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Abstract

When regarding the suffering of others, we often experience personal distress and
feel compelled to help. Inspired by living systems, we investigate the emergence
of prosocial behavior among autonomous agents that are motivated by homeostatic
self-regulation. We perform multi-agent reinforcement learning, treating each
agent as a vulnerable homeostat charged with maintaining its own well-being. We
introduce an empathy-like mechanism to share homeostatic states between agents:
an agent can either observe their partner’s internal state (cognitive empathy) or the
agent’s internal state can be directly coupled to that of their partner’s (affective
empathy). In three simple multi-agent environments, we show that prosocial
behavior arises only under homeostatic coupling – when the distress of a partner
can affect one’s own well-being. Our findings specify the type and role of empathy
in artificial agents capable of prosocial behavior.

1 Introduction
For humans and other social animals, it is often distressing to regard the suffering of others. We feel
empathy, sharing in the feelings of others rapidly and automatically through emotional contagion
[15]. Such feelings can provide a strong motivation to reduce the suffering of others, even if it comes
at some cost to the self. It has been proposed that tying one’s own welfare to the welfare of others
can form the basis of prosocial behavior [9].
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Figure 1: A: An experimental setup used in behavioral exper-
iments to test the altruism of monkeys (illustration created
based on [7]). B: A minimal reinforcement learning environ-
ment inspired by the behavioral experiment.

Emotions and feelings, whether self-
or other-directed, are theorized to
arise from homeostasis, the regula-
tion of internal body states within a
range compatible with life [6]. Self-
regulatory mechanisms have previ-
ously been implemented as a source of
external motivation [26, 2]. Here we
regard homeostasis [3] as an intrinsic
and obligatory motivation of all living
creatures. Homeostatic-like processes
have recently been implemented in re-
inforcement learning (RL) agents and
have resulted in the emergence of integrated behaviors [36, 38, 37, 39]. There are many discussions
of intrinsic motivation linked to artificial curiosity or exploration [28, 29, 2, 26, 25, 10]. Also,
homeostasis-based rewards have also been reported to facilitate exploration in the environment [11].
In contrast to the discussion of the efficient exploration, here we start from the minimal condition for
prosocial behavior originally proposed in the field of animal behavior. Under this condition, we show
computationally that prosocial behavior does not arise from the individual’s homeostatic reward alone.
We then introduce the hypothetical homeostatic coupling term in the individual’s reward function,
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which enables the emergence of the agent’s prosocial behaviors. The necessity of this coupling term
suggests that some form of intrinsic motivation beyond each individual’s homeostasis is necessary
for the emergence of prosocial behaviors in agents.

Here we extend these ideas to a model of social behavior using multi-agent RL, where each interacting
agent is formulated as a homeostat [1, 32, 24]. We begin with the analysis of a multi-agent toy model
inspired by behavioral experiments on monkeys to study prosocial behavior (Figure 1A), in which
agents have the opportunity to share their own food resource with a needy conspecific (Figure 1B).
We next propose some requirements for prosocial behavior. In several simulations, we compare the
effects of different implementations of empathy [5], including cognitive empathy, in which an agent
can observe the needy internal state of a partner, and affective empathy, in which an agent’s own
internal states are coupled to their partner’s internal states.

We contribute the following preliminary findings: 1) Even in a very simple system, prosocial behavior
is not acquired when each agent aims only for homeostasis within its own body. 2) Prosocial behavior
does not emerge even when an agent can directly observe the internal states of other agents (cognitive
empathy). 3) Prosocial behavior was only observed when the agent’s internal state was directly
coupled to the internal states of other agents (affective empathy). These results suggest that, for
homeostats motivated by self-regulation, it is necessary to incorporate an additional homeostatic
coupling parameter for prosocial behavior to arise.

1.1 Homeostatic Reinforcement Learning
RL provides a framework to learn behavior in dynamic environments that maximizes the sum of future
rewards emitted from the environment [34]. The objective of RL is to obtain a policy π : S → A that
maximizes the expected value of the weighted cumulative sum of future rewards

∑∞
t=0 γ

trt for all
states s ∈ S, based on the experience of the interactions with an environment. Here, t is the time
step, r is the reward signal, S is the set of states in the environment, A is the set of actions of the
agent. 0 ≤ γ < 1 is a positive constant called the discount factor.

