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Abstract
With large language models (LLMs) increasingly
deployed as cognitive engines for AI agents,
the reliability and effectiveness critically hinge
on their intrinsic epistemic agency, which re-
mains understudied. Epistemic agency, the abil-
ity to flexibly construct, adapt, and monitor be-
liefs about dynamic environments, represents a
base-model-level capacity independent of spe-
cific tools, modules, or applications. We char-
acterize the holistic process underlying epistemic
agency, which unfolds in seven interrelated dimen-
sions: prediction, decision-making, perception,
memory, counterfactual thinking, belief updating,
and meta-reflection. Correspondingly, we pro-
pose Reflection-Bench, a cognitive-psychology-
inspired benchmark consisting of seven tasks
with long-term relevance and minimization of
data leakage. Through a comprehensive evalu-
ation of 16 models using three prompting strate-
gies, we identify a clear three-tier performance
hierarchy and significant limitations of current
LLMs, particularly in meta-reflection capabili-
ties. While state-of-the-art LLMs demonstrate
rudimentary signs of epistemic agency, our find-
ings suggest several promising research directions,
including enhancing core cognitive functions, im-
proving cross-functional coordination, and devel-
oping adaptive processing mechanisms. Our code
and data are available at https://github.
com/AI45Lab/ReflectionBench.

1. Introduction
Large language models (LLMs) have been increasingly ap-
plied as the brains for AI agents, interacting with the en-
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Figure 1. Reflection, a cyclic cognitive process underlying epis-
temic agency, enables effective agent-environment interaction.

vironment and completing various tasks such as program-
ming, scientific research, and industrial production. (Xi
et al., 2023; Wang et al., 2024; Schmidgall et al., 2025). The
performance of these LLMs-based agents fundamentally
depends on high-order capacities of models, such as reason-
ing, planning, recovering from errors, and learning from the
environment, etc.(Schluntz & Zhang, 2024). Collectively,
these abilities reflect a model’s intrinsic epistemic agency –
the capacity to flexibly construct, adapt, and monitor beliefs
about dynamic environments (Ferrero, 2022; Fairweather
& Montemayor, 2017; Chrisman, 2022). This epistemic
agency, as a base-model-level characteristic independent
of specific external modules or applications, determines
whether LLMs can truly serve as reliable cores of AI agents.
However, existing studies either focus narrowly on agents’
applications or examine isolated abilities (Liu et al., 2023;
Clark et al., 2018; Valmeekam et al., 2024). None of them
investigates LLMs’ epistemic agency unfolding in the holis-
tic process of agent-environment interaction. Furthermore,
current evaluations’ reliance on text-heavy datasets intro-
duces methodological limitations, particularly the risks of
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benchmark leakage (Zhou et al., 2023; Xu et al., 2024).

To evaluate LLMs’ epistemic agency, we propose Reflection-
Bench, a cognitive-psychology-inspired benchmark with
minimization of data contamination. Our framework is mo-
tivated by mental processes of how human epistemic agency
enables efficient agent-environment interaction. As illus-
trated in Figure 1, this cyclical process involves predicting
based on prior belief, making decisions to achieve desired
states, perceiving surprises, subsequently modifying priors
through recalling and counterfactual thinking (Friston et al.,
2017; Parr et al., 2022; Dennett, 1993; Friston, 2010; Huang
& Rao, 2011). The complete cycle embodies reflection
– the “attentive, critical, exploratory and iterative interac-
tions with one’s thoughts and actions with the intention to
change them (Nguyen et al., 2014).” We therefore adopt
reflection, defined here as a process rather than an ability,
as our framework to investigate LLMs’ epistemic agency.
Through detailed analysis of this reflection process, we iden-
tify seven key dimensions that constitute robust epistemic
agency, including prediction, decision-making, perception,
memory, counterfactual thinking, belief updating, and meta-
reflection.

To evaluate these seven dimensions, we design the
Reflection-Bench with seven cognitive tests adapted from
validated paradigms in cognitive psychology. Cognitive
tests create controlled environments where subjects must
learn and reason about unknown parameters through interac-
tion, offering standardized, quantified, and objective assess-
ment tools that mirror real-world functioning (Lezak et al.,
2012; Allen et al., 2024). We select and adapt seven cogni-
tive tests for LLMs evaluation, each focusing on one func-
tion shown in Figure 1 (Nyhus & Barceló, 2009; Shohamy
et al., 2008; Näätänen et al., 2007; Jaeggi et al., 2010;
Buelow & Suhr, 2009; Bouneffouf et al., 2020; Bechara
et al., 2013; Cools et al., 2002). The parameterized design of
cognitive tests allows their configurations to be customized
– even if a model has memorized the task format, it can-
not know the specific parameters used in evaluation. This
design both reduces potential data contamination and en-
sures Reflection-Bench’s long-term relevance by enabling
difficulty adjustment to accommodate future AI models.

We conducted comprehensive evaluations using entry-level
configurations across leading large reasoning models, main-
stream LLMs, and the Qwen-2.5 family with varying sizes.
Three prompting strategies were employed, including di-
rect generation, free output, and Chain of Thought (CoT)
(Wei et al., 2024). The results reveal a clear three-tier hi-
erarchy, with seven state-of-the-art models scoring over
60, eight moderate models between 50 and 60, and the
model with the smallest size scoring below 50 points. While
these results demonstrate certain epistemic agency in cur-
rent LLMs, detailed behavioral analyses reveal significant

limitations of LLMs’ epistemic agency, especially in pre-
diction, decision-making, and meta-reflection. The effec-
tiveness of prompting strategies varies substantially across
both tasks and models. We further evaluated these models
on a more challenging parameter set using the direct gen-
eration strategy. The expected score decrease suggests that
Reflection-Bench is far from saturated. Additionally, we
compared the performances of Centaur, which is specifically
fine-tuned with human cognitive test data (Binz et al., 2024),
and its base model, Llama-3.1-70B-Instruct. Centaur shows
no improvement compared to its base model, providing em-
pirical evidence that our parameterized design effectively
minimizes data leakage concerns.

To summarize, our main contributions include:

• Development of Reflection-Bench, a cognitive-
psychology-inspired benchmark that evaluates
LLMs’ epistemic agency through parameterized and
contamination-minimization tasks.

• Comprehensive evaluations across 16 LLMs using
three prompting strategies, revealing distinct perfor-
mance tiers and demonstrating Reflection-Bench’s ef-
fectiveness in differentiating models’ epistemic agency.

• Multi-dimensional behavioral analyses across mod-
els, tasks, and prompting strategies, uncovering both
emerging epistemic agency and fundamental limita-
tions in current LLMs, and providing insights for future
research directions.

