
PolarNet: 3D Point Clouds for Language-Guided
Robotic Manipulation

Shizhe Chen∗, Ricardo Garcia∗, Cordelia Schmid, Ivan Laptev
Inria, École normale supérieure, CNRS, PSL Research University

https://www.di.ens.fr/willow/research/polarnet/

Abstract: The ability for robots to comprehend and execute manipulation tasks
based on natural language instructions is a long-term goal in robotics. The domi-
nant approaches for language-guided manipulation use 2D image representations,
which face difficulties in combining multi-view cameras and inferring precise 3D
positions and relationships. To address these limitations, we propose a 3D point
cloud based policy called PolarNet for language-guided manipulation. It leverages
carefully designed point cloud inputs, efficient point cloud encoders, and multi-
modal transformers to learn 3D point cloud representations and integrate them
with language instructions for action prediction. PolarNet is shown to be effective
and data efficient in a variety of experiments conducted on the RLBench bench-
mark. It outperforms state-of-the-art 2D and 3D approaches in both single-task
and multi-task learning. It also achieves promising results on a real robot.

Keywords: Robotic manipulation, 3D point clouds, language-guided policy

1 Introduction

People are able to perform a wide range of complex manipulation tasks in 3D physical environments.
One efficient and intuitive way to specify different tasks is through natural language instructions.
Consequently, a long-term goal in robotics is to develop robots that can follow language instructions
to perform various manipulation tasks.

Most existing work on language-guided robotic manipulation uses 2D image representations [1, 2, 3,
4]. BC-Z [1] applies ResNet [5] to encode a single-view image for action prediction. Hiveformer [3]
employs transformers [6] to jointly encode multi-view images and all the history. Recent advances
in vision and language learning [7, 8] have further paved the way in image-based manipulation [4].
CLIPort [4] and InstructRL [9] take advantage of pretrained vision-and-language models [8, 10]
to improve generalization in multi-task manipulation. GATO [11] and PALM-E [12] jointly train
robotic tasks with massive web image-text data for better representation and task reasoning.

Although 2D image-based policies have achieved promising results, they have inherent limitations
for manipulation in the 3D world. First, they do not take full advantage of multi-view cameras for
visual occlusion reasoning, as multi-view images are not explicitly aligned with each other, as shown
in Figure 1. Second, accurately inferring the precise 3D positions and spatial relations [13] from 2D
images is a significant challenge. Current 2D approaches mainly rely on extensive pretraining and
sufficient in-domain data to achieve satisfactory performance.

To overcome the limitations of 2D-based manipulation policy learning, recent research has turned
to 3D-based approaches. The use of 3D representations offers a natural way to fuse multi-view ob-
servations [14] and facilitates more accurate 3D localization [15], see Figure 1 (right). For example,
PerAct [14] adopts an action-centric approach that takes a high-dimensional input of over 1 million
voxels to classify the next active voxel, achieving state-of-the-art results for multi-task language-

∗The authors contributed equally to this work.

7th Conference on Robot Learning (CoRL 2023), Atlanta, USA.

https://www.di.ens.fr/willow/research/polarnet/

Figure 1: (a): Variations of the “Reach and Drag” task in RLBench [19], with different target colors
per variation. (b): Although different views are complementary to represent the scene, they are not
explicitly aligned with each other. (c) Merging multi-view cameras to construct a unified point cloud
in 3D space. Design options of the point cloud input are carefully investigated in this work.

guided manipulation. However, such action-centric 3D voxels suffer from quantization errors and
computational inefficiency. Alternative 3D representations in the form of point clouds have been
successfully explored for 3D object detection [16], segmentation [17] and grounding [13]. How-
ever, the effective and efficient processing of 3D point clouds for robotic manipulation [18] is still
underexplored. In addition, the focus has primarily been on single-task manipulation, lacking the
versatility to incorporate language instructions for completing multiple tasks simultaneously.

This paper proposes PolarNet, a point cloud-based language-guided robotic manipulation network.
We explore various design options for 3D point cloud representation, including the composition of
point cloud features, the coverage space of the point cloud, the use of multiple camera views, and the
choice of coordinate frames for point clouds. Our method builds on the PointNext architecture [17]
to efficiently encode point cloud inputs. A multimodal transformer is employed to fuse the encoded
point cloud with language instructions at an intermediate level. Finally, our PolarNet predicts 7-DoF
(degrees of freedom) actions encompassing position, rotation and open state of a parallel gripper,
which are executed by a motion planer to complete the task.

We conduct extensive experiments on RLBench [19] in three language-guided manipulation setups:
single-task single-variation (one policy for each 10 tasks), multi-task single-variation (one policy for
all 10 tasks), and multi-task multi-variation (one policy for 18 tasks with 249 variations). Figure 1
illustrates variations for the task “reach and drag”. Our model significantly outperforms state-of-the-
art 2D and 3D based models for all the three settings, demonstrating the effectiveness of PolarNet in
integrating language guidance with a 3D point cloud based representation for robotic manipulation.
PolarNet also achieves 60% average multi-task success rate on 7 tasks on the real robot.

2 Related Work

Language-guided Robotic Manipulation. Language-guided policy learning has gained significant
attention in robotics due to its potential for convenient human-robot interaction and skill general-
ization across diverse tasks [20, 21, 22, 23, 24, 25, 26, 27]. Several multi-task benchmarks have
been established recently [28, 19, 29, 30, 31]. In our work, we use RLBench [19] since it provides
hundreds of challenging manipulation tasks with demonstrations and instructions. Leveraging pre-
trained large language models [12, 32, 33, 3, 4, 9, 11] has shown to be beneficial for language-guided
manipulation. Most existing works are based on 2D images [2, 34, 1, 27, 3], while a few recent works
explore the potential of 3D representations [14, 35]. Both C2F-ARM [35] and PerAct [14] utilize a

2

3D voxel representation. C2F-ARM proposes to represent the 3D scene in a coarse-to-fine manner to
balance quantization error and computation cost. PerAct [14] uses an action-centric representation
that encodes the language and all 3D voxels in the workspace via a Perceiver transformer [36] and
classifies which voxel is the next gripper position, making it less efficient. In contrast, we explore
the point cloud representations and predict actions in a more efficient “point-centric” manner.

Manipulation Learning with Point Clouds. Due to the advantages of 3D representations, research
has increasingly focused on vision-guided robotic manipulation from 3D point clouds [37, 18, 38,
39, 40, 41, 42, 43, 44]. The design choice of the point cloud representation plays an important role
for the task performance. Strudel et al. [45] shows the benefits from normals for motion planning.
Liu et al. [18] finds that normalizing point clouds in the end-effector and target object frames work
significantly better than the vanilla world and robot base frames. Seita et al. [46] adds per-point flow
vectors to improve manipulation of tools. Qin et al. [47] further shows direct sim-to-real transfer is
possible with point clouds. However, existing work mainly utilizes point clouds to train a single-
task policy and does not consider any language interactions. In this work, we jointly represent
point clouds and language to perform various manipulation tasks, and systematically evaluate design
choices for point cloud representations, such as the importance of colors.

Point Cloud Networks. Point cloud-based vision approaches have studied the question of 3D rep-
resentations for 3D object detection [16], segmentation [48] and 3D object grounding [13, 15].
PointNet [48] and its extension PointNet++ [49] are the most popular networks for processing
point clouds. Although more advanced networks based on transformers [6] have been proposed
recently [50, 51], PointNext [17] demonstrates that small modifications on PointNet++ can even out-
perform the newer architectures. Our approach PolarNet is based on the state-of-the-art PointNext
model [17] and evaluates different design choices in the context of language-guided manipulation.