Homeostatic RL [22, 21, 16] integrates principles from physiological homeostasis by defining reward
as the internally perceived reduction of deviations from homeostatic setpoints [20, 19, 35, 12].
Concretely, the reward is defined as a quantity proportional to the temporal difference of the drive
D, as rt+1 = β(Dt − Dt+1), where β is the scaling constant [22]. The drive function D(si)
returns a value greater than or equal to zero, such as the distance between si and s∗. Here si is
interoception [33] that monitors the internal state of the agent’s body [33] and s∗ is the setpoint of
the interoception. Homeostatic parameters are not arbitrarily defined, but are fundamental to the
viability and functionality of the agent [21, 24]. In our conception, homeostatic RL asserts that the
agent has a vulnerable body. Vulnerability defined as the circular causality by which homeostatic
states can affect the agent’s ability to regulate those states (i.e., it gets harder to take care of oneself
as one falls apart).

We used Proximal Policy Optimization (PPO, [30, 31]) as the RL optimizer in all of our experiments.
The agent’s policy model consisted of an encoder of inputs using a multi-layer perceptron, a recurrent
connection using LSTM [14], and softmax outputs for the categorical action probabilities in all
experiments. Further experimental details are given in Appendix A.

2 Experiment 1: Food Sharing Environment
Inspired by ethology experiments on the altruism of monkeys (Figure 1A) [7], we first created a
minimal system for studying prosocial behavior. An overview of this environment is shown in Figure
1B. It has been reported that brown capuchins that are separated by a mesh will choose to share food
when only one monkey has access to the food [7, 8]. This study explores the minimum configuration
in which such sharing behavior occurs in autonomous agents.

In this environment, we assume two agents. The first is a passive agent called the ‘Partner’, corre-
sponding to the monkey in the left side of the cage with no direct access to food (Figure 1A). The
other agent is the ‘Possessor’, corresponding to the monkey on the right of Figure 1A, and who
has access to food. Each agent has a binary energy state (High or Low). When the state is High,
it transitions to Low with a small probability of p = 0.1 at each time step. If the energy state is
Low, it remains unchanged until the agent is able to eat food. If either one of the agents’ energy
states becomes Low and 10 steps have passed, the episode is failed and the environment is reset. In
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Figure 2: Learning and behavior evaluation in a food sharing environment. A: Learning curves with
performance measured by episode duration with both agents alive (n=20, 95% confidence intervals).
Only the conditions that implement affective empathy (Affective and Full) result in long episode
durations. B: PASS behavior selection rate out of 1,000 steps of the test run. Possessor agents in
the Affective condition learn to frequently pass food to the Partner. C: Count of PASS actions when
Partner is in the Low energy state. Possessor agents in the Full empathy condition learn to selectively
pass food to the Partner when it is most needed. D: LOW state rate of Partner agent, out of 1,000
steps of the test run.

this environment, only the Possessor takes actions. The actions are EAT, causing the Possessor to
transition to the High energy state, and PASS, causing the Possessor to transition to the High energy
state. Further details of this environment are in Appendix B.1.

A simple analysis of the environmental dynamics suggests that prosocial sharing behavior will not
emerge if the Possessor is motivated only by its own homeostasis (Appendix C). Therefore, using this
toy environment, we explore conditions under which the Possessor will share food with the Partner and
prosocially maintain both agents’ energy states at High. We compare the following four conditions in
numerical simulations: i) The Possessor optimizes only for its own homeostasis (none condition).
ii) The Possessor can observe the energy state of the Partner but is not specifically motivated to
maintain the Partner’s homeostasic state (cognitive empathy condition). iii) The Possessor does not
explicitly observe the energy state of the Partner, but has its own energy state coupled to the Partner’s
energy state with a weighting factor (affective empathy condition). Specifically, the weighting factor
w = 0.5 and the drive of the Possessor is given by D = Dpossessor + wDpartner. iv) The final
situation combines both cognitive and affective empathy. We used as in iii. The Possessor can
explicitly observe the energy state of the Partner, and the Possessor’s energy state is coupled to that
of the Partner (full empathy condition).