2. Related work
2.1. LLMs-based Agents

The concept of Agent originally describes several key as-
pects of biological systems: (1) flexibly interacting with the
environment to achieve a range of goals; (2) making choices
actively; and (3) being accountable for the outcomes of their
actions (Kockelman, 2006), and higher agency manifests
as enhanced sophistication of these three aspects. With the
emergence of high-order capabilities such as understanding
and reasoning (Wei et al., 2022), LLMs are increasingly
deployed as agents, where they “dynamically direct their
own process and tool usage, maintaining control over how
they accomplish tasks” (Schluntz & Zhang, 2024). Similar
to biological agents, these LLMs-based agents work in in-
teractive action-feedback loops to complete complex tasks,
operating on various architectures for better performances
than naı̈ve LLMs (Yao et al., 2022; Nakajima, 2023; Hong
et al., 2023). Correspondingly, multiple benchmarks have
been developed for evaluating these agents’ capabilities of
performing specific tasks such as shopping, gaming, UI in-
terface, customer service, travel, jailbreak-proof, and so on
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(Liu et al., 2023; Deng et al., 2024; Xiao et al., 2024; An-
driushchenko et al., 2024). Apart from application-specific
evaluations, prior research has examined fundamental capa-
bilities required for LLMs to function as agents, including
reasoning (Clark et al., 2018), planning (Valmeekam et al.,
2024), causal inference (Chen et al., 2024a), probability
estimation (Krishnamurthy et al., 2024), cognitive flexibility
(Wilie et al., 2024), decision making (Li et al., 2024a), and
spatial cognition (Madge & Poesio, 2024) etc. In this work,
we specifically focus on epistemic agency, the ability to
flexibly construct, adapt, and monitor beliefs about dynamic
environments (Ferrero, 2022; Fairweather & Montemayor,
2017; Chrisman, 2022). This base-model-level capacity,
independent of specific external modules or applications,
directly determines whether a model can reliably serve as
the “brain” of an AI agent.

2.2. Cognitive Psychology Methods for Evaluating
LLMs

Cognitive psychology, which aims to understand human
behavioral and mental processes (Sternberg & Sternberg,
2006), provides an effective framework for interpreting
LLMs’ capabilities. As LLMs grow in complexity, re-
searchers increasingly adapt cognitive psychology methods
to evaluate them. The core idea behind it is to treat LLMs
as humanoid subjects in psychology experiments to probe
their capabilities and mechanisms of cognitive traits (Binz
& Schulz, 2023). Diverse paradigms and tests in cognitive
psychology have been adapted for evaluating LLMs, includ-
ing psychometrics for attributes (Li et al., 2024b), iterated
learning for prior knowledge (Zhu & Griffiths, 2024), Wis-
consin card sorting test and letter number test for cognitive
flexibility (Kennedy & Nowak, 2024), implicit statistical
learning and facial recognition etc. for effects of CoT (Liu
et al., 2024b), Montreal Cognitive Assessment for cognitive
impairment (Dayan et al., 2024), Cognitive Reflection Test
for human-like intuition (Hagendorff et al., 2023) and so
on. This method provides a top-down perspective toward
explainable AI through behavioral analysis rather than di-
rect interpretation of neural network activities (Hagendorff,
2023). Furthermore, just as we trust humans in everyday
tasks based on their demonstrated cognitive capabilities and
behavioral patterns, this approach potentially helps establish
similar trust mechanisms for LLMs-based agents (Shiffrin
& Mitchell, 2023).

3. Reflection-Bench
3.1. Define Dimensions of Epistemic Agency

To systematically evaluate epistemic agency, we identify
key dimensions by analyzing the cognitive process of how
agents implement robust interaction with dynamic environ-
ments. Through the lens of cognitive psychology, we de-

compose the epistemic agency into seven core capabilities
that emerge in temporal order, as illustrated in Figure 1.

The process begins with agents’ prior beliefs about the
environmental states manifesting in LLMs as both world
model (Yildirim & Paul, 2024) and task-specific expecta-
tions through zero/few-shot comprehension (Brown et al.,
2020). Priors help establish a framework of task objec-
tives, constraints, possible inputs and outputs, etc. Predic-
tion, computed via transition probability (Friston, 2010)
enables agents to hypothesize future states given potential
actions. For LLMs, prediction capabilities are crucial for
planning tasks, where models must reason about which poli-
cies will effectively transition an agent from its initial state
to a desired goal state. (Valmeekam et al., 2024; Fu et al.,
2024). Then, agents will determine concrete actions to ex-
ecute based on prediction, i.e., decision-making (Shadlen
& Kiani, 2013), constituting the material foundation for
agent-environment interaction.

After policy execution, agents perceive environmental feed-
back, where the most valuable information is discrepancies
from predictions, such as errors and penalties – a basic fea-
ture underlying both human cognition and reinforcement
learning (Den Ouden et al., 2012). As crucial signals driving
modification and adaptation, the prediction errors potentially
originate from deviant internal models or changed environ-
ments. Two mental processes are triggered by prediction
errors: recalling the past process and simulating choices
not taken, (Byrne, 2016), i.e., memory and counterfactual
thinking, respectively.

Through these two retrospective analyses, agents update
their prior beliefs that more accurately describe the envi-
ronment to perform better in the future (Parr et al., 2022).
In LLMs, this error-driven learning mechanism manifests
through in-context learning and causal reasoning, enabling
dynamic belief adjustment to recover from errors (Dong
et al., 2024; Chen et al., 2024a; Krishnamurthy et al., 2024;
Schluntz & Zhang, 2024). Beyond such instant interactions,
agents like humans also possess higher-order capabilities
of meta-cognition – monitor, evaluate, and regulate their
own cognitive process (Martinez, 2006). When it comes to
the reflection process defined above, the meta-reflection
enables agents to transcend local adaptation by analyzing
patterns across multiple prediction-action-feedback cycles,
thereby grasping global patterns of the environment.

To summarize, we identify seven interlinked cognitive di-
mensions that constitute robust epistemic agency: predic-
tion, decision-making, perception, memory, counterfactual
thinking, belief updating, and meta-reflection. This process-
oriented framework enables systematic evaluation of LLMs’
epistemic agency through well-defined cognitive tests.

3



Reflection-Bench

3.2. Select Cognitive Tests

While these seven dimensions are interconnected in agent-
environment interaction, cognitive psychology provides vali-
dated test paradigms that isolate and measure specific cogni-
tive capabilities while controlling other dimensions (Lezak
et al., 2012). This enables our evaluation of each dimension
through its corresponding cognitive test, as illustrated in
Figure 2.

Prediction We select the weather prediction task (WPT)
paradigm, where subjects originally predict the weather
based on card cues by learning probabilistic relationships
(Shohamy et al., 2008). We adapt this paradigm by con-
verting these relationships into explicitly defined transition
probability matrices. Models must learn how the cues in-
fluence the weather transitions, allowing us to assess their
prediction capability.

Decision-making We employ the Wisconsin card sorting
test (WCST) to assess flexible decision-making (Nyhus &
Barceló, 2009). Participants match cards varying in color,
shape, and number of figures according to an undisclosed
rule (e.g., by color) that must be inferred from feedback. The
matching rule changes without warning after a set number
of trials, requiring models to infer and adapt to the latent
rule governing correct decisions.

Perception We select the oddball paradigm (Näätänen
et al., 2007) to evaluate the automatic perception of surprise
signals. The paradigm presents sequences containing fre-
quent standards interspersed with rare deviant stimuli (e.g.,
different tones), measuring the automatic detection of nov-
elty. Research shows that the brain is naturally sensitive to
deviant stimuli (Garrido et al., 2009), making this paradigm
ideal for assessing basic surprise detection. Impaired perfor-
mance on this test is a reliable indicator of cognitive deficits
in conditions like schizophrenia (Umbricht & Krljes, 2005).

Memory We adopt the n-back task to evaluate active mem-
ory retrieval (Jaeggi et al., 2010). In this task, subjects view
sequential stimuli and must indicate whether the current
stimulus matches the one presented n steps earlier. This
continuous process of updating and maintaining informa-
tion directly assesses the memory capabilities needed for
recalling previous decisions.