3 Method

3.1 Problem Definition

We aim to learn a visual policy π(at |Ot) to perform robotic manipulation tasks following natural
language instructions, where Ot ∈ O,at ∈ A are the observation and action at step t, O and A are
the observation and action space respectively. In this work, the observation space O includes: 1)
a language instruction (x1, · · · ,xNx) where xi is a tokenized word, 2) RGB images from K cameras
{Ik

rgb}K
k=1, I

k
rgb ∈ RH×W×3, and 3) aligned depth images {Ik

dep}K
k=1, I

k
dep ∈ RH×W . We use K = 3 with

cameras on the left shoulder, right shoulder and wrist of the robotic arm and H =W = 128 following
previous work [2, 3]. The intrinsic and extrinsic camera parameters are known. The action space A
consists of the pose and open state of the parallel gripper. The pose is composed of the Cartesian
coordinates axyz

t ∈R3 and rotation described with a quaternion aq
t ∈R4 in the world frame. The open

state ao
t ∈ {0,1} indicates whether the gripper is open or closed. We follow the standard setup in

RLBench [34, 2, 3, 14] to predict action of key steps and use a motion planner to execute the action.
More details about the key step are presented in Section B of the appendix.

3.2 PolarNet: Point Cloud-based Language-guided Robotic Manipulation Policy

Figure 2 presents an overview of PolarNet for language-guided manipulation with 3D point clouds.
More detailed architecture is presented in Figure 6 in the appendix. We first describe the design
choice of point cloud representations in Sec 3.2.1, and then introduce the details of the model archi-
tecture in Sec 3.2.2 followed by the training objectives in Sec 3.2.3.

3.2.1 Point Cloud Inputs

Preprocessing. Given Ik
dep together with known camera instrincs and extrinsics at step t, we project

each pixel in Ik
dep to the 3D world coordinates. Since Ik

rgb is aligned with Ik
dep, the RGB color of a

pixel can be appended to the corresponding point. In this way, we obtain a point cloud V k
t ∈RH×W×6

3

Figure 2: PolarNet for language-guided manipulation. The approach takes as input the merged
point cloud obtained from multi-view RGB-D images and a language instruction, and uses Point-
Next [17] for efficient point cloud encoding and CLIP text encoder [8] for language encoding. The
point cloud and language are integrated via a multi-layer transformer at the intermediate level. Po-
larNet predicts the position (cyan node) using an integral over the heatmap of the point cloud with
offset per point, and also rotation and open state of the gripper using global features.

for each camera in the world frame, where each point consists of the XYZ coordinates and its RGB
color. It is possible to merge point clouds from different cameras, as they are in the same coordinate
system. To reduce redundancy, we use Open3D toolkit [52] to uniformly downsample the merged
point cloud to one point per voxel. We use a voxel size of 1cm3 following previous work [14].
We also estimate the normal of each point via Open3D. The geometric structure of the point cloud
makes it straightforward to select relevant points, which is difficult for 2D images. For example, the
background points like wall and floor are far away from the robot’s workspace, and the manipulated
objects are usually above the table surface1. Therefore, we define a 3D bounding box that covers the
workspace above the table to crop the point cloud (Figure 5 in the appendix), only keeping points of
the objects and the robotic arm. Our empirical results in Table 2 show the effectiveness of removing
irrelevant points. We randomly sample Nv = 2048 points in the processed point cloud as Vt .

Point cloud features. The type of point cloud representation [45] and normalization [18] can sig-
nificantly impact the performance. Our paper is the first to study this impact systematically. In the
experimental section 4.2, we first investigate different compositions of the point cloud inputs, in-
cluding: 1) XYZ coordinates, 2) RGB color which is seldom used for robotic manipulation because
most works focus on a single task requiring geometry structures only to be solved, 3) normal which
has been shown effective to avoid obstacles [45], and 4) the height with respect to the manipulation
table which helps infer the object location. We then compare two types of coordinate frame to nor-
malize the point cloud into a unit ball: 1) using the gripper position as the coordinate origin which
has the benefits to infer the object-robot relation [18], and 2) using the center of the point cloud as
the origin which is a common practice in 3D scene understanding tasks [15]. Our empirical results
in Table 1 and 2 indicate that all the four point cloud representations are beneficial with color of
particular importance, while the two coordinate frames perform similarly.

3.2.2 Model Architecture

Language encoding. We employ the language encoder from the CLIP model [8] to tokenize and
encode the language instructions. It is pre-trained on large-scale image-text pairs, enabling to ef-
fectively understand visually relevant instructions. We freeze the language encoder and add a linear
layer to it to obtain the language embeddings X̂ = (x̂1, · · · , x̂Nx) =Wx CLIP([x1, · · · ,xNx]).

Point cloud encoding. We encode the point cloud Vt with the state-of-the-art PointNext en-
coder [17]. It consists of Le number of set abstraction (SA) blocks to hierarchically abstracts features

1There are few exceptions such as the “sliding block” task where the target is a green area on the table. We
manually select those tasks and do not remove the table points for them.

4

of Vt . Each SA block contains a subsampling layer, a grouping layer, a multilayer perceptron (MLP),
and a reduction layer. The subsampling layer at the l-th block uses farthest point sampling to select
Nl

v points from Vt , and then the grouping layer finds neighbors for each selected point which are
points within a radius rl to the query. The MLP is shared for all the points to generate features.
Finally, the reduction layer utilizes max pooling to aggregate features within the neighbors for the
Nl

v query points. Assume vl
i is the input feature of query point i at the l-th block and pl

j is the XYZ
coordinates of the point, the computation is formulated as:

vl+1
i = MaxPool j:(i, j)∈N {MLP([vl

j;(pl
j − pl

i)/rl])}, (1)

where N denotes the set of neighbor points to the query point i, and [·] is the feature concatenation.
Each SA block decreases the number of points by 2 times, while increases the dimensionality of the
features by 2 times. We denote the encoded point cloud as V Le

t = {vLe
i }Ne

v
i=1 where Ne

v = Nv/2Le ,vLe
i ∈

R2Le de and de is the hidden size in the first layer.

Vision-and-language fusion. We utilize a multi-layer transformer architecture [53] to integrate the
point cloud features V Le

t and the language embeddings X̂ . To be specific, we first add the XYZ
position and step id embedding to the point cloud feature as follows:

v̂0
i =Wv vLe

i +Wp pLe
i +Es(t), (2)

where Es(·) is the sinusoidal positional encoding [6] to denote different steps. Then, in each trans-
former layer, we sequentially perform self-attention on the point cloud features, cross-attention from
the point cloud to the language followed by a feedforward network, which is:

Attn(Q,K,V) = Softmax(
WQQ(WKK)T

√
d

)WVV, (3)

V̂
′l = Attn(V̂ l ,V̂ l ,V̂ l), V̂

′′l = Attn(V̂
′l , X̂ , X̂), V̂ l+1 = LN(W2 GeLU(W1V̂

′′l), (4)

where d is the hidden size in the transformer layers and LN denotes layer normalization. We stack
L layers to obtain the language-conditioned point cloud features V̂ L

t ∈ RNv/2Le×d .