2.1 Results
Average learning curves are shown in Figure 2A. Performance is evaluated by episode duration, with
a maximum length of 2000 steps. In the None condition, the PASS action is rarely selected 2B and
episode lengths did not increase over training. Similar results are obtained in the Cognitive condition,
in which the Possessor observes, but is not motivated by, the Partner’s homeostatic state. On the other
hand, the homeostatic states of both agents are maintained under the Affective and Full conditions,
leading to long episode durations. In the Affective condition, the Possessor does not have explicit
knowledge of the Partner’s energy state and so frequently chooses the PASS action to help the Partner
maintain homeostasis, thereby also regulating its own homeostatic state because it is coupled to that
of the Partner’s. This suggests that a strategy was acquired to maintain homeostasis between the two
by supplying an excess of food to the Partner.
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Figure 3: Overview of the mobile agent environments. A: Linear grid environment. B: 2-D field
environment. Detailed explanations are in Appendix B.2 and B.3, respectively.

Figure 2C–D supports this speculation. Considering only the times when the Partner is in a Low
energy state, Full condition agents selected the PASS action more often than Affective condition
agents (Figure 2C). This implies that the Possessor in the full condition learned to select the PASS
action only when the Partner’s state was low. The values are the similar except for the full condition,
but this is because there are few opportunities for the Partner’s state to become LOW in the affective
condition (Figure 1D). Altogether, these results suggest that a minimal requirement for prosocial
behavior is an internalized motivation for the well-being of others.

3 Experiment 2: Testing in Dynamic Environments

Next, we investigated the generalizability of the findings from the food-sharing environment to 1-D
and 2-D environments with mobile agents. The first is a linear grid environment (Figure 3A), in
which the Partner is, once again, trapped on the left side of the grid without access to food. The
Possessor can acquire food at the far right side with the GET action, and increase their energy level
with the EAT action. The Possessor can move LEFT and RIGHT to shuttle food to their Partner,
and finally PASS it to the Partner when they are next to each other, increasing the Partner’s energy.
Additionally, energy states are now represented as a continuous variable with a fixed rate of energy
consumption. Further experimental details are in Appendix B.2.

The second mobile environment is one in which both agents can move on a two-dimensional field
(Figure 3B). In this environment, there is no distinction between Partners and Possessors, as both
agents can move and act freely. Food energy can be collected, consumed, and shared, as in the linear
grid environment. However, if an agent’s energy level decreases below some threshold, it becomes
immobile and slowly starves. It then relies upon its Partner to share food in order to recover some
energy and regain mobility. Further details, including on the small chance of random immobilization
irrespective of energy level (‘injury’), are in Appendix B.3.

3.1 Results
Figures 4 and 5 show the results of optimization in each mobile environment. No prosocial behavior
was observed in the None and Cognitive conditions, and episode durations remained short (Figure 4A
and 5A). As in Figure 4B, the variance of the homeostatic drive of the Partner (Dpartner) is large in the
Affective condition. One possible explanation is that the Possessor agent cannot observe the energy
state of its Partner, therefore the Partner agent is fed indiscriminately in the Affective condition, at
various energy values (Appendix D). Figure 5B captures a sequence of prosocial behavior observed
in the Affective condition. The blue agent is immobilized due to its low energy level. The red agent
collects a green food pellet and returns to share it with the blue agent, turning it purple (replenishing
some energy) and restoring it to mobility.
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Figure 4: Performance in the linear grid mobile environment. A: Learning curves with performance
measured by episode duration with both agents alive (n=20). B: Homeostatic drives of agents
(Dpossessor and Dpartner) averaged over 1000 timesteps.
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Figure 5: Performance in the 2-D field mobile environment. A: Learning curves with performance
measured by episode duration with both agents alive (n=20). B: An example of helping behavior
observed in the Affective condition. The action sequence progresses in order of the numbers in the
top right corner of each panel.

4 Discussions
This study investigated the emergence of prosocial behavior in simple RL agents motivated by
homeostatic self-regulation. We found that prosocial behavior (food sharing) only occurred reliably
under affective empathy, when the homeostatic states of agents were coupled. Perception of a
partner’s state of need did not, on its own, drive prosocial behavior. The combination of cognitive
and affective empathy in the Full condition drove more selective sharing behavior.