Counterfactual thinking We adapt the Iowa gambling
task (IGT) (Bechara et al., 2013) into a double choice ver-
sion (DC-IGT) to assess counterfactual thinking. In tradi-
tional IGT, participants select cards from four decks with
different reward-loss profiles to maximize profit. To explic-
itly test counterfactual thinking, our DC-IGT allows models
to observe the outcomes of their initial choice and provides

an opportunity to revise their decision. By forcing models
to reconsider past choices with an opportunity to ‘turn back
time’, DC-IGT implements the mechanism of counterfactual
thinking – creating an alternative to reality by considering
‘what if’ (Byrne, 2016).

Belief updating We employ probabilistic reversal learn-
ing task (PRLT) (Cools et al., 2002), where participants
choose between two options with differing reward probabil-
ities. These probabilities reverse midway through the task
without notice, requiring models to update their prior beliefs
about the reward distributions in response to environmental
changes.

Meta-reflection We design a meta-bandit task (MBT) that
extends the previous paradigm of PRLT by introducing pre-
dictable reversals. The reward probabilities (0 or 1) are
reversed every n trials, establishing a higher-order pattern.
This design tests the model’s ability to recognize and an-
ticipate the meta-structure of changes, i.e., meta-reflection,
beyond mere adaptation to individual reversals.

3.3. Adapt Tests for Evaluating LLMs

Weather prediction task (prediction) In each trial, the
LLM receives two inputs: the current day’s weather and a
sensor state ([0,1] or [1,0]). Based on these two inputs, it
predicts the next day’s weather (example in AppendixA.2).
The actual weather is calculated with the corresponding
transition matrix:

Tsensors=[1,0]=

[
p 1− p

1− p p

]

Tsensors=[0,1]=

[
1− p p
p 1− p

]
For subsequent trials, LLM receives the actual weather
(which becomes the current weather) and a new sensor state.
We estimate the model’s internal transition matrices from
its predictions. Performance is evaluated using the mean
absolute error (MAE) between estimated and true transition
matrices.

Score = (1− MAE/MaxMAE) ∗ 100

Wisconsin card sorting test (decision-making) Follow-
ing (Kennedy & Nowak, 2024), we implement WCST in
a text-based task with x trials. The matching rule (shape,
color, or number) changes every x/6 trial, allowing each
rule to be tested twice. In each trial, the LLM receives a
target card description (e.g., ‘triangle green 4’) and must
match it with one of four choice cards without knowing the
current matching rule. The model receives feedback after
each choice (example in Appendix A.3). Performance is
evaluated based on overall matching accuracy.
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Figure 2. Illustration of seven cognitive tests involved in Reflection-Bench: A. weather prediction task; B: Wisconsin card sorting test; C:
Oddball paradigm; D: N-back; E: Iowa gambling task; F: probabilistic reversal learning task; G: meta-bandit task.

Oddball paradigm (perception) We adapt the Oddball
paradigm into a prompt-based task where each prompt con-
tains eight short sentences: seven about a consistent topic
(stimulus A) and one unrelated sentence (stimulus B) that
disrupts the content flow (example in Appendix A.4). The
LLMs are instructed to freely make comments on these
prompts, allowing assessment of their spontaneous detec-
tion of contextual anomalies. We evaluate the responses
using both rule-based manual scoring (0-3 scale) and an
automated method based on OpenAI’s text-embedding-3-
large (detailed in Appendix D). The test includes 50 distinct
prompt sets.

N-back (memory) We present a fixed sequence of letters
(e.g., E, F, G, H) to the LLM one at a time. For each letter,
the model must determine whether it matches the letter
shown n steps earlier in the sequence (example in Appendix
A.5). Performance is measured by response accuracy.

Double choice Iowa gambling task (counterfactual think-
ing) The DC-IGT features four card decks with fixed
gains ($100, $100, $50, and $50) and potential losses
($260, $1250, $50, and $200) occurring with possibilities
of Ploss = pa, pb, pc, pd . Each trial consists of two consec-
utive choices. The LLM first selects a deck and receives
feedback on the resulting gain and potential loss. Based on
this feedback, it makes a second deck selection (example in
Appendix A.6). Performance is evaluated using both short-
term metrics (adaptive switching behavior to avoid losses)
and long-term metrics (cumulative net earnings).

Probabilistic reversal learning task (belief updating) In
PRLT, the LLM repeatedly chooses between two options
(left and right arms) with complementary reward probabili-
ties of p and 1-p. After each choice, a reward is drawn from
a Bernoulli distribution according to the chosen option’s
probability. At the midpoint of trials, these probabilities are
reversed. The LLM receives the reward feedback and makes
its next choice (example in Appendix A.7). We estimate
the model’s internal representation of reward probabilities
using a moving average (window size = 5) of its choices.
Performance is quantified using the mean absolute error
between estimated and true probabilities:

Score = (1− MAE/MaxMAE) ∗ 100

Meta-bandit task (meta-reflection) The MBT consists
of 20 blocks of n trials each, where the LLM repeatedly
chooses between two options with deterministic binary re-
wards, with one option yielding 1 and the other 0. After each
choice, the model receives feedback on the sampled reward.
The reward mappings reverse every n trials without notifica-
tion (example in Appendix A.8). Performance is evaluated
based on the model’s ability to recognize this fixed reversal
pattern, as indicated by sustained reward acquisition even
during reversal trials.

4. Experiment
4.1. Experimental Setup

We first evaluate 16 LLMs on the Reflection-Bench:

• Large reasoning models: o1-preview, o1-mini (Ope-
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Table 1. Experiment settings

Task Parameters
Easy Hard

WPT p=0.9 p=0.8
WCST x=72 x=90
Oddball NA NA
N-back n=2 n=4
DC-IGT Ploss = {.5, .1, .5, .1} {.5, .2, .5, .2}

PRLT p=0.8 p=0.7
MBT n=2 n=4

nAI, 2024), DeepSeek-Reasoner (R1) (DeepSeek-AI,
2024), and QwQ-32B-Preview (Qwen, 2024)

• Mainstream LLMs: GPT-4o, GPT-4o-mini (OpenAI,
2023), Claude-3.5-Sonnet, Claude-3.5-Haiku (An-
thropic, 2023), Grok 2 (xAI, 2024), Gemini-2.0-flash
(Google, 2024), DeepSeek-V3 (Liu et al., 2024a), and
Llama-3.3-70B (Meta, 2024)

• Qwen 2.5 family: variants with 72B, 32B, 14B, and
7B (Yang et al., 2024).

All evaluations are conducted through respective model
APIs. Table 1 (Easy) details the number of trials and param-
eter settings for each task. To ensure evaluation robustness,
we repeat most tasks twice. The Oddball task, given its rela-
tively subjective scoring, is repeated three times to minimize
potential biases. We implement three response formats (see
Appendix A.1): free output, direct choice generation, and
zero-shot CoT (Wei et al., 2024). Due to context length con-
straints, large reasoning models are evaluated only through
free output and direct generation, as their CoT responses
often exceed maximum token limits.