Action decoding. Since the gripper position axyz
t+1 is in a continuous space, previous work [14]

discretizing the action space can suffer from quantization error. However, a direct regression ap-
proach is often difficult in training leading to unsatisfactory performance [54]. Therefore, we take
inspiration from the integral human pose regression [55] to get the best of the both worlds. For the
position prediction, we use the PointNext decoder [17] with residual connection and upsampling
to generate a heatmap over the input point cloud H ∈ RNv×1 and an offset at each point ∆ ∈ RNv×3.
Albeit the point cloud only contains points of visible objects, the action position can cover the whole
workspace. Thus we predict an offset to shift each point. The final predicted position is as follows:

âxyz
t+1 =

Nv

∑
i=1

Hi(pi +∆i). (5)

It allows continuous output and the underlying heatmap representation makes it easy to train. The
rotation and open state are more discrete in nature, thus we directly predict them as follows:

âq
t+1, â

o
t+1 = MLP([MaxPool(V Le

t);MaxPool(V̂ L
t)]). (6)

3.2.3 Training Objective

We use behavioral cloning for model training. Given the dataset D = {(Xi,τi)}N
i=1 with N pairs

of successful demonstration τi and the corresponding instruction Xi, where τi is composed of a
sequence of T key steps with visual observations {ot}T

t=1, and actions {at}T
t=1. The training objective

is to minimize the following loss, including a mean square error (MSE) on the gripper’s position and
rotation and a binary cross-entropy (BCE) loss on the open state classification:

L =
1

|NT | ∑
τ∈D

[
T

∑
t=1

MSE
(
âxyz

t ,axyz
t

)
+MSE

(
âq

t ,a
q
t
)
+BCE(âo

t ,a
o
t)

]
. (7)

5

Table 1: Comparison of point cloud representations on the single-task single-variation evaluation.

RGB Normal Height Pick &
Lift

Pick-Up
Cup

Put
Knife

Put
Money

Push
Button

Reach
Target

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella Avg.

× × × 26.2 44.0 81.1 95.9 99.6 27.8 89.3 91.0 70.3 95.3 72.1 ±4.4
✓ × × 97.9 94.7 79.5 95.8 100.0 100.0 91.0 91.1 65.9 97.3 91.3 ±1.6
✓ ✓ × 94.9 94.2 77.1 95.9 90.3 100.0 93.1 94.1 69.4 94.4 90.3 ±3.1
✓ × ✓ 96.2 94.3 82.6 95.3 100.0 99.9 91.5 90.3 67.5 97.7 91.5 ±1.4
✓ ✓ ✓ 96.7 91.9 82.5 96.1 99.9 99.9 93.5 94.1 68.6 97.5 92.1 ±0.4

4 Experiments
4.1 Experimental Setup

Evaluation setup. We consider three evaluation setups on RLBench [19]. The single-task single-
variation [3] consists of N tasks with one variation per task. We generate 100 demonstrations for
each task variation. Separate models are trained for each task. The multi-task single-variation uses
the same N tasks as the single-task single-variation setup, but a unified model is trained to solve
all the tasks. We consider N={10, 74} following the previous work [3], where 74 is the maximum
number of tasks that can be successfully executed in RLBench. The multi-task multi-variation
includes 18 tasks where each task has multiple variations, resulting in 249 variations in total [14].
We use the same 100 demonstrations for each task as [14]. A single model is trained for all the task
variations, which is more challenging due to the larger set of task variations and fewer training data
per task variation. More details of the three setups are presented in Section A in the appendix.

Evaluation metrics. We use the task success rate (SR) to measure the performance which is 1
for complete success and 0 for failure per episode with no partial credits. For the first two setups,
we evaluate on 500 unseen episodes per task (500×10 = 5000 evaluation episodes in total) follow-
ing [3]. We run experiments three times with three seeds and report the mean and standard deviation.
For the last setup, we use the released dataset from [14] and evaluate on 25 episodes per task as [14]
with a total number of 25×18 = 450 evaluation episodes.

Implementation details. For the model architecture, we use the PointNext-S model [17] with Le = 4
SA blocks and compare de = {32,64}. We initialize it with the weights trained on ShapeNet. The
transformer layers have d = 512 and we compare L = {1,2,4}. We use the AdamW optimizer
with a learning rate of 5×10−4 and a batch size of 8 demonstrations. We train for 20K, 200K and
600K for the single-task single-variation, multi-task single-variation and multi-task multi-variation
setups respectively. We use a single NVIDIA V100 GPU for training except in the multi-task multi-
variation setup where we use 4 GPUs for acceleration. Our model is efficient to train, taking about
1 hour for single-task training and 30 hours to train for multi-task multi-variation.

4.2 Ablations

Table 2: Comparison of point
cloud processing on the single-task
single-variation evaluation.

Coord
origin

Remove Avg.Table Background

Center ✓ ✓ 92.1 ±2.0

Gripper
× × 81.6 ±3.2
× ✓ 89.9 ±2.8
✓ ✓ 92.1 ±0.4

We study the impact of point cloud inputs and model archi-
tectures. Unless stated otherwise, we use a point cloud repre-
sentation combining XYZ, RGB, normal and height, remove
background and table points, and normalize them with the
gripper position as the origin. The model uses de = 32,L = 1.
The ablations are performed in the single-task single-variation
setup with 10 tasks.

Point cloud representation. Table 1 compares point cloud
input representations. The vanilla point cloud with only XYZ
performs worst on average. The RGB color plays an important
role for tasks requiring to distinguish colors such as “Pick-Up Cup” where the goal is to pick up the
red cup amongst differently colored cups. The improvement from normal of the point is less stable,
which might result from noisy normal estimation. The height of point relative to the table can also
slightly improve the performance.

6

Table 5: Comparison with state-of-the-art methods on single-task single-variation, multi-task
single-variation and multi-task multi-variation setups.

10 Tasks 74 Tasks 18 Tasks
Single-task Multi-task Single-task Multi-task Multi-task Multi-var

Auto-λ [2] 55.0 69.3 - - -
PerAct [14] - - - - 42.7
Hiveformer [3] 88.4 83.3 66.1 49.2 45.3
PolarNet (Ours) 92.1 89.8 69.0 60.3 46.4

Table 3: Comparison of cam-
era views on the single-task
single-variation evaluation.

Left Right Wrist Avg.

✓ × × 37.6 ±4.8
× ✓ × 48.0 ±4.5
× × ✓ 35.0 ±5.5
✓ ✓ × 67.0 ±4.7
✓ × ✓ 80.2 ±3.0
× ✓ ✓ 76.6 ±5.6
✓ ✓ ✓ 92.1 ±0.4

Point cloud processing. We compare two coordinate frames to
normalize the point cloud, using the gripper position or the points
center as the origin. As shown in Table 2, the two ways perform
similarly while using the gripper position is more robust with lower
standard deviation. More important in point cloud processing is to
remove irrelevant points. Since we have a limited capacity to sam-
ple points, the irrelevant points make the interesting points sparser
and harm the performance. Results on the multi-task setup also
shows the same trend as in Table 12 in the appendix.

Multi-view cameras. Table 3 analyzes the contributions from
multi-view cameras for point cloud construction. A single cam-

era alone is insufficient to accomplish a task due to occlusions, decreasing the performance by more
than 44%. The wrist camera performs worst among the three views. However, it is more com-
plementary to the other two cameras, with more than 10% boost compared to the combination of
left and right shoulder cameras. Using all the three cameras achieves the best performance with a
significant margin (+11.9%, +15.5%, + 25.1% depending on the resp. two cameras).

Table 4: Comparison of
model capacity on single-task
and multi-task (MT) setups.

MT de L Avg.

