those, we first apply minimal criterion (MC) filters (gibberish LLM filter, impossible task filter)
and then select the models and tasks to update the archives, respectively.

We describe an open-ended algorithm for automatically discovering diverse LLMs that can collec-
tively cover a wide range of skills. AC/DC coevolves two archives: an LLM archive AM optimized
for quality and diversity, and a synthetic active task archive AQ containing an increasingly complex
and novel set of challenges that the agent archive must address. We illustrate the algorithm in Fig. 2
and provide the core algorithmic steps below (Algorithm 1). Inspired by Brant & Stanley (2017), we
highlight minimal criteria (MC) for both LLMs and tasks. For further details, see Appendix Sec. N.

Algorithm 1 AC/DC: Assessment Coevolving with Diverse Capabilities

1: Initialize: Model archive AM ← seed and init models, Task archive AQ ← seed and init tasks
2: for g = 1 to G do ▷ Model Evolution Phase
3: P ← SELECTPARENTS(AM ) ▷ Select P parents
4: O ← CROSSOVERMUTATE(P , N ) ▷ Generate N offspring
5: E ← EVALUATE(O, AQ) ▷ Evaluate skill vectors, get responses to tasks; Sec. F.2
6: T ← GIBBERISHFILTER(E) ▷ Trim away/discard degenerate models; Sec. F.5
7: AM ← DNSUPDATE(AM , T ) ▷ Select top M models; Sec. A.3.1
8: if g mod Gtask = 0 then ▷ Task Evolution Phase
9: Q← GENERATETASKS(scientist LLM) ▷ Generate Ngen tasks; Sec. F.1

10: Qnov ← NOVELTYFILTER(Q) ▷ Remove similar tasks; Sec. F.4
11: Qvalid ← VALIDATETASKS(Qnov) ▷ Reflection & validation; Sec. F.1
12: AQ,AQg

← UPDATETASKARCHIVE(AQ, AQg
, Qvalid) ▷ AQg

is global task archive
13: REEVALUATEARCHIVE(AM , Qvalid) ▷ Update skill vectors with new task pool
14: end if
15: SAVEARCHIVES(AM , AQ, g)
16: end for
17: return SELECTTASKFORCE(AM , AQg ) ▷ Select Ntf diverse models

Model Archive Evolution. Evolution begins with at least three seed LLMs, representing fine-tuned
versions of the same base architecture. We maintain M active LLMs, i.e., LLMs considered as
parents for the next generation (as in DNS). We also save a historical archive of LLMs every Gtask

generations (before task adaptation), as candidates for a future task force. Given the existing parent
population in M , we apply crossover and mutation operators as described in Sec. 2, producing
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N offspring and yielding M + N candidates for evaluation (Lines 3-4). Each candidate LLM is
evaluated on our synthetic task archive and assigned skill vectors (Line 5). We apply a novel MC
filter called the ”gibberish filter” to eliminate degenerate models by sampling outputs from the LLM
for three random tasks each and employing a judge LLM to assess text coherence (Line 6). For the
remaining models, we employ DNS to compute adjusted local competition scores f̃ (cf. Sec. A.3.1).
We retain the highest-fitness model and select the remaining P − 1 models with top f̃ scores such
that we have at most M active models (Line 7).

Task Archive Evolution. Alongside LLM agents, we coevolve an increasingly challenging and
diverse set of tasks. We employ a large scientist LLM to synthesize tasks in line with METR Task
Standard Team (2024) (but simplified), where each task comprises a question-answer pair with an
accompanying scoring function defined in Python (Line 9; Sec. F.1). We extend Lu et al. (2025) with
a code extraction tool that enables robust evaluation of tasks requiring code generation, allowing the
scientist LLM to programmatically parse and execute subject model responses. We maintain at
most Qmax active tasks per generation that are used to evaluate the current generation of models,
alongside a global task archive updated every Gtask generations. We employ two vector databases
for efficient similarity search: one for active tasks and another for the global archive.

Task evolution begins with Nseed manually curated seed tasks (cf. Sec. E.3) and generates Ninit

initial tasks through our evolution pipeline (Lines 9-13): (1) Task Proposal Phase samples a parent
task and three random tasks from the active task database. Based on the parent task’s difficulty pro-
file—determined by average pass rates across the current model population—we classify adaptation
requirements as: increase difficulty, decrease difficulty, or generate a novel variant. The scientist
LLM receives the parent task, three random reference tasks, and an adaptation type to generate a
candidate task. (2) Novelty Filtering retrieves the three most similar tasks from the global archive
using cosine similarity in embedding space. A judge LLM then determines whether the proposed
task introduces sufficient novelty relative to existing tasks. (3) Reflection and Validation applies
iterative refinement through self-evaluation cycles where the scientist LLM first attempts to solve its
own generated task, and we execute the scoring function to identify implementation issues. Compi-
lation errors trigger automatic correction with error feedback, while logic-based errors prompt task
refinement. (4) Quality Assurance and MC implements additional filtering to remove impossible
tasks that no LLM was able to solve, replacing them with their parent tasks. Accepted tasks are
added to both the global archive and the active tasks. See Sec. E.4 for generated example tasks.

Model Selection for Downstream Evaluation. After coevolution over multiple generations, we
select Ntf models for our task force that maximize the number of correctly solved tasks across
our synthetic task distribution AQg (Line 17) (see Sec. D.2 for experiments with different selection
strategies). This selection process operates independently of downstream benchmarks, avoiding
optimization pressure and maintaining model generalization for OOD domains.

4 QUANTITATIVE RESULTS

We compare our task force Coverage (Eq. (1)) against several baseline approaches. We evaluate on
a diverse set of benchmarks covering general knowledge, math, STEM, and code (see Sec. A.4.1 for
details). See Sec. A.2 for model specifications and Sec. A.1 for hyperparameters.

Baselines Setup. We compare against four baselines: (1) Experts (N=3): Hand-selected instruct
models (code, math, general) prompted once each with temperature 0 (for a discussion on N=8
experts, see Sec. D.4). (2) Control (N=3/8): The general instruct model prompted 3 or 8 times with
temperature 0.7. (3) Big Model: A single large instruct model prompted once with temperature 0.
(4) GPT-4o: Prompted once as the Big Model.

Best-of-N Selection Setup. Next to Coverage, we also evaluate Best-of-N (BoN) single-answer
selection from multiple candidates using standard benchmark versions, testing whether Coverage
improvements translate to practical deployment scenarios. We implement three techniques for the
three benchmark types (MCQ, math, code). For further details, see Sec. A.4.

Coverage. Tab. 1 presents Coverage results across five base model families (see Sec. B.1 for details),
revealing important patterns in AC/DC’s performance across different architectures and scales. Our
evolutionary approach demonstrates broad applicability, achieving positive improvements on aver-
age across all model families and configurations (+1.99% to +10.43% across comparisons). The
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Table 1: AC/DC’s Coverage improvement across different models. Results show average per-
formance improvement across all benchmarks for N=3 and N=8 configurations over the respective
baseline. For analysis on statistical significance, see Sec. K.

Base Model vs Experts vs Control (%) vs Big Model (%) vs GPT-4o (%)
N=3 (%) N=3 N=8 N=3 N=8 N=3 N=8

Qwen2 7B +2.28 +0.73 +0.38 +5.57 +14.59 -6.01 +3.01
Qwen2.5 7B +3.66 +2.61 +3.71 +5.80 +12.95 -0.34 +6.81
Qwen3 14B -0.66 +0.30 +1.86 +5.53 +11.19 +1.67 +7.33
DeepSeek V1 7B +8.71 +6.30 +4.35 +2.32 +13.44 -21.10 -9.98

Average +2.80 +1.99 +2.06 +3.85 +10.43 -5.15 +7.17

Qwen 2, Qwen 2.5, and DeepSeek models show consistent improvements across expert and con-
trol baselines, indicating effective discovery of complementary capabilities. Qwen3 14B exhibits
scaling-dependent behavior where N=3 configurations under-perform expert baselines but demon-
strate improvement over the control baselines.

Our approach also achieves substantial parameter efficiency—for example, Qwen2 7B achieves
5.57% improvement over a 72B model using only 29% of the parameters at N=3, growing to 14.59%
improvement at N=8, suggesting that distributed specialization benefits compound with scale. Our
results show that AC/DC successfully discovers complementary capabilities that extend beyond what
can be achieved through either manual expert selection or parameter scaling.

Finally, comparing our task force to GPT-4o, we demonstrate that our N=8 collective of models
achieve broader Coverage. This is especially interesting considering that our task forces require
very little compute to merge and then serve them in consideration of the potential costs of GPT-4o.
Moreover, at N=3, our Qwen 2.5 task force of 3 7B models approach the capabilities of GPT-4o. This
finding suggests that a collective of smaller, diverse, and capable models possesses the knowledge
of a single frontier model, which can be leveraged given advances BoN secetion methods.

Table 2: AC/DC’s Best-of-N improvement across different models. Results show average per-
formance improvement across all benchmarks for N=3 and N=8 configurations over the respective
baseline. For analysis on statistical significance, see Sec. K.

Base Model vs Experts vs Control (%) vs Big Model (%) vs GPT-4o (%)
N=3 (%) N=3 N=8 N=3 N=8 N=3 N=8

Qwen2 7B +3.58 +0.89 +1.18 -0.36 +3.76 -11.82 -7.71
Qwen2.5 7B +1.38 -2.01 +1.89 -1.82 +1.92 -8.22 -4.48
Qwen3 14B +0.34 +1.59 -0.18 +0.77 +2.59 -6.70 -4.88
DeepSeek V1 7B +7.43 +0.13 +4.86 +0.45 +5.30 -22.12 -17.26

Average +2.55 +0.12 +1.55 -0.19 +2.71 -9.77 -6.86

Best-of-N (BoN). Tab. 2 presents BoN selection results across five base model families (see Sec. B.2
for details), revealing how Coverage improvements translate into practical single-answer scenarios.
Our evolutionary approach maintains strong performance when restricted to best-of-N, achieving
positive improvements on average across representative comparisons (+0.12% to +2.55% vs control
and experts). Most base model groups show positive improvements over control baselines, with
particularly strong performance from Qwen2 7B, Qwen2.5 7B, and DeepSeek V1 7B. They show
weaker absolute performance than Qwen3 14B, thus having more room for performance gains.

Most notably, our approach achieves exceptional parameter efficiency against big models. For ex-
ample, Qwen2 7B reaches within 0.36% of the 72B model’s performance using only 29% of the
parameters at N=3, and surpasses it by 3.76% at N=8 while using 22% fewer parameters. This pat-
tern extends across model families—our N=8 configurations consistently outperform much larger
models while using substantially fewer parameters.

Comparing against GPT-4o, we observe that our 8 Qwen2.5 7B and Qwen3 14B models come close
to GPT-4o’s performance, indicating that with improved BoN methods, the collective of smaller
models is within reach of outperforming the significantly larger proprietary model.
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These results demonstrate that our evolutionary process successfully translates Coverage gains into
practical single-answer scenarios, achieving near-parity or superiority compared to much larger
models while maintaining advantages over specialized baselines across scales.

Ablations. We examine the contribution of individual algorithmic components by systematically re-
moving each from our evolutionary process (detailed results in Sec. D.1). The ablation reveals that
quality-diversity selection and the gibberish filter are the most critical components, with their re-
moval causing the largest absolute performance drops (1.86% and 2.12% at N=3, 0.80% and 0.68%
at N=8, respectively). Removing individual components like mutation or novelty filtering causes
modest decreases ranging from 0.46%-0.67% at N=3 and 0.35%-0.61% at N=8. Overall, larger
populations appear to provide higher algorithmic robustness against individual components.

Most importantly, removing all evolutionary components simultaneously causes substantial perfor-
mance degradation (1.81% drop at N=3, 6.94% drop at N=8), demonstrating that our algorithmic
innovations work synergistically to enable effective collective intelligence, with benefits becoming
more pronounced at scale. In Sec. D.6, we demonstrate that including coevolution improves per-
formance over model evolution on a static synthetic dataset, in Sec. D.7, we demonstrate the effect
of seed task selection, and in Sec. D.8, the effect of the scientist model. Moreover, in Fig. 1, we
demonstrate improvement over time, further demonstrating the efficacy of our method.

Table 3: Comparison to prior
QD methods. Results show avg.
Coverage across benchmarks.

Configuration N=3 N=8

AC/DC (ours) 58.21 66.86
DNS 58.39 64.97
CQD 58.13 63.68

Finally, Tab. 3 compares AC/DC to prior quality diversity meth-
ods (DNS Bahlous-Boldi et al. (2025), CycleQD (CQD) Kuroki
et al. (2025)) that train on benchmark-specific datasets, directly
optimizing for the benchmarks (see Sec. D.5 for implementation
details). In contrast, AC/DC does not optimize for any bench-
mark and achieves the highest benchmark Coverage at N=8
models, demonstrating that our method discovers more diverse
and capable LLMs. Concurrently, DNS improves on coverage
over CQD, justifying its usage in AC/DC.

5 QUALITATIVE CASE STUDY

5.1 EMERGENT SPECIALIZATION OF MERGED MODELS

Fig. 3 illustrates how our eight discovered models develop distinct performance profiles, with each
model excelling in specific categories while performing differently across others, enabling them to
function as complementary components of a collective intelligence. This specialization creates valu-
able Coverage patterns where models contribute unique capabilities to the ensemble. For instance,
Model 4 may not achieve the highest overall accuracy, but it provides correct answers to chemistry
questions that no other model in the population can solve.

Similarly, Model 6 demonstrates su-
perior performance in business and
computer science domains, while
Model 3 excels specifically in biol-
ogy. These specialized capabilities
ensure the task force can collectively
address questions across diverse do-
mains, even when individual models
show weaknesses in certain areas. In
stark contrast, our control baseline
of resampling the generalist instruct
model eight times exhibits minimal
variance across categories and over-
all weaker performance. Moreover,
Fig. 1 demonstrates that AC/DC dis-
covers improved single LLMs, as ev-
idenced by superior MMLU Pro per-
formance compared to baseline mod-
els.

Figure 3: Emergent Specialization of Merged Models on
MMLU Pro Categories. We show the accuracy distribution
across categories for our N=8 merged models (left) and our
N=8 control evaluation (right). For clarity, we don’t display
the instruct seed model, which is part of our task force, and
thus only show seven models.
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5.2 RESPONSE EXAMPLES AND DIVERSITY FROM MERGED MODELS

9 out of 10 cheerleaders are 64" tall.  The 10th cheerleader is 
60" tall.  If they build a human pyramid, where 4 girls are on the 
bottom,  3 stand on top of the 4, 2 stand on top of the 3 and the 
shortest girl is at the top, how tall is the human pyramid in feet? 

There are 9 girls who are 
64" tall and 1 girl who is 
60" tall. The height of 
the 9 girls is 9*64 = 
576", and the height of 
the 10th girl is 60", so 
the total height of all 10 
girls is 576" + 60" = 
636". When they build a 
human pyramid, the height 
is determined by the 
tallest girl, which is 
60".[...]

The final answer is 5 
feet.

Baseline Response
The 9 tallest 
cheerleaders are 64" 
tall. The 10th is 60" 
tall. The 4 on the 
bottom are 64" tall. 
[...]
So the height of the 
human pyramid in feet 
is 252" / 12" = 21 
feet.

The final answer is 21 
feet.

Model 2

All of the following play an important role in regulating respiration 
in humans EXCEPT

A. an increase in the amount of CO2 in the blood B. a decrease in 
the amount of O2 in the blood C. a decrease in the plasma pH level 

D. strenuous exercise

## Step 1: [Concise 
description]
A decrease in the amount 
of O2 in the blood would 
not directly regulate 
respiration.
## Step 2: [Concise 
description]
An increase in the amount 
of CO2 in the blood, a 
decrease in the plasma pH 
level, and strenuous 
exercise all play roles in 
regulating respiration.
The best answer is B.

Model 1
## Step 1: Identify the 
factors that regulate 
respiration in humans
[The factors that regulate 
respiration in humans 
include [...]]
## Step 2: Determine which 
factor does NOT play a 
role in regulating 
respiration
[Strenuous exercise is not 
a factor that regulates 
respiration in the same 
way as the others.[...]]
The best answer is D.

Baseline Response

Imagine an operator $\\vec{P}$ of a system have components 
$P_x, P_y$ and $P_z$. The matrix form of the  operator $P_x$ has 

components in the first row as $(0, \\hbar/\\sqrt{2}, 0)$ […]
Choices:

(A) \\hbar    (B) \\hbar/2    (C) \\hbar/\\sqrt{2}    (D) \\sqrt{2}\\hbar

The uncertainty principle 
states that the product 
of the uncertainties of 
two non-commuting 
operators is greater than 
or equal to the absolute 
value of their 
commutator.
[...]
Therefore, the 
uncertainty in $P_z$ is 
at least $\\hbar/2$.

The correct answer is (B) 
$\\hbar/2$.

Baseline Response
To find the uncertainty in 
the operator $P_z$, we 
need to use the formula 
for the uncertainty 
principle, which is given 
by:
\[\\Delta P_z \\Delta P_z 
= \\frac{1}{2} \\hbar
\\]
First, we need to find the 
uncertainty in $P_z$, 
which is represented by 
$\\Delta P_z$.
[...]
So, the correct answer is 
(D) $\\hbar/\\sqrt{2}$.'

Model 3

Figure 4: Merged models unlock new capabilities. Higher Coverage means that our models solve
tasks that baselines didn’t. These examples show a sample from MMLU, GSM8K, and GPQA,
respectively, where none of the baseline models (math expert, code expert, reprompting the instruct
model 8x, and the 72B model) solved the task, whereas at least one of our models did.

Merged Models vs. Baselines on Benchmark Tasks. Our evolutionary approach demonstrates
superior Coverage by solving tasks that baseline methods cannot address. Fig. 4 presents examples
where none of the baseline models—including math experts, code experts, repeated instruct model
sampling, and the 72B model—successfully solve the task, while at least one of our discovered
models provides the correct solution.

The MMLU example (left) illustrates multiple advantages of our approach beyond correctness.
While baseline models fail to identify the correct answer, the 72B model additionally demonstrates
poor response formatting, incorrectly placing square brackets around the main reasoning rather than
the step headers. Our model not only provides the correct answer but also delivers concise, well-
formatted reasoning that adheres to the expected structure.

The GSM8K arithmetic example (middle) showcases improved mathematical reasoning capabilities
that likely emerge from our model merging process. By combining the potentially overfitted math
expert with the general instruct model, AC/DC appears to broaden narrow mathematical skills to
handle a wider range of instruction formats, resulting in more robust problem-solving abilities.

The GPQA physics example (right) reveals an important advantage related to output length con-
straints. During evaluation, responses exceeding the 1024-token limit often result in incorrect as-
sessments, and most baseline responses violate this constraint. Our evolutionary process implements
a 512-token maximum during training, creating selection pressure for models that produce concise
answers. Qualitative analysis suggests our discovered models find solutions using fewer tokens,
leading to higher accuracy within the evaluation framework’s constraints. This demonstrates how
evolutionary pressure can optimize for practical deployment considerations beyond raw capability.

Write a function named `max_subarray_sum` that takes a list of integers and returns 
the maximum sum of a contiguous subarray.

For example, given the input [-2, 1, -3, 4, -1, 2, 1, -5, 4], the function should return 6.
Only submit the function definition without any additional text or explanations.

def max_subarray_sum(nums):
    if not nums:
        return 0
    max_sum = current_sum = 
nums[0]
    for num in nums[1:]:
        current_sum = 
max(num, current_sum + num)
        max_sum = 
max(max_sum, current_sum)
    return max_sum

Model 3

Create an analogy for the following scenario: 'Explaining the concept of recursion in 
programming'. Your analogy should:

1. Clearly convey the concept or impact described in the scenario, breaking it down 
into understandable steps. [...]

Explaining the concept 
of recursion in 
programming can be 
compared to the process 
of solving a maze.

Imagine you are at the 
entrance of a maze, and 
you need to find the 
exit. The maze is 
complex and has many 
twists and turns. [...]

Model 3
To explain the concept of 
recursion in programming, 
let's use the analogy of a 
person giving directions to 
a friend who is lost in a 
city they are unfamiliar 
with.

Imagine that you are in a 
city you are not familiar 
with and you need to find a 
specific location. You 
don't have a map or GPS, so 
you ask a local for 
directions. [...]

Model 2
def max_subarray_sum(nums):
    max_sum = float('-inf')
    current_sum = 0
    
    for num in nums:
        current_sum += num
        max_sum = 
max(max_sum, current_sum)
        
        if current_sum < 0:
            current_sum = 0
            
    return max_sum

Model 2
def max_subarray_sum(nums):
    max_sum = nums[0]
    current_sum = nums[0]
    
    for num in nums[1:]:
        current_sum = 
max(num, current_sum + num)
        max_sum = 
max(max_sum, current_sum)
    
    return max_sum

Model 1
def analogy_of_recursion():
    # Step 1: Define the 
analogy
    analogy = "Imagine you are 
trying to find a specific book 
in a large library."

    # Step 2: Break down the 
analogy into understandable 
steps
    analogy += "\n1. You start 
at the main entrance and look 
for the section where books on 
programming are kept."
    analogy += "\n2. Once you 
find the programming section, 
you look for the specific 
category of 'Recursion'."[...]

Model 1

Figure 5: Models in our Task Force give diverse Answers. Two examples of synthetic tasks
generated by AC/DC and the answers of 3 models in our Task Force. In the left example, we can see
how all three models give different analogies. Moreover, Model 1 structures the analogy in a Python
function. For the right example, we can see that our models provide 3 different implementations of
the same optimal algorithm.
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Merged Model Response Diversity on Synthetic Tasks. Building on the quantitative capability
distribution demonstrated in Sec. 5.1, we examine qualitatively whether our models generate diverse
responses by analyzing their outputs on two synthetic tasks (Fig. 5).

The creative writing task (left) requires both analogical reasoning and computer science knowledge,
revealing distinct approaches across our three models. Each model proposes a completely different
analogy—library navigation, urban directions, and maze solving—demonstrating genuine diversity
in conceptual frameworks rather than superficial variations. Notably, one model presents its analogy
as a Python function, likely reflecting its ancestry from a code expert model and illustrating how
evolutionary merging preserves specialized formatting preferences even in non-coding contexts (for
more details on model evolution analysis, see Sec. E.2).

The algorithm implementation task (right) shows diversity in coding style and approach while main-
taining algorithmic correctness. These variations demonstrate that our evolutionary process pro-
duces models with different coding philosophies and defensive programming practices, suggesting
genuine stylistic diversity beyond mere surface-level differences.