To validate the long-term relevance of Reflection-Bench,
we evaluate these 16 LLMs on more challenging settings
(Table 1. Hard) with the direct output strategy. Oddball test
is excluded because it is not parameterized. To validate the
contamination-minimization of Reflection-Bench, we eval-
uate Centaur, which is specifically fine-tuned with human
cognitive test data (Binz et al., 2024), and its base model,
Llama-3.1-70B-Instruct (Grattafiori et al., 2024), on both
Easy and Hard settings with the direct output strategy.

We also conducted 1 million random simulations for each
applicable task, excluding the non-parameterized Oddball
test and qualitative MBT. By randomly generating choices,
we established chance-level thresholds at the 95th per-
centile of performance distributions. Performance exceed-
ing these thresholds indicates statistically significant task
performance, with higher scores reflecting a more precise
inference of task parameters.

4.2. Experimental Results

4.2.1. OVERALL RESULTS

On entry-level difficulties, Claude-3.5-Sonnet achieved su-
perior performance with both zero-shot CoT (68.78) and
free output (68.23), closely followed by two large reason-
ing models – o1-preview (66.57) and DeepSeek-Reasoner
(64.56). The performance distribution reveals a clear hierar-
chical structure aligned with model scaling:

• First-tier ( >60 points): seven leading models in-
cluding Claude-3.5-Sonnet, o1-preview, DeepSeek-
Reasoner, Gemini-2.0-flash-exp, GPT-4o, Grok-2, and
DeepSeek-V3

• Second-tier (50-60 points), eight intermediate models
including Llama-3.3-70B, Claude-3.5-Haiku, GPT-4o-
mini, and Qwen-2.5 variants (72B/32B/14B)

• Third-tier (<50 points): Qwen-2.5-7B-Instruct, the
smallest model evaluated.

Notably, all models struggle with the MBT, failing to iden-
tify the 2-step reversal pattern and making errors consis-
tently across 20 blocks (Figure 15, 16), as discussed in
Section 4.2.2. Consequently, the reported average scores
exclude MBT. As detailed in Table 9, none of the 16 mod-
els achieved performances above chance-level thresholds
across all five applicable tasks.

Regarding prompting strategies, free output and CoT out-
performed direct generation across tasks. Strategy effective-
ness varied by models and tasks (see Figure 9). o1-preview
demonstrates remarkable consistency between free output
and direct generation. Task sensitivity to prompting strate-
gies ranged from high (DC-IGT & N-back) to low (PRLT &
Oddball Test).

On hard settings, we observed the expected score decreases
across the evaluated models, as shown in Table 9. This
indicates the long-term relevance of Reflection-Bench and
substantial room for LLMs development. Additionally, Cen-
taur, the model fine-tuned with human cognitive test data,
showed no improvement on Reflection-Bench compared to
its base model, Llama-3.1-70B-Instruct (see Table 9). This
provides empirical evidence that our parameterized design
effectively minimizes data leakage concerns.

4.2.2. TASK-SPECIFIC ANALYSIS

Weather Prediction Task To reduce task complexity, we
implemented highly deterministic transition probability ma-
trices (p=0.9). The task design specified that given cue
‘[1,0]’, the next day would likely remain unchanged (p=0.9),
whereas cue ‘[0,1]’ indicated a probable transition to the
opposite state. Despite this simplified probability structure,
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Table 2. Average Scores of 44 Model-Strategy Pairs on Reflection-Bench
Model Strategy Score Model Strategy Score

2nd o1-preview
Free output 64.94 o1-mini Free output 54.60

Direct generation 66.57 Direct generation 54.29
3rd DeepSeek-Reasoner

Free output 61.47 QwQ-32B-preview Free output 58.64
Direct generation 64.56 Direct generation 48.37

GPT-4o
CoT 62.56

GPT-4o-mini
CoT 48.41

Free output 52.95 Free output 57.09
Direct generation 57.29 Direct generation 47.44

1st Claude-3.5-Sonnet
CoT 68.78

Claude-3.5-Haiku
CoT 57.94

Free output 68.23 Free output 58.14
Direct generation 62.59 Direct generation 55.40

DeepSeek-V3
CoT 61.25

Qwen-2.5-72B-Instruct
CoT 54.79

Free output 59.50 Free output 56.74
Direct generation 52.91 Direct generation 54.26

Grok-2
CoT 61.00

Qwen-2.5-32B-Instruct
CoT 51.06

Free output 61.63 Free output 48.01
Direct generation 53.29 Direct generation 49.21

Gemini-2. 0-flash-exp
CoT 61.51

Qwen-2.5-14B-Instruct
CoT 57.06

Free output 63.29 Free output 52.81
Direct generation 51.13 Direct generation 52.94

Llama-3.3-70B
CoT 52.44

Qwen-2.5-7B-Instruct
CoT 44.53

Free output 58.92 Free output 46.66
Direct generation 53.01 Direct generation 40.37

most models exhibited difficulty in simultaneously learning
two distinct transition patterns. As illustrated in Figure 10,
our analysis revealed five prediction patterns: A: correct
predictions, B: predictions merely by today’s weather, C:
predictions solely by the sensor’s states, D: partially cor-
rect predictions, and E: random predictions. Among all
44-model-strategy combinations (detailed in Appendix 3),
only Claude-3.5-Sonnet with CoT successfully identified
the transition patterns across both sessions. Four other com-
binations (o1-mini with free output, Claude-3.5-Sonnet with
free output, and DeepSeek-Reasoner with both free output
and direct generation) learned the pattern in one session.
The remaining 39 combinations showed varying degrees of
failure in capturing the underlying transition probabilities.

Wisconsin Card Sorting Test In the WCST evaluation
(Table 4), o1-preview and Claude-3.5-Sonnet achieved iden-
tical top scores (81.25), significantly outperforming Gemini-
1.5-pro (64.58) in second place. A comprehensive analysis
across 72 trials comprising 6 rule groups revealed distinctive
behavioral patterns (Figure 11). The cross-model average
accuracies for successive rule groups were 80.02% (trial 1-
12, shape), 44.22% (trial 13-24, color), 26.04% (trial 25-36,
number), 76.42% (trial 37-48, shape), 46.97% (trial 49-60,
color), and 45.36% (trial 61-72, number), respectively. The
consistently high performance in shape-based rule groups
suggests that most LLMs can effectively learn and apply

specific decision rules, with Llama-3.3-70B (CoT) being
a notable exception, showing persistent difficulties. How-
ever, following the initial rule group, a prevalent ’shape sink’
phenomenon emerged - models defaulted to shape-based
sorting despite rule changes. This ‘sink’ pattern persisted
even in top-performing models like o1-preview and Claude-
3.5-Sonnet, which showed marked performance declines
during the third rule group. These findings underscore a fun-
damental limitation in LLMs’ ability to adapt to sequential
rule (or environment) changes.

Oddball Test Our rule-free automated evaluation ap-
proach, leveraging text-embedding-3-large and cosine simi-
larity metrics, demonstrated robust agreement with manual
rule-based scoring (r=0.87, p=5.83e-60; detailed analysis in
Appendix D. This methodology revealed distinct patterns
in models’ contextual anomaly detection capabilities (Ta-
ble 5). Llama-3.3-70B and Claude-3.5-Sonnet exhibited
superior sensitivity to deviant stimuli, followed by Gemini-
2.0-flash-exp, demonstrating advanced capabilities in unex-
pected information detection. Conversely, Qwen-2.5-7B and
o1-preview frequently overlooked contextual deviants, sug-
gesting that contextual sensitivity may be more dependent
on specific training techniques rather than model sizes.