× 32 1 92.1 ±0.4
64 1 91.0 ±0.9

✓

32 1 77.4 ±8.6
64 1 89.3 ±2.0
64 2 89.8 ±1.5
64 4 86.3 ±4.8

Model capacity. We explore the influence of model capacities to
the task performance in single- and multi-task setups in Table 4.
In the single-task setup, a small network with de = 32 performs
slightly better than a larger network with de = 64. We suspect
that the larger model may require more demonstrations to train.
However, the same model capacity does not perform well in the
multi-task setup. It is essential to increase the model size to learn
multiple manipulation tasks together. We also notice that the best
model in multi-task still underperforms that in single-task setup by
2.3%, indicating that a better multi-task learning strategy is in need.
In the following, we use de = 32,L = 1 for single-task setting and
de = 64,L = 2 for the multi-task settings.

4.3 Comparison with State of the Art

Evaluation on three setups. We compare our PolarNet with state-of-the-art approaches on single-
task single-variation, multi-task single-variation and multi-task multi-variation setups in Table 5.
More detailed results on each task of the three setups are provided in Table 9, 10, and 11 respectively
in the appendix. The compared methods include 2D image based models such as Auto-λ [2] and
Hiveformer [3] and 3D voxel based model PerAct [14]. Our PolarNet consistently outperforms prior
models on all the evaluation setups. It achieves considerable improvement with more tasks in the
multi-task setup (+11.1), demonstrating the advantages of 3D point clouds to solve multiple tasks
simultaneously. In addition, our model is more computationally efficient compared to previous 3D
based model PerAct [14] which requires 16 days for training with 8 V100 GPUs. We only use 4
V100 GPUs to train the same amount of iterations in 30 hours, which is roughly 13 times faster. We
analyze the success and failure cases in Section D in the appendix.

Robustness to viewpoint perturbation. We perform a new evaluation on robustness of viewpoint
variances to demonstrate the advantages of the point cloud model compared to 2D image based meth-
ods. In the evaluation, we change the camera positions and rotations to obtain new RGB-D images.

7

Figure 3: Comparison of dif-
ferent models on the robustness
to camera perturbation, where
the lower the better.

We only apply the change to the two side cameras but keep the
wrist camera the same, because in real world experiments the side
cameras are easy to place in different locations but the wrist cam-
era is always attached to the robotic hand. We denote the per-
turbation factor f as randomly selecting ± f cm shift and ±5 f
degrees for the modified camera pose. We directly run the Po-
larNet and Hiveformer models trained on the original cameras in
the multi-task setup of 10 tasks with the new camera poses. The
results are presented in Figure 3. The performance of PolarNet
drops much less than Hiveformer for all the perturbation factors,
demonstrating the robustness of our PolarNet on camera pertur-
bation. The detailed results on each of the 10 tasks are presented
in Figure 9 in the appendix.

4.4 Real-robot Experiments

Table 6: Performance of Po-
larNet on 7 real-world tasks.

Task PolarNet

Stack cup 8/10
Put fruit in box 8/10
Put plate on table 3/10
Open drawer 9/10
Put item in drawer 4/10
Put item in cabinet 4/10
Hang mug 6/10

Average 6/10

We further evaluate PolarNet with real visual sensors on a real
robot. We use a 6-DoF UR5 robotic arm and adopt 7 real-world
tasks. For each task, we collect 20 human demonstrations and fine-
tune a language-conditioned multi-task model trained on RLBench
on the collected data. More details are presented in Section E in
the appendix. Table 6 presents the real-robot results. We report
the success rate on 10 episodes per task. Our PolarNet achieves
60% success rate on average for the 7 real-world tasks. We summa-
rize two prevalent reasons of failures in PolarNet. First, the model
confuses the target object such “strawberry” and “apple” since the
sparse point cloud may not provide sufficient semantic information.
Secondly, the predicted grasping pose lacks precision. We conjec-
ture that this is due to partial views and the multimodal nature of the target action distribution. To
tackle these limitations, further research could be conducted on pretraining semantic-aware 3D rep-
resentations [56], combining it with pretrained 2D models, and improving the complexity of action
policy. Please see our project website [57] for examples of the policy execution in the real world.

5 Conclusion

This work addresses language-guided robotic manipulation using 3D point clouds. The proposed
PolarNet employs carefully designed point cloud inputs, an efficient point cloud encoder, and a
multimodal transformer to predict 7-DoF actions for language-conditioned manipulation. We find
that it is critical to use point color with colors, filter irrelevant points and merge multiple views.
Extensive experiments on the RLBench benchmark demonstrate that PolarNet outperforms state-of-
the-art models on a variety of tasks, from single-task single-variation to multi-task multi-variation.
The PolarNet also achieves promising results on a real robot to solve multiple tasks.

Limitations: Our multi-task model still does not perform as well as the best single-task model,
requiring more advanced multi-task learning algorithms. Additionally, while our policy can perform
multiple tasks, we have not studied the generalization to new scenes, objects, and tasks.

Acknowledgments

This work was partially supported by the HPC resources from GENCI-IDRIS (Grant 20XX-
AD011012122). It was funded in part by the French government under management of Agence
Nationale de la Recherche as part of the “Investissements d’avenir” program, reference ANR19-
P3IA-0001 (PRAIRIE 3IA Institute), the ANR project VideoPredict (ANR-21-FAI1-0002-01) and
by Louis Vuitton ENS Chair on Artificial Intelligence.

8

References
[1] E. Jang, A. Irpan, M. Khansari, D. Kappler, F. Ebert, C. Lynch, S. Levine, and C. Finn. BC-z:

Zero-shot task generalization with robotic imitation learning. In CoRL, 2021.

[2] S. Liu, S. James, A. J. Davison, and E. Johns. Auto-Lambda: Disentangling dynamic task
relationships. TMLR, 2022.

[3] P.-L. Guhur, S. Chen, R. Garcia-Pinel, M. Tapaswi, I. Laptev, and C. Schmid. Instruction-
driven history-aware policies for robotic manipulations. In CoRL, 2022.

[4] M. Shridhar, L. Manuelli, and D. Fox. Cliport: What and where pathways for robotic manipu-
lation. In CoRL, 2021.

[5] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. 2016.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin. Attention is all you need. In NeurIPS, 2017.

[7] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep bidirectional
transformers for language understanding. In J. Burstein, C. Doran, and T. Solorio, editors,
NAACL-HLT, 2019.

[8] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell,
P. Mishkin, J. Clark, et al. Learning transferable visual models from natural language supervi-
sion. In ICML, 2021.

[9] H. Liu, L. Lee, K. Lee, and P. Abbeel. Instruction-following agents with jointly pre-trained
vision-language models. arXiv preprint arXiv:2210.13431, 2022.

[10] X. Geng, H. Liu, L. Lee, D. Schuurams, S. Levine, and P. Abbeel. Multimodal masked autoen-
coders learn transferable representations. arXiv preprint arXiv:2205.14204, 2022.

[11] S. Reed, K. Zolna, E. Parisotto, S. G. Colmenarejo, A. Novikov, G. Barth-maron, M. Giménez,
Y. Sulsky, J. Kay, J. T. Springenberg, T. Eccles, J. Bruce, A. Razavi, A. Edwards, N. Heess,
Y. Chen, R. Hadsell, O. Vinyals, M. Bordbar, and N. de Freitas. A generalist agent. TMLR,
2022.

[12] D. Driess, F. Xia, M. S. M. Sajjadi, C. Lynch, A. Chowdhery, B. Ichter, A. Wahid, J. Tompson,
Q. Vuong, T. Yu, W. Huang, Y. Chebotar, P. Sermanet, D. Duckworth, S. Levine, V. Vanhoucke,
K. Hausman, M. Toussaint, K. Greff, A. Zeng, I. Mordatch, and P. Florence. Palm-e: An
embodied multimodal language model. In arXiv preprint arXiv:2303.03378, 2023.