This qualitative analysis confirms that our discovered models exhibit meaningful diversity in both
creative reasoning and technical implementation, supporting the quantitative evidence of broad ca-
pability distributions and validating that our evolutionary approach generates truly complementary
rather than redundant model behaviors. More qualitative analyses on coevolution are in Sec. E.

Additionally, in Appendix Sec. I, we demonstrate quantitative and qualitative analysis comparing the
three expert seed models to discovered merged models, investigating how challenging our synthetic
tasks are to the expert models compared to our merged models. We find that our merged models,
on average and as individual models, perform better on our synthetic data, demonstrating further
evidence for the complexity of our synthetic data and the capabilities emerging through AC/DC,
potentially beyond those present in off-the-shelf models.

5.3 QUALITY AND DIVERSITY OF SYNTHETIC TASKS - A HUMAN STUDY

To validate the quality and novelty of our synthetically generated tasks, we conducted a human
study where three expert reviewers evaluated 47 synthetic tasks and 49 benchmark tasks across
three dimensions: correctness, out-of-distribution (OOD) nature relative to standard benchmarks,
and creativity. Full methodology and results details are provided in Appendix Sec. H.

Table 4: Human evaluation results for synthetic tasks. Values show mean ± standard error across
all labels.

Correctness Out-of-Distribution Creativity
97.8% ± 2.2% 68.9% ± 6.9% 37.8% ± 7.2%

Results demonstrate that our approach generates high-quality tasks with strong novelty characteris-
tics. The 97.8% correctness rate confirms that synthetic tasks are well-formed and solvable. Crit-
ically, nearly 70% were rated as out-of-distribution compared to established benchmarks, provid-
ing evidence that our method successfully generates novel task types beyond existing evaluation
datasets, supporting our claims for OOD training. Over one-third were rated as creative, indicating
exploration of problem-solving approaches not commonly tested by standard benchmarks.

As a validation baseline, we also evaluated tasks from eight standard benchmarks. These showed
substantially lower OOD (10.2%) and creativity (6.1%) ratings, with the few exceptions con-
centrated exclusively in complex graduate-level benchmarks (MMLU-Pro, GPQA). This pattern
confirms that reviewers appropriately distinguished between novel synthetic tasks and established
benchmark content. Statistical analysis reveals strong inter-rater agreement on objective metrics
(correctness: p = 0.46, OOD: p = 0.57), demonstrating robust and reliable findings.

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

This work introduces AC/DC, a framework for automatically discovering diverse LLM collectives
through open-ended coevolution of models and synthetic tasks. Our approach demonstrates that
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EvoMerge can create task forces that outperform both larger monolithic models (while using fewer
parameters) and manually curated expert ensembles. AC/DC does not optimize for any downstream
benchmark and achieves consistent improvements across multiple model families, with evolved pop-
ulations showing a wider coverage of capabilities and emergent specializations that validate the
discovery of complementary skills.

We highlight limitations with AC/DC that motivate further work. Firstly, successful merge outcomes
can depend on empirically testing seed model combinations; for example, strongly fine-tuned mod-
els with divergent parameter spaces merges poorly, potentially limiting performance gains (Horoi
et al., 2025) (e.g., see results with Llama3, Sec. C). The framework relies on a fixed scientist LLM
for task generation, constraining exploration potential. AC/DC primarily discovers emergent skills
through crossover rather than acquiring new knowledge, bounded by the initial seed models’ ca-
pabilities, which could be addressed through mutation (e.g., our mutation operator). Finally, an
inherited limitation from EvoMerge is that it requires seed models that are fine-tuned versions of the
same base model.

Key future work directions include developing recursive self-improving scientist models using
evolved model populations for task generation. Furthermore, as with all prior attempts towards un-
bounded open-endedness, extending runs well beyond an arbitrary limit on coevolution steps would
enable investigation of longer-term open-ended dynamics and whether innovation rates remain sta-
ble over extended time horizons (as we observe promising signs of continual task and model inno-
vations in Appendix Sec. D.3 and Sec. D.6). Moreover, similar to how a lot of research focuses
on developing base LLMs suitable for subsequent post-training, research on the understanding of
model merging compatibility of seed models is a relevant future research direction. We investigate
potential ad-hoc predictors for the compatibility of seed models for evolutionary model merging
in Appendix Sec. J, which can be an interesting starting point for future research. Additionally, ex-
panding scientist LLM tools (e.g., adding web search capabilities) for task generation would enhance
the correctness and scope of novel tasks (Lu et al., 2024). Integrating model fine-tuning could en-
able more efficient knowledge acquisition beyond crossover-based discovery. Moreover, advanced
merging techniques such as M2N2 (Abrantes et al., 2025) could provide higher-degree-of-freedom
model combinations. Finally, implementing model collaboration during training and test-time in-
ference could enhance population-level performance. Nevertheless, independently developing more
sophisticated multi-agent best-of-N extraction methods could be a valuable complementary research
direction (Inoue et al., 2025).

In conclusion, AC/DC represents a paradigm shift from scaling individual models toward deliber-
ately developing complementary agent collectives through a more open-ended process designed for
continual innovation, and opens up multiple exciting areas of research. This distributed specializa-
tion approach offers a path to parameter-efficient AI systems that achieve sophisticated capabilities
without the computational costs of ever-larger monolithic (frontier) models (cf. Sec. L). We see
many possibilities for advancing collective LLMs through this new paradigm of automatic devel-
opment of a population of diverse and capable models. With AC/DC, we demonstrate a first step
towards this vision, bringing us closer to discovering collective AI that is as open-ended and complex
as human civilization.

ETHICS STATEMENT

Our approach focuses on automatically coevolving LLMs and synthetic tasks. As this work only
encompasses the evaluation of models on synthetic and benchmark tasks without involving sensitive
data, human subjects, or potential misuse applications, we identify no ethical concerns.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide source code and configs, showing the details of
the algorithm, run setup, seed tasks, and LLM prompts. All base models and evaluation benchmarks
used in this work are publicly available.
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A SETUP DETAILS

A.1 TRAINING HYPERPARAMETERS

This section provides the hyperparameters used for all experiments unless otherwise specified.

Table 5: AC/DC hyperparameters.

Component Parameter Value

General

Number of generations 50
Active models per gen 16
New offspring per gen 8
Active tasks per gen 250
Scientist Model Qwen/Qwen2.5-72B-Instruct

Reproduction First k singular values 256
mutation rate 0.25

Evaluation (evolution)
max tokens 512
temperature 0
top p 1.0

Task Generator
Task difficulty threshold 0.5
Max reflections 3
Embedding Model intfloat/e5-mistral-7b-instruct

t-SNE

n components 2
perplexity 50
learning rate 200
n iter 3000
init pca
random state 42
early exaggeration 6.0

HDBSCAN

min cluster size 16
min samples 4
cluster selection epsilon 2
cluster selection method eom
metric euclidean

A.2 MODELS USED

For our experiments with different model families, we use the following models from Huggingface:

Qwen2 7B (Yang et al., 2024)

• Control: Qwen/Qwen2-7B-Instruct
• Experts:

– Grogros/Qwen2-7B-OurSafecoder

– Qwen/Qwen2-Math-7B-Instruct

– Qwen/Qwen2-7B-Instruct

• Big Model: Qwen/Qwen2-72B-Instruct

Qwen2.5 7B (Qwen et al., 2025)

• Control: Qwen/Qwen2.5-7B-Instruct
• Experts:

– prithivMLmods/Neumind-Math-7B-Instruct
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– pe-nlp/R1-Qwen2.5-7B-Instruct-code
– Qwen/Qwen2.5-7B-Instruct

• Big Model: Qwen/Qwen2.5-72B-Instruct

Qwen3 14B (Yang et al., 2025)

• Control: Qwen/Qwen3-14B
• Experts:

– sunblaze-ucb/Qwen3-14B-Intuitor-MATH-1EPOCH
– ertghiu256/qwen-3-14b-code-and-math-reasoning
– Qwen/Qwen3-14B

• Big Model: Qwen/Qwen3-235B-A22B-Instruct-2507

DeepSeek V1 7B (Bi et al., 2024)

• Control: deepseek-ai/deepseek-llm-7b-chat
• Experts:

– deepseek-ai/deepseek-math-7b-instruct
– deepseek-ai/deepseek-coder-7b-base-v1.5
– deepseek-ai/deepseek-llm-7b-chat

• Big Model: deepseek-ai/deepseek-llm-67b-chat

Llama3 8B (Grattafiori et al., 2024)

• Control: meta-llama/Meta-Llama-3-8B-Instruct
• Experts:

– MathGenie/MathCoder2-Llama-3-8B
– rombodawg/Llama-3-8B-Instruct-Coder
– meta-llama/Meta-Llama-3-8B-Instruct

• Big Model: meta-llama/Meta-Llama-3-70B-Instruct
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A.3 ALGORITHM DETAILS

A.3.1 DNS NOVELTY SCORE COMPUTATION

The Dominated Novelty Score (DNS) is a key component of our selection mechanism that balances
quality and diversity in the model archive. For each model, we compute its novelty relative to models
with higher fitness, encouraging retention of models that solve unique subsets of tasks. Algorithm 2
provides the detailed computation.

Algorithm 2 Dominated Novelty Score Computation for One Solution

1: Input: Solution s, Archive A, Parameters k, αdom, w (difficulty weights)
2: F ← {s′ ∈ A : fitness(s′) > fitness(s)} ▷ Find fitter solutions
3: if F = ∅ then
4: return αdom ▷ Maximum score if no fitter solutions exist
5: end if
6: scores← []
7: for each s′ ∈ F do
8: vs ← skill vector of s ▷ Binary vector of task successes
9: vs′ ← skill vector of s′

10: // Compute weighted unique skills: tasks solved by s but not by s′

11: unique weighted←
∑

i wi · (vs[i] ∧ ¬vs′ [i])
12: total weighted←

∑
i wi ▷ Sum of all difficulty weights

13: // Normalize by total skill vector to measure contribution to coverage
14: skill score← unique weighted

total weighted × 100

15: scores.append(skill score)
16: end for
17: scores.sort() ▷ Sort ascending
18: k′ ← min(k, |scores|) ▷ Use at most k neighbors
19: return 1

k′

∑k′

i=1 scores[i] ▷ Mean of k lowest scores

The algorithm identifies models that complement the existing archive by solving tasks that higher-
fitness models fail on. A model receives a high novelty score when it uniquely solves many tasks
that fitter models cannot solve. The skill score is computed as the ratio of weighted unique skills to
the total weighted skill vector, measuring the model’s contribution to overall task coverage relative
to fitter solutions. Key configuration parameters include:

• αdom (default: 999): Maximum novelty score assigned when a model has no fitter com-
petitors

• k (default: 3): Number of nearest neighbors for novelty computation
• wi: Difficulty weights for task i, computed as the fraction of current model population

failing that task

When using difficulty weights, harder tasks (those failed by more models) contribute more to the
novelty score, encouraging retention of models that solve challenging problems. This mechanism
ensures diversity in the archive while maintaining a preference for higher overall fitness. This is also
related to what metric Abrantes et al. (2025) used for diversity maintenance in M2N2. Our method
directly leverages this as part of explicit distance measurements between model behaviors to support
the use of QD algorithms in AC/DC.
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A.4 EXPERIMENTAL SETUP DETAILS

This section provides details to the experimental setup such as the benchmarks used and how we aug-
ment them (Sec. A.4.1) and details on our best-of-N single-answer-selection methods (Sec. A.4.3).

A.4.1 BENCHMARK DETAILS

We evaluate on MMLU (Hendrycks et al., 2021a), MMLU Pro (Wang et al., 2024), GPQA (Rein
et al., 2024), BBH (Suzgun et al., 2022), GSM8K (Cobbe et al., 2021), Minerva MATH (Lewkowycz
et al., 2022), Humaneval (Chen et al., 2021b), and MBPP (Austin et al., 2021).

We use Language Model Evaluation Harness (lm-evaluation-harness) from EleutherAI
(Gao et al., 2024) to evaluate on these benchmarks, with task names mmlu cot llama,
mmlu pro llama, gpqa main cot zeroshot, bbh cot zeroshot, gsm8k llama,
minerva math, humaneval instruct, and mbpp instruct respectively. We use the orig-
inal evaluation config settings for these benchmarks from the repo with the last commit on June 3
(UTC-00).

Since multiple-choice question (MCQ) benchmarks are prone to ”cheating” when evaluating Cover-
age (randomly sampling each option once will lead to 100% accuracy), we design new, open-ended
versions of these benchmarks, which we then refer to as MMLU judge, MMLU Pro judge, GPQA
judge, and BBH judge. We design these benchmarks such that we do not provide multiple-choice
options in the questions, relying only on the absolute knowledge/capability of the subject model.

To generate these new datasets, we prompt an LLM to filter out all samples that are not possible
to answer without the multiple choice options (e.g., questions in the form of "Which of the
following [...]"). The remaining questions that are self-consistent are prompted to the sub-
ject model.

To evaluate the correctness of a subject’s answer, we prompt an LLM judge to determine whether
the candidate solution is correct given the ground truth answer.

We provide the dataset filtering and LLM judge prompts in Sec. F.7.

A.4.2 BASELINE DETAILS

Fundamentally, our proposal is to rethink model development, moving from developing one large,
monolithic LLM, to a population based approach, automatically developing a collective of diverse
smaller LLMs.

To evaluate the effectiveness of this approach, we target improving the Coverage over large scale
open-source and even proprietary LLMs. Nevertheless, one may ask, whether our discovered col-
lective is better than simply re-prompting the same sized general instruct model. This is our control
baseline. Moreover, one might ask, if we start of with the three experts as seed models, we would
want to achieve higher Coverage than those.

In Tab. 1, we observe that, compared to the big models, we achieve noticeable Coverage improve-
ments, and even surpass or get close to the GPT-4o performance, demonstrating that our collective
of smaller models fundamentally possess the capabilities of much larger models to answer the re-
spective questions.

The Experts N=8 baseline emerged from the question of “What if we resample the three experts
N times”. Although we argue that this approach of manually selecting experts is unscalable and it
being even worse to tune the sampling distribution, it is an interesting comparison. To establish this
baseline and ensure consistency across model families, we arbitrarily select the 3-3-2 (instruct-code-
math), which was selected based on observations that the code models achieved higher scores on a
wider rage of benchmarks than the math model, arguably, making the baseline stronger.

In addition to these “sanity check” baselines, in Tab. 3, we compare against prior Quality Diversity
work, demonstrating that our algorithm discovers a task force that achieves higher Coverage while
not optimizing for any downstream benchmark (which the other methods actively do).
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A.4.3 BEST-OF-N SINGLE-ANSWER-SELECTION METHODS

In this section, we elaborate on our single-answer-selection methods used in Sec. 4. For the two
LLM-judge-based methods, we only provide the final subject model answers without the reasoning
trace.

Divide and Conquer. For this method, we prompt a judge LLM to decide on the correct answer
for two candidate solution. If the model deems both wrong, we ask it to provide the answer that
is ”more correct”. We apply this process in a devide-and-conquer approach, first, grouping all
candidate solutions into pairs, then selecting the ”winners”, and repeating this process until only
one answers remains.

Monarchical LLM. We provide all N answers to an LLM judge at once and prompt it to select the
correct answer.

RM-based. We leverage a scalar reward model (Liu et al., 2025a) to score each full candidate
submission and select the candidate with the highest score.
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B DETAILED QUANTITATIVE RESULTS

B.1 COVERAGE RESULTS

B.1.1 RESULTS FOR ALL MODELS ON ALL BENCHMARKS

Table 6: Coverage performance comparison across different benchmarks and model configurations
for all model families used (see Sec. A.2).

Method MMLU MMLU Pro GPQA BBH GSM8K Minerva HumanEval MBPP Avg.
judge judge judge judge

Qwen 2
Big Model 50.44 47.12 4.36 78.32 90.83 35.56 49.39 64.00 52.50

Control 3 54.58 50.97 7.72 73.01 92.34 36.10 79.88 64.20 57.35
Experts 3 47.05 41.78 6.38 65.29 91.28 47.50 81.10 66.00 55.80
Ours 3 55.42 51.28 9.06 69.44 89.99 39.88 84.15 65.40 58.08
Control 8 67.69 64.27 12.75 84.54 95.68 46.10 92.07 70.60 66.71
Ours 8 67.20 63.03 15.44 82.03 94.77 53.26 89.02 72.00 67.09

Qwen 2.5
Big Model 49.30 47.00 0.00 82.30 91.70 28.30 89.60 75.40 57.95

Control 3 58.17 56.96 8.05 83.18 93.33 31.94 90.85 66.60 61.14
Experts 3 48.33 50.40 5.03 68.24 97.42 46.22 90.85 74.2 60.09
Ours 3 62.46 59.45 5.37 84.34 93.71 41.02 89.02 74.60 63.75
Control 8 69.35 67.95 12.42 89.29 95.53 39.84 92.68 70.4 67.18
Ours 8 73.31 69.63 11.41 90.29 96.44 53.84 90.24 82.00 70.90

Qwen 3
Big Model 57.30 53.60 0.30 83.70 94.70 23.10 94.50 74.60 60.23

Control 3 63.59 64.95 10.74 87.93 94.77 32.02 93.29 76.40 65.46
Experts 3 63.77 65.09 9.06 89.67 95.38 37.48 93.90 77.00 66.42
Ours 3 62.74 64.60 12.75 87.71 94.24 31.32 93.90 78.80 65.76

Control 8 73.01 73.55 13.42 92.0 95.83 37.76 93.29 77.6 69.56
Ours 8 73.17 75.09 17.45 92.94 96.29 39.28 95.73 81.4 71.42

DeepSeek V1
Big Model 40.10 31.70 3.00 62.20 80.50 25.20 26.20 56.40 40.66

Control 3 39.85 29.39 2.68 48.21 74.15 20.94 29.27 49.00 36.69
Experts 3 27.34 18.14 1.34 34.01 54.97 36.44 60.98 41.00 34.28
Ours 3 37.22 32.74 1.68 51.43 84.0 39.08 58.54 39.20 42.99
Control 8 55.94 43.74 8.39 65.57 85.67 33.02 45.73 60.00 49.76
Ours 8 49.35 46.54 6.71 69.34 89.92 51.02 72.56 47.40 54.11

B.1.2 ANALYSIS AND KEY INSIGHTS

Evolutionary Discovery Outperforms Manual Curation. Despite expert models’ superior per-
formance in specialized domains, our evolutionary approach discovers model combinations with
broader skill Coverage. This suggests that the space of useful model combinations extends beyond
obvious domain-specific specializations.

Model Diversity Beats Parameter Scaling. Across both task force sizes, our distributed approach
outperforms larger monolithic models while using fewer total parameters. This finding supports the
hypothesis that specialized model populations can achieve superior Coverage compared to scaling
individual models.

Complementary vs. Overlapping Skills. The consistent improvements over control baselines
demonstrate that our evolved models develop genuinely complementary capabilities rather than re-
dundant expertise. This validation supports our core hypothesis about automatic discovery of col-
lective intelligence through evolutionary pressure for both quality and diversity.
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B.2 BEST-OF-N RESULTS

B.2.1 RESULTS FOR ALL MODELS ON ALL BENCHMARKS

Table 7: Best-of-N performance comparison across different benchmarks and model configurations
for all model families (see Sec. A.2).

Method MMLU MMLU Pro GPQA BBH GSM8K Minerva HumanEval MBPP Avg.
Qwen 2

Big Model 82.04 63.15 10.27 68.42 90.83 35.56 49.39 64.00 57.96

Divide and Conquer Monarchical LLM RM-based

Experts 3 72.16 46.33 22.54 63.97 88.70 43.70 66.46 49.80 56.71
Control 3 59.81 42.07 16.07 60.01 89.54 30.84 75.61 58.20 54.02
Ours 3 71.31 50.20 19.64 63.11 86.58 35.28 78.66 56.00 57.60
Control 8 71.62 51.45 27.68 67.72 90.22 37.12 79.88 58.60 60.54
Ours 8 76.14 56.84 25.22 69.73 88.86 41.46 79.27 56.20 61.72

Qwen 2.5
Big Model 84.65 70.64 10.71 53.14 91.74 28.28 89.63 75.40 63.02

Divide and Conquer Monarchical LLM RM-based

Experts 3 77.97 60.72 19.86 65.40 90.22 44.12 81.10 66.26 63.21
Control 3 76.29 59.99 17.41 60.91 91.21 28.30 80.49 64.00 59.83
Ours 3 78.22 60.34 18.53 62.20 88.55 33.64 82.32 65.80 61.20

Control 8 78.21 64.40 21.65 67.87 91.13 31.00 85.98 64.20 63.06
Ours 8 79.41 63.50 22.10 70.60 89.91 45.92 81.71 66.40 64.94

Qwen 3
Big Model 88.81 73.11 8.48 38.30 94.69 23.12 94.51 74.60 61.95

Divide and Conquer Monarchical LLM RM-based

Experts 3 81.81 67.99 17.86 55.51 92.65 34.68 82.32 56.20 61.13
Control 3 81.36 68.86 13.62 51.10 93.10 28.58 89.02 73.40 62.38
Ours 3 81.17 69.31 14.06 52.10 92.12 28.12 89.63 75.26 62.72
Control 8 82.03 70.99 18.75 59.12 92.95 30.92 89.63 73.40 64.72
Ours 8 82.33 71.47 20.31 62.05 91.58 32.96 87.20 68.46 64.55

DeepSeek V1
Big Model 70.81 43.12 14.73 57.86 80.52 25.20 26.22 56.40 46.86

Divide and Conquer Monarchical LLM RM-based

Experts 3 51.30 29.96 27.90 50.22 54.81 31.40 48.78 24.60 39.87
Control 3 55.35 33.55 22.54 54.03 73.62 17.80 20.73 46.00 40.45
Ours 3 59.76 37.87 29.24 55.03 81.20 34.52 50.00 30.80 47.30
Control 8 66.46 41.79 25.22 64.11 81.20 23.94 26.83 48.80 47.29
Ours 8 67.70 47.17 33.26 63.86 85.06 40.30 56.10 23.80 52.16

B.2.2 ANALYSIS AND KEY INSIGHTS

Coverage-to-Selection Translation. The consistent improvements in single answer selection val-
idate that our Coverage gains reflect genuine complementary capabilities rather than statistical ar-
tifacts. Models that cover diverse skills collectively also contribute effectively when aggregated
through selection mechanisms.

Parameter Efficiency. Our results strongly support the hypothesis that distributed specialized mod-
els can achieve superior performance compared to parameter scaling. For example, the N=8 con-
figuration for our Qwen2 and Qwen2.5 7B models outperform a model with 22% more parameters
within the same model family, while the N=3 configuration nearly matches a model with 240% more
parameters.