N-back In the 2-back task (Table 6), three models – o1-
preview, DeepSeek-V3, and Grok-2 – achieved perfect
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scores. Despite full conversation history being available dur-
ing evaluation, many models struggle to determine whether
the current stimulus matches the one presented 2 steps ear-
lier. Given that the baseline accuracy for an all-no response
strategy is 58%, models performing below this threshold
likely demonstrate fundamental deficits in working memory
capacity, specifically in maintaining and comparing infor-
mation across multiple interaction turns.

Double Choice Iowa Gambling Task Our evaluation of
DC-IGT incorporated both short-term and long-term per-
formance metrics. The short-term analysis (Figure 12) ex-
amined four behaviors – insisting with gain, insisting with
risk, unnecessary switch, and loss-avoiding switch. Among
these, insisting with gain emerged as the dominant behav-
ior. Some models, notably GPT-4o-mini with free output,
demonstrated optimal decision-making through balanced
deployment of insisting with gain and loss-avoiding switch
strategies. In contrast, Claude-3.5-Sonnet with free out-
put exhibited frequent risk-insisting behavior, resulting in
poor overall performance (Table 7). To differentiate be-
tween strategic adaptation and chance-based success, we im-
plemented long-term metrics focusing on expected reward
learning across four card decks. This approach specifically
evaluated whether forced counterfactual thinking enhanced
strategic optimization. The long-term analysis (Figure 13)
tracked average coverage changes across model-strategy
pairs, highlighting eight representative cases. Gemini-2.0-
flash-exp excelled in both temporal dimensions, achieving
the highest overall score and demonstrating robust counter-
factual reasoning abilities.

Probabilistic Reversal Learning Task Beyond aggregate
performance metrics (Table 8), our behavioral analysis (Fig-
ure 14) revealed distinct patterns in belief updating across
different model-strategy pairs. All five models scoring be-
low 50 points exhibit obvious rigid beliefs, failing to adapt
to the probability reversal after trial 20. Models achiev-
ing scores above 60 points demonstrated adaptive belief
updating capabilities. A prevalent ’win-stay-lose-switch’
strategy emerged across most models, suggesting a capacity
for local adaptation. We further explored whether LLMs
can develop a higher-order understanding of environmental
structure through MBT.

Meta Bandit Task In MBT, a striking limitation emerged:
no model successfully recognized the 2-step-reversal pattern
(rewards alternating between options every two trials) across
20 reversal blocks (Figure 15, 16). Instead, all models exhib-
ited either periodic or irregular errors. While most models
defaulted to the ’win-stay-lose-switch’ strategy that proved
effective in PRLT, this reactive approach proved insufficient
for capturing the global temporal pattern in MBT. This in-
ability to identify even simple temporal patterns reveals

that current LLMs struggle to abstract global patterns from
experience and leverage them for future decision-making.
This constraint represents a critical limitation for LLMs as
autonomous agents.

4.3. Effects of Prompting Strategies

Figure 17 presents a comparative analysis of three prompt-
ing strategies. Zero-shot CoT and free output achieved
similar overall performances, both surpassing direct gen-
eration. Breaking down the impacts by task reveals that
zero-shot CoT exhibited notable advantages in WCST and
2-back tasks while showing reduced effectiveness in DC-
IGT. The impact of zero-shot CoT varied across models as
well: while it enhanced GPT-4o’s performance, it degraded
the performance of models like GPT-4o-mini to levels com-
parable with direct generation. These findings suggest that
the efficacy of zero-shot CoT is contingent on a model’s
capacity to leverage structured reasoning prompts. The
mixed effects can be attributed to the inherent integration
of CoT-like mechanisms in many LLMs, potentially lim-
iting the additional benefits of explicit zero-shot CoT. In
the context of Reflection-Bench, these results indicate that
autonomous agents operating in complex environments re-
quire task-specific cognitive strategies - some tasks benefit
from rapid, intuitive responses where extended delibera-
tion may be counterproductive (Liu et al., 2024b), while
others demand systematic, structured reasoning(Sprague
et al., 2024). This pattern parallels human cognition theo-
ries, where adaptive strategy selection is crucial for effective
problem-solving across diverse scenarios.

5. Discussion
Key Findings The hierarchical performance pattern indi-
cates the Reflection-Bench’s discriminative power. The sup-
plementary evaluations verify Reflection-Bench’s long-term
relevance and resilience against data contamination. On
entry-level configurations, top-tier models achieve fair per-
formance in most individual tasks except MBT, demonstrat-
ing a basic level of epistemic agency. However, detailed be-
havioral analyses also reveal significant limitations of LLMs’
capabilities, especially in prediction, decision-making, and
meta-reflection. Illustrated by performances in PRLT and
MBT, current LLMs, without global structural understand-
ing and meta-cognitive regulation, are largely driven by
short-sighted local adaptation patterns. The effectiveness of
prompting strategies varies substantially across both tasks
and models, suggesting that the interplay between task char-
acteristics and interaction strategies significantly impacts
agent performance. Notably, no model-strategy combination
maintains consistently good performance across all tasks.
Altogether, our evaluation reveals both the emergence and
limitations of epistemic agency in current LLMs.
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Implications Our findings provide several implications
for developing more robust epistemic agency in language
models. The substantial weaknesses observed in meta-
reflection suggest future research needs to focus on inno-
vations that enhance meta-cognitive capabilities (Scholten
et al., 2024), which would benefit from actively regulating
thought processes and contributing to rational reasoning,
improved learning, and reliable decision-making (Griffiths,
2020; Boureau et al., 2015). Develop prompts or fine-tuning
strategies that encourage dynamic shifts between rapid “in-
tuition” and more deliberative “reflection” based on sit-
uational demands. While long-form CoT reasoning has
gained prominence in advanced models such as OpenAI’s
o1, concerns about its drawbacks have emerged (Chen et al.,
2024b; Shaikh et al., 2023; Liu et al., 2024b), highlighting
the importance of situation-appropriate transitions. Beyond
enhancing individual capabilities, a key challenge lies in
fostering organic coordination between different cognitive
processes. As discussed in Section 3.1, such coordinated
development is essential for achieving genuine epistemic
agency across diverse real-world scenarios. Current research
provides limited insights into how different cognitive com-
ponents interact within LLMs. Understanding these internal
dynamics, particularly how different aspects of epistemic
agency emerge and coordinate, could enhance both model
interpretability and trustworthiness.

Limitations First, we emphasize that Reflection-Bench
specifically examines epistemic agency as a cognitive-level
characteristic in base LLMs, rather than evaluating spe-
cialized agent architectures with additional modules. This
focused scope allows us to isolate and assess LLMs indepen-
dent of specific external components or application scenar-
ios. But it is unclear how epistemic agency might manifest
in systems where multiple LLMs collaborate as an agent
core. Second, Reflection-Bench involves seven cognitive
tests adapted to evaluate LLMs, but the ecological valid-
ity of these adapted tasks may require further investigation.
Third, while Reflection-Bench currently focuses on linguis-
tic interaction as a medium for studying LLMs’ epistemic
agency, we acknowledge the rich opportunities presented
by emerging multi-modal LLMs and embodied intelligence
systems. Future iterations could expand to include enriched
sensory or visual contexts to explore how epistemic agency
manifests across different modalities. Additionally, to es-
tablish reliable measurements, our tasks are designed with
structured episodes and clear feedback signals. Future work
could complement these controlled assessments by explor-
ing epistemic agency in more naturalistic contexts, such as
game (Allen et al., 2024) and open-ended dialogues with
shifting goals or ambiguous instructions. Although the pa-
rameterized design of Reflection-Bench efficiently reduces
the risks of data leakage, future work could develop regular
updating designs similar to LiveBench (White et al., 2024),

which could further address contamination concerns. Over-
all, while our current benchmark provides a novel frame-
work for evaluating epistemic agency in LLMs, these di-
rections for future work highlight the rich landscape of
possibilities for a deeper understanding of artificial agency.