[13] D. Z. Chen, A. X. Chang, and M. Nießner. Scanrefer: 3d object localization in rgb-d scans us-
ing natural language. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XX, pages 202–221. Springer, 2020.

[14] M. Shridhar, L. Manuelli, and D. Fox. Perceiver-actor: A multi-task transformer for robotic
manipulation. In CoRL, 2022.

[15] S. Chen, P.-L. Guhur, M. Tapaswi, C. Schmid, and I. Laptev. Language conditioned spatial
relation reasoning for 3d object grounding. In NeurIPS 2022-36th Conference on Neural In-
formation Processing Systems, 2022.

[16] Y. Zhou and O. Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
4490–4499, 2018.

[17] G. Qian, Y. Li, H. Peng, J. Mai, H. Hammoud, M. Elhoseiny, and B. Ghanem. Pointnext:
Revisiting pointnet++ with improved training and scaling strategies. In NeurIPS, 2022.

9

[18] M. Liu, X. Li, Z. Ling, Y. Li, and H. Su. Frame mining: a free lunch for learning robotic
manipulation from 3d point clouds. In 6th Annual Conference on Robot Learning, 2022.

[19] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison. RLBench: The robot learning benchmark &
learning environment. RA-L, 2020.

[20] L. Shao, T. Migimatsu, Q. Zhang, K. Yang, and J. Bohg. Concept2robot: Learning manipula-
tion concepts from instructions and human demonstrations. In RSS, 2020.

[21] M. Shridhar and D. Hsu. Interactive visual grounding of referring expressions for human-robot
interaction. In Proceedings of Robotics: Science and Systems, 2018.

[22] brian ichter, A. Brohan, Y. Chebotar, C. Finn, K. Hausman, A. Herzog, D. Ho, J. Ibarz, A. Ir-
pan, E. Jang, R. Julian, D. Kalashnikov, S. Levine, Y. Lu, C. Parada, K. Rao, P. Sermanet,
A. T. Toshev, V. Vanhoucke, F. Xia, T. Xiao, P. Xu, M. Yan, N. Brown, M. Ahn, O. Cortes,
N. Sievers, C. Tan, S. Xu, D. Reyes, J. Rettinghouse, J. Quiambao, P. Pastor, L. Luu, K.-H.
Lee, Y. Kuang, S. Jesmonth, K. Jeffrey, R. J. Ruano, J. Hsu, K. Gopalakrishnan, B. David,
A. Zeng, and C. K. Fu. Do as i can, not as i say: Grounding language in robotic affordances.
In CoLR, 2022.

[23] C. Lynch, A. Wahid, J. Tompson, T. Ding, J. Betker, R. Baruch, T. Armstrong, and P. Florence.
Interactive language: Talking to robots in real time. In NeurIPs, 5th Robot Learning Workshop:
Trustworthy Robotics, 2022.

[24] S. Stepputtis, J. Campbell, M. Phielipp, S. Lee, C. Baral, and H. Ben Amor. Language-
conditioned imitation learning for robot manipulation tasks. In H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, editors, NeurIPs, 2020.

[25] Y. Zhu, A. Joshi, P. Stone, and Y. Zhu. VIOLA: Object-centric imitation learning for vision-
based robot manipulation. In CoRL, 2022.

[26] A. P. Shah, G. A. D. Lopes, and E. Najafi. Contact-based language for robotic manipulation
planning. 2016 IROS, 2016.

[27] C. Lynch and P. Sermanet. Language conditioned imitation learning over unstructured data.
RSS, 2021.

[28] C. Li, R. Zhang, J. Wong, C. Gokmen, S. Srivastava, R. Martı́n-Martı́n, C. Wang, G. Levine,
M. Lingelbach, J. Sun, M. Anvari, M. Hwang, M. Sharma, A. Aydin, D. Bansal, S. Hunter,
K.-Y. Kim, A. Lou, C. R. Matthews, I. Villa-Renteria, J. H. Tang, C. Tang, F. Xia, S. Savarese,
H. Gweon, K. Liu, J. Wu, and L. Fei-Fei. BEHAVIOR-1k: A benchmark for embodied AI
with 1,000 everyday activities and realistic simulation. In CoRL, 2022.

[29] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. In CoRL, 2019.

[30] K. Zheng, X. Chen, O. Jenkins, and X. E. Wang. VLMbench: A compositional benchmark for
vision-and-language manipulation. In NeurIPs Datasets and Benchmarks Track, 2022.

[31] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei, A. Anandkumar, Y. Zhu,
and L. Fan. Vima: General robot manipulation with multimodal prompts. ICML 2023, 2022.

[32] S. Huang, Z. Jiang, H. Dong, Y. Qiao, P. Gao, and H. Li. Instruct2act: Mapping multi-modality
instructions to robotic actions with large language model, 2023.

[33] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn, K. Gopalakrishnan, K. Haus-
man, A. Herzog, J. Hsu, J. Ibarz, B. Ichter, A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Ju-
lian, D. Kalashnikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla, D. Manjunath,
I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez, K. Pertsch, J. Quiambao, K. Rao,

10

M. Ryoo, G. Salazar, P. Sanketi, K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran,
V. Vanhoucke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu, and B. Zitkovich. Rt-
1: Robotics transformer for real-world control at scale. In arXiv preprint arXiv:2212.06817,
2022.

[34] S. James and A. J. Davison. Q-Attention: Enabling efficient learning for vision-based robotic
manipulation. RA-L, 2022.

[35] S. James, K. Wada, T. Laidlow, and A. J. Davison. Coarse-to-fine q-attention: Efficient learning
for visual robotic manipulation via discretisation. In CVPR, 2022.

[36] A. Jaegle, F. Gimeno, A. Brock, A. Zisserman, O. Vinyals, and J. Carreira. Perceiver: General
perception with iterative attention, 2021.

[37] X. Lin, Y. Wang, Z. Huang, and D. Held. Learning visible connectivity dynamics for cloth
smoothing. In CoRL, 2021.

[38] A. Alliegro, M. Rudorfer, F. Frattin, A. Leonardis, and T. Tommasi. End-to-end learning to
grasp via sampling from object point clouds. RA-L, 2022.

[39] J. Lv, Q. Yu, L. Shao, W. Liu, W. Xu, and C. Lu. Sagci-system: Towards sample-efficient,
generalizable, compositional, and incremental robot learning. In ICRA, 2022.

[40] S. James and A. J. Davison. Q-attention: Enabling efficient learning for vision-based robotic
manipulation. IEEE Robotics and Automation Letters, 2022.

[41] M. Sundermeyer, A. Mousavian, R. Triebel, and D. Fox. Contact-graspnet: Efficient 6-dof
grasp generation in cluttered scenes. 2021.

[42] B. Eisner, H. Zhang, and D. Held. FlowBot3D: Learning 3D Articulation Flow to Manipulate
Articulated Objects. In RSS, 2022.

[43] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang. Dexpoint: Generalizable point cloud
reinforcement learning for sim-to-real dexterous manipulation. CoRL, 2022.

[44] S. Song, A. Zeng, J. Lee, and T. Funkhouser. Grasping in the wild: Learning 6dof closed-loop
grasping from low-cost demonstrations. RA-L, 2020.

[45] R. Strudel, R. Garcia, J. Carpentier, J. Laumond, I. Laptev, and C. Schmid. Learning obstacle
representations for neural motion planning. In CoRL, 2020.

[46] D. Seita, Y. Wang, S. J. Shetty, E. Y. Li, Z. Erickson, and D. Held. Toolflownet: Robotic
manipulation with tools via predicting tool flow from point clouds. In Conference on Robot
Learning, pages 1038–1049. PMLR, 2022.