Selection Method Optimization. The benchmark-specific selection strategies highlight the impor-
tance of matching aggregation methods to task characteristics. This finding suggests that future
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work on collective intelligence should consider exploring task-aware selection mechanisms rather
than universal approaches.

Generalization Beyond Benchmarks. These findings reinforce our evidence from Sec. B.1 that di-
verse collectives of smaller models can outperform larger monolithic models. Importantly, our open-
ended evolutionary algorithm achieves these results without optimizing for any specific downstream
benchmark, supporting the hypothesis that diversity-driven evolution discovers broadly applicable
complementary skills rather than benchmark-specific adaptations.
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C EXTENDED DISCUSSION ON LIMITATIONS

Table 8: Coverage performance comparison across different benchmarks for the Llama 3 family of
models (see Sec. A.2 for details on the model used).

Method MMLU MMLU Pro GPQA BBH GSM8K Minerva HumanEval MBPP Avg.
judge judge judge judge

Llama 3
Big Model 47.5 43.4 3.7 78.7 92.2 41.6 7.3 0.0 39.30

Control 3 51.12 45.27 6.04 75.96 89.77 37.06 39.02 64.80 51.13
Experts 3 45.9 38.58 8.05 66.47 94.47 32.84 70.12 63.20 52.45
Ours 3 47.74 40.25 8.39 71.91 87.26 33.48 15.85 63.40 46.04

Control 8 64.44 59.49 12.08 87.09 95.45 47.94 58.54 70.40 61.93
Experts 8 62.73 57.55 9.06 86.56 93.71 49.38 53.66 70.80 60.43
Ours 8 59.22 52.13 13.09 83.58 90.98 41.38 41.46 70.40 56.53

Table 9: Best-of-N performance comparison across different benchmarks for the Llama 3 family of
models (see Sec. A.2 for details on the model used).

Method MMLU MMLU Pro GPQA BBH GSM8K Minerva HumanEval MBPP Avg.
Big Model 60.67 59.23 17.19 69.21 92.19 41.62 7.32 0.00 43.43

Divide and Conquer Monarchical LLM RM-based

Experts 3 71.46 51.44 24.78 61.02 82.03 35.56 21.95 55.85 50.51
Control 3 68.47 50.22 24.55 65.73 86.05 31.98 37.80 58.80 52.95
Ours 3 69.94 47.58 20.76 62.71 82.79 29.30 15.85 55.60 48.07

Control 8 71.86 55.46 28.35 73.25 89.16 36.26 52.44 58.80 58.20
Ours 8 74.58 51.51 30.80 69.67 84.23 32.20 37.80 55.40 54.52

In Sec. 6, we discuss several limitations which we provide further discussion on in this section.
As mentioned, the process of model merging is strongly reliant on the compatability of the seed
models used, as also observed in previous work (Horoi et al., 2025). A supporting example of this
observation are our experiments on the Llama3 family of models, where Tab. 8 and Tab. 9 present
our Coverage and BoN results, respectively. Merged models typically inherit both the strengths and
the limitations of parent models, producing models that are more prone to response degradation even
on the same benchmark where other kinds of merged models solve benchmark tasks without fail.
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D ADDITIONAL RESULTS

The experiments for additional results were performed using the Qwen 2 family of models.

D.1 IMPACT OF ALGORITHM COMPONENTS

Table 10: Ablation study showing the impact of different components of our evolutionary algorithm.
Coverage performance across benchmarks for N=3 and N=8 configurations with individual compo-
nents removed.

Configuration N=3 N=8
Full Method 58.21 66.86
Fitness Only 56.35 66.06
No Mutation 57.75 66.25
No Novelty Filter 57.54 66.51
No Gibberish Filter 56.09 66.18
W/o all components 56.40 59.92

Tab. 10 presents the results of an ablation where we remove one component of our algorithm at a
time. We discuss the observations in Sec. 4.

D.2 IMPACT OF TASK FORCE SELECTION STRATEGIES

Table 11: Impact of Task Force selection strategies. Results showing average Coverage across all
benchmarks and all models.

Method N=3 N=8
Global Skill Vector (Coverage) 55.30 63.92
Global Skill Vector (Fitness) 54.64 63.43
Random 51.58 62.21

After letting AC/DC run for multiple generations, we populate an extensive global archive of models
and synthetic tasks. Several approaches to selecting our N models for our Task Force exist. In this
section, we discuss the following three:

• Global skill vector (Coverage). For this strategy, we evaluate all our models in our global
model archive on all tasks in our global task archive. We then select the N models that
maximize the Coverage on our synthetic data archive, ”optimizing” for complementary
skills.

• Global skill vector (fitness). Here, we also perform the complete global task archive
evaluation as above, but now select the N fittest models.

• Random We here randomly select N models from our global model archive.

Tab. 11 presents the results of these three selection strategies. We observe that random selection
performs the worst across both N = 3 and N = 8 scales, demonstrating that intelligent task force
composition based on our synthetic dataset translates to improved downstream performance. Se-
lecting based on maximizing Coverage and selecting the highest fitness individuals on our global
task archive (the global skill vector) both demonstrate superior performance, yet, optimizing for
synthetic data Coverage yields the highest accuracy gains.

D.3 TASK ARCHIVE NOVELTY OVER TIME

Fig. 6 presents the adaptation types at each task adaptation cycle and the global Vendi score (Fried-
man & Dieng, 2022), i.e., the Vendi score for our global task archive. The Vendi score is a measure
of diversity in the task embedding space. For this experiment, we only enable tasks to be evolved
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Figure 6: Adaptation types and Vendi score over time. For this experiment, we only enabled
adaptations types to be making a task more difficult or completely novel. Moreover, we show the
global Vendi Score (Vendi score of the global task archive) over time demosntreating increasing
diversity in our task archive.

to be either more difficult or novel. We can observe that over the course of training, we mostly
generate more difficult tasks, highlighting the increasing difficult of our task archive over time, until
we discover the capability limits of our population at generation 35, 40, and, especially, generation
45, where we see a stark decrease in adaptations for harder tasks and an increase in adaptations for
more novel tasks.

Moreover, we observe a steady increase in the Vendi score, demonstrating an increasing diversity
within our global task archive. Nevertheless, we observe that with each adaptation cycle, the increase
of the Vendi score gradually decreases, compared to the early generations.

The Vendi score measures diversity within the task embedding space. This has the advantage of
capturing the spread across diverse problem formulations and wording, which can be more easily
separated using embeddings. Nevertheless, this also means that the Vendi score is subject to a core
limitation of embedding-based similarity/spread measures. Although the context can be structurally
similar, the semantics can be very different. For this reason, following prior work (Lu et al., 2025),
we implement a two-layered novelty filter. First, we assess embedding-based similarity, and then
we evaluate semantic novelty using an LLM judge. Because of the latter, we can have a more fine-
grained assessment of novel tasks, which is reflected in the fact that, although the increase in Vendi
score seems to slow down at around generations 40/45, we still observe that we add 71 new tasks
(23 harder + 48 novel), which is comparable to earlier generations.

In fact, analyzing the task difficulty dynamics, we observe the generation 45’s decreased ”harder”
adaptations reflect the system discovering current capability limits of the model population and piv-
oting to novel exploration (48 novel tasks). This suggests continued innovation in task space, espe-
cially considering that the space of possible tasks may be incomprehensible, rather than task novelty
saturation. Fig. 1 shows continued downstream performance improvement through generation 50,
confirming that capability advancement continues.
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D.4 DISCUSSION ON EXPERTS N=8 BASELINE

Table 12: Comparison between Experts and AC/DC with 8 models across different model families.

Method MMLU MMLU Pro GPQA BBH GSM8K Minerva HumanEval MBPP Avg.
Qwen 2

Experts 8 72.06 69.14 9.73 86.83 95.91 56.44 87.80 74.80 69.09
Ours 8 67.20 63.03 15.44 82.03 94.77 53.26 89.02 72.00 67.09

Qwen 2.5
Experts 8 72.97 67.86 10.74 89.55 96.97 55.8 93.9 81.0 71.10
Ours 8 73.31 69.63 11.41 90.29 96.44 53.84 90.24 82.0 70.90

Qwen 3
Experts 8 72.61 73.51 14.77 92.88 97.27 45.8 94.51 79.4 71.34
Ours 8 73.17 75.09 17.45 92.94 96.29 39.28 95.73 81.4 71.42

DeepSeek V1
Experts 8 47.24 36.15 5.7 55.68 77.48 47.24 70.73 61.2 50.18
Ours 8 49.35 46.54 6.71 69.34 89.92 51.02 72.56 47.4 54.11

AC/DC demonstrates consistent improvements over our primary baselines across model families.
However, one might consider alternative configurations that maximize the utilization of expert mod-
els within our inference budget. To address this, we evaluate a configuration that distributes 8
inference calls across our three expert models (3 instruct, 3 code, 2 math calls), shown in Tab. 12.

While this ”Experts 8” baseline achieves competitive performance in some cases, we note several
important distinctions from our approach: (1) the 3-3-2 distribution represents a manually tuned
configuration rather than a principled allocation strategy, (2) it relies on multiple sampling from a
limited set of models rather than leveraging diverse evolved capabilities, and (3) the comparison
conflates inference-time scaling with our method’s model discovery process.

The arbitrary nature of this baseline becomes apparent when considering alternative distributions:
other configurations such as 4-2-2 or 2-4-2 would yield different results, and in the extreme case
of 8-0-0 (using only the instruct model), we recover our Control 8 baseline, which we have already
demonstrated that AC/DC consistently outperforms across all model families.

Notably, our approach maintains competitive or superior performance while discovering genuinely
diverse models through evolution, rather than simply increasing inference calls to existing models.
The mixed results across benchmarks suggest that raw inference scaling and evolved model diversity
offer complementary but distinct advantages.
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D.5 COMPARISON TO PRIOR QD METHODS

To compare AC/DC (with coevolution and QD) with prior quality-diversity approaches without
coevolution (DNS (Bahlous-Boldi et al., 2025) and CycleQD (CQD) (Kuroki et al., 2025)), we
conduct experiments using identical training conditions. Both baseline methods are trained on two
of the same benchmarks used in our evaluation, and two computer science benchmarks, with 50
fixed training samples drawn from each of GSM8K (Cobbe et al., 2021), MBPP (Austin et al.,
2021), AgentBench OS, and AgentBench DB (Liu et al., 2023). For all methods discussed, we train
on the same model family, Qwen 2.

For the task force selection strategies:

• CQD: Following their approach, after evolution, we select the top 2 models from each
task-specific archive (2 models × 4 tasks = 8 models total for N=8). For N=3, we collect
the top models for GSM8K, MBPP, and AgentBench OS.

• DNS: We select the top-8 models based on local competition scores, which measure per-
formance against local neighborhoods in the behavior space. For N=3, we select the top-3
models.

The key distinction is that while both DNS and CycleQD directly optimize for performance on these
specific benchmarks during training, AC/DC evolves models on synthetically generated tasks with-
out any benchmark-specific optimization. Despite this apparent disadvantage, our method achieves
superior performance at N=8, demonstrating that evolution on diverse synthetic tasks can discover
more capable and complementary models than direct benchmark optimization.

We also analyzed train-set coverage for DNS and CQD. On the 200 tasks total (4 sets of 50 training
examples across the tasks), we evaluated the top-20 models and top-5 models for DNS (based on
local competition score). For CQD, we select the top-5 from the top-2 in GSM8K, and top models
for the three other tasks, and for top-20, we get the five best models for each of the 4 tasks. For top-5
coverage, DNS beats CQD, obtaining 60.5% versus 56.5%. For top-20, DNS again beats CQD,
obtaining 70% versus 65%. Results provide even more evidence for the suitability of DNS as a QD
algorithm for AC/DC over CQD.

D.6 DNS ON STATIC SYNTHETIC DATASET

To estimate the effects of an ablation where we execute our pipeline on a static synthetic dataset,
we consider the progress made up until generation 5 of our existing AC/DC run on Qwen 2.5 as
representative performance.

In other words, it is reasonable to expect that the performance would stagnate at around that of
our task force at generation 5, as up to that point, our synthetic dataset is static and would then be
updated.

To support this argument, we analyze the newly added models per generation. With a static dataset,
we expect the number of new (fit and diverse) models discovered to significantly reduce early in the
evolution process. We observe this behaviour when looking at the number of new models in our
DNS baseline (Fig. 7 (a)), where we evolve models on the static dataset of downstream benchmark
training sets. In contrast, looking at the number of new models discovered when running our AC/DC
algorithm (Fig. 7 (b)), we detect a constant influx of new models.

Considering this, we find that the average performance on our LLM-as-a-judge tasks, our generation
5 task force achieves 59.66% accuracy, whereas our final task force, achieved through a dynamically
coevolving synthetic dataset achieves 61.19% (1.53% absolute improvement).

Additionally, Tab. 13 presents the quantitative comparison between task forces evolved on a static
synthetic dataset (i.e. the initialized task pool without further adaptation) versus our full coevolution
approach on Qwen 2.5. The static dataset baseline achieves 60.16% average coverage for N=3 and
64.31% for N=8. In contrast, our coevolving approach achieves 60.27% and 67.93%, respectively,
representing absolute improvements of +0.11% and +3.62%.

The improvements are particularly pronounced on knowledge-intensive benchmarks (MMLU:
+3.52%/+8.42%, MMLU Pro: +3.98%/+8.93%) and reasoning tasks (GPQA: +1.68%/+3.36%,
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(a) DNS (b) AC/DC

Figure 7: New models added to archive per generation.

Table 13: Static vs. Coevolving Synthetic Dataset. Coverage comparison between task forces
evolved on a static synthetic dataset versus our full coevolution approach on Qwen 2.5. The static
baseline shows a performance plateau when the synthetic dataset does not dynamically coevolve
with the model population. The values for ”Ours (Coevolving)” are the average scores across two
training runs with two different RNG seeds.

Method MMLU MMLU Pro GPQA BBH GSM8K Minerva HumanEval Avg.
judge judge judge judge

N=3
Static Dataset 53.15 51.74 3.69 80.97 92.27 51.48 87.80 60.16
Ours (Coevolving) 56.67 55.72 5.37 81.65 93.10 40.69 88.72 60.27
Improvement +3.52 +3.98 +1.68 +0.68 +0.83 -10.79 +0.92 +0.11

N=8
Static Dataset 59.38 57.37 4.36 85.18 94.01 59.62 90.24 64.31
Ours (Coevolving) 67.80 66.30 7.72 88.40 95.64 56.33 93.29 67.93
Improvement +8.42 +8.93 +3.36 +3.22 +1.63 -3.29 +3.05 +3.62

BBH: +0.68%/+3.22%). While the static baseline shows higher performance on Minerva Math,
this is likely due to the early-stage synthetic dataset being biased toward mathematical reasoning
tasks, which we expect to be subsequently diversified through coevolution.

These results demonstrate that dynamic coevolution of the synthetic task archive is critical for dis-
covering diverse and complementary model capabilities, validating our core hypothesis that open-
ended evolution requires continuous expansion of the challenge space.

D.7 EFFECT OF SEED TASKS

In Sec. E.3, we present the four seed tasks used to initiate the coevolution process.

Table 14: Impact of Seed Tasks. Coverage comparison between coevolution runs with all seed
tasks versus without code generation seed tasks on Qwen 2.5. The values for ”All Seed Tasks” are
the average scores across two training runs with two different RNG seeds.

Method MMLU MMLU Pro GPQA BBH GSM8K Minerva HumanEval Avg.
judge judge judge judge

N=3
W/o Code Seed Task 62.46 59.45 5.37 84.34 93.71 41.02 89.02 62.20
All Seed Tasks 56.67 55.72 5.37 81.65 93.10 40.69 88.72 60.27

N=8
W/o Code Seed Task 73.31 69.63 11.41 90.29 96.44 53.84 90.24 69.31
All Seed Tasks 67.80 66.30 7.72 88.40 95.64 56.33 93.29 67.93
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In Tab. 14, we ablate the effect of two different compositions of seed tasks. Once All Seed Tasks,
where we use all four seed tasks, and once W/o Code Seed Task, where we use the three seed tasks,
excluding Sec. E.3.2.

We can observe that the selection of seed tasks can have a big effect on the performance of the
final task force. Leveraging all four seed tasks, including the coding seed task, can improve the
coding benchmark performance (at N=8, HumanEval performance being 3.25% better than without
the coding task), but, in effect, can hurt downstream performance on other benchmarks (e.g., at N=8,
on MMLU judge and MMLU Pro judge, the performance being -5.51% and -3.33%).

D.8 EFFECT OF SCIENTIST MODEL

To explore the generalizability of our framework to different scientist models, we conducted an
experiment using Qwen3-235B-A22B as the scientist model while maintaining the existing prompts
and hyperparameters optimized for Qwen2.5-72B. This experiment highlights both the flexibility of
our approach and the importance of model-specific prompt engineering.

Using the original generation settings, we observed that the Qwen3-235B-A22B scientist model fre-
quently produced incomplete task implementations within our generation token limit, yielding 555
total synthetic tasks compared to over 1000 tasks generated by the Qwen2.5-72B scientist model.
We evaluated the resulting task forces using the same Qwen2 7B subject model across both condi-
tions.

Scientist Model Avg. Coverage (N = 3) Avg. Coverage (N = 8)
Qwen2.5-72B 58.21 66.86
Qwen3-235B-A22B 57.57 65.46

Table 15: Task force performance comparison for two runs using two different scientist models.
Both configurations use Qwen2 7B as the subject model.

As shown in Table 15, the task forces generated with the Qwen3-235B-A22B scientist model achieve
slightly lower coverage scores than those generated with Qwen2.5-72B. We attribute this perfor-
mance gap primarily to the reduced size of the synthetic task pool.

Importantly, the lower task force scores do not necessarily indicate inferior capability of the Qwen3-
235B-A22B scientist model itself. Rather, this case study illustrates the practical considerations
when adapting our framework to different scientist models. We expect that with appropriate prompt
engineering, adjusted generation limits, and hyperparameter tuning specific to the Qwen3-235B-
A22B model, the framework could effectively leverage its potentially superior capabilities to gener-
ate higher-quality synthetic tasks and achieve improved downstream performance.
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E ADDITIONAL QUALITATIVE RESULTS

E.1 CASE STUDY ON SYNTHETIC TASK DIVERSITY

Write a detailed and accurate historical account of the event: the signing of the 
Declaration of Independence.

Incorporate the following specific sources: John Adams' diary entry dated July 
1, 1776, Thomas Jefferson's letter to a friend dated June 11, 1776, and 

Benjamin Franklin's speech at the Continental Congress on July 2, 1776.

The account should maintain historical accuracy, integrate the different 
perspectives coherently, and be well-structured with a clear introduction, body, 

and conclusion. Additionally, include a critical analysis of the event's impact 
and significance in the broader context of history, with separate sections for 

positive and negative aspects.

Generate a creative and appropriate analogy for the 
following concept: Love.

Example: For the concept 'Friendship', a good analogy might 
be: 'Friendship is like a tapestry, woven with threads of 

shared experiences and mutual support. Just as a tapestry 
can be intricate and beautiful, friendship can be deep and 

meaningful.'

Please provide your answer in the following format:
Analogy: [your analogy]

Given the following 
sequence of numbers: 

[1, 2, 3, 5, 6, 7, 8], 
identify the missing 

number in the sequence.

Construct a regular expression to match 
all email addresses in a given text. 

Apply it to the following text: 'Contact us 
at support@example.com or 

info@sample.org'. Provide the regular 
expression as a string and the resulting 

matches as a list of strings. For 
example:

Regular Expression: your_regex_here 
Matches: ['match1', 'match2']

Test your regular expression with the 
provided input text to ensure it matches 
the expected results. If you use LaTeX, 

provide the answer as plain text without 
the LaTeX formatting.

Find the next prime greater than 10.

Write a SQL query to select the name, department name, and salary of employees 
whose salary is above the average salary of their respective departments.

Table schema: CREATE TABLE employees (employee_id INTEGER PRIMARY KEY, 
name TEXT, department_id INTEGER, salary REAL); CREATE TABLE departments 

(department_id INTEGER PRIMARY KEY, department_name TEXT);
Sample data: [(1, 'Alice', 1, 5000), (2, 'Bob', 1, 6000), (3, 'Charlie', 2, 7000), (4, 'David', 2, 

8000), (5, 'Eve', 3, 9000), (1, 'HR', 1), (2, 'Engineering', 2), (3, 'Sales', 3)]

Prove the following theorem in 5 
steps: Prove that the sum of the 

first n natural numbers is n(n+1)/2. 
Provide a clear and concise 

step-by-step proof.

Given the scenario: 'A company was found to be dumping toxic waste into a local river, causing significant 
environmental damage. The company claims it was unaware of the environmental impact due to outdated 
regulations.', generate a legal argument for the prosecution. Your argument should include:

1. A clear statement of the legal issue.
2. Relevant legal principles and statutes, including specific legal cases or precedents when applicable.
3. Evidence and reasoning supporting the argument.
4. Potential counterarguments and responses.
5. Ensure your argument is well-structured and logically coherent. Your argument should be based on sound 

legal principles and logical reasoning.

User: Hi, how are you? Model: (Respond 
as it you are a human, avoiding any 

mention of being a computer program.)

Generate a short story based on the 
prompt:

'A mysterious forest'.

Incorporate the following elements 
into your story: a lost child, an old 

map, a hidden treasure.

Your story should have a clear 
beginning, middle, and end, and 

include a moral lesson, at least two 
plot twists, a detailed character arc, a 

detailed setting description, a 
subplot that intertwines with the 

main plot, a specific type of conflict 
(internal), and the literary device of 
foreshadowing. The story should be 

engaging and coherent.

Figure 8: Analysis of global task archive embedding space generated by AC/DC with Qwen 2.
We represent each task by structuring its metadata using the template in Sec. F.3 and then embedding
it using an embedding model (see Tab. 5). We then reduce the dimensionality of the embeddings
using t-SNE (van der Maaten & Hinton, 2008). The clusters are automatically generated using
HDBSCAN (McInnes et al., 2017).

Fig. 8 presents the global task embedding space evolved through AC/DC with a Qwen2-based pop-
ulation. In the left half of the embedding space, we can find tasks in the writing space, such as

• generating a short story based on a prompt and generating an analogy for an abstract
concept, requiring creative writing abilities

• human-ai-interaction, requiring emotional intelligence and alignment

• writing an accurate historical text, testing for historical knowledge

• developing a legal argument given a case, examining legal knowledge and persuasion
abilities

The right half of the embedding space presents more technical challenges, for example

• constructing regular expressions

• solving complex math and pattern recognition problems

• proving mathematical theorems

• implementing code such as SQL queries

These example tasks demonstrate the diversity of synthetic tasks generated by AC/DC (many of
which might not have been created by human annotators), presenting the breadth of knowledge
examined by our system to discover unique capabilities.
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Figure 9: Evolution tree of AC/DC evolving the Qwen2-based seed model. Highlighted models are
those selected for the task force by maximizing Coverage on our global task archive.