Future research could explore more realistic empathy implementations, moving beyond giving agents
direct access to partners’ internal states. One possibility to achieve and maintain high group well-
being is to implement a form of mutual information [18] in sequential social dilemmas [23], such
that successfully self-regulating agents can influence each other and induce the well-being of others.
Agents may also be designed to infer others’ internal states from observable emotional behaviors.
This process would better resemble the mirror neuron system, hypothesized to support emotion
recognition and empathic behavior in humans and other animals [27, 17]. For example, neurons in
the inferior parietal lobule activate both during the observation and imitation of emotions; they can
then trigger activity through the insula into the limbic system, known to activate during the firsthand
experience of emotional feelings [4].
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A Agent Architectures in Experiments
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Figure 6: Basic network ar-
chitecture of the agent in this
study. Green observation is
provided only when cognitive
empathy is enabled (cognitive
or full conditions).

In all of our computer experiments, we used Proximal Policy Opti-
mization (PPO, [30, 31]) as the agent’s optimizer. The agent’s policy
model consisted of an encoder of inputs using a multi-layer percep-
tron and a recurrent connection using LSTM [14] in all experiments
(Figure 6), and the action selection probability, π, was calculated by
applying the softmax function to the affine transformation from the
hidden state. Value estimation Vπ is calculated as a 1D output by
applying an affine transformation to the hidden state of the LSTM
shared with the policy network.

The models of the agents used in this study all had the same net-
work architecture and optimization was performed with PPO. Agents
have Interoception for their own energy state as well as for obser-
vations from the outside world (Exteroception). In the cognitive
condition, it also receives Interoception from other agents as well.
These observations are combined and input to the hidden layer with
a linear mapping. The hidden layer takes the ReLU nonlinearity as
the activation function and uses it as input to the LSTM. A linear
mapping from the output of the LSTM produces value predictions
and categorical action selection probabilities using a softmax func-
tion. The table shows the network and PPO hyper–parameters for
each experiment (Table 1–3).

In the experiment in Section 3, like previous study on multi-agent
systems [13], we optimized the network weights and shared the
acquired experience with all agents to facilitate learning.

Table 1: Hyper-parameters of Food Sharing Environment

Exteroception dim none
Interoception dim 1 (energy state)

Interoception dim of other agent (cognitive empathy) 1 (energy state)
Hidden dim 16

LSTM hidden state dim 16
Total time steps 25,000
Learning rate 0.001

Number of parallel sampling threads 16
Sampling steps 32

Discount factor (γ) 0.99
GAE lambda 0.95

Number of minibatches 4
Update epochs 4

Normalizing advantage True
Clip coefficient of policy update 0.1

Value clipping loss True
Entropy coefficient 0.01

Value loss coefficient 0.5
Maximum gradient norm 0.5
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Table 2: Hyper-parameters of Grid Environment

Exteroception dim 5 (position, one-hot) + 2 (having food flag, one-hot)
Interoception dim 1 (energy state)

Interoception dim of other agent (cognitive empathy) 1 (energy state)
Hidden dim 32

LSTM hidden state dim 32
Total time steps 1,000,000
Learning rate 0.001

Number of parallel sampling threads 16
Sampling steps 100

Discount factor (γ) 0.99
GAE lambda 0.95

Number of minibatches 4
Update epochs 4

Normalizing advantage True
Clip coefficient of policy update 0.1

Value clipping loss True
Entropy coefficient 0.01

Value loss coefficient 0.5
Maximum gradient norm 0.5

Table 3: Hyper-parameters of 2D Field Environment

Exteroception dim 2 (position) + 2 (food position)
+ 2 (having food flag, one-hot) + 2 (movable flag, one-hot)

Interoception dim 1 (energy state)
Interoception dim of other agent (cognitive empathy) 1 (energy state)

Hidden dim 64
LSTM hidden state dim 64

Total time steps 20,000,000
Learning rate 0.001

Number of parallel sampling threads 16
Sampling steps 1024

Discount factor (γ) 0.99
GAE lambda 0.95

Number of minibatches 2
Update epochs 4

Normalizing advantage True
Clip coefficient of policy update 0.1

Value clipping loss True
Entropy coefficient 0.0

Value loss coefficient 0.3
Maximum gradient norm 0.5
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B Details of Environments