[47] Y. Qin, B. Huang, Z.-H. Yin, H. Su, and X. Wang. Dexpoint: Generalizable point cloud rein-
forcement learning for sim-to-real dexterous manipulation. In Conference on Robot Learning,
pages 594–605. PMLR, 2022.

[48] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d
classification and segmentation. 2017.

[49] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. NeurIPS, 2018.

[50] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun. Point transformer. In Proceedings of the
IEEE/CVF international conference on computer vision, pages 16259–16268, 2021.

[51] M.-H. Guo, J.-X. Cai, Z.-N. Liu, T.-J. Mu, R. R. Martin, and S.-M. Hu. Pct: Point cloud
transformer. Computational Visual Media, 7:187–199, 2021.

11

[52] Q.-Y. Zhou, J. Park, and V. Koltun. Open3D: A modern library for 3D data processing.
arXiv:1801.09847, 2018.

[53] J. Lu, D. Batra, D. Parikh, and S. Lee. Vilbert: Pretraining task-agnostic visiolinguistic repre-
sentations for vision-and-language tasks. Advances in neural information processing systems,
32, 2019.

[54] X. Sun, J. Shang, S. Liang, and Y. Wei. Compositional human pose regression. In Proceedings
of the IEEE international conference on computer vision, pages 2602–2611, 2017.

[55] X. Sun, B. Xiao, F. Wei, S. Liang, and Y. Wei. Integral human pose regression. In Proceedings
of the European conference on computer vision (ECCV), pages 529–545, 2018.

[56] L. Xue, N. Yu, S. Zhang, J. Li, R. Martı́n-Martı́n, J. Wu, C. Xiong, R. Xu, J. C. Niebles, and
S. Savarese. Ulip-2: Towards scalable multimodal pre-training for 3d understanding. arXiv
preprint arXiv:2305.08275, 2023.

[57] S. Chen, R. Garcia, C. Schmid, and I. Laptev. Polarnet project, 2023. URL https://www.
di.ens.fr/willow/research/polarnet/.

12

https://www.di.ens.fr/willow/research/polarnet/
https://www.di.ens.fr/willow/research/polarnet/

A RLBench Tasks

We consider RLBench tasks for three different learning setups: single-task single-variation, multi-
task single-variation and multi-task multi-variation.

In the first two setups, we adopt a 10-task setting and a 74-task setting following [3]. Figure 4
depicts the 10 tasks and the corresponding instructions. Table 7 presents the details of all 74 tasks
that can be successfully executed in RLBench. The 74 tasks are manually grouped into 9 categories
by [3]. We use the original RLBench code2 to collect training data and run evaluation.

In the multi-task multi-variation setup, we use 18 tasks with 249 variations following [14]. Table 8
lists the task names, variation type, the number of variations and examples of instructions. We use
RLBench codebase3 from [14] which modified some tasks to have more variations. To match the
training and evaluation setup from [14] we use the datasets provided in PerAct code repository.

Pick and lift

Reach target Slide block Take money Stack wine Take umbrella

Pick up cup Put knife Put money Push button

"grasp the red cup
and lift it"

"pick up the red block
and lift it up to the target"

"touch the red ball with
the panda gripper"

"move the knife from the
holder to the chopping board"

"put the money away in the
safe on the bottom shelf"

"push down the
maroon button"

"slide the block towards
 the green target"

"take the money off of
the first shelf of the safe"

"slide the bottle
 onto the wine rack"

"retrieve the umbrella
from the stand"

Figure 4: Examples of the selected 10 tasks with corresponding instructions in RLBench.

B Model Details

Keysteps actions. For robotic control, we use macro steps [34] – key turning points in action
trajectories where the gripper changes its state (open/close) or velocities of joints are close to zero.
In this way, the sequence length of an episode is significantly reduced from hundreds of small steps
to typically less than 10 macro steps.

Point removal in point cloud preprocessing. In Figure 5, we show the raw point cloud generated
from multi-view cameras, the point cloud with background and table removal. As the background
such as wall and floor are geometrically far away from the robot workspace and the table is in a fixed
height, we could simply pre-define a 3D bounding box to select relevant points from the raw point
cloud. This is more efficient than performing object segmentation to obtain points of objects.

PolarNet architecture. Figure 6 presents a detailed architecture of our PolarNet, which uti-
lizes PointNext [17] backbone for point cloud encoding, multimodal transformers for vision-and-
language interaction and PointNext decoder for action prediction.

2https://github.com/stepjam/RLBench
3https://github.dev/MohitShridhar/RLBench/blob/peract/

13

Table 7: Details of the selected 74 tasks in RLBench.,
Group #Tasks Task Names

Planning 9 basketball in hoop, change channel, meat off grill, meat on grill,
push buttons, put rubbish in bin, stack wine, tower3, tv on

Tools 11

hang frame on hanger, move hanger, place hanger on rack,
reach and drag, scoop with spatula, screw nail, slide block to target,
sweep to dustpan, take frame off hanger,
take plate off colored dish rack, water plants

Long Term 4 slide cabinet open and place cups, stack blocks,
take shoes out of box, wipe desk

Rotation-
invariant 6 lamp off, lamp on, pick and lift, push button,

reach target, take lid off saucepan

Motion
planner 9 close box, close drawer, close laptop lid, open box, open drawer,

phone on base, put books on bookshelf, toilet seat down, toilet seat up

Multimodal 5 beat the buzz, lift numbered block, pick up cup, stack cups, turn tap

Precision 12 12

insert onto square peg, insert usb in computer, pick and lift small,
place shape in shape sorter, play jenga, put knife on chopping board,
put umbrella in umbrella stand, setup checkers, straighten rope,
take toilet roll off stand, take umbrella out of umbrella stand,
take usb out of computer

Screw 4 change clock, open window, open wine bottle, turn oven on

Visual
occlusion 14

close door, close fridge, close grill, close microwave, open door,
open fridge, open grill, open microwave, open oven,
plug charger in power supply, press switch, put money in safe,
take money out safe, unplug charger

Raw point cloud Background removal Background and
table removal

Figure 5: Illustration of point cloud processing. We represent the raw point cloud, point cloud
with background removal and point cloud with background and table removal for put knife task.

14

Table 8: Details of the 18 tasks with 249 variations in the multi-task multi-variation setup.
Task Var. type # vars. Example of language template
open drawer placement 3 “open the drawer”
slide block color 4 “slide the block to target”
sweep to dustpan size 2 “sweep dirt to the dustpan”
meat off grill category 2 “take the off the grill”
turn tap placement 2 “turn tap”
put in drawer placement 3 “put the item in the drawer”
close jar color 20 “close the jar”
drag stick color 20 “use the stick to drag the cube onto the target”
stack blocks color, count 60 “stack blocks”
screw bulb color 20 “screw in the light bulb”
put in safe placement 3 “put the money away in the safe on the shelf”
place wine placement 3 “stack the wine bottle to the of the rack”
put in cupboard category 9 “put the in the cupboard”
sort shape shape 5 “put the in the shape sorter”
push buttons color 50 “push the button, [then the button]”
insert peg color 20 “put the ring on the spoke”
stack cups color 20 “stack the other cups on top of the cup”
place cups count 3 “place cups on the cup holder”

Figure 6: Detailed architecture of PolarNet for language guided robotic manipulation. The model
takes the input of point cloud {p1, ..., pNv} and instruction X , where Nv is the number of points and
de is the dimensionality of the feature. It outputs the position axyz

t , rotation aq
t and open state ao

t of
the gripper for the next keystep. To compute the position axyz

t , it first predicts a heapmap Hi and a
position offset ∆i for each point and then compute the integral.