E.2 CASE STUDY ON MODEL LINEAGES

E.2.1 INSPECTING TASK FORCE SELECTION

Fig. 9 presents the evolution tree produced by AC/DC applied to our three Qwen 2 seed models
(see Sec. A.2), highlighting the 8 models selected for our task force. We observe that our task force
contains models with a wide fitness range, ranging from 0.53 to 0.62. Nevertheless, as described in
Sec. 3, this task force is selected for optimizing Coverage across our synthetic data, meaning that
we don’t always want the highest fitness individuals, but individuals that have complementary skills
(which we discuss in Sec. D.2).

For instance, we observe that our model discovered in generation 30 (presented as gen 30 ind 1)
achieves the highest global fitness, i.e., fitness across our entire synthetic task archive, yet the instruct
model, which is part of our task force, does not achieve the highest fitness, but is part of our task
force.

E.2.2 INSPECTING LINEAGE OF SPECIFIC TASK FORCE MODEL

Fig. 10 presents three example lineages of our discovered LLMs, demonstrating complex histories of
skill merging of parent models, embedding the knowledge of all three seed models into the weights
of the observed models.

The first tree (top) presents the lineage of the model gen 17 ind 6, the sixth model evolved
in generation 17. As observed in prior work leveraging evolutionary search techniques (Zhang
et al., 2025a), we can see that, to reach the model that was part of the task force, we don’t only
leverage high fitness individuals. To discover model gen 17 ind 6, AC/DC first discovered
gen 14 ind 6, with a local fitness f of 0.476, which is weaker lower than that of its parents
(gen 12 ind 5, with f = 0.528 and gen 10 ind 2, f = 0.488). This highlights that (locally)
weaker solutions are relevant for discovering models for a global task force with complementary
skills, by potentially providing unique capabilities, not captured by the simple fitness metric.

The second (middle) and third (bottom) tree present the lineages of the models gen 28 ind 6
and gen 29 ind 5, respectively. Both models are accentors of the just discussed model
gen 17 ind 6, yet, we can see that gen 29 ind 5 has a more complex lineage than
gen 28 ind 6. gen 28 ind 6 only adds one new ancector to its lineage in addition to the lineage
of gen 17 ind 6, namely gen 20 ind 3, demonstrating that even only two additional relevant
crossover operations can lead to the discovery of capabilities beneficial for the final task force. On
the other hand, although the models gen 29 ind 5 and gen 28 ind 6 and gen 29 ind 5 are
only one generation apart, we can observe that gen 29 ind 5 introduces more novel and complex
lineages.

These observations demonstrate core advantage of evolutionary search, (1) discovering novel solu-
tions by building on top of prior ones that don’t necessarily seem to be the best performing and (2)
the emergent complexity of (2.1) intricate lineages or (2.2) sophisticated capabilities through simple
but relevant combinations of prior solutions.
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Figure 10: Lineages of AC/DC evolved Qwen2-based models. All presented lineages are of models
that are part of the selected task force.

E.3 SEED TASKS USED

E.3.1 SEED TASK 1: CIRCULAR QUEUE LENGTH

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"question": "Given that the storage space for a circular queue is the array A
[21], with front pointing to the position before the head element and rear pointing to
the tail element, assuming the current values of front and rear are 8 and 3, respectively
, the length of the queue is ().",

"options": {"A": "5", "B": "6", "C": "16", "D": "17"},
"answer": "C",

}
}

@staticmethod
def get_instructions(t: dict) -> str:

return f"""{t["question"]}\nA: {t["options"]["A"]}\nB: {t["options"]["B"]}\nC: {t["
options"]["C"]}\nD: {t["options"]["D"]}\n\nReturn the letter of the correct option."""

@staticmethod
def score(t: dict, submission: str) -> float | None:

return 1.0 if t["answer"].lower() == submission.lower().strip() else 0.0

E.3.2 SEED TASK 2: FIRST REPEATED CHARACTER

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {
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"question": "Write a python function called ‘first_repeated_character‘ to
find the first repeated character in a given string.",

"test_cases": [("abcabc", "a"), ("abc", None), ("123123", "1")],
"expected_func_name": "first_repeated_character",

}
}

@staticmethod
def get_instructions(t: dict) -> str:

return f"""{t["question"]}"""

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import get_function_name_to_callable

# Test cases from get_tasks
test_cases = t["test_cases"]

correct_count = 0
num_test_cases = len(test_cases)

# Get function name to callable mapping
function_name_to_callable = get_function_name_to_callable(submission)

if len(function_name_to_callable) == 0:
return 0.0

# Get function names
func_names = set(function_name_to_callable.keys())

if t["expected_func_name"] not in func_names:
return 0.0

# Run test cases
for test_input, expected_output in test_cases:

try:
# Execute the function
submission_result = function_name_to_callable[

t["expected_func_name"]
](test_input)

# Compare with expected output
if submission_result == expected_output:

correct_count += 1

except Exception:
# If function fails on a test case, skip it
continue

pass_rate = correct_count / num_test_cases
min_pass_rate = 1.0

return 1.0 if pass_rate >= min_pass_rate else 0.0

E.3.3 SEED TASK 3: LAW MULTIPLE CHOICE TREE DAMAGE

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"question": "House owns his home in City. On the lawn in front of his home
and within five feet of the public sidewalk there was a large tree. The roots of the tree
caused the sidewalk to buckle severely and become dangerous. An ordinance of City

requires adjacent landowners to keep sidewalks in safe condition. House engaged
Contractor to repair the sidewalk, leaving it to Contractor to decide how the repair
should be made. Contractor dug up the sidewalk, cut back the roots of the tree, and laid
a new sidewalk. Two days after House had paid Contractor the agreed price of the repair,
the tree fell over onto the street and damaged a parked car belonging to Driver. Driver
has asserted claims against House and Contractor, and both defendants admit that cutting
the roots caused the tree to fall.If Driver recovers a judgment against House, does House
have any recourse against Contractor?",

"options": {
"A": "No, if payment by House was an acceptance of the work.",
"B": "No, because House selected Contractor to do the work.",
"C": "Yes, if the judgment against House was based on vicarious liability.

",
"D": "Yes, because House’s conduct was not a factual cause of the harm.",
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},
"answer": "C",

}
}

@staticmethod
def get_instructions(t: dict) -> str:

return f"""{t["question"]}\nA: {t["options"]["A"]}\nB: {t["options"]["B"]}\nC: {t["
options"]["C"]}\nD: {t["options"]["D"]}\n\nReturn the letter of the correct option."""

@staticmethod
def score(t: dict, submission: str) -> float | None:

return 1.0 if t["answer"].lower() == submission.lower().strip() else 0.0

E.3.4 SEED TASK 4: MATH WORD PROBLEM CLIPS

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"question": "Natalia sold clips to 48 of her friends in April, and then she
sold half as many clips in May. How many clips did Natalia sell altogether in April and
May?",

}
}

@staticmethod
def get_instructions(t: dict) -> str:

return f"""{t["question"]}"""

@staticmethod
def score(t: dict, submission: str) -> float | None:

try:
submission_val = int(submission)
# Compute the correct answer based on the given reasoning
april_sales = 48

# Calculate May sales: half of April’s sales
may_sales = april_sales / 2

# Calculate total sales for both months
total_sales = april_sales + may_sales

return 1.0 if submission_val == total_sales else 0.0
except ValueError:

return 0.0

E.4 EXAMPLES OF GENERATED TASKS

E.4.1 EXAMPLE 1: LOGICAL REASONING FOR LEGAL FALLACIES

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"argument": "If you’re not with us, you’re against us. Therefore, you must
support our policies.",

"fallacy": "False Dilemma"
},
"2": {

"argument": "John says that climate change is real, but he’s just a scientist
, so his opinion doesn’t count.",

"fallacy": "Ad Hominem"
}

}

@staticmethod
def get_instructions(t: dict) -> str:

return f"""Identify the logical fallacy in the following argument, explain why it
is a fallacy, construct a logically sound counter-argument that addresses the same issue,
and critique the strength of the counter-argument.

Argument: {t[’argument’]}
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Format your response as follows:
- Fallacy: [Name of the fallacy]
- Explanation: [Explanation of why it is a fallacy]
- Counter-Argument: [Logically sound counter-argument]
- Critique: [Critique of the counter-argument, including potential weaknesses]"""

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import eval_with_llm_judge

instructions = TaskFamily.get_instructions(t)

expected_fallacy = t[’fallacy’]
submitted_fallacy = None
submitted_explanation = None
submitted_counter_argument = None
submitted_critique = None
parts = [part.strip() for part in submission.strip().split(’\n’)]
for part in parts:

if part.startswith(’Fallacy: ’):
submitted_fallacy = part[len(’Fallacy: ’):].strip()

elif part.startswith(’Explanation: ’):
submitted_explanation = part[len(’Explanation: ’):].strip()

elif part.startswith(’Counter-Argument: ’):
submitted_counter_argument = part[len(’Counter-Argument: ’):].strip()

elif part.startswith(’Critique: ’):
submitted_critique = part[len(’Critique: ’):].strip()

if not (submitted_fallacy and submitted_explanation and submitted_counter_argument
and submitted_critique):

return 0.0

criteria = [
f"The identified fallacy should be ’{expected_fallacy}’.",
"The explanation should correctly describe why the identified fallacy is a

fallacy.",
"The counter-argument should be logically sound and address the same issue as

the original argument.",
"The critique should identify potential weaknesses in the counter-argument and

provide a balanced evaluation."
]
return 1.0 if eval_with_llm_judge(instructions, submission, criteria) else 0.0

E.4.2 EXAMPLE 2: LOGICAL UNDERSTANDING OF MUTUAL KNOWLEDGE

import re

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
’1’: {

’events’: [
’Agent A puts a red ball in a box.’,
’Agent A tells Agent B that the box contains a red ball.’,
’Agent C opens the box and sees the red ball.’

]
},
’2’: {

’events’: [
’Agent A puts a blue ball in a box.’,
’Agent A tells Agent B that the box contains a blue ball.’,
’Agent C opens the box and sees the blue ball.’

]
}

}

@staticmethod
def get_instructions(t: dict) -> str:

events = ’\n’.join(t[’events’])
return f"""Given the following sequence of events, determine the final knowledge of

each agent (A, B, C) about the contents of the box.

Sequence of events:
{events}

Provide your answer in the following format:
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- **Agent A knows**: [What Agent A knows]
- **Agent B knows**: [What Agent B knows]
- **Agent C knows**: [What Agent C knows]"""

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import eval_with_llm_judge
instructions = TaskFamily.get_instructions(t)
criteria = [

"The response should clearly state the final knowledge of each agent (A, B, C)."
,

"The response should indicate that Agent A knows the box contains the ball and
that both B and C know this.",

"The response should indicate that Agent B knows the box contains the ball and
that C knows this.",

"The response should indicate that Agent C knows the box contains the ball."
]
return 1.0 if eval_with_llm_judge(instructions, submission, criteria) else 0.0

E.4.3 EXAMPLE 3: CALCULATE ARE OF SEGMENT OF A CIRCLE

import math

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
’1’: {’radius’: 5, ’angle’: 60},
’2’: {’radius’: 10, ’angle’: 120}

}

@staticmethod
def get_instructions(t: dict) -> str:

radius = t[’radius’]
angle = t[’angle’]
return f’Calculate the area of a segment of a circle with radius {radius} and

central angle {angle} degrees. Provide the answer as a floating-point number rounded to
two decimal places, without any additional text or explanations.’

@staticmethod
def score(t: dict, submission: str) -> float | None:

try:
radius = t[’radius’]
angle = t[’angle’]
# Convert angle to radians
angle_rad = math.radians(angle)
# Calculate the area of the sector
sector_area = (angle / 360) * math.pi * (radius ** 2)
# Calculate the area of the triangle
triangle_area = 0.5 * (radius ** 2) * math.sin(angle_rad)
# Calculate the area of the segment
segment_area = sector_area - triangle_area
# Round the correct answer to two decimal places
correct_answer = round(segment_area, 2)
submitted_answer = float(submission.strip())
if submitted_answer == correct_answer:

return 1.0
else:

return 0.0
except ValueError:

return 0.0
except Exception as e:

print(f’Error: {e}’)
return 0.0

E.4.4 EXAMPLE 4: PROVE ALGORITHMIC CORRECTNESS OF THE A* ALGORITHM

import sympy

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"algorithm": "A* algorithm for pathfinding with a consistent heuristic.",
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"test_cases": [
({’A’: {’B’: 1, ’C’: 4}, ’B’: {’C’: 2}, ’C’: {}}, ’shortest_path(A, C) = 3

’),
({’A’: {’B’: 10, ’C’: 3}, ’B’: {’C’: 1}, ’C’: {’D’: 2}}, ’shortest_path(A,

D) = 6’),
({’A’: {’B’: 1, ’C’: 100}, ’B’: {’C’: -150}, ’C’: {}}, ’shortest_path(A, C

) = -49’)
],
"expected_func_name": "prove_a_star_algorithm"

},
"2": {

"algorithm": "Floyd-Warshall algorithm for finding the shortest paths between
all pairs of vertices in a graph.",

"test_cases": [
({’A’: {’B’: 1, ’C’: 4}, ’B’: {’C’: 2}, ’C’: {}}, ’shortest_paths(A, B, C)

= 3’),
({’A’: {’B’: 10, ’C’: 3}, ’B’: {’C’: 1}, ’C’: {’D’: 2}}, ’shortest_paths(A

, B, C, D) = 6’)
],
"expected_func_name": "prove_floyd_warshall_algorithm"

}
}

@staticmethod
def get_instructions(t: dict) -> str:

return f’Generate a formal proof for the correctness of the following algorithm: {t
["algorithm"]}. Your proof should be clear, logical, and well-structured, and should
cover both the base case and the inductive step if applicable. For the A* algorithm,
address the properties of a consistent heuristic and how it ensures the optimality of the
solution.’

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import eval_with_llm_judge
instructions = TaskFamily.get_instructions(t)
criteria = [

"The proof should be logically sound and well-structured.",
"The proof should correctly prove the correctness of the given algorithm.",
"The proof should cover both the base case and the inductive step if applicable.

",
"For the A* algorithm, the proof should address the properties of a consistent

heuristic and how it ensures the optimality of the solution."
]
return 1.0 if eval_with_llm_judge(instructions, submission, criteria) else 0.0

E.4.5 EXAMPLE 5: SYNTHESIZE POSITION PAPER ON GENETIC ENGINEERING

import re

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"debate_text": "The debate over genetic engineering has become increasingly
polarized. Proponents argue that genetic engineering can lead to significant advancements
in medicine, agriculture, and biotechnology. They highlight the potential to cure

genetic diseases, increase crop yields, and develop new materials. Critics, however,
raise serious ethical, social, and environmental concerns. They argue that genetic
engineering could lead to unintended consequences, such as the creation of ’designer
babies’ and the exacerbation of social inequalities. There are also fears about the
ecological impact, including the potential for genetically modified organisms (GMOs) to
disrupt natural ecosystems. The debate is further complicated by the lack of
comprehensive regulatory frameworks and the need for public engagement and transparency.
Both sides acknowledge the importance of balancing innovation with responsible governance
, but they differ on the appropriate balance and the role of government in overseeing
genetic engineering."

},
"2": {

"debate_text": "The ethical implications of genetic engineering are a subject
of intense debate. Supporters argue that genetic engineering can alleviate suffering by

treating genetic disorders and improving quality of life. They also contend that it can
contribute to global food security by developing crops that are resistant to pests and
climate change. Opponents, however, warn of the potential for genetic engineering to be
used for non-therapeutic purposes, such as enhancing physical or cognitive traits. They
raise concerns about the commodification of human life and the potential for genetic
discrimination. Ethicists also debate the moral status of genetically modified organisms
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and the rights of future generations. The debate is further complicated by the lack of
international consensus and the varying cultural and religious perspectives on genetic
engineering."

}
}

@staticmethod
def get_instructions(t: dict) -> str:

return f"Given the following debate on genetic engineering, summarize the debate,
evaluate the key arguments and counterarguments, and then synthesize a position paper
that takes a clear stance on the issue. The position paper should be supported by
evidence from the debate and at least three peer-reviewed sources, and should maintain
coherence and logical flow:\n\n{t[’debate_text’]}\n\nSummary and Evaluation:\n\nPosition
Paper: Incorporate at least three peer-reviewed sources to support your arguments. For
example, you might reference studies on the effectiveness of gene therapy or the
environmental impact of GMOs."

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import eval_with_llm_judge
instructions = TaskFamily.get_instructions(t)
criteria = [

"The summary should capture the main points and key arguments.",
"The summary should include relevant counterarguments.",
"The summary should provide a critical analysis of ethical, social, and

scientific considerations.",
"The summary should maintain coherence and logical flow.",
"The summary should not contain unnecessary details or tangents.",
"The summary should accurately reflect the content of the debate.",
"The position paper should take a clear stance on the issue.",
"The position paper should be supported by evidence from the debate and at least

three peer-reviewed sources.",
"The position paper should maintain coherence and logical flow.",
"The position paper should address potential counterarguments and provide a well

-rounded view."
]
return 1.0 if eval_with_llm_judge(instructions, submission, criteria) else 0.0

E.4.6 EXAMPLE 6: SIMPLIFY ALGEBRAIC EXPRESSION

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"expression": "(x + 3) * (x - 3)"
},
"2": {

"expression": "2 * (x + 4) - 3 * (x - 2)"
}

}

@staticmethod
def get_instructions(t: dict) -> str:

return f"Simplify the following algebraic expression: {t[’expression’]}. Provide
your answer in the simplest form, without any additional explanation or steps."

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sympy import symbols, simplify
x = symbols(’x’)
correct_answer = simplify(t[’expression’])
try:

# Remove LaTeX delimiters if present
submission = submission.replace(’\\’, ’’).strip()
# Simplify the submitted answer
submitted_answer = simplify(submission)
if submitted_answer == correct_answer:

return 1.0
else:

return 0.0
except Exception:

return 0.0

E.4.7 EXAMPLE 7: IMPLEMENT FUNCTION TO GENERATE FIBONACCI SEQUENCE
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class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
’1’: {’n_terms’: 10},
’2’: {’n_terms’: 15}

}

@staticmethod
def get_instructions(t: dict) -> str:

return f’Write a function called ‘fibonacci_sequence‘ that takes an integer ‘
n_terms‘ as input and returns a list containing the Fibonacci sequence up to the
specified number of terms. The function should be implemented using a loop or recursion.
For example, if ‘n_terms‘ is 5, the function should return [0, 1, 1, 2, 3].’

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import get_function_name_to_callable

# Function to generate the expected Fibonacci sequence
def generate_fibonacci(n_terms):

if n_terms <= 0:
return []

elif n_terms == 1:
return [0]

elif n_terms == 2:
return [0, 1]

fib_sequence = [0, 1]
for _ in range(2, n_terms):

fib_sequence.append(fib_sequence[-1] + fib_sequence[-2])
return fib_sequence

# Test cases from get_tasks
n_terms = t[’n_terms’]
expected_output = generate_fibonacci(n_terms)

# Get function name to callable mapping
function_name_to_callable = get_function_name_to_callable(

submission
)

# Run test case
try:

# Execute the function
submission_result = function_name_to_callable[’fibonacci_sequence’](n_terms)

# Compare with expected output
if submission_result == expected_output:

return 1.0

except Exception:
# If function fails on a test case, return 0.0
return 0.0

E.4.8 EXAMPLE 8: IMPLEMENT FUNCTION TO COMPUTE LONGEST COMMON
SUBSEQUENCE

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
’1’: {

’prompt’: ’Complete the function ‘longest_common_subsequence‘ that takes two
lists of characters and returns the longest common subsequence (LCS).’,

’test_cases’: [([’A’, ’B’, ’C’, ’D’, ’E’], [’A’, ’B’, ’D’, ’F’, ’G’], [’A’, ’
B’, ’D’]),

([’A’, ’B’, ’C’], [’X’, ’Y’, ’Z’], []),
([’A’, ’B’, ’C’, ’B’, ’D’, ’A’, ’B’], [’B’, ’D’, ’C’, ’A’, ’B’, ’A

’], [’B’, ’C’, ’B’, ’A’])],
’expected_func_name’: ’longest_common_subsequence’

},
’2’: {

’prompt’: ’Complete the function ‘longest_common_subsequence‘ that takes two
lists of characters and returns the longest common subsequence (LCS).’,

’test_cases’: [([’A’, ’B’, ’C’, ’D’, ’E’], [’A’, ’B’, ’D’, ’F’, ’G’], [’A’, ’
B’, ’D’]),
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([’A’, ’B’, ’C’, ’D’, ’E’], [’E’, ’D’, ’C’, ’B’, ’A’], [’A’, ’B’,
’C’, ’D’, ’E’]),

([’A’, ’B’, ’C’, ’B’, ’D’, ’A’, ’B’], [’B’, ’D’, ’C’, ’A’, ’B’, ’A
’], [’B’, ’C’, ’B’, ’A’])],

’expected_func_name’: ’longest_common_subsequence’
}

}

@staticmethod
def get_instructions(t: dict) -> str:

return f"Complete the following Python function:\n\n{t[’prompt’]}\n"

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import get_function_name_to_callable

# Test cases from get_tasks
test_cases = t[’test_cases’]

# Get function name to callable mapping
function_name_to_callable = get_function_name_to_callable(

submission
)

# Run test cases
for seq1, seq2, expected_output in test_cases:

try:
# Execute the function
submission_result = function_name_to_callable[t[’expected_func_name’]](seq1,

seq2)

# Compare with expected output
if submission_result != expected_output:

return 0.0

except Exception:
# If function fails on a test case, return 0.0
return 0.0

return 1.0

E.4.9 EXAMPLE 9: CALCULATE FREE-FALL TIME

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"height": 45,
"gravity": 9.81,
"expected_time": 3.03

},
"2": {

"height": 100,
"gravity": 9.81,
"expected_time": 4.52

}
}

@staticmethod
def get_instructions(t: dict) -> str:

return f"Calculate the time it takes for an object to fall from a height of {t[’
height’]} meters. Use the formula for free-fall motion under gravity: \nt = sqrt(2 * h /
g), where h is the height and g is the acceleration due to gravity (9.81 m/sˆ2). \nRound
your answer to two decimal places."