B.1 Food Sharing Environment

The Possessor has two actions. One is EAT, and the Possessor can recover the energy state of the
agent described below by eating food. The other action is PASS, and the Possessor can feed the
Partner. Both of these agents have a binary energy state (High and Low), and when the state is High,
it changes to Low at a small probability of p = 0.1 at each time step. If the energy state is Low, it is
left unchanged at each time step, and only changes to High if the agent is able to eat the food. At the
start of the environment, both energy states are randomly determined, and if either one of the agents’
energy states becomes Low and 10 steps have passed, the environment is reset for both agent.

In this environment, only the action optimization of the Possessor is possible. The drive for the
homeostasis of the Possessor is Dpossessor = − lnP ∗(sit). Here, sit ∈ {High,Low} represents the
agent’s interoception at time t, and P ∗(·) is a probability distribution representing the desirability
of each state, with P ∗(High) = 0.95 and P ∗(Low) = 0.05. Therefore, the Possessor aims for
homeostasis, preferring si = High over si = Low.

B.2 Grid Environment

The first is a grid environment (Figure 3A), in which the Partner is fixed to the left side of the grid, just
like in the Food Sharing environment. The Possessor can access the food area on the right side. The
Possessor can move left and right and know their position (there are five positions in the environment).
The Possessor can acquire food by arriving at the right side and selecting the GET action. As a result,
the Possessor has two states: with food and without food. At this point, the Possessor can also eat the
food (by selecting the EAT action), or move while holding the food and PASS it to the Partner. The
Possessor can choose between five actions: move left or right, EAT, GET, and PASS.

In addition, the energy state of each agent is represented as a continuous variable. The dynamics of
the energy state si is represented by sit+1 = sit − δd + It. In this case, δd = 0.003 is a fixed constant
that represents a certain amount of energy consumption. It is a function that returns 0.1 when the
agent has ingested food, and 0 otherwise. In this experimental system, the drive function was given
by the squared error D = ∥si∥2, and the agents were trained with a learning rate of β = 100. If the
energy state of any of the agents deviated from the range [−1, 1], the episode was terminated.

B.3 2D Field Environment

This environment is one in which the agents can move around in a two-dimensional continuous space
(Figure 3B). In this environment, there is no distinction between Partners and Possessors, and both
agents can move around and consume food. The energy state changes in the same way as in the grid
environment (with a dynamics of δd = 0.001, and energy is restored by 0.3 when food is consumed).

In addition, each agent can carry food, and if it is close enough to another agent while carrying food, it
can give the food to the other agent. Also, in this environment, if an agent’s energy level becomes less
than -0.7, it is considered to be damaged and cannot move. Therefore, in such a situation, the agent
needs to be helped to be able to move again by having another agent bring it food. Furthermore, when
both agents are able to move, each agent encounters an accident at a small probability p = 0.0005 at
each time. If an agent encounters an accident, its energy value immediately becomes -0.7, and the
agent becomes immobile.

The scaling of the drive function and reward was the same as in the grid environment. In training in
this environment, all agents were trained in a situation where the network weights were shared.
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C State-Transition Diagram of Food Sharing Environment

All the state transitions in the Food Sharing environment (Figure 7). From this figure, we can see
that there is always a risk of the internal state transitioning from High to Low when the Possessor
chooses the PASS action. This can be seen from the transitions of the blue and red macro states
(corresponding to the Possessor’s interoception) on the left and right when the PASS action is chosen.
Therefore, it is always optimal for the homeostasis of the Possessor alone to choose the EAT action,
and it is suggested that in such a situation, no action to help the Partner will emerge.

Low, Low Low, High

High, Low High, High

Partner, Possessor
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Figure 7: State transition diagram of the food sharing environment.
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D Histogram showing the difference between the affective and full conditions
in the Grid environment

Affective condition

Full condition
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Figure 8: Typical histograms of the energy state of the Partner agent when it ingests food during the
2000-step test run after optimization.
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