Hiveformer [3] re-implementation. We implemented Hiveformer [3] by ourselves and achieve
similar performance as they reported in the paper on the multi-task single-variation setting. To
use Hiveformer on the challenging multi-task setups, we enlarge the model capacity by doubling the
hidden size and train the same number of iterations with PolarNet, which leads to better performance
than using the hyper-parameters as in the original paper.

C Quantitative Results in Simulation

Results on 10 tasks. Table 9 presents the detailed results for 10 tasks in the single-task and multi-
task single-variation setups. We compare our model with ARM [34], Auto-λ [2] and Hiveformer [3].
All the three methods are based on multi-view 2D RGB-D images for action prediction. Our point
cloud based model obtains better and more stable results compared to the previous best model Hive-
former (92.1±0.4 vs. 88.4±4.9) in the single-task setup, demonstrating the effectiveness of the 3D
representations. The improvements are consistent across tasks except for “Take Money”. We ob-
serve that the main problem on the “Take Money” task is due to the imperfect motion planner. As

15

Table 9: Comparison with state-of-the-art methods on 10 tasks in single-task and multi-task setups.
All the methods are trained on 100 demonstrations per task. We report the success rate (%) of our
method on 500 episodes per task averaged over 3 seeds.

Pick &
Lift

Pick-Up
Cup

Put
Knife

Put
Money

Push
Button

Reach
Target

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella Avg.

Single-task single-variation

ARM [34] 70 80 - - - 100 - 70 - 70 -
Auto-λ [2] 82 72 36 31 95 100 36 23 38 37 55.0
Hiveformer [3] 92.2 77.1 69.7 96.2 99.6 100.0 95.4 81.9 82.1 90.1 88.4
PolarNet (Ours) 96.7 91.9 82.5 96.1 99.9 99.9 93.5 94.1 68.6 97.5 92.1

Multi-task single-variation

Auto-λ [2] 87 78 31 62 95 100 77 19 64 80 69.3
Hiveformer [3] 88.9 92.9 75.3 58.2 100.0 100.0 78.7 71.2 79.1 89.2 83.3
PolarNet (Ours) 97.8 86.0 80.5 94.1 99.6 100.0 93.4 80.5 68.1 97.8 89.8

Table 10: Comparison with state-of-the-art methods on 74 tasks in single-task and multi-task setups.
We evaluate 500 episodes per task. Besides reporting averaged success rate (%), we group tasks into
9 categories and report the averaged success rate per group. († denotes our own implementation.)

Planning Tools Long
Term

Rot.
Invar.

Motion
Planning Screw Multi

Modal Precision Visual
Occlusion

Avg.
tasks

of tasks 9 11 4 6 9 4 5 12 14 74

Single-task single-variation

Hiveformer [3]† 81.1 60.6 7.6 95.6 75.8 82.4 64.0 53.6 65.4 66.1
PolarNet (Ours) 90.5 66.8 5.5 96.4 75.6 73.1 61.7 59.0 69.1 69.0

Multi-task single-variation

Hiveformer [3]† 65.9 27.7 3.4 78.9 72.8 66.1 48.5 35.5 47.8 49.2
PolarNet (Ours) 75.5 46.3 6.9 87.8 83.3 63.0 54.5 49.0 61.0 60.3

shown in Figure 7, when the check is placed inside of the safe, the robotic arm often collides with the
safe door even if the predicted action is reasonable. Because of this, the groundtruth keystep action
only achieves 89% success rate. In the multi-task setup, our model also surpasses the state-of-the-art
methods with 6.5% absolute gains compared to Hiveformer [3].

Le
ft

 s
h
o
u
ld

e
r

R
ig

h
t

sh
o
u
ld

e
r

W
ri

st

Figure 7: Failure case of
“Take Money” task due to im-
perfect motion planner.

Results on 74 tasks. In Table 10, we provide the comparison with
Hiveformer [3] on 74 tasks in the single-task and multi-task single-
variation setup. We achieve 2.9% absolute gains on average for the
single-task learning. The improvement becomes more considerable
in the multi-task setup (+11.1), demonstrating the advantages of 3D
point clouds to solve multiple tasks simultaneously. Our 3D model
outperforms the 2D model on tasks that require planning, use tools,
need precise control, and have visual occlusion.

Results on 18 tasks in the multi-task multi-variation setup. In
Table 11, we compare with state-of-the-art methods C2FARM-
BC [35], PerAct [14] and Hiveformer [3]. For fair comparison,
we add an additional front view camera following [14]. Both
C2FARM-BC and PerAct utilize 3D voxels as inputs to train the

manipulation policy. Our proposed point cloud based model is more efficient than the two 3D based
models. It also improves PerAct by 3.7% on average over 18 tasks. Our 3D-based approach also
achieves comparable performance as the state-of-the-art 2D-based approach Hiveformer on the setup
which uses histories. It is interesting to further employ histories in our method and unify the 2D and
3D representations in the future work.

16

Table 11: Comparison with state-of-the-art methods on 18 tasks with 249 variations in total. All the
methods are trained on 100 demonstrations per task. We report the success rate of our method on 25
episodes per task by default. († denotes our own implementation.)

Open
Drawer

Slide
Block

Sweep to
Dustpan

Meat off
Grill

Turn
Tap

Put in
Drawer

Close
Jar

Drag
Stick

Stack
Blocks

C2FARM-BC [35] 20 16 0 20 68 4 24 24 0
PerAct [14] 80 72 56 84 80 68 60 68 36
Hiveformer† [3] 52 64 28 100 80 68 52 76 8
PolarNet (Ours) 84 56 52 100 80 32 36 92 4

Screw
Bulb

Put in
Safe

Place
Wine

Put in
Cupboard

Sort
Shape

Push
Buttons

Insert
Peg

Stack
Cups

Place
Cups Avg.

C2FARM-BC [35] 8 12 8 0 8 72 4 0 0 16
PerAct [14] 24 44 12 16 20 48 0 0 0 42.7
Hiveformer† [3] 8 76 80 32 8 84 0 0 0 45.3
PolarNet (Ours) 44 84 40 12 12 96 4 8 0 46.4

Table 12: Comparison of point removal on the single-task and multi-task setups with 10 tasks.
Remove Pick &

Lift
Pick-Up

Cup
Put

Knife
Put

Money
Push

Button
Reach
Target

Slide
Block

Stack
Wine

Take
Money

Take
Umbrella Avg.Table Backgroud

Single-task single-variation

× × 94.6 89.2 48.5 48.7 99.9 100.0 91.9 80.0 74.9 88.4 81.6
× ✓ 95.1 86.3 71.9 89.9 99.9 100.0 93.5 95.5 72.3 94.0 89.8
✓ ✓ 96.7 91.9 82.5 96.1 99.9 99.9 93.5 94.1 68.6 97.5 92.1

Multi-task single-variation

× × 92.2 87.0 75.4 63.6 97.2 100.0 86.6 76.4 73.2 97.0 84.9
× ✓ 92.0 82.6 77.2 95.4 97.4 100.0 88.2 68.2 71.6 91.6 86.4
✓ ✓ 97.8 86.0 80.5 94.1 99.6 100.0 93.4 80.5 68.1 97.8 89.8

Figure 8: Performance of using differ-
ent numbers of demonstrations per task
for training on the multi-task single-
variation setup.

Data efficiency. To demonstrate the data efficiency of our
model, we reduce the number of demonstrations per task
from 100 to 10 in training. We evaluate the multi-task
learning setup with 10 tasks and compare our model with
the state-of-the-art 2D-based model Hiveformer [3]. The
results in Figure 8 show that our 3D-based approach is also
data efficient.