6. Conclusion
This paper presents Reflection-Bench, a novel benchmark
for evaluating the intrinsic epistemic agency of Large Lan-
guage Models through the lens of cognitive psychology.
By examining the cognitive process of efficient agent-
environment interaction, we decompose epistemic agency
into seven interrelated dimensions, including prediction,
decision-making, perception, memory, counterfactual think-
ing, belief updating, and meta-reflection. Building on es-
tablished paradigms in cognitive psychology, we select and
adapt seven cognitive tests for Reflection-Bench. The pa-
rameterized design ensures minimization of potential data
contamination and maintains its long-term relevance for
future model evaluation.

Our comprehensive evaluation of 16 models using three
prompting strategies on entry-level difficulties reveals a
clear performance hierarchy and demonstrates that state-of-
the-art models exhibit a preliminary epistemic agency. The
supplementary hard-parameter evaluations demonstrated
expected performance decreases across all models, verify-
ing Reflection-Bench’s long-term relevance and substantial
headroom for model improvement. To validate the bench-
mark’s resilience against data contamination, we compared
Centaur, a model specifically fine-tuned with human cogni-
tive test data, against its base model, finding no significant
performance improvement, confirming the effectiveness of
our contamination-minimization design. The detailed be-
havioral analyses demonstrate critical limitations in cur-
rent models, particularly in prediction, decision-making,
and meta-reflection. The varying effectiveness of differ-
ent prompting strategies across tasks and models suggests
that successful epistemic agency requires dynamic cognitive
strategies rather than fixed approaches.

These findings point to several critical directions for advanc-
ing epistemic agency in LLMs, such as enhancing meta-
cognition, developing mechanisms for dynamic shifts be-
tween intuitive and deliberative reasoning, and fostering
organic coordination among cognitive capabilities. Future
work exploring agency manifestation in multi-LLM collab-
oration, multi-modal interactions, embodied systems, and
more naturalistic contexts could yield more insights into
our current framework. As AI systems continue to evolve,
understanding and enhancing their epistemic agency will
be increasingly crucial for developing more reliable LLMs-
based agents.
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A. System Prompts and Task Examples
A.1. Strategy Prompts

Chain of Thought: user prompt + ‘’let’s think step by step.”

Direct Generation: user prompt + “respond only with your choice directly without outputting any other information or
analysis.”

Free output: user prompt + “”

A.2. Weather Prediction Task

System Prompt You are an expert forecaster working in a weather station. There are two devices collecting data from
nature. Your task is to predict tomorrow’s weather based on (1) today’s weather and (2) the current states of four sensor
devices in the weather station. Here’s how the task works: 1. There are two devices, each represented by either 0 (inactive)
or 1 (active). 2. The device states will be given to you in the format [d1,d2], where each d is either 0 or 1; 3. Based on
these device states and today’s weather, you need to predict whether tomorrow’s weather will be sunny or rainy. 4. After
your prediction, I will inform you of the actual weather outcome. 5. We will repeat this process multiple times, and you
should try to improve your predictions based on the feedback. At each time, make your prediction of the next day’s weather
(’sunny’ or ’rainy’).

The task example is illustrated in Figure 3.

Figure 3. Example of Weather Prediction Task

A.3. Wisconsin Card Sorting Test

System prompt You are performing an interesting Task. In this task, you have four cards on your desk, that is, ’triangle
red 1’, ’cross green 2’, ’circle yellow 1’, and ’star blue 4’. The three word/figure represent (1) the type of shape, i.e. triangle,
cross, circle, or star, (2) the color of the shape, i.e. red, green, yellow, or blue, and (3) the number of the shape, i.e., 1, 2, 3,
or 4, respectively. At each trial, you will be presented with a testing card. You should point out which card on your desk
matches the testing card. I will not tell you the matching rule, but only provide feedback if your choice was right or wrong.
Your primary goal is to strive to maximize your accuracy rate. Respond with your option (’triangle red 1’, ’cross green 2’,
’circle yellow 1’, or ’star blue 4’). Keep performing the task until the end of the test.

The task example is illustrated in Figure 4.
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Figure 4. Example of Wisconsin Card Sorting Test

A.4. Oddball Test

System prompt You are playing a game and will be presented with a sequence of sentences about a specific topic. Just
make some short comments on the material.

Task examples can be found in Appendix D.

A.5. N-back (2-back)

System prompt You are playing a game. I will give you a series of characters in sequence, showing only one at a time.
Your task is to determine whether the current character is the same as the character 2 steps before. If the current character is
the same as the character 2 steps before, answer Yes. If the current character is different from the character 2 steps before,
answer No. For the first 2 steps, since there aren’t enough preceding characters for comparison, answer Not Available.

The task example is illustrated in Figure 5.

Figure 5. Example of N-back task (2-back)
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A.6. Double Choice Iowa Gambling Task

System prompt You are participating in an interesting game. There are four decks of cards in front of you, labeled ’AAA’,
’BBB’, ’CCC’, and ’DDD’. You start with $2000 in your account. Your goal is to maximize your account assets by making
a series of choices from these decks. For each trial: 1. Choose one deck (’AAA’, ’BBB’, ’CCC’, or ’DDD’). 2. You will
receive feedback on the outcome of your choice, including any gains and losses. 3. After receiving the feedback, you have
one opportunity to reconsider your initial decision; you can either stick with your original choice or make a new choice. 4.
Your final choice would determine your actual gain or loss for the trial. Respond with your deck choice (AAA, BBB, CCC,
or DDD) for each choice. keep making choices until instructed to stop.

The task example is illustrated in Figure 6.

Figure 6. Example of Double Choice Iowa Gambling Task

A.7. Probabilistic Reversal Learning Task

System prompt You are playing a two-arm bandit game. Each time you need to choose between the right arm and the left
arm. You will receive feedback (0 or 1) based on your choice. Your goal is to maximize the total reward. Keep performing
the task until the end of the test.

The task example is illustrated in Figure 7.

A.8. Meta Bandit Task

System prompt You are playing a two-arm bandit game. Each time, there is one rewarding arm, and you need to choose
between the right arm and the left arm. You will receive feedback (0 or 1) based on your choice. Your goal is to maximize
the total reward. Respond with your choice (right arm or left arm). Keep performing the task until the end of the test.

The task example is illustrated in Figure 8.

B. Raw Results
In this appendix, we provide detailed raw scores of all model-strategy pairs in the Weather Prediction Task (Table 3),
Wisconsin Card Sorting Task (Table 4), Oddball Test (Table 5), N-back (Table 6), Double Choice Iowa Gambling Task
(Table 7), and Probabilistic Reversal Learning Task (Table 8).