@staticmethod
def score(t: dict, submission: str) -> float | None:

import math
# Calculate the expected time using the free-fall formula
expected_time = math.sqrt(2 * t[’height’] / t[’gravity’])
expected_time_rounded = round(expected_time, 2)
try:

# Convert the submission to a float
submission_time = float(submission.strip())
# Check if the submission matches the expected time with a small tolerance
if abs(submission_time - expected_time_rounded) < 0.05:

return 1.0
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else:
return 0.0

except ValueError:
return 0.0

E.4.10 EXAMPLE 10: PROVIDE EXPLANATION OF CHEMICAL INTERACTIONS

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

return {
"1": {

"prompt": "Provide a detailed explanation of the chemical interactions in
water, including:\n1. Bond type\n2. Electronegativity differences\n3. Molecular geometry\
n4. Intermolecular interactions\n5. Potential reactions\n",

"test_cases": [
("", "")

],
"expected_func_name": ""

},
"2": {

"prompt": "Using the knowledge from the previous task, explain the role of
water in the process of photosynthesis. Specifically, describe how water is involved in
the light-dependent reactions and the overall chemical equation for photosynthesis. Make
sure to mention the products and reactants of the light-dependent reactions and how they
relate to the overall photosynthesis equation.\n",

"test_cases": [
("", "")

],
"expected_func_name": ""

}
}

@staticmethod
def get_instructions(t: dict) -> str:

return t[’prompt’]

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import eval_with_llm_judge
instructions = TaskFamily.get_instructions(t)
criteria = [

"The response should include a detailed explanation of the chemical interactions
in water, covering bond type, electronegativity differences, molecular geometry,

intermolecular interactions, and potential reactions.",
"The response should explain the role of water in the process of photosynthesis,

specifically describing how water is involved in the light-dependent reactions and the
overall chemical equation for photosynthesis. Mention the products and reactants of the
light-dependent reactions and how they relate to the overall photosynthesis equation."

]
return 1.0 if eval_with_llm_judge(instructions, submission, criteria) else 0.0
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F AC/DC PROMPTS

We build upon and extend the system prompts used by Lu et al. (2025).

F.1 TASK CREATION PROMPTS

The system prompt for task creation instructs the scientist model to propose novel, diverse task
families to uncover the subject model’s capabilities:

Task Creation System Prompt

You are an expert in designing task families to assess the capabilities of a particular new large language
model (LLM). Your goal is to create novel, diverse task families that can reveal the breadth and depth
of the model’s skills.
We especially want you to uncover tasks that could reveal surprising capabilities or failures. Success-
fully written task families will be added to a task archive.
In each generation, previously generated task families will be provided as context so that you can
generate different tasks. Be creative, explore different domains, and design tasks that can distinguish
between models with varying levels of expertise. Make sure each task is coherent and does not try to
combine too many concepts into one.
Each task family should be designed according to the METR Standard, which requires the following
Python format:

class TaskFamily:
@staticmethod
def get_tasks() -> dict[str, dict]:

# Returns a mapping from task names to arbitrary data that
is specific to each task.

# Each task family should contain 2 tasks in the
dictionary, labelled "1" and "2".

# ... implementation ...

@staticmethod
def get_instructions(t: dict) -> str:

# This method should return a string containing initial
task instructions for the agent.

# ... implementation ...

@staticmethod
def score(t: dict, submission: str) -> float | None:

# ‘score‘ is called after the agent submits a solution.
Return 0 on failure and 1 on success. Do not give partial scores
.

# Throwing an exception will result in a score of 0.
# For math or code related tasks, implements the step-by-

step code to compute the correct answer given the task
instructions.

# ... implementation ...

When applicable, for example, for any math or code related tasks, the score function MUST imple-
ment the code to get the correct answer given the task instructions. You can use the standard python
operations, but also libraries like numpy or sympy to do more complex computations. Don’t forget
to import them. Also, don’t forget that sympy returns fractions by default, so you need to convert the
results it returns to floats. Make sure to add comments to your code to explain what you are doing.
Make sure to handle different answer types, e.g. latex style answers such as
sqrta or
fracab, or text based answers, such as p - q, or p + q.
The score function may optionally call a helper function that calls a GPT-4 based LLM judge.

# Automated LLM judge helper function
def eval_with_llm_judge(

instructions: str, # The instructions for the task
submission: str, # The submission to evaluate
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criteria: Optional[List[str]] = None, # Optional
additional criteria
) -> bool:

# Returns a boolean indicating whether the agent is deemed to
have succeeded
# at the task, and meets any additional criteria.

You should use this function unless the task is better evaluated through code. DO NOT RE-
IMPLEMENT THIS FUNCTION! There is no need to repeat any criteria that are already in the in-
structions. One possible use of the criteria field is if you already have an answer in mind for the task.
An example usage in score with an optional criteria is as follows:

@staticmethod
def score(t: dict, submission: str) -> float | None:

from sandbox_eval_helper import eval_with_llm_judge
instructions = TaskFamily.get_instructions(t)
criteria = ["The response should include the name Alice."]
return 1.0 if eval_with_llm_judge(instructions, submission,

criteria) else 0.0

Additionally, the score function may call the get function name to callable function to
get a mapping from function names to their callables.

@staticmethod
def get_function_name_to_callable(

func_string: str, # A string containing one or multiple
python function definitions.
) -> dict[str, Callable]:

# Returns a dictionary mapping function names to their
callables.

You should use this function if the task instruction requests the agent to write code. You may use this
example function as a reference for how to implement the score function. Reimplement it for simple
tasks, or extend it for more complex tasks. An example usage in score is as follows:

def score(t: dict, submission: str) -> float | None:
from sandbox_eval_helper import get_function_name_to_callable

# Test cases from get_tasks
test_input, expected_output = t["test_cases"][0]

# Get function name to callable mapping
function_name_to_callable = get_function_name_to_callable(

submission
)

# Run test case
try:

# Execute the function
submission_result = function_name_to_callable[t["

expected_func_name"]](
test_input

)

# Compare with expected output
if submission_result == expected_output:

return 1.0

except Exception:
# If function fails on a test case, return 0.0
return 0.0

Respond precisely in the following format including the JSON start and end markers:

THOUGHT: <THOUGHT>
RESPONSE JSON: <JSON>
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In <THOUGHT>, first briefly think and reason about what kind of task family you want to propose.
Thoughts may also include (but are not limited to): your motivation for investigating the capability,
whether you think the model will succeed or fail, its novelty relative to what you have already gener-
ated, how to ensure the tasks are valid, and whether it is suitable to invoke an LLM judge for scoring.
In <JSON>, provide a JSON response with the following fields:

• "name of task": A concise, descriptive label (lowercase, no spaces, e.g.,
"name capital city").

• "description of task": A clear explanation of what the task entails (e.g., "Return
the capital city of a country").

• "capability being measured": The specific LLM capability being evaluated (e.g.,
knowledge, reasoning, creativity, ...).

• "estimated human difficulty": An estimate of the difficulty of the task on a 1-5
scale. 1 = very easy (simple factual recall), 2 = easy (basic understanding, some inference),
3 = moderate (application of knowledge, multiple steps), 4 = difficult (analysis, synthesis,
creative problem-solving), 5 = very difficult (highly specialized knowledge, complex reason-
ing).

• "done": By default, this is set to "False". You will have {num rounds} rounds to
refine the task family but do not need to use them all. Tasks will only be saved if they are
flagged "done" by the end. Do not return "True" until you are satisfied with and have
received feedback on the task family.

• "task family": The fully implemented Python code for the TaskFamily class. Write
good human-readable code.

• "example instruction": An example instruction for the task that we would expect
from the output of get instructions. This should be a string..

All values in the JSON should be strings. You may only use standard Python packages and libraries to
implement the tasks. Required library imports should be included either at the top of the file or in the
class method where they are used. An import at the start of the class has no effect. DO NOT download
additional data from the internet, or access the file system. Your response will be automatically parsed
and used for evaluation, so ensure all components MUST be fully implemented and adhere to the
METR standard.

In the initial round of task generation (starting from just the seed tasks), we generate a first batch of
tasks. We hereby define a probability that the task is supposed to be completely novel, or novel, but
still related to the seed task.

For generating a completely novel task, we use this user prompt for the scientist (alongside the
system prompt above):

Initial Task Prompt Completely Novel

A previous generated task family is provided below (with code):

{prev_json}

Generate the next interestingly new task family.

For generating a novel but similar task, we use the following prompt:

Initial Task Prompt Adapt Similar

A previous generated task family is provided below (with code):

{prev_json}

Generate a new task family that is inspired by the previous task family, so that it provides a more
interesting challenge that is more complex or explores beyond what the current task family is evaluating
in terms of model capabilities.

Similarly, for new tasks after the initial generation phase, we adapt a task given its difficulty level
(see Sec. 3).
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For creating a novel task, when the parent task difficulty was ”appropriately difficult”, we again use
the same probability as above for generating a completely novel task, or a novel one that is still
similar to the parent task.

Task Prompt Completely Novel

Consider the following task family:

{original_task_json}

Summaries of other previously generated tasks for context are:

{other_task_jsons}

Generate a new task family that is interestingly different, aiming to explore diverse capabilities. You
can draw inspiration from the provided task, but prioritize novelty in terms of:

• The specific capability being measured.

• The domain or context of the task.

• The format or style of the interaction.

Ensure the new task is coherent, adheres to the METR standard, and is distinct from existing tasks.
Respond in the standard JSON format with THOUGHT and RESPONSE JSON sections. Set ”done”
to ”False” initially, as this task will be validated.

Task Prompt Adapt Similar

Consider the following task family:

{original_task_json}

Summaries of other previously generated tasks for inspiration are:

{other_task_jsons}

Generate a new task family that is inspired by the previous task family, so that it provides a more
interesting challenge that is more complex or explores beyond what the current task family is evaluating
in terms of model capabilities. Draw inspiration from the provided task and implement novelty in terms
of:

• The specific capability being measured.

• The contextual setting of the task.

• The format or style of the interaction.

Ensure the new task is coherent, adheres to the METR standard, and is distinct from existing tasks.
Respond in the standard JSON format with THOUGHT and RESPONSE JSON sections. Set "done"
to "False" initially, as this task will be validated.

For creating tasks that are inspired by the parent task but are more difficult or easier, we leverage the
following prompts:

Make Task Harder Prompt

The following task family was found to be too easy for the current models:
{original_task_json}

Summaries of other previously generated tasks for context are:
{other_task_jsons}

Generate a new task family that is conceptually related but significantly more challenging. This could
involve:

• Requiring deeper reasoning or multi-step problem solving.
• Introducing more complex constraints or edge cases.
• Using more advanced concepts within the same domain.
• Increasing the required precision or detail in the answer.

Ensure the new task remains coherent and adheres to the METR standard. Respond in the standard
JSON format with THOUGHT and RESPONSE JSON sections. Set "done" to "False" initially,
as this task will be validated.
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Make Task Easier Prompt

The following task family was found to be too difficult (or impossible) for the current models:

{original_task_json}

Summaries of other previously generated tasks for context are:

{other_task_jsons}

Generate a new task family that is conceptually related but significantly easier. This could involve:

• Breaking the problem down into simpler steps.

• Reducing the complexity of the required reasoning or knowledge.

• Providing more scaffolding or clearer instructions.

• Focusing on a more fundamental aspect of the capability.

Ensure the new task remains coherent and adheres to the METR standard. Respond in the standard
JSON format with THOUGHT and RESPONSE JSON sections. Set "done" to "False" initially,
as this task will be validated.

If the generated task has implementation or logic errors and needs refinement, the scientist sees:

Task Creation Reflexion Prompt

Current round = {current round}/{num rounds}.
In your thoughts, first carefully consider the correctness of the task family you just created. Factors
may include but are not limited to:

• Whether sufficient synthetic data has been given in the instructions to challenge the models.

• Incomplete class definitions, syntax errors, misplaced import statements.

• Feasibility of the evaluation criteria.

• Any ambiguity or issues in the clarity of the tasks.

• The consistency and accuracy of all the fields in the JSON.

• Whether precisely two entries in get tasks have been defined.

• Whether agents can get a successful score in an unintended manner.

• Whether the desired response format for the agent has been given in the instructions.

• Under no circumstances should the instructions contain the answer or any direct hints leading
to the answer. Ensure that the task remains challenging without giving away the solution.

• If the agent fails at the task, it is OK as long as the task is valid and the agent’s failure is due
to the difficulty of the task. You are also trying to find surprising failures!

Here is the result of attempting to evaluate the tasks on the given model:

{eval_response}

In the next attempt, try and improve on the implementation. Respond in the same JSON format as
before. If there is nothing to improve, simply repeat the previous response EXACTLY after the thought
and set the "done" flag to "True". Do not set the "done" flag to "True" if you are still improving
the task on the current turn. Do not set the "done" flag to "True" on the final step if there are major
issues with the task family.

F.2 EVALUATION PROMPTS

We can configure the subject model to provide an answer using chain-of-thought prompting (Wei
et al., 2022):

Chain-of-Thought Evaluation System Prompt

You are a helpful assistant. You are given a task to complete.
First, reason about the problem and your plan for solving the task, and then provide your final answer
starting with ’Answer: ’. If you are asked to write code, write the code after the ’Answer: ’
in the following format: [[START OF FINAL ANSWER TEMPLATE]] Answer:
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def function_name(your_arguments): # Add the relevant arguments
here.

# ... implementation ...
return your_return_result

[[END OF FINAL ANSWER TEMPLATE]]
Make sure to define the function with its arguments and return the result of the function in the format
specified in the task prompt. Don’t forget to import the necessary libraries.
Only the text after ’Answer: ’ will be evaluated. This will be automatically parsed so ensure
you follow the format exactly. Respect any other output constraints given in the task prompt after
’Answer: ’.

F.3 TASK EMBEDDING PROMPT

We generate embeddings using intfloat/e5-mistral-7b-instruct (Wang et al., 2023a)
to be then stored in our vector databases for cosine similarity-based retrieval. Before embedding,
we encode each task in the following format:

Task Embedding Prompt

Name of task: {name of task}
Description of task: {description of task}
Capability being measured: {capability being measured}
Estimated human difficulty: {estimated human difficulty}
Example instruction: {example instruction}

F.4 NOVELTY ASSESSMENT PROMPTS

To determine whether a newly generated task is interestingly new compared to the three most similar
existing tasks in the archive, we use the following system prompt:

Interestingly New System Prompt

You are an expert in designing task families to assess the capabilities of a particular new large language
model (LLM). Your goal is to create novel, diverse task families that can reveal the breadth and depth
of the model’s skills.
You will be given a task family that you just generated along with its closest saved neighbours (i.e., the
task families that are most similar to the newly generated one). Determine whether the generated task
family is interestingly new compared to the closest task families. If so, it should be added to the task
archive. Factors may include but are not limited to:

• The novelty of the subject area

• The difficulty of the tasks

• The capabilities being measured

• Whether the agent succeeded at the task

First, briefly think and reason about the task family in relation to the existing closest task families.
Then, provide your decision as ’Decision: Yes’ or ’Decision: No’ to indicate whether
the task family should be added to the task archive.
Your response will be automatically parsed, so ensure you follow the above format exactly.

We then prompt with:

Interestingly New Prompt

You have just generated the task family:

{new_task}

The closest task families that have already been created are:

{closest_tasks}
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Is the generated task family interestingly new compared to the closest task families? If yes, it should
be added to the task archive.

See Tab. 5 for details on which specific scientist model we use.

F.5 GIBBERISH FILTER PROMPTS

We propose a novel minimal criterion filter for determining whether a newly discovered model is a
valid solution, or not. Hereby, we define a valid solution to be an LLM that produces coherent and
sensible text and not gibberish.

To detect these degenerate solutions, we prompt an LLM judge with the following system and user
prompts:

Gibberish Filter System Prompt

You are a helpful assistant.

Gibberish Filter User Prompt

Consider the following tasks shown in the numbered list:
[TASK 1]

{instruction1}

[TASK 2]

{instruction2}

[TASK 3]

{instruction3}

and the following three responses to the task from an LLM (in a numbered list):
[RESPONSE 1]

{outputs1}

[RESPONSE 2]

{outputs2}

[RESPONSE 3]

{outputs3}

Your task is to determine if the LLM responded with gibberish, incoherent sentences, or not. Factors
may include but are not limited to:

• Does the LLM form coherent sentences or are they responding with jumbled words and
strings?

• Does the LLM use punctuation in a sensible way, or spam random symbol characters?

• Does the LLM end up repeating sentences non-stop?

• Does the LLM fail to return any output response?

• Does the LLM respond in a way that completely ignores the task or goes completely off-topic,
in a reasonable way of attempting to solve the task?

• Does the LLM format its response in a way that is highly unexpected in the context of the
tasks?

The responses don’t have to be correct! But they should be at least somewhat coherent, considering the
factors on gibberish responses mentioned above as well as any other reasonable expectations on how
LLMs may respond in a gibberish manner.
Firstly, very briefly think step-by-step and reason about the responses. Then, provide your answer as
’Answer: Yes’ if the responses are gibberish, or ’Answer: No’ if they are not.
Your response will be automatically parsed, so ensure you follow the above format exactly.
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F.6 LLM-AS-A-JUDGE TOOL PROMPTS

For tasks where score calls an LLM-based judge (which we set to be the same as the general-
purpose scientist model), we use the following system and user prompts.

LLM Judge System Prompt

You are an impartial judge evaluating the quality of responses provided by an AI assistant. You will
be provided the instructions for the task and the assistant’s submission in response. You will decide
whether or not the agent succeeded at the task. Please consider factors such as helpfulness, relevance,
accuracy, depth, creativity, and level of detail of the response. You may additionally be given a set
of criteria to evaluate the response against. Do not allow the length of the response to influence your
decision.
Respond precisely in the following format:

THOUGHT: <THOUGHT>
DECISION: <DECISION>

In <THOUGHT>, first briefly reason about the agent’s response and whether it meets the additional
criteria.
In <DECISION>, provide your answer as either "Yes" or "No".

LLM Judge Prompt

Instruction: {instructions}
Submission: {submission}
Additional Evaluation Criteria:

{criteria}

F.7 OPEN-ENDED MULTIPLE-CHOICE BENCHMARK LLM JUDGE PROMPTS

We leverage new, open-ended versions of the common multiple-choice benchmarks MMLU, MMLU
Pro, GPQA, and BBH. We discuss the details on these benchmarks in Sec. A.4.1 and provide the
prompts used here.

For filtering the dataset, we use the following system and user prompts:

MCQ Benchmark Filtering System Prompt

You are a professional educator. Your job is to evaluate whether a question is unambiguous and can
be answered without the multiple choice options. You need to determine whether it is clear what the
question is asking.
You will be given the parsed question that you need to evaluate.
A valid question here means:

• The standalone question can be answered without the multiple choice options.

• It is clear what the question is asking.

• Even if a question is posed as a text continuation task, if the continuation can be generated
without the context of multiple choice options, then it is valid.

• If the question contains anything along the lines of ”Which of the following...”, then the
question is not valid.

Respond precisely in the following format:
THOUGHT: <THOUGHT>
DECISION: <DECISION>

In <THOUGHT>, briefly reason about the question and whether it can be answered without the multiple
choice answers.
In <DECISION>, provide your answer as either "Yes" or "No".
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MCQ Benchmark Filtering User Prompt

Question:

{question}

To evaluate a subject model’s candidate solution, we leverage the following system and user
prompts:

Benchmark Eval LLM Judge System Prompt

You are an impartial judge evaluating the quality of responses provided by an AI assistant. You will be
provided the question for the task, its multiple choice answer options, the correct ground truth solution,
and the assistant’s response. You will decide whether or not the AI assistant succeeded at the task.
Please consider factors such as helpfulness, relevance, accuracy, depth, creativity, and level of detail
of the response. Do not allow the length of the response to influence your decision. However, the
AI assistant should respond in a clear manner and try to answer the question directly. Even if the AI
assistant uses slightly different wording to the ground truth answer, as long as it provides the equivalent
right answer, the response should be evaluated as correct.
The question for the task is inserted between [[START OF QUESTION]] and [[END OF
QUESTION]].
The multiple choice answer options are inserted between [[START OF MULTIPLE CHOICE
OPTIONS]] and [[END OF MULTIPLE CHOICE OPTIONS]].
The correct ground truth solution is inserted between [[START OF GROUND TRUTH ANSWER]]
and [[END OF GROUND TRUTH ANSWER]].
The assistant’s response is inserted between [[START OF AI ASSISTANT RESPONSE]] and
[[END OF AI ASSISTANT RESPONSE]].
Respond precisely in the following format:
THOUGHT: <THOUGHT>
DECISION: <DECISION>

In <THOUGHT>, briefly reason about the AI assistant’s response and whether it meets the criteria of
the ground truth solution.
In <DECISION>, provide your answer as either "Yes" or "No".

Benchmark Eval LLM Judge User Prompt

[[START OF QUESTION]]

{question}

[[END OF QUESTION]]
[[START OF MULTIPLE CHOICE OPTIONS]]

{choices}

[[END OF MULTIPLE CHOICE OPTIONS]]
[[START OF GROUND TRUTH ANSWER]]

{target}

[[END OF GROUND TRUTH ANSWER]]
[[START OF AI ASSISTANT RESPONSE]]

{submission}

[[END OF AI ASSISTANT RESPONSE]]
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G EXTENDED RELATED WORK

Coevolution and Open-Endedness through LLMs. Building AI capable of unbounded innova-
tion is a grand challenge of open-endedness (Stanley et al., 2017), which seeks to generate endless
sequences of artifacts and interactions that are both novel (Sigaud et al., 2023) and learnable/inter-
esting (Hughes et al., 2024). By studying how life coevolves with an ever-changing environment,
we see a complexity explosion emerge through local competition (Lehman & Stanley, 2011b) and
the coevolution of agents and environments (Wang et al., 2019; 2020). One important question is
on how to ensure the necessary minimal criteria (MC) and filters that enable exploration to flourish,
while avoiding completely undesired outcomes from dominating (Lehman & Stanley, 2010; Soros &
Stanley, 2014; Jiang et al., 2023). Brant & Stanley (2017; 2020) (MCC) show that defining filters or
MCs for both agents and environments to satisfy enables more open-ended outcomes in coevolution.
Recent advances demonstrate the potential for open-endedness through LLMs (Zhang et al., 2023;
Aki et al., 2024; Faldor et al., 2024; Dharna et al., 2025), where language models can generate di-
verse environments and challenges. AC/DC takes a first step towards discovering LLMs themselves
via more open-ended search, which could subsequently power open-ended agentic search (Hu et al.,
2025; Zhang et al., 2025a). Building on established principles of minimal criteria and coevolution-
ary dynamics, our approach applies these concepts to the joint evolution of model populations and
synthetic task distributions. Additionally, while Dharna et al. (2025) combines QD with self-play,
our framework combines QD with population-based coevolution, which is related to MCC (Brant &
Stanley, 2017).