Point removal in PolarNet. Table 2 has shown that re-
moving irrelevant points in the point cloud processing is
critical to the performance. To gain a more comprehensive
insight into the improvements, we provide more detailed
results of point removal in Table 12 on both single-task
and multi-task setups with 10 tasks. The trend in multi-
task setup is similar to that in single-task setup, demon-
strating it is beneficial to remove irrelevant points from the point cloud. We can see that removing
background points mainly improves Put Knife, Put Money, Stack Wine and Take Umbrella. In these
tasks, the robotic arm rotates a lot at some steps as shown in Figure 5, resulting in more background
points. Since the background points are geometrically far away from the workspace of the robot,
they drastically affect the normalization of the point cloud and make the PointNext encoding less
effective. Removing table points bring more improvements for tasks where the contact areas in the
objects are small such as Pick-Up Cup and Put Knife. We also observe that not all the tasks benefit
from the point removal. It would be interesting to investigate automatic point removal in the future.

17

Figure 9: Comparison of different models on the robustness to camera perturbation. The x-axis is
the level of perturbation. The y-axis is the relative performance drop compared to the results without
any perturbations where the lower the better.

Table 13: Comparing with an equiva-
lent point removal in Hiveformer on the
multi-task setup of 10 tasks.

Method Point removal Avg.

Hiveformer × 82.8
✓ 73.9

PolarNet × 84.9
✓ 89.8

Comparing with Hiveformer with equivalent point re-
moval. For 2D-based models such as Hiveformer, it is
non-trivial to remove the background and table pixels
from the image compared to the simple approach we used
in 3D-based PolarNet. Segmentation models are required
to mask the background and table. Since we are able to
obtain the groundtruth segmentation mask in the simula-
tion, we use the groundtruth mask as an upper bound for
2D models. We mask pixels of the background and table
as 0 in the image as the input to the model as well as the
final predicted heatmap. The results are presented in Table 13. We can see that removing those
pixels does not improve the performance. We conjecture that those pixels might be helpful for the
2D-based model to align multi-view images.

Robustness to viewpoint perturbation. Figure 9 presents the relative performance drop of different
multi-task policies under different camera perturbation factors for each of the 10 task. We can see
that our PolarNet is more robust on all the 10 tasks than the 2D-based state-of-the-art model Hive-
former, demonstrating the advantage of 3D-based representations. Particularly, PolarNet achieves
stable performance for Push Button, Reach Target and Take Umbrella where the relative perfor-
mance drops are less than 20% even under the large camera perturbation factor of 30.

D Qualitative Results in Simulation

Success cases. We show successful cases for multi-variation multi-task setting in Figure 10. In
drag stick task, the policy is able to use a stick to drag the cube to the colored target given by the
language instruction. We observed that policy can adapt to the cube trajectory drift to complete the
task. Policy is also able to generalize to placement variation such as place wine task. We provide
more complex and additional success cases on the supplementary video.

Failure cases. In Figure 11 we show different failure cases of our PolarNet. We can observe how
the policy fails to insert the ring on the blue spoke due to imprecise position prediction in insert
peg task. This task requires fine-grained manipulation which is difficult to have when controlling
the robot with keysteps. Place cups is a task that can be solved by placing the cups on the tree in
any order. Due to the multimodality nature of this task, we observe that the robot fails to grasp a
cup going in between two cups. Finally, in some tasks such as sort shape, the motion planner fails
causing the gripper to collide with other objects in the scene failing to complete the task.

18

d
ra

g
 s

ti
ck

p
la

ce
 w

in
e

"s
ta

ck
 t

h
e
 w

in
e

b
o
tt

le
 t

o
 t

h
e

m
id

d
le

 o
f

th
e
 r

a
ck

"

"s
lid

e
 t

h
e
 b

o
tt

le

o
n
to

 t
h
e
 l
e
ft

p

a
rt

 o
f

th
e
 r

a
ck

"

"u
se

 t
h
e
 s

ti
ck

 t
o

d
ra

g
 t

h
e
 c

u
b

e
 o

n
to

 t
h
e
 r

e
d

 t
a
rg

e
t"

"d
ra

g
 t

h
e
 b

lo
ck

 t
o
w

a
rd

s
th

e
 g

ra
y

sq
u
a
re

 o
n
 t

h
e
 t

a
b

le
 t

o
p

"

Figure 10: PolarNet success cases on multi-task multi-variation setting. We show policy running
examples of the drag stick and place wine tasks.

E Real-robot Experiments

Hardware setup. We conduct real-robot experiments on a 6-DoF UR5 robotic arm equipped with a
RG6 gripper. Two Intel RealSense D435 RGB-D cameras are set on the front and lateral sides of the
scene as illustrated in Figure 12. To be noted, our gripper is larger than the one used in RLBench,
which makes it more challenging to predict precise gripper positions. Furthermore, our robotic arm’s
base is situated besides a column instead of directly on the table, resulting in additional difficulties in
motion planning. For example, the robot needs to perform substantial rotations to prevent collisions
with the column.

Tasks and data collection. We adopt 7 real-world tasks including stack cup, put fruit in box, open
drawer, hang mug, put item in drawer, put item in cabinet and put plate on table as illustrated
in Figure 13. We randomly place the target objects and multiple distractors on the table for each
episode of a task. Due to a large gap between simulated and real environments, we collect a few
real-robot demonstrations to finetune the policy trained in the simulator. Specifically, we use a
joystick controller to manually control the robot. We define the keysteps for the tasks and save
RGB-D images and proprioceptive information of the gripper at each keystep. Finally, we collected
20 demonstrations per task.

19

so
rt

 s
h
a
p
e

p
la

ce
 c

u
p
s

in
se

rt
 p

e
g

collision

Incorrect
grasp

imprecise
 position

Figure 11: PolarNet failure cases. We illustrate failure cases for insert peg, place cups and sort
shape.

UR5 robot arm + RG6 gripper

Realsense d435

Objects

Figure 12: Robotic setup. Our setup includes two RealSense D435 cameras, the objects and the
UR5 robotics arm equipped with a RG6 gripper.

20

Stack cup Put fruit in box Open drawer Hang mug

Put item in drawer Put item in cabinet Put plate on table

Figure 13: Illustration of the 7 real-world tasks.

Training and execution. We finetune the PolarNet trained in the multi-task setup in RLBench with
the collected real-robot data. Though the depth images are noisy in the real-world setup, we do not
perform other preprocessing algorithms to improve the obtained point cloud except the outlier re-
moving4. We train on 1 NVIDIA V100 GPU for 100K iterations which takes around 9 hours. During
evaluation, we simply use the last checkpoint from training. We use a NVIDIA GeForce GTX 1080
Ti GPU for inference. To move between keysteps, we use MoveIt motion planner framework.

4http://www.open3d.org/docs/latest/tutorial/Advanced/pointcloud_
outlier_removal.html

21

http://www.open3d.org/docs/latest/tutorial/Advanced/pointcloud_outlier_removal.html
http://www.open3d.org/docs/latest/tutorial/Advanced/pointcloud_outlier_removal.html

	Introduction
	Related Work
	Method
	Problem Definition
	PolarNet: Point Cloud-based Language-guided Robotic Manipulation Policy
	Point Cloud Inputs
	Model Architecture
	Training Objective

	Experiments
	Experimental Setup
	Ablations
	Comparison with State of the Art
	Real-robot Experiments

	Conclusion
	RLBench Tasks
	Model Details
	Quantitative Results in Simulation
	Qualitative Results in Simulation
	Real-robot Experiments