P.S. Illustrated in Figure 15 & 16, all models failed to recognize the 2-step reversal pattern and performed insisted mistakes
across the 20 blocks. Therefore, we only conduct behavioral analysis of the Meta Bandit Task.
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Table 3. Scores of Weather Prediction Task
Model Strategy Score Model Strategy Score

o1-preview Free output 58.92 o1-mini Free output 68.81
Direct generation 60.28 Direct generation 44.85

DeepSeek-Reasoner Free output 71.78 QwQ-32B-preview Free output 41.78
Direct generation 81.03 Direct generation 34.78

GPT-4o
CoT 43.92

GPT-4o-mini
CoT 43.92

Free output 28.33 Free output 28.33
Direct generation 60.02 Direct generation 60.02

Claude-3.5-Sonnet
CoT 85.36

Claude-3.5-Haiku
CoT 33.61

Free output 75.09 Free output 58.07
Direct generation 50.25 Direct generation 48.11

DeepSeek-V3
CoT 49.87

Qwen-2.5-72B-Instruct
CoT 38.48

Free output 46.48 Free output 41.16
Direct generation 47.36 Direct generation 43.53

Grok-2
CoT 33.97

Qwen-2.5-32B-Instruct
CoT 44.33

Free output 50.48 Free output 32.00
Direct generation 34.14 Direct generation 36.72

Gemini-2. 0-flash-exp
CoT 44.35

Qwen-2.5-14B-Instruct
CoT 49.50

Free output 57.13 Free output 52.75
Direct generation 42.58 Direct generation 50.33

Llama-3.3-70B
CoT 51.00

Qwen-2.5-7B-Instruct
CoT 43.23

Free output 42.10 Free output 44.35
Direct generation 34.44 Direct generation 38.75

Table 4. Scores of Wisconsin Card Sorting Test
Model Strategy Score Model Strategy Score

o1-preview Free output 80.56 o1-mini Free output 54.17
Direct generation 81.25 Direct generation 57.64

DeepSeek-Reasoner Free output 56.25 QwQ-32B-preview Free output 54.17
Direct generation 49.31 Direct generation 43.75

GPT-4o
CoT 68.75

GPT-4o-mini
CoT 55.56

Free output 54.17 Free output 54.17
Direct generation 48.61 Direct generation 43.75

Claude-3.5-Sonnet
CoT 81.25

Claude-3.5-Haiku
CoT 61.11

Free output 79.86 Free output 51.39
Direct generation 47.92 Direct generation 38.19

DeepSeek-V3
CoT 55.56

Qwen-2.5-72B-Instruct
CoT 58.33

Free output 53.47 Free output 52.78
Direct generation 47.22 Direct generation 43.06

Grok-2
CoT 61.81

Qwen-2.5-32B-Instruct
CoT 46.53

Free output 50.00 Free output 48.61
Direct generation 49.31 Direct generation 43.75

Gemini-2. 0-flash-exp
CoT 64.58

Qwen-2.5-14B-Instruct
CoT 61.11

Free output 50.00 Free output 47.92
Direct generation 43.06 Direct generation 41.67

Llama-3.3-70B
CoT 32.64

Qwen-2.5-7B-Instruct
CoT 48.61

Free output 52.08 Free output 40.97
Direct generation 43.06 Direct generation 41.67
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Table 5. Scores of Oddball Test
Model Strategy Score Model Strategy Score

o1-preview Free output 27.20 o1-mini Free output 32.34
Direct generation 25.10 Direct generation 30.90

DeepSeek-Reasoner Free output 45.05 QwQ-32B-preview Free output 47.33
Direct generation 40.46 Direct generation 42.34

GPT-4o
CoT 33.43

GPT-4o-mini
CoT 33.53

Free output 34.28 Free output 33.25
Direct generation 28.57 Direct generation 28.05

Claude-3.5-Sonnet
CoT 52.90

Claude-3.5-Haiku
CoT 45.26

Free output 55.23 Free output 44.23
Direct generation 52.01 Direct generation 38.19

DeepSeek-V3
CoT 41.78

Qwen-2.5-72B-Instruct
CoT 37.35

Free output 46.57 Free output 38.94
Direct generation 37.52 Direct generation 31.67

Grok-2
CoT 46.83

Qwen-2.5-32B-Instruct
CoT 35.16

Free output 45.64 Free output 33.53
Direct generation 42.07 Direct generation 34.87

Gemini-2. 0-flash-exp
CoT 53.53

Qwen-2.5-14B-Instruct
CoT 48.36

Free output 47.54 Free output 49.11
Direct generation 36.01 Direct generation 39.48

Llama-3.3-70B
CoT 59.25

Qwen-2.5-7B-Instruct
CoT 30.01

Free output 59.96 Free output 25.86
Direct generation 59.19 Direct generation 21.79

Table 6. Scores of N-back (2-back)
Model Strategy Score Model Strategy Score

o1-preview Free output 89.42 o1-mini Free output 85.58
Direct generation 100.00 Direct generation 86.54

DeepSeek-Reasoner Free output 94.23 QwQ-32B-preview Free output 75.00
Direct generation 79.81 Direct generation 56.73

GPT-4o
CoT 95.19

GPT-4o-mini
CoT 60.58

Free output 73.08 Free output 61.54
Direct generation 67.31 Direct generation 54.81

Claude-3.5-Sonnet
CoT 90.38

Claude-3.5-Haiku
CoT 79.81

Free output 93.26 Free output 61.54
Direct generation 90.38 Direct generation 64.42

DeepSeek-V3
CoT 100.00

Qwen-2.5-72B-Instruct
CoT 61.54

Free output 83.65 Free output 77.88
Direct generation 64.42 Direct generation 66.35

Grok-2
CoT 100.00

Qwen-2.5-32B-Instruct
CoT 57.69

Free output 82.69 Free output 65.38
Direct generation 69.23 Direct generation 61.54

Gemini-2. 0-flash-exp
CoT 76.92

Qwen-2.5-14B-Instruct
CoT 80.77

Free output 71.15 Free output 50.96
Direct generation 58.65 Direct generation 59.62

Llama-3.3-70B
CoT 59.62

Qwen-2.5-7B-Instruct
CoT 43.27

Free output 66.35 Free output 53.85
Direct generation 65.39 Direct generation 47.12
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Table 7. Scores of Double Choice Iowa Gambling Test
Model Strategy Score Model Strategy Score

o1-preview Free output 61.30 o1-mini Free output 40.23
Direct generation 58.41 Direct generation 54.68

DeepSeek-Reasoner Free output 41.93 QwQ-32B-preview Free output 63.59
Direct generation 75.54 Direct generation 64.21

GPT-4o
CoT 61.80

GPT-4o-mini
CoT 34.96

Free output 55.96 Free output 74.86
Direct generation 64.02 Direct generation 42.54

Claude-3.5-Sonnet
CoT 43.96

Claude-3.5-Haiku
CoT 60.45

Free output 36.98 Free output 64.87
Direct generation 71.60 Direct generation 66.81

DeepSeek-V3
CoT 71.43

Qwen-2.5-72B-Instruct
CoT 66.91

Free output 57.40 Free output 63.40
Direct generation 49.25 Direct generation 62.59

Grok-2
CoT 54.89

Qwen-2.5-32B-Instruct
CoT 52.68

Free output 67.93 Free output 28.72
Direct generation 51.43 Direct generation 42.75