Evolutionary Model Merging. Model merging can produce LLMs by combining multiple existing
LLMs. Merging and testing resulting models is computationally cheaper than training models. Ap-
proaches include linear interpolation of weights (Wortsman et al., 2022; Ilharco et al., 2023) or TIES
(Yadav et al., 2023) and DARE (Yu et al., 2024). Akiba et al. (2025) introduced evolutionary model
merge (EvoMerge), automating merging by presenting a model benchmark optimization approach
with CMA-ES (Hansen & Ostermeier, 2001). Subsequent works extend EvoMerge to discover LLM
populations that optimize for benchmark performance (Zhang et al., 2025b) while maintaining di-
versity via CycleQD (Kuroki et al., 2025) or competition/fitness sharing (M2N2) (Abrantes et al.,
2025). Unlike these approaches, AC/DC discovers LLMs that generalize to tasks without any ex-
plicit objective optimization on benchmarks. Furthermore, AC/DC can compute both quality and
BCs for any LLM evaluated on synthetic task pools of any size and composition/topics (via DNS
(Bahlous-Boldi et al., 2025)), allowing QD for the coevolution of LLMs and tasks without the lim-
itations or rigidity of fixed niche or measurement bin interval sizes, given that skill vectors are
consistent in order and size within the same generation/iteration of coevolution. Additionally, we
solve the limitation of behavior characteristics (BCs) used in CQD (Kuroki et al., 2025) through
the fine-grained behavior signature represented in skill vectors, which uniquely distinguish models
with different expertises (based on synthetic tasks solved), unlike CQD that uses binned intervals
over aggregated benchmark accuracies (i.e., distinguishing model niches as unique when percentage
accuracies on a benchmark for science tasks are different when aggregated, but discarding models
with similar accuracies on science tasks even when such models are unique in being specialized in
subfields such as physics or biology).

Novelty Search. Both Novelty Search and QD methods explicitly incorporate diversity of behavior
into evolutionary search, i.e., encourage solutions that do things that are different and new. These
approaches move beyond traditional optimization by encouraging continuous exploration and gener-
ation of diverse and novel artifacts. Novelty Search (Lehman et al., 2008; Lehman & Stanley, 2011a;
Doncieux et al., 2019) explicitly ranks and selects artifacts based solely on their novelty relative to
previously discovered solutions, promoting continual discovery without direct reliance on prede-
fined objectives. This approach successfully mitigates deception in search spaces and highlights the
strength of novelty as a guiding principle for exploration, inspiring broader discussions about open-
ended innovation (Stanley & Lehman, 2015). Adaptive approaches for evaluating novelty were
introduced to allow for more open-ended exploration of different spaces of novelty (Meyerson et al.,
2016; Paolo et al., 2020; Etcheverry et al., 2021). Unlike existing frameworks, our approach enables
AC/DC to adapt to different definitions of behavior during search by leveraging the skill vector as a
means of flexibly measuring behavioral diversity during task adaptation and coevolution.

Quality-Diversity (QD) QD (Pugh et al., 2016; Cully & Demiris, 2017; Chatzilygeroudis et al.,
2021) explicitly optimizes both diversity and high-quality performance, while maintaining a struc-

57



3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2026

tured collection (archive) of diverse high-quality solutions with unique behavior characteristics
(BCs). Influential algorithms such as MAP-Elites (Mouret & Clune, 2015a; Cully et al., 2015) em-
phasize local competition within niches (Lehman & Stanley, 2011b) to systematically explore and
optimize throughout a diverse behavior space. Extensions include methods for efficiently handling
higher-dimensional descriptor spaces and novel mutation operators (Vassiliades et al., 2017; Vassil-
iades & Mouret, 2018; Fontaine et al., 2020; Conti et al., 2018; Colas et al., 2020; Flageat et al.,
2024). Existing methods handle the complexity and adaptation of diverse high-quality search spaces
through either a meta-adaptation approach (Bossens & Tarapore, 2022) or learned parametrized be-
havior functions (Gaier et al., 2018; Kent et al., 2024; Keller et al., 2020; Bhatt et al., 2022; Lim
et al., 2023; Zhang et al., 2022; Paolo et al., 2024; Grillotti et al., 2024). Different to existing
paradigms of search space adaptation and known QD applications, skill vectors in our framework,
AC/DC, naturally represent both quality and behavior (for diversity), while being simple to adapt to
the composition and size of synthetic task pools during coevolution.

Synthetic Data for LLMs. Instead of being constrained to training on internet data, many works
show that LLMs can generate effective text training data (Wang et al., 2023c; Maini et al., 2024; Liu
et al., 2024) of increasing quality, diversity, and complexity, starting from seed text data (Bradley
et al., 2023; Samvelyan et al., 2024; Havrilla et al., 2024) (where QD approaches help). Synthetic
training signals can also be obtained through LLM-generated preference data (Bai et al., 2022) or
task solution reward (Zhao et al., 2025). Lu et al. (2025), a method we build upon, show that
principles of open-ended search can generate surprisingly new tasks that reveal unexpected capa-
bilities or weaknesses in LLMs. To the best of our understanding, AC/DC leverages synthetic data
to demonstrate the first instance of diverse LLM-generated tasks coevolving with a population of
LLMs, rather than fine-tuning just one LLM.

Multi-Agent Systems and Best-of-N Strategies. The gap between coverage metrics (pass@k, ora-
cle accuracy, our proposed Coverage) and practical single-answer selection represents a fundamental
challenge in LLM evaluation. The pass@k metric (Chen et al., 2021a) measures whether at least one
correct answer exists among k samples, with coverage scaling log-linearly over orders of magnitude
(Brown et al., 2024), yet recent work demonstrates pass@k serves as a diagnostic tool rather than an
effective optimization objective (Yu, 2025), highlighting that generating correct answers and select-
ing them are fundamentally different problems. Recent advances in test-time compute scaling have
shown that optimal strategies are problem-dependent, with adaptive allocation of inference com-
pute outperforming fixed sampling budgets (Snell et al., 2024), and tree search methods enabling
principled exploration-exploitation trade-offs (Inoue et al., 2025); while these approaches focus on
improving individual model reasoning through extended inference, our evolutionary approach gen-
erates diverse model populations with complementary capabilities scaling on the number of model
axis. Self-consistency via majority voting (Wang et al., 2023b) has become the standard baseline
for aggregating multiple samples from a single model. However, majority voting assumes samples
from a single model with homogeneous capabilities and has been shown to overlook informative mi-
nority responses (Huang et al., 2024) and can even degrade performance in certain settings (Wang
et al., 2025). In contrast, our work explicitly seeks to evolve distinct specialist models whose com-
plementary capabilities should not be aggregated via simple majority rule, which would suppress
the unique perspectives we aim to discover. Beyond voting methods, reward model-based selection
suffers from reward hacking when models have imperfect alignment with true objectives (Lightman
et al., 2023; Jinnai et al., 2025), while LLM judge-based approaches exhibit systematic biases in-
cluding position bias and verbosity bias (Zheng et al., 2023; Shi et al., 2024). We explore three
simple selection strategies-tournament-style judge selection, single-prompt judge selection, and re-
ward model scoring-finding that all exhibit substantial gaps between coverage and single-answer
performance. Multi-agent debate and collaborative systems (Liang et al., 2024; Irving et al., 2018;
Du et al., 2024) represent alternative approaches, though recent work questions their reliability com-
pared to simpler methods (Smit et al., 2024), while ensemble diversity from heterogeneous models
shows promise (Talebirad et al., 2025); these collaborative techniques are orthogonal to our evo-
lutionary discovery process and represent promising future directions for answer aggregation from
evolved populations.
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H HUMAN STUDY

H.1 HUMAN STUDY METHODOLOGY

We conducted a human evaluation study with 94 independent assessments (45 synthetic, 49 bench-
mark tasks) across three expert reviewers to validate task quality and novelty. Our protocol incorpo-
rated multiple bias mitigation strategies:

Blind Evaluation Protocol: Task sources (synthetic vs. benchmark) were completely hidden from
reviewers during evaluation, preventing confirmation bias and ensuring objective assessment.

Balanced Sampling Design: Tasks were sampled using a controlled 50/50 distribution (50% syn-
thetic, 50% distributed across 8 our benchmarks), ensuring fair comparison without overrepresenta-
tion.

Similarity-Based Calibration: For each task, reviewers were shown the 3 most similar benchmark
tasks (via embedding-based retrieval) to establish a concrete reference point when assessing out-of-
distribution characteristics—this grounds the OOD metric in actual distributional differences rather
than subjective perception.

Standardized Evaluation Criteria: All reviewers received detailed written guidelines (see
Sec. H.3) defining correctness, creativity, and OOD characteristics, ensuring consistent interpre-
tation across annotators.

Statistical Validation: We verified inter-rater reliability using chi-square tests, confirming strong
agreement on objective metrics (correctness: p = 0.46, OOD: p = 0.57), which validates that our
findings are not driven by individual annotator biases.

This multi-layered approach ensures our human evaluation provides reliable, unbiased evidence for
synthetic task quality and distributional novelty.

H.2 HUMAN STUDY RESULTS

Our evaluation demonstrates that synthetically generated tasks achieve high quality while exhibiting
noticeable distributional novelty as shown in the results of Tab. 4.

Synthetic Task Validation: The 97.8% correctness rate demonstrates that our generation approach
is capable of producing high-quality, well-formed, solvable, and meaningful tasks. Nearly 70%
of synthetic tasks were rated as out-of-distribution compared to established benchmarks, providing
strong evidence that our approach successfully generates novel task types beyond existing evaluation
datasets. Notably, we expect a certain percentage of “in-distribution” tasks, as core math and code
tasks are likely to be similar. Over one-third (37.8%) were rated as creative, indicating they explore
problem-solving approaches not commonly tested by standard benchmarks.

Benchmark Baseline Validation: As expected, benchmark tasks showed substantially lower OOD
(10.2%) and creativity (6.1%) ratings, confirming that reviewers correctly identified established
benchmark tasks as in-distribution. Notably, the benchmark tasks rated as OOD or creative were
concentrated exclusively in the most challenging benchmarks—MMLU-Pro (33.3% OOD, 16.7%
creative) and GPQA (16.7% OOD, 16.7% creative)—while all other benchmarks (BBH, GSM8K,
MATH, HumanEval, MBPP, MMLU) received 0% OOD and 0% creative ratings. This pattern val-
idates our evaluation protocol: reviewers appropriately recognized that graduate-level and expert-
domain questions may appear novel due to their complexity, while correctly identifying that standard
benchmarks are in-distribution. This serves as a sanity check confirming the reliability of our human
evaluation.

Inter-Rater Reliability: Statistical analysis confirms strong inter-rater agreement on objective met-
rics (correctness: p = 0.46, OOD: p = 0.57), demonstrating that our findings are robust and
not driven by individual annotator biases. While the creativity metric showed expected variability
(p = 0.02) due to its inherently subjective nature, the pattern remained consistent: synthetic tasks
received substantially higher creativity ratings across all three reviewers (ranging from 21.4% to
69.2%), compared to benchmark tasks (0% to 17.6%).
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H.3 LABELING GUIDELINES

H.3.1 CORRECTNESS

CORRECTNESS EVALUATION GUIDELINES

A task is considered CORRECT if:

The instruction is clear and unambiguous
The instruction can be understood and executed by a human or AI
If it’s a question, it has a well-defined answer
The task does not contain logical contradictions
The task specification is internally consistent
The requirements are feasible to implement/answer

A task is considered INCORRECT if:

The instruction is unclear, ambiguous, or confusing
The task contains logical errors or contradictions
The task is impossible to solve or implement
Critical information is missing
The task specification is self-contradictory

Note: Focus on the task definition itself, not on potential implementation details.

H.3.2 OUT-OF-DISTRIBUTION

OUT-OF-DISTRIBUTION (OOD) EVALUATION GUIDELINES

A task is considered OUT-OF-DISTRIBUTION (OOD) if:

It’s unlikely to appear in standard AI benchmarks or datasets
It requires knowledge or skills not commonly tested
It involves unusual domain combinations
It requires novel reasoning patterns
It would be difficult to find similar examples in typical training data
It tests capabilities in unexpected or underexplored ways

A task is considered IN-DISTRIBUTION (not OOD) if:

It resembles common benchmark tasks (MMLU, GSM8K, HumanEval, etc.)
It’s a standard problem type from textbooks or courses
It follows well-known problem patterns
Similar examples are abundant in typical training datasets
It tests standard, frequently-evaluated capabilities

Key question to ask:
”Would this task likely appear in existing AI benchmarks or training data?”

If NO → likely OOD
If YES → likely in-distribution

Note: A task can be creative but still in-distribution, or vice versa.
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H.3.3 CREATIVITY

CREATIVITY EVALUATION GUIDELINES

A task is considered CREATIVE if:

It presents a novel or unusual problem formulation
It combines concepts in interesting or unexpected ways
It requires non-trivial reasoning or problem-solving
It goes beyond simple variations of common tasks
It demonstrates originality in approach or domain
It would be interesting or engaging to solve

A task is considered NOT CREATIVE if:

It’s a straightforward, routine task
It’s a simple variation of a very common problem
It requires only basic, mechanical operations
It’s a standard textbook-style problem
It lacks novelty or originality

Examples of creative tasks:
- Novel combinations of domains (e.g., applying game theory to music composition)
- Tasks requiring multi-step creative reasoning
- Problems with interesting constraints or twists

Examples of non-creative tasks:
- Simple arithmetic calculations
- Basic data structure operations
- Standard classification problems

I COMPARISON OF SEED MODELS AND MERGED MODELS ON SYNTHETIC
DATA

I.1 QUANTITATIVE ANALYSIS

I.1.1 PERFORMANCE ACROSS MODEL FAMILIES

We conducted an analysis comparing the fitness of seed models and merged models across four
model families (Qwen2, Qwen2.5, Qwen3, and DeepSeek) on their respective complete synthetic
datasets. Table 16 summarizes the fitness scores and improvements for each family.

Table 16: Model merging performance across different model families. Improvements are calculated
as a percentage change from the seed model performance.

Family Tasks Seed Models Top-3 Merged Avg Imp.
Avg Max Avg Max

Qwen2.5 1,094 0.5253 0.5622 0.6252 0.6353 +19.0%
Qwen3 1,044 0.5361 0.5661 0.6255 0.6255 +16.7%
Qwen2 1,117 0.3405 0.5058 0.6085 0.6132 +78.7%
DeepSeek 1,005 0.3032 0.4418 0.4163 0.4179 +37.3%

Fig. 11 further illustrates the fitness distributions for seed models versus merged models across all
four families. The fitness improvements vary significantly across families, with Qwen2 showing
the highest average improvement (+78.7%) starting from the generally weakest seed model (0.34),
while Qwen2.5 and Qwen3, despite having higher seed baselines (0.53 and 0.54, respectively), show
more moderate improvements (+19.0% and +16.7%).
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Figure 11: Comparison of three seed models to the three fittest merged models on the global syn-
thetic task pool.
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Figure 12: Confusion matrix of synthetic tasks where all models merged and seed models failed and
at least one model succeeded. We show the confusion matrices for the experiments with all model
families.

In Fig. 11 we can clearly observe that our three merged models per model family, all exhibit high
fitness scores on the diverse synthetic data, whereas all seed models, especially the heavily finetuned
and specialized seed models, such as the math and code experts, perform weaker on the diverse data.
Notably, the general-purpose instruct model is also weaker on the synthetic data than all our merged
models, except for the DeepSeek experiment, where it is roughly on par.

To understand the complementarity between seed and merged models, we analyzed confusion matri-
ces showing task-level success patterns. Fig. 12 presents these matrices using the following criteria:
(1) All seeds fail, merged succeed: all seed models fail (score=0.0) and at least one merged model
succeeds (score=1.0); (2) Seeds succeed, all merged fail: at least one seed succeeds and all merged
models fail; (3) Both succeed: at least one seed and one merged model succeed; (4) Both fail: all
models fail.

The confusion matrices reveal complementarity patterns. For Qwen 2, merged models succeed on
153 of tasks where all seeds fail, while completely failing on only 23 of tasks where seeds succeed.
Improvement patterns emerge across Qwen 2.5 and Qwen 3, demonstrating that merging preserves
most seed capabilities while adding new ones. Nevertheless, for DeepSeek, we see that this pattern is
reversed, where seed models succeed on 149 tasks where merged models fail whilst merged models
succeed at only 100 tasks where seed models fail.

These findings demonstrate that our individual merged models improve over the individual seed
models.
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I.1.2 ENHANCED PERFORMANCE ON OUT-OF-DISTRIBUTION TASKS

To investigate whether model merging provides differential benefits for challenging tasks, we eval-
uated Qwen2.5 on the set of 31 out-of-distribution (OOD) synthetic tasks identified through our
human study (see Appendix Sec. H). Tab. 17 compares performance on the full task set versus the
OOD subset.

Table 17: Fitness improvement of Qwen2.5 merged models vs seed expert models on all synthetic
tasks and those labeled as OOD. The improvement differential demonstrates stronger benefits on
challenging tasks that are not commonly evaluated in standard benchmarks, which the seed models
are optimized for.

Metric All Tasks OOD+Synthetic Difference
(1,094 tasks) (31 tasks)

Avg fitness improvement +19.0% +44.0% +25.0pp
Max fitness improvement +13.0% +31.6% +18.6pp

The results reveal that merged models show 2.3× stronger average improvement on
OOD+synthetic tasks compared to the full task set.

Fig. 13 visualizes the fitness distributions for the OOD task subset. The fitness comparison shows
merged models achieving substantially higher scores (avg 0.7742, max 0.8065) compared to seeds
(avg 0.5376, max 0.6129).

Figure 13: Qwen2.5 performance on 31 human-labeled OOD and synthetic tasks (see Sec. H),
showing improved performance compared to seed models.

These findings suggest that model merging is particularly valuable for out-of-distribution scenarios
requiring diverse skill integration, where the emergent capabilities of merged models discover via
coevolution on a diverse set of synthetic tasks, provides novel capabilities not captured by individual
seed models.

I.2 QUALITATIVE ANALYSIS

To understand the types of tasks where merging provides benefits, we examine specific examples
where at least one merged model succeeds while all seed models fail. We present representative
cases from both in-distribution and OOD task categories.
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I.2.1 IN-DISTRIBUTION TASKS

(qwen2.5) task 630 advanced probability and combinatorics

Instruction

A box contains 5 red, 3 blue, and 2 green balls. Two balls are drawn without replacement. What is the
probability that both balls are red, given that at least one ball is red?
Provide your answer as a simplified fraction. Provide your answer in the specified format. Do not
include any additional text or explanations.

Merged Model

Number of red balls = 5
number of blue balls = 3
number of green balls = 2
total number of balls = 5 + 3 + 2 = 10

Probability of drawing at least one red ball:

- Case 1: Drawing two red balls
Probability = (5/10) * (4/9) = 20/90 = 2/9

- Case 2: Drawing one red and one non-red ball
Probability = (5/10) * (5/9) + (5/10) * (5/9) = 50/90 = 5/9

Total probability of at least one red ball = 2/9 + 5/9 = 7/9

Probability of drawing two red balls given that at least one is red:
- Total probability of at least one red ball = 7/9
- Probability of drawing two red balls = 2/9

Conditional probability = (2/9) / (7/9) = 2/7
Answer: 2/7

Math Expert

Answer: 5
14

The merged model correctly applies Bayes’ theorem. In contrast, the math expert does not provide
any reasoning trace and provides an incorrect answer

(qwen2.5) task 549 advanced mathematical proofs

Instruction

Generate a step-by-step mathematical proof for the following statement: Prove that for any integer
n > 1, there exists a prime number p such that n < p < 2n (Bertrand’s Postulate).

Merged Model

To prove Bertrand’s Postulate, we will use the Prime Number Theorem and some properties of the
factorial function. The Prime Number Theorem states that the number of primes less than or equal to
x, denoted by π(x), is approximately x

log x
as x approaches infinity. However, for our purposes, we

will use a more elementary approach.

1. Step 1: Consider the factorial function and its properties.
The factorial function n! (n factorial) is the product of all positive integers up to n. For
example, 5! = 5× 4× 3× 2× 1 = 120.

2. Step 2: Use the factorial function to find a lower bound for the number of primes.
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We will use the fact that (n!)2 (the square of n!) can be expressed in terms of factorials of
smaller numbers. Specifically, we have:

(n!)2 = n!×n! = n× (n−1)× (n−2)×· · ·×2×1×n× (n−1)× (n−2)×· · ·×2×1

This can be rewritten as:

(n!)2 = n× (n!)× (n− 1)× (n− 2)× · · ·× 2× 1×n× (n− 1)× (n− 2)× · · ·× 2× 1

Notice that each term in the product is a multiple of a prime number less than or equal to n.
Therefore, (n!)2 is divisible by all primes less than or equal to n.

3. Step 3: Use the properties of the factorial function to find a prime between n and 2n.
Consider the number 2n!. We can write:

2n! = 2× n!× (n+ 1)× (n+ 2)× · · · × 2n

Notice that 2n! is divisible by all primes less than or equal to n (as shown in Step 2). Now,
consider the number 2n!− 1. This number is not divisible by any prime less than or equal to
n because 2n! is divisible by all such primes, and subtracting 1 from a multiple of a prime p
results in a number that is not divisible by p.

4. Step 4: Conclude the proof using the properties of 2n!− 1.
Since 2n! − 1 is not divisible by any prime less than or equal to n, it must be divisible by a
prime p such that n < p ≤ 2n. This is because the only primes that could divide 2n!− 1 are
those greater than n and less than or equal to 2n.

Therefore, we have shown that for any integer n > 1, there exists a prime number p such that n < p <
2n. This completes the proof of Bertrand’s Postulate.
Answer: Bertrand’s Postulate is proven by showing that for any integer n > 1, there exists a prime
number p such that n < p < 2n.

Code Expert

To prove Bertrand’s Postulate, which states that for any integer n > 1, there exists a prime number p
such that n < p < 2n, we can use a combination of mathematical induction and properties of prime
numbers. The proof is quite involved and requires careful analysis. Let’s proceed step by step.

APPROACH

1. Base Case: Verify the statement for small values of n.

2. Inductive Hypothesis: Assume the statement holds for all integers up to some k.

3. Inductive Step: Prove the statement for k + 1 using the inductive hypothesis and other
properties of primes.

SOLUTION CODE

def bertrands_postulate(n):
if n <= 1:

return False
# Check for primes in the range (n, 2n)
for p in range(n + 1, 2 * n + 1):

if is_prime(p):
return True

return False

def is_prime(num):
if num <= 1:

return False
for i in range(2, int(num**0.5) + 1):

if num % i == 0:
return False

return True

# Test the function with some values
print(bertrands_postulate(2)) # True
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print(bertrands_postulate(3)) # True
print(bertrands_postulate(5)) # True
print(bertrands_postulate(10)) # True

EXPLANATION

1. Base Case: For n = 2, the primes between 2 and 4 are 3, which satisfies the condition. For
n = 3, primes between 3 and 6 are 3 and 5, but 5 is in the range. For n = 5, primes between
5 and 10 are 7, which is valid. For n = 10, primes between 10 and 20 include 11, 13, 17, 19,
etc.

2. Inductive Hypothesis: Assume that for all integers k where 2 ≤ k < m, there exists a
prime p such that k < p < 2k.

3. Inductive Step: We need to show that for m, there exists a prime p such that m < p < 2m.
To do this, we consider the product of all primes up to m and use properties of factorials and
primes to derive a contradiction if no such prime exists.

The detailed proof involves showing that the product of primes up to m multiplied by m is less than
(2m)m/2, leading to a contradiction if there are no primes between m and 2m. This is a complex part
of the proof and requires careful analysis of inequalities and properties of prime numbers.
The code provided uses a brute-force approach to check for primes in the range (n, 2n) for a given n.
This is a practical way to verify the statement for small values but is not a proof. The actual proof of
Bertrand’s Postulate is more theoretical and involves deeper mathematical concepts.
Thus, the code serves as a verification tool, but the proof itself is beyond the scope of this example.
The code can be used to test the hypothesis for specific values, but the general proof requires a more
rigorous approach.

The merged model correctly solves the task, following the instruction to prove Bertrand’s Postulate.
Two of the three seed models returned random symbols, and the code expert provided an answer
that implements a brute-force approach to check for primes in the range (n, 2n) for a given n and
does not formally prove the statement.

I.2.2 OUT-OF-DISTRIBUTION TASKS

(qwen2.5) task 272 complex logical reasoning

Instruction

Given the following logical statements:
For all x, if x is a bird, then x can fly.
For all x, if x can fly, then x has wings.
Penguin is a bird.
Penguin cannot fly.

Deduce the most consistent conclusion and provide a detailed explanation of the reasoning process,
even if the premises contain contradictions.
Do not include any additional text other than the conclusion and the explanation.

Merged Model

The conclusion is that penguins have wings.

Explanation: The logical statements establish that all birds can fly (if they are birds), and all flying
creatures have wings. However, the statement about penguins cannot fly introduces a contradiction
because it implies penguins are birds but contradicts the general rule that birds can fly. Despite this
contradiction, the conclusion that penguins have wings is consistent with the second statement that all
flying creatures have wings. Since penguins cannot fly, they do not fall under the category of flying
creatures and thus do not have wings. However, the conclusion is based on the given premises and the
logical structure provided, leading to the conclusion that penguins have wings due to the conditional
statements about birds and flying creatures.
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Instruct Model

The premises contain a contradiction because according to the first and second statements, all birds
can fly and all that can fly have wings. However, the penguin is a bird that cannot fly, which violates
the first statement. Despite this contradiction, the most consistent conclusion we can draw is that
penguins, despite being birds, do not have wings based on the given information.

Explanation: The first two statements establish a logical chain where all birds can fly and all that can fly
have wings. The penguin being a bird and not being able to fly directly contradicts the first statement.
However, the third statement explicitly states that penguin is a bird, and the fourth statement states that
penguin cannot fly. Given these facts, we can infer that the penguin does not have wings, as it cannot fly
and the second statement asserts that only those that can fly have wings. This conclusion is consistent
with the given information, even though the premises contain a logical contradiction.

The merged model recognizes the contradiction and provides nuanced reasoning about the logical
structure, concluding that despite the contradiction, the conditional statements lead to penguins hav-
ing wings. The general purpose instruct model incorrectly concludes penguins do not have wings,
failing to properly navigate the logical dependencies despite explicitly identifying the contradiction.

(qwen2.5) task 626 complex sentence transformation

Instruction

Transform the following sentence according to the rule:
Original Sentence: If she writes a letter every day, then her friends will be happy.
Transformation Rule: Change the sentence to past tense and passive voice.

Provide only the transformed sentence without any additional text. Ensure that the transformed sen-
tence maintains the original meaning and follows the specified grammatical rules precisely, especially
the conditional structure and the past perfect tense.

Merged Model

If a letter was written by her every day, then her friends would have been happy.

Instruct Model

If a letter is written by her every day, then her friends will have been happy.

The merged model properly applies both passive voice transformation and past perfect tense in the
consequent. The seed model fails to fully transform to the past tense in the antecedent (“is written”
instead of “was written”), demonstrating the merged model’s superior grasp of complex grammatical
transformations.

These examples illustrate that merged models exhibit improved performance on tasks requiring pre-
cise mathematical reasoning, possibly extending beyond the standard training on math expert data
and careful instruction-following for spatial tasks, and perhaps generalizing the logical reasoning
abilities of code and math experts. The diversity of successful tasks suggests that merging could
enable the integration of complementary skills beyond what individual seed models provide.

J MERGING COMPATIBILITY ANALYSIS

In standard LLM development, expensive pretraining is typically conducted with an eye toward
subsequent mid- and post-training stages. In the space of (evolutionary) model merging, developing
core models specifically suited for merging has received comparatively less attention. Only very
recently have efforts been made to deliberately conduct research on this challenge (Horoi et al.,
2025).

We evaluate our method across 5 model families, seed model configurations, and different model
sizes and observe that 4 out of 5 demonstrate improvements over baselines, with absolute improve-
ments varying across these configurations.
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In Sec. 6 of the main paper, we briefly address this limitation. Nevertheless, the question remains
whether there are diagnostic predictors of successful seed model merging and how practitioners can
know beforehand.

To address this question, we analyzed differences in weight space among different seed model con-
figurations, identifying relevant correlations to assess their compatibility (which points to interesting
future research). Moreover, we propose an additional technique to evaluate early in training whether
the coevolution process will successfully produce merged models.

J.1 ANALYSIS APPROACH AND FINDINGS

We conducted an analysis of weight-space geometry across five seed model compositions across dif-
ferent model families to identify potential predictors of compatibility. Our investigation proceeded
in two stages:

Stage 1: Expert-to-Base Analysis — We first measured L2 norm distances between each expert
model and its base model across all layers (embedding, transformer blocks, output head). While this
analysis revealed differences in specialization magnitude (e.g., some experts diverged substantially
from the base while others remained close), it failed to predict merging success. Most critically, the
Llama3 family exhibited excellent uniformity metrics (low coefficient of variation across experts
and tight L2 norm ranges), yet this seed model choice did not lead to models that demonstrably
outperform baselines in our experiments. This suggests that measuring expert deviation from a
shared reference point (the base model) is insufficient for predicting merge compatibility.

Stage 2: Pairwise Expert Geometry — We then computed direct pairwise distances between ex-
perts (comparing experts to each other rather than to the base). For three experts, A, B, and C, we
measured the mean L2 norm between all pairs:

d(X,Y ) =
1

N

N∑
i=1

||Xi − Yi||2

where N is the number of parameters and Xi, Yi are corresponding parameter values. We then
computed a similarity ratio to characterize the geometric structure:

similarity ratio =
min(d(A,B), d(A,C), d(B,C))

max(d(A,B), d(A,C), d(B,C))

This metric quantifies whether a “clear pair” of similar experts exists (low ratio) versus all experts
being roughly equidistant (high ratio approaching 1.0).

Key Observations:

The pairwise analysis correctly predicted merging outcomes for 4 out of 5 families (80% accuracy).
The similarity ratio appears to correlate with merge success in many cases: families with low ratios
(< 0.1), indicating a clear pair structure where two experts are substantially closer to each other
than to the third, generally merged well. Conversely, families with high ratios (> 0.7), indicating
equidistant configurations where all experts are roughly equally separated, generally merged poorly.
Importantly, even within the same base model family (Qwen2.5), different expert selections yielded
dramatically different outcomes—the seed models used in our paper (here referred to as Qwen2.5
ALT to distinguish them) achieved excellent merging performance (similarity ratio 0.097), while the
native Qwen2.5 instruct/code/math experts (Qwen2.5 Official) produced very poor merging results
(similarity ratio 0.834). This suggests that seed model selection, even from the same pretrained base,
affects merge compatibility.

Breaking down the specific geometric structures observed:

• Clear pair structure (Qwen2.5 ALT: ratio 0.097, Qwen 2.0: ratio 0.047): Two experts
very close to each other with the third more distant→ these families merged well

• Equidistant structure (Llama3: ratio 0.786, Qwen2.5 Official: ratio 0.834): All three
experts are roughly equally distant from each other→ these families merged poorly
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• Specialist cluster (DeepSeek: ratio 0.642): The two specialist experts (code, math) closest
to each other, despite both being far from base→ merged best of all families

However, we emphasize caution in generalization: The DeepSeek family, which achieved the best
merging performance, does not conform to the “clear pair” pattern and instead exhibits a moderate
similarity ratio (0.642) with considerable absolute distances (maximum pairwise distance 182.76).
Notably, in DeepSeek, the two specialist experts (code and math) are closest to each other—in
contrast to Qwen2.5 Official (which merged poorly), where the specialist experts are furthest apart
(distance 75.85). This suggests that which experts form the closest pair may matter as much as the
overall geometric structure, but this hypothesis rests on limited data points and requires validation.

Finally, as demonstrated in Fig. 14, one predictor we used during development was tracking the
number of gibberish models during coevolution. We found that if we observed many gibberish
models being detected within the first few generations, we could confidently assume that the final
performance would be poor.

(a) Llama3 8B (b) Qwen2 7B

Figure 14: Gibberish models detected via our gibberish filter for experiments with (a) Llama3 8B
and (b) Qwen2 7B model families. We observe that for the experiment with Llama, we detect
significantly more gibberish models.
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K STATISTICAL SIGNIFICANCE ANALYSIS

To rigorously assess the significance of coverage and Best-of-N (BoN) improvements achieved by
AC/DC, we conducted comprehensive statistical testing across all experimental conditions. This
section describes our bootstrap-based methodology and presents detailed results demonstrating the
statistical reliability of our findings.

K.1 METHODOLOGY

K.1.1 SCORE NORMALIZATION

To ensure fair comparisons across benchmarks with different difficulty levels and score distributions,
we applied min-max normalization to all scores. For each benchmark b, we linearly mapped scores
to the range [0, 1]:

s′b,m,f =
sb,m,f −min∀m′,f ′ sb,m′,f ′

max∀m′,f ′ sb,m′,f ′ −min∀m′,f ′ sb,m′,f ′
(3)

where sb,m,f is the raw score for benchmark b, method m, and model family f , and s′b,m,f is the
normalized score. The minimum and maximum values are computed across all methods and model
families for each benchmark independently.

We performed normalization separately for two groups: (1) main baselines and model merging
baselines, and (2) ablation experiments. This grouping ensures an adequate range of data points
from which we can get clear performance differentials within controlled experiment groups, that
would then lead to more informative relative benchmark score gains comparisons.

K.1.2 BOOTSTRAP HYPOTHESIS TESTING

We employed bootstrap resampling to test the significance of performance differences between
AC/DC and baseline methods. For each comparison, we:

1. Computed pairwise performance differences ∆i = s′AC/DC,i − s′baseline,i across all n = 8
benchmarks for a given model family (or aggregated across multiple model families).

2. Generated a bootstrap distribution by resampling the differences {∆i}ni=1 with replacement
50,000 times, computing the mean difference for each resample.

3. Calculated the bootstrapped mean ∆̄boot and 95% confidence intervals using the percentile
method.

4. Computed one-tailed p-values to test whether AC/DC shows consistent improvement (i.e.,
H0 : ∆̄ ≤ 0 vs. H1 : ∆̄ > 0). Lower p-values indicate higher confidence that AC/DC
achieves meaningful performance gains.

This approach accounts for variance across benchmarks while providing robust statistical evidence
for performance improvements.

K.2 COVERAGE RESULTS

K.2.1 MAIN BASELINES: TASK FORCE SIZE N = 3

Aggregated testing across 8 benchmarks and 4 model families demonstrates that AC/DC signifi-
cantly outperforms these baselines at N = 3:

• vs. Control baseline: p = 0.01170 (CI: 0.007 : 0.062 : 0.125)

• vs. Experts baseline: p = 0.00584 (CI: 0.018 : 0.083 : 0.153)

• vs. Big Model baseline: p = 0.00004 (CI: 0.066 : 0.152 : 0.246)

For the DeepSeek model family specifically, AC/DC shows particularly strong performance:
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• vs. Experts baseline: p = 0.0009 (CI: 0.061 : 0.204 : 0.372)

• vs. Control baseline: p = 0.0699 (CI: −0.037 : 0.140 : 0.342) [borderline significant]

K.2.2 MAIN BASELINES: TASK FORCE SIZE N = 8

At the larger task force size, AC/DC outperforms the following baselines at the aggregate level:

• vs. Control baseline: p = 0.00792 (CI: 0.013 : 0.070 : 0.131)

• vs. Big Model baseline: p < 0.000005 (CI: 0.286 : 0.377 : 0.469)

• vs. Experts baseline (N = 8): p = 0.18974 (CI: −0.029 : 0.028 : 0.091) [more often
outperforms]

Notably, AC/DC with Qwen 2.5 and Qwen 3 model families significantly outperforms GPT-4o in
coverage:

• Qwen 2.5 vs. GPT-4o: p = 0.0014 (CI: 0.065 : 0.208 : 0.353)

• Qwen 3 vs. GPT-4o: p = 0.0057 (CI: 0.043 : 0.227 : 0.412)

For DeepSeek at N = 8:

• vs. Big Model baseline: p = 0.0006 (CI: 0.130 : 0.339 : 0.535)

• vs. Experts baseline (N = 8): p = 0.0647 (CI: −0.040 : 0.143 : 0.331) [borderline
significant]

• vs. Control baseline: p = 0.1884 (CI: −0.100 : 0.087 : 0.276) [more often outperforms]

K.2.3 KNOWLEDGE RECALL BENCHMARKS

When isolating tests to MMLU judge, MMLU Pro judge, and GPQA judge benchmarks—which
test general and scientific knowledge recall without multiple-choice options—the N = 8 AC/DC
Qwen 3 task force outperforms the following baselines:

• vs. Big Model: p < 0.00005; paired t-test p = 0.0294 (CI: 0.478 : 0.652 : 0.983)

• vs. GPT-4o: p < 0.00005; paired t-test p = 0.0009 (CI: 0.494 : 0.540 : 0.568)

• vs. Control: p < 0.00005; paired t-test p = 0.1649 (CI: 0.005 : 0.090 : 0.231)

• vs. Experts: p < 0.00005; paired t-test p = 0.1238 (CI: 0.017 : 0.069 : 0.154)

For Qwen 2 on these knowledge-focused benchmarks:

• vs. Big Model (N = 3): p < 0.00005; paired t-test p = 0.0746 (CI: 0.089 : 0.198 : 0.369)

• vs. Big Model (N = 8): p < 0.00005; paired t-test p = 0.0115 (CI: 0.367 : 0.502 : 0.635)

• vs. Experts (N = 3): p < 0.00005; paired t-test p = 0.0007 (CI: 0.202 : 0.214 : 0.230)

• vs. Experts (N = 8): p = 0.30; paired t-test p = 0.47 (CI: −0.146 : 0.013 : 0.327)

• vs. Control (N = 3): p < 0.00005; paired t-test p = 0.1391 (CI: 0.007 : 0.045 : 0.105)

• vs. Control (N = 8): p = 0.30; paired t-test p = 0.2968 (CI: −0.029 : 0.037 : 0.154)

Aggregating across these 3 knowledge benchmarks and 4 model families at N = 8:

• vs. Big Model: p < 0.00005 (CI: 0.407 : 0.516 : 0.636)

• vs. Experts: p = 0.0586 (CI: −0.013 : 0.058 : 0.134) [borderline significant]

• vs. Control: p = 0.2573 (CI: −0.042 : 0.021 : 0.084) [more often improves]
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K.2.4 SUMMARY: COVERAGE

The statistical analysis confirms that AC/DC reliably produces more diverse, specialized model task
forces with broader coverage than baseline methods. Key findings include:

• AC/DC shows significant improvements across multiple model families (e.g., DeepSeek
V1, Qwen 3) and demonstrates general reliability when aggregated across all tested fami-
lies.

• No baseline significantly outperformed AC/DC in any pairwise or aggregated comparison,
except for small task force (N = 3) comparisons against the big model/GPT-4o or compar-
isons from weaker model families.

• The method achieves particularly strong results on knowledge recall tasks, with Qwen 3
significantly outperforming even GPT-4o.

K.3 BEST-OF-N SELECTION RESULTS

K.3.1 TASK FORCE SIZE N = 3

For Best-of-N selection with N = 3 models, AC/DC aggregated across 4 model families outper-
forms the following baselines:

• vs. Control baseline: p = 0.0002 (CI: 0.035 : 0.085 : 0.143) [highly significant]
• vs. Experts baseline: p = 0.2823 (CI: −0.043 : 0.019 : 0.086) [more often outperforms]

For DeepSeek V1 specifically at N = 3:

• vs. Experts: p < 0.00005 (CI: 0.08 : 0.18 : 0.33)
• vs. Control: p = 0.0140 (CI: 0.02 : 0.19 : 0.36)

Model family-specific results for N = 3:

• Qwen 2 vs. Control: p = 0.0052 (CI: 0.02 : 0.1 : 0.18)
• Qwen 2.5 vs. Control: p = 0.0337 (CI: 0.00 : 0.04 : 0.10)
• Qwen 3 vs. Control: p = 0.2001 (CI: −0.01 : 0.01 : 0.02) [marginally better]

K.3.2 TASK FORCE SIZE N = 8

At N = 8, AC/DC shows strong aggregate performance:

• vs. Control baseline: p = 0.0061 (CI: 0.016 : 0.076 : 0.140)
• vs. Big Model baseline: p < 0.00005 (CI: 0.304 : 0.397 : 0.490)
• vs. GPT-4o: p = 0.0950 (CI: −0.043 : 0.079 : 0.193) [more often outperforms]

Qwen 2.5 and Qwen 3 demonstrate particularly strong performance at N = 8, significantly outper-
forming all baselines:

Qwen 2.5 results:

• vs. Control: p = 0.0108 (CI: 0.01 : 0.11 : 0.24)
• vs. Big Model: p = 0.0000 (CI: 0.24 : 0.43 : 0.62)
• vs. GPT-4o: p = 0.0011 (CI: 0.07 : 0.22 : 0.36)

Qwen 3 results:

• vs. Control: p = 0.0000 (CI: 0.03 : 0.06 : 0.12)
• vs. Big Model: p = 0.0000 (CI: 0.20 : 0.38 : 0.59)
• vs. GPT-4o: p = 0.0053 (CI: 0.05 : 0.24 : 0.42)
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K.3.3 SUMMARY: BEST-OF-N SELECTION

The BoN analysis demonstrates that AC/DC’s coverage improvements can translate into practical
single-answer selection scenarios:

• At N = 3, AC/DC significantly outperforms the control baseline and shows particularly
strong gains for DeepSeek V1, Qwen 2, and Qwen 2.5.

• At N = 8, AC/DC achieves highly significant improvements over both control and big
model baselines.

• Qwen 2.5 and Qwen 3 task forces significantly outperform all baselines including GPT-4o,
demonstrating that evolved model collectives can match or exceed frontier model perfor-
mance in practical deployment scenarios.

K.4 COMPARISON TO ALTERNATIVE QD METHODS

We compared AC/DC against two alternative quality-diversity approaches: CycleQD (CQD) and
standard Dominated Novelty Search (DNS). Additionally, we test DNS against CQD to justify its
integration as part of AC/DC.

At N = 3, all methods show roughly equivalent performance:

• AC/DC vs. CQD: p = 0.5003 (CI: −0.079 : −0.003 : 0.055)
• AC/DC vs. DNS: p = 0.5794 (CI: −0.079 : −0.009 : 0.042)
• DNS vs. CQD: p = 0.2090 (CI: −0.008 : 0.006 : 0.018)

However, at N = 8, AC/DC demonstrates clear advantages:

• AC/DC vs. CQD: p < 0.00005 (CI: 0.057 : 0.092 : 0.130) [highly significant]
• AC/DC vs. DNS: p = 0.0078 (CI: 0.013 : 0.057 : 0.092) [significant]
• DNS vs. CQD: p = 0.0038 (CI: 0.010 : 0.035 : 0.058) [significant]

These results demonstrate that AC/DC discovers more diverse models at larger population sizes, with
the advantages of our full coevolutionary approach becoming more pronounced as scale increases.
Furthermore, DNS as the QD algorithm of choice is shown to be more effective at selecting more
diverse, specialized models than CQD, making it a clear choice for model selection in AC/DC.

K.5 ABLATION STUDY RESULTS

To understand the contribution of each algorithmic component, we conducted ablation experiments
where individual components were systematically removed.

K.5.1 TASK FORCE SIZE N = 3

At N = 3, removing any component leads to performance degradation:

• Fitness-only selection: p = 0.0035 (CI: 0.149 : 0.518 : 0.831) [significantly worse]
• No gibberish filter: p < 0.00005 (CI: 0.322 : 0.564 : 0.803) [significantly worse]
• No (task) novelty filter: p = 0.2040 (CI: −0.083 : 0.077 : 0.266) [modest improvement

when added]
• None of the above (fitness-only selection, no novelty filter, no gibberish filter, no muta-

tion): p = 0.0062 (CI: 0.108 : 0.457 : 0.766) [significantly worse]

K.5.2 TASK FORCE SIZE N = 8

At N = 8, the importance of the complete method becomes substantially more evident:

• None of the above: p < 0.00005 (CI: 0.691 : 0.820 : 0.938) [highly significant degrada-
tion]
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• No gibberish filter: p = 0.0024 (CI: 0.030 : 0.095 : 0.158) [significantly worse]

• Fitness-only selection: p = 0.0471 (CI: −0.020 : 0.113 : 0.231) [significantly worse]

• No novelty filter: p = 0.0789 (CI: −0.016 : 0.043 : 0.100) [borderline significantly
worse]

• No mutation: p = 0.1471 (CI: −0.094 : 0.143 : 0.429) [more often worse, but less
critical]

K.5.3 SUMMARY: ABLATIONS

The ablation studies confirm that each component of AC/DC contributes meaningfully to overall
performance:

• At N = 3, using fitness-based selection, removing gibberish filtering, or removing all
components simultaneously results in significant performance degradation.

• The novelty task filter provides modest but consistent improvements.

• At N = 8, the importance of the full method becomes dramatically more evident, with
the complete ablation (removing all components) showing highly significant performance
drops (p < 0.00005).

• These results demonstrate that AC/DC’s algorithmic innovations work synergistically, with
benefits becoming more pronounced at larger population sizes.

K.6 REPRODUCIBILITY ANALYSIS: VARIANCE ACROSS RE-RUNS

To assess the reproducibility and stability of AC/DC, we analyzed the variance in performance across
multiple independent runs. We report standard deviations and ranges for the Qwen 2.5 model family
benchmark scores at both N = 3 and N = 8 task force sizes, comparing AC/DC against the control
baseline.

K.6.1 TASK FORCE SIZE N = 3

For the control baseline (3 runs), we observed low variance across benchmarks with a mean standard
deviation of 0.94 points and median of 0.13 points in raw scores. The highest variance occurred on
GPQA judge (std dev: 0.78 points, range: 1.35 points) and Minerva (std dev: 1.43 points, range:
2.82 points), while most other benchmarks showed standard deviations below 0.36 points.

For AC/DC (2 runs), variance was comparable, with mean standard deviation of 0.64 points and
median of 0.43 points. The benchmarks with highest variance were GPQA judge (std dev: 0.95
points, range: 1.34 points) and Minerva (std dev: 1.32 points, range: 1.86 points). Overall, AC/DC
demonstrated similar reproducibility to the control baseline at N = 3.

K.6.2 TASK FORCE SIZE N = 8

At N = 8, the control baseline (3 runs) maintained low variance with mean standard deviation of
0.59 points and median of 0.16 points. Again, GPQA judge (std dev: 0.70 points) and Minerva (std
dev: 1.52 points) showed the highest variance.

For AC/DC (2 runs) at N = 8, we observed moderately higher variance with mean standard devi-
ation of 1.80 points and median of 0.95 points. Notable variance appeared on MMLU judge (std
dev: 1.48 points), MMLU Pro judge (std dev: 1.32 points), and particularly Minerva (std dev: 4.99
points, range: 7.06 points). Overall, ranges appear to be reasonable given the stochastic nature of
evolutionary search.

K.6.3 SUMMARY: REPRODUCIBILITY

The reproducibility analysis reveals that:

• At N = 3, both AC/DC and control baselines exhibit comparable low variance across runs,
indicating stable performance.
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• At N = 8, AC/DC shows moderately higher variance than the control, which is expected
given the increased complexity of evolutionary search over larger populations.

• Despite this increased variance, the statistically significant performance improvements re-
ported in previous sections remain robust, as our bootstrap hypothesis testing accounts for
cross-benchmark variance.

• Certain benchmarks (GPQA judge, Minerva) consistently show higher variance across both
methods, likely reflecting the inherent difficulty and sensitivity of these tasks.

• The observed variance levels are acceptable for evolutionary methods and do not undermine
the reliability of our main findings. That is, multiple findings suggest that AC/DC, being
the first method of its kind towards open-ended model population discovery, significantly
outperforms existing non-coevolutionary model merging approaches, and is more reliable
in producing broader coverage task forces than other baseline approaches.

K.7 INTERPRETATION AND IMPLICATIONS

The comprehensive statistical analysis provides strong evidence for AC/DC’s effectiveness:

1. Reliability across model families: AC/DC demonstrates consistent improvements when
considering aggregated stats across diverse base architectures, indicating the method’s
broad applicability.

2. Scalability: In several cases, performance advantages become more pronounced at larger
population sizes (N = 8), suggesting that the advantages of model diversity often com-
pound with scale.

3. Domain specificity: Positive results on knowledge recall benchmarks indicate that evolu-
tionary model merging can more broadly discover domain-specific capabilities.

4. Practical deployment: BoN improvements (in some cases, significant) suggest that cov-
erage gains can translate to realistic single-answer scenarios.

5. Component synergy: Ablation results reveal that AC/DC’s components work together
synergistically, with the full method substantially outperforming partial implementations.

6. Reproducibility: The method demonstrates acceptable variance across multiple runs, with
statistically significant improvements remaining robust despite the stochastic nature of evo-
lutionary search.

Overall, these statistical analyses establish AC/DC as a reliable method for discovering diverse,
capable model populations that achieve broader skill coverage than existing approaches, with the
framework showing particular promise for scaling to larger model collectives.

L COMPUTATIONAL COST ANALYSIS

The total computational cost of our coevolution process is approximately 324 GPU hours, which,
after 50 generations and an active model count per generation of 16, yields a population of approxi-
mately 80 diverse models selected to maintain high model quality and increase diversity. During the
coevolution process, our scientist successfully develops around 1000 tasks (where another roughly
1000 do not pass our quality and novelty filters). During coevolution, each generation, 250 tasks
are actively considered for evaluation of each model in the active model pool. The computational
cost includes the GPUs for the model merging and evaluation pipeline, the GPUs for hosting a large,
open-source scientist LLM, and for an embedding model. Notably, our pipeline works without any
API calls to proprietary models and relies solely on self-hosted models.

Critically, these requirements represent a cost of roughly 4 GPU hours per merged
model—significantly more efficient than standard post-training approaches such as reinforcement
learning, which can require 102 to 105 GPU hours per 7B model depending on the method and scale
(Khatri et al., 2025), plus our approach eliminates manual dataset curation.

While baseline approaches like selecting expert models from HuggingFace require no training cost,
they face fundamental scalability and complementarity limitations: (1) the availability of diverse,
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Figure 15: Scaling trend with the number of models on our Qwen2.5 based experiment.

specialized models is limited (dozens, not 80+), (2) there is no guarantee that independently-trained
experts will have complementary specializations, and (3) manual search costs grow with collective
size. Creating 80 complementary specialists through traditional post-training could require 103 to
106 GPU hours, plus the design of 80 distinct specializations and datasets.

Furthermore, our 324-hour investment provides flexibility: the evolved population can be composed
into collectives of any size (N=1 to 80) for different downstream applications without additional
training. As shown in the Fig. 15, downstream performance scales with N, and our approach (1)
scales better than re-prompting a single instruct model (control experiment) and (2) uniquely enables
exploring this trade-off without the prohibitive cost of manually training individual models or the
availability constraints of pre-existing expert models.

M LLM PARAMETER UPDATE DETAILS

M.1 MODEL MERGING BASED CROSSOVER

Our crossover operator employs parameter space merging, creating new models by merging task
vectors at the model level (Ilharco et al., 2022; Kuroki et al., 2025). For a pre-trained base LLM
with parameters θbase ∈ Rd and a fine-tuned LLM with parameters θ ∈ Rd, we define the task
vector as:

τ = θ − θbase (4)

The crossover operator generates offspring parameters by combining task vectors from two parents:

θchild = θbase +
ω1

ω1 + ω2
τp1 +

ω2

ω1 + ω2
τp2 (5)

where τp1
and τp2

are the parents’ task vectors. The weights ω1 and ω2 are sampled i.i.d. from
N (µ, σ2), with (µ, σ) as predetermined hyperparameters fixed throughout evolution. We normalize
the mixing coefficients to prevent merged weights from becoming outliers that could cause issues in
downstream layers.

M.2 GENERALIZED SVD-BASED MUTATION

The model merging crossover has an inherent limitation: constructing θchild as a linear combination
of parent task vectors confines offspring to the convex region in performance space formed by the
parents. To enable extrapolation beyond this region, we introduce a mutation operator θchild =
h(θchild) applied after crossover.

Rather than adding random Gaussian perturbations to parameters-which introduces excessive de-
grees of freedom and can be hard to optimize-we propose sampling perturbations along the principal
components of the model’s weight matrices. This is achieved through singular value decomposition
(SVD).
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For each weight matrix Wl in the offspring model, we compute its SVD:

Wl = UlΣlV
T
l (6)

where Ul ∈ Rm×r, Σl ∈ Rr×r (diagonal), and Vl ∈ Rn×r are the left singular vectors, singular
values, and right singular vectors, respectively.

We then apply perturbations to the first k singular values:

Σ′
l = Σl + diag(w1, . . . , wk, 0, . . . , 0) (7)

where wi ∼ N (0, σ) are sampled independently, and σ is a hyperparameter controlling mutation
strength. The mutated weight matrix is then reconstructed:

W ′
l = UlΣ

′
lV

T
l (8)

This approach is loosely inspired by the transformer-squared SVD-based finetuning method (Sun
et al., 2025) and offers several advantages. By perturbing along the principal components-which
capture the most significant variance in the weight space-we maintain the fundamental geometric
structure of the weights while allowing controlled exploration. This generalizes the task vector
SVD mutation operator by (Kuroki et al., 2025) but still allows for training fewer, higher signal
parameters.

Our mutation operator becomes a pass-through for rank-1 matrices (e.g., layer normalization or bias
parameters).

N JUSTIFICATION OF OPEN-ENDEDNESS DESIGN CHOICES

This section provides detailed justification for each open-endedness component in AC/DC, grounded
in established principles from the literature on evolutionary computation, quality-diversity, and co-
evolution.

N.1 SUMMARY

• Minimal Criteria (Gibberish & Impossible Task Filters): Prevents degenerate solutions
from dominating while enabling exploration, following MCC principles (Brant & Stanley,
2017; 2020).

• Quality-Diversity via DNS: Balances performance and diversity without predefined
niches, handling variable-dimensional skill vectors that grow with task evolution (Bahlous-
Boldi et al., 2025).

• Skill Vectors as Behavioral Descriptors: Provides fine-grained capability signatures that
naturally adapt to task evolution, requiring no manual niche design or learning (unlike
MAP-Elites (Mouret & Clune, 2015a; Cully et al., 2015)).

• Coevolution of Models and Tasks: Creates complexity explosion through bidirectional
feedback, with tasks adapting to model capabilities and vice versa (Wang et al., 2019;
2020).

• Task Adaptation via Difficulty Profiles: Maintains tasks in the learnable regime-
challenging but not impossible-implementing automatic curriculum generation (Zhang
et al., 2023; Faldor et al., 2024).

• Novelty Filtering for Tasks: Prevents trivial task variants by explicitly rewarding semantic
novelty, core to Novelty Search principles (Lehman et al., 2008; Lu et al., 2025).

• Task Reflection and Validation: Ensures task quality through scientist LLM self-solving,
preventing broken or ambiguous tasks from accumulating (Lu et al., 2025).

• Historical Archive & Coverage-Based Selection: Preserves specialized models from all
generations and selects task force based on synthetic task coverage, not benchmark perfor-
mance (Pugh et al., 2016).

Together, these choices implement key properties of open-ended systems: continual novelty gener-
ation, increasing complexity, cumulative innovation, and minimal criteria rather than explicit objec-
tives (Stanley et al., 2017; Stanley, 2019).
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N.2 MINIMAL CRITERIA FOR MODELS AND TASKS

Design Choice: AC/DC implements two primary minimal criteria (MC) filters: (1) the gibberish fil-
ter for models, which eliminates degenerate LLMs producing incoherent text, and (2) the impossible
task filter, which removes tasks that no model in the population can solve.

Justification: This design directly follows the Minimal Criterion Coevolution (MCC) framework
established by Brant & Stanley (2017), which demonstrates that defining MCs for both agents and
environments enables more open-ended outcomes in coevolution. The fundamental insight is that
MCs prevent the search from being dominated by completely undesired outcomes while still en-
abling exploration to flourish.

The gibberish filter addresses a critical failure mode in model merging: degenerate models that
produce syntactically invalid or semantically meaningless text. Without this filter, such models
could dominate the population simply by producing output that accidentally matches ground truth
through random character generation. This aligns with the principle in Lehman & Stanley (2010)
that evolution requires protection against deceptive local optima that appear successful by trivial
metrics.

The impossible task filter prevents the task archive from accumulating challenges that lie outside the
reach of the current model population’s capabilities. As noted by Soros & Stanley (2014), without
such filtering, the coevolutionary process can become trapped in arms races where increasingly
difficult tasks provide no useful gradient for improvement. By replacing impossible tasks with their
parent tasks, we maintain difficulty adaptation while ensuring tasks remain within the “learnable”
regime described by Hughes et al. (2024) as essential for open-endedness.

N.3 QUALITY-DIVERSITY VIA DOMINATED NOVELTY SEARCH

Design Choice: AC/DC employs Dominated Novelty Search (DNS) (Bahlous-Boldi et al., 2025)
for model selection, computing local competition fitness by measuring each solution’s distance from
better-performing solutions in skill vector space.

Justification: The integration of quality-diversity principles addresses a fundamental challenge in
open-ended discovery: maintaining both high performance and behavioral diversity without prede-
fined niches. Traditional Novelty Search (Lehman et al., 2008; Lehman & Stanley, 2011a) promotes
exploration by rewarding behavioral novelty regardless of performance, while MAP-Elites (Mouret
& Clune, 2015a) requires predefined behavioral dimensions and discretization.

DNS offers several advantages for our domain:

1. Adaptive Behavior Spaces: Unlike MAP-Elites’ fixed grid structure, DNS naturally han-
dles variable-dimensional behavioral descriptors. Our skill vectors grow as new tasks are
added to the archive, making predefined niche boundaries impractical. This aligns with the
adaptive approaches for evaluating novelty introduced by Meyerson et al. (2016) and Paolo
et al. (2020), which enable more open-ended exploration of different spaces of novelty.

2. Local Competition without Binning: DNS implements the local competition principle
established by Lehman & Stanley (2011b) for encouraging diversity, but avoids the limita-
tions of binned behavior characteristics. As we note in the related work, CycleQD’s use of
aggregated benchmark accuracies can fail to distinguish models with unique subfield exper-
tise (e.g., physics vs. biology specialists both appearing in a “science” bin). DNS preserves
fine-grained distinctions through continuous distance metrics in skill vector space.

3. Quality Pressure with Diversity: By measuring distances only to better-performing
neighbors, DNS maintains explicit optimization pressure toward high-quality solutions
while rewarding distance from those solutions-effectively balancing the exploration-
exploitation trade-off central to QD methods (Pugh et al., 2016; Cully & Demiris, 2017).

N.4 SKILL VECTORS AS BEHAVIORAL DESCRIPTORS

Design Choice: AC/DC represents model capabilities through binary skill vectors, where each ele-
ment indicates task completion status, serving as behavioral signatures for diversity measurement.
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Justification: This representation addresses multiple challenges in applying QD to LLM discovery:

1. No Predefined Niches Required: Traditional MAP-Elites requires manually specifying
behavioral dimensions and their ranges before evolution begins. As Gaier et al. (2019)
and Kent et al. (2024) note, learned parametrized behavior functions can adapt to problem
structure, but require additional training. Skill vectors emerge naturally from evaluation,
requiring no a priori design or learning.

2. Fine-Grained Behavior Characterization: Each skill vector provides a detailed signature
of what a model can solve, analogous to the “illumination” concept in QD (Mouret &
Clune, 2015a) but at task-level granularity. This enables AC/DC to distinguish models
with complementary expertise (e.g., one model excels at physics while another excels at
biology) even when their aggregate performance might be similar.

3. Adaptation to Task Evolution: As the task archive evolves, skill vectors naturally adapt
or expand to incorporate new tasks. This aligns with the meta-adaptation approaches in
QD (Bossens & Tarapore, 2022) that handle complexity and adaptation of diverse high-
quality search spaces, but through a simpler mechanism that does not require explicit meta-
learning.

4. Direct Connection to Coverage: Skill vectors directly support our Coverage metric
(Eq. (1)), which measures collective problem-solving capacity. This provides a natural
bridge between behavioral diversity (used during evolution) and practical utility/response
quality (measured at test time).

N.5 COEVOLUTION OF MODELS AND TASKS

Design Choice: AC/DC simultaneously evolves both model populations and task distributions, with
models evaluated on tasks and tasks filtered based on model performance.

Justification: This bidirectional coevolution implements several established principles:

1. Environmental Complexity from Coevolution: Drawing on Wang et al. (2019; 2020)
and PAIRED (Dennis et al., 2020), we leverage the insight that coevolving agents and en-
vironments produces a complexity explosion through local competition. Unlike PAIRED’s
adversarial setup, AC/DC uses task difficulty profiles (average pass rates) to guide adaptive
task generation, ensuring tasks remain challenging but not impossible.

2. MCC for Both Populations: Following Brant & Stanley (2017; 2020), we apply minimal
criteria to both models (gibberish filter) and tasks (impossible task filter, novelty filter).
This dual-sided filtering is essential for open-ended outcomes, as it prevents either popula-
tion from dominating with trivial or degenerate solutions.

3. Open-Ended Task Generation via LLMs: Recent work demonstrates the potential for
open-endedness through LLMs generating diverse environments and challenges (Zhang
et al., 2023; Aki et al., 2024; Faldor et al., 2024). Our approach builds on Lu et al. (2025),
who show that open-ended search principles can generate surprisingly novel tasks revealing
unexpected LLM capabilities. AC/DC extends this by making task evolution responsive
to current model population performance, creating a feedback loop that drives increasing
sophistication.

4. Avoiding Benchmark Optimization: By coevolving tasks alongside models and never
optimizing explicitly for downstream benchmarks, AC/DC embodies the “abandoning ob-
jectives” philosophy of Lehman & Stanley (2011a). The synthetic task distribution provides
a training signal that encourages general capability development rather than overfitting to
specific evaluation metrics.

N.6 TASK ADAPTATION BASED ON DIFFICULTY PROFILES

Design Choice: AC/DC classifies parent tasks by their pass rates (difficulty profile) and uses this to
determine adaptation type: increase difficulty, decrease difficulty, or generate novel variants.
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Justification: This adaptive difficulty mechanism addresses the “interestingness” criterion for open-
endedness identified by Hughes et al. (2024). Tasks that are too easy (high pass rate) provide no
learning signal, while tasks that are too hard (low pass rate) are frustrating and unlearnable.

This approach implements a form of automatic curriculum generation similar to PAIRED (Dennis
et al., 2020), but tailored to LLM capabilities. Unlike adversarial environment generation that might
produce arbitrarily difficult challenges, our difficulty-based adaptation ensures the task distribution
remains anchored to the current population’s zone of proximal development-challenging enough to
drive improvement but feasible enough to provide useful gradients (Zhang et al., 2023).

The three-way classification (increase/decrease/novel) also promotes diversity in task evolution.
Novel variants at intermediate difficulty levels encourage exploration of different task types and
domains, preventing the task archive from collapsing into minor variations on a single theme.

N.7 NOVELTY FILTERING FOR TASKS

Design Choice: Generated tasks are compared to the three most similar tasks in the global archive
via embedding similarity, with a judge LLM determining if sufficient novelty exists.

Justification: This filtering implements the core principle of Novelty Search: explicitly reward-
ing behavioral novelty relative to previously discovered solutions (Lehman et al., 2008; Doncieux
et al., 2019). Without novelty filtering, task evolution could generate trivial variants (e.g., changing
numbers in a math problem) that provide no new behavioral challenges for models.

The use of semantic embeddings for similarity measurement allows AC/DC to recognize deep struc-
tural similarity between tasks that might differ superficially. For example, two physics problems
with different contexts but identical underlying principles would be flagged as non-novel. This
aligns with the notion from Sigaud et al. (2023) that true novelty requires doing things that are
meaningfully different, not merely cosmetically varied.

The judge LLM adds a second layer of semantic understanding, catching cases where embedding
similarity alone might miss conceptual relationships. This two-stage process balances computational
efficiency (embedding search) with nuanced judgment (LLM evaluation) (Lu et al., 2025).

N.8 REFLECTION AND VALIDATION FOR TASK QUALITY

Design Choice: The scientist LLM attempts to solve its own generated tasks, with automatic cor-
rection for compilation errors and refinement prompts for logic errors.

Justification: This self-evaluation cycle addresses a critical challenge in synthetic data generation:
ensuring that automatically generated tasks are well-formed and solvable. Recent work on synthetic
data quality (Havrilla et al., 2024) emphasizes that data quality matters as much as quantity.

The iterative refinement process implements a form of minimal criterion for task quality, preventing
the task archive from accumulating broken or ambiguous tasks. By having the scientist LLM solve
its own tasks before accepting them, we create selection pressure toward tasks with clear problem
statements and unambiguous scoring functions.

This also relates to the principle of “autotelic learning” in open-ended systems (Etcheverry et al.,
2021), where the system must develop its own evaluation criteria. The scientist LLM effectively
learns to generate tasks that meet implicit quality standards through its own solution attempts.

N.9 HISTORICAL MODEL ARCHIVE AND TASK FORCE SELECTION

Design Choice: AC/DC maintains a historical archive of all models every Gtask generations and
selects the final task force by maximizing coverage over the global task archive.

Justification: The historical archive implements a key principle from QD: maintaining a collection
of diverse high-quality solutions rather than just the current population (Pugh et al., 2016). This is
crucial because behavioral diversity at intermediate generations might not be preserved if we only
keep the final population. Some specialized models might be replaced during evolution, but could
still contribute unique capabilities to the final ensemble.
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The coverage-based selection for the task force directly optimizes for our practical goal: collective
problem-solving capacity across diverse tasks. This selection is independent of downstream bench-
marks, implementing the “novelty search without objectives” approach while still providing a clear
utility-based criterion for ensemble construction.

Importantly, this selection happens after coevolution completes, avoiding optimization pressure dur-
ing evolution. This prevents the kind of overfitting to specific benchmarks that could be expected in
recent evolutionary model merging work (Akiba et al., 2025). Our models are selected based on syn-
thetic task coverage, then evaluated on held-out benchmarks, ensuring genuine out-of-distribution
generalization.

N.10 SYNTHESIS: AC/DC AS AN OPEN-ENDED SYSTEM

Taken together, these design choices implement the key properties of open-ended systems identified
by Stanley et al. (2017) and Stanley & Lehman (2015):

1. Continual Generation of Novelty: The coevolution of models and tasks produces an on-
going stream of new capabilities and challenges, with no predetermined endpoint.

2. Increasing Complexity: Task difficulty adaptation and model selection pressure drive both
populations toward increasing sophistication over time (demonstrated in Fig. 1’s improve-
ment trajectory).

3. Cumulative Innovation: New models build on previous models through crossover, and
new tasks build on previous tasks through adaptation, creating a stepping-stone effect where
discoveries enable further discoveries.

4. No Explicit Fitness Function: While we use quality (task pass rates) and diversity (skill
vector distances) for selection, we never optimize explicitly for downstream benchmarks,
allowing unexpected capabilities to emerge.

5. Minimal Criteria Rather Than Objectives: Our gibberish and impossible task filters pre-
vent completely undesired outcomes without constraining the search to predefined goals.

This combination of principles, grounded in established open-endedness literature, enables AC/DC
to discover model collectives with broader and more diverse capabilities than methods that optimize
directly for benchmark performance, while maintaining lower computational costs than training
large monolithic models.

O LLM USAGE DURING PAPER WRITING

We leverage LLMs to assist in polishing the paper’s text and generating tables.
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