Gemini-2. 0-flash-exp
CoT 61.17

Qwen-2.5-14B-Instruct
CoT 25.89

Free output 80.82 Free output 45.58
Direct generation 62.81 Direct generation 57.28

Llama-3.3-70B
CoT 51.43

Qwen-2.5-7B-Instruct
CoT 38.12

Free output 59.19 Free output 45.19
Direct generation 46.92 Direct generation 36.95

Table 8. Scores of Probabilistic Reversal Learning Task
Model Strategy Score Model Strategy Score

o1-preview Free output 71.87 o1-mini Free output 46.12
Direct generation 74.37 Direct generation 49.45

DeepSeek-Reasoner Free output 59.54 QwQ-32B-preview Free output 69.74
Direct generation 61.32 Direct generation 45.28

GPT-4o
CoT 70.66

GPT-4o-mini
CoT 68.20

Free output 71.74 Free output 74.00
Direct generation 73.78 Direct generation 72.20

Claude-3.5-Sonnet
CoT 57.63

Claude-3.5-Haiku
CoT 67.51

Free output 66.34 Free output 69.70
Direct generation 63.38 Direct generation 76.59

DeepSeek-V3
CoT 48.86

Qwen-2.5-72B-Instruct
CoT 66.02

Free output 69.25 Free output 65.40
Direct generation 70.60 Direct generation 76.34

Grok-2
CoT 68.34

Qwen-2.5-32B-Instruct
CoT 69.98

Free output 73.06 Free output 78.86
Direct generation 72.82 Direct generation 72.99

Gemini-2. 0-flash-exp
CoT 68.08

Qwen-2.5-14B-Instruct
CoT 75.41

Free output 73.12 Free output 70.48
Direct generation 62.90 Direct generation 67.54

Llama-3.3-70B
CoT 60.08

Qwen-2.5-7B-Instruct
CoT 63.18

Free output 72.73 Free output 69.56
Direct generation 68.48 Direct generation 49.44
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Table 9. Performance of 18 Models on Five Tests in Reflection-Bench Across Different Prompting Strategies and Difficulty Levels
Model WPT WCST N-back DC-IGT PRLT Overall

Chance Level Easy / 51.84 (69.95) 61.80 (66.67) 48.07 (59.62) 2.51 (16.48) 56.47 (67.87) 40.95
(95% threshold) Hard / 55.80 (75.94) 55.28 (60.00) 46.17 (57.69) 11.48 (19.67) 57.72 (66.64) 41.77

o1-preview Easy Free 58.92 80.56 89.42 61.30 71.87 72.41
Direct 60.28 81.25 100.00 58.41 74.37 74.86

Hard Direct 52.38 41.11 42.31 47.57 64.92 49.66

DeepSeek-Reasoner Easy Free 71.78 56.25 94.23 41.93 59.54 64.75
Direct 81.03 49.31 79.81 75.54 61.32 69.40

Hard Direct 54.49 43.33 75.96 60.02 51.29 57.02

o1-mini Easy Free 68.81 54.17 85.58 40.23 46.12 58.98
Direct 44.85 57.64 86.54 54.68 49.45 58.63

Hard Direct 29.14 41.67 51.92 14.93 62.62 40.06

QwQ-32B-preview Easy Free 41.78 54.17 75.00 63.59 69.74 60.86
Direct 34.78 43.75 56.73 64.21 45.28 48.95

Hard Direct 29.13 43.33 59.61 27.50 54.46 42.81

GPT-4o Easy
CoT 43.92 68.75 95.19 61.80 70.66 68.06
Free 28.33 54.17 73.08 55.96 71.74 56.66
Direct 60.02 48.61 67.31 64.02 73.48 62.69

Hard Direct 40.08 44.44 59.62 44.27 64.25 50.53

Claude-3.5-Sonnet Easy
CoT 85.36 81.25 90.38 43.96 57.63 71.72
Free 75.09 79.86 93.26 36.98 66.34 70.31
Direct 50.25 47.92 90.38 71.60 63.38 64.71

Hard Direct 59.51 43.88 72.12 30.82 55.32 52.33

DeepSeek-V3 Easy
CoT 49.87 55.56 100.00 71.43 48.86 65.14
Free 46.48 53.47 83.65 57.40 69.25 62.05
Direct 47.36 47.22 64.42 49.25 70.60 55.77

Hard Direct 31.78 43.33 59.62 55.85 66.05 52.33

Grok2 Easy
CoT 33.97 61.81 100.00 54.89 48.86 59.91
Free 50.48 50.00 82.69 67.93 69.25 64.07
Direct 34.14 49.31 69.23 51.43 72.82 55.39

Hard Direct 36.93 50.00 67.30 39.52 64.68 51.69

Gemini-2.0-flash-exp Easy
CoT 44.35 64.58 76.92 61.17 68.08 63.16
Free 57.13 50.00 71.15 80.82 73.21 66.46
Direct 42.58 43.06 58.65 62.81 62.90 54.00

Hard Direct 40.15 43.33 77.88 28.23 67.26 51.37

Llama-3.3-70B-Instruct Easy
CoT 51.00 32.64 59.62 51.43 60.08 50.96
Free 42.10 52.08 66.35 59.19 72.73 58.49
Direct 34.44 43.06 65.39 46.92 68.48 51.66

Hard Direct 44.93 44.44 59.62 30.15 58.88 47.60

GPT-4o-mini Easy
CoT 43.92 55.56 60.58 34.96 68.20 52.64
Free 28.33 54.17 61.54 74.86 74.00 58.58
Direct 60.02 43.75 54.81 42.54 72.20 54.66

Hard Direct 37.00 40.00 53.85 42.75 61.93 47.11

Claude-3.5-Haiku Easy
CoT 33.61 61.11 79.81 60.45 67.51 60.50
Free 58.07 51.39 61.54 64.87 69.70 61.11
Direct 48.11 38.19 64.42 66.81 76.59 58.82

Hard Direct 47.40 35.56 75.00 68.38 62.93 57.85

Qwen-2.5-72B-Instruct Easy
CoT 38.48 58.33 61.54 66.91 66.02 58.26
Free 41.16 52.78 77.88 63.40 65.40 60.12
Direct 43.53 43.06 66.35 62.59 76.34 58.37

Hard Direct 30.71 43.33 58.65 45.43 63.81 48.39

Qwen-2.5-32B-Instruct Easy
CoT 44.33 46.53 57.69 52.68 69.98 54.24
Free 32.00 48.61 65.39 28.72 78.86 50.72
Direct 36.72 43.75 61.54 42.75 72.99 51.55

Hard Direct 36.80 44.44 66.35 29.35 54.42 46.27

Qwen-2.5-14B-Instruct Easy
CoT 49.50 61.11 80.77 25.89 75.41 58.54
Free 52.75 47.92 50.96 45.58 70.48 55.29
Direct 50.33 41.67 59.62 57.28 67.54 55.29

Hard Direct 48.44 44.44 59.62 69.77 59.87 56.43

Qwen-2.5-7B-Instruct Easy
CoT 43.23 48.61 43.27 38.12 63.18 47.28
Free 44.35 40.97 53.85 45.58 69.56 50.86
Direct 38.75 41.67 47.12 36.95 49.44 42.79

Hard Direct 26.61 42.77 57.69 27.54 45.97 40.12

Centaur Easy Direct 47.51 31.94 50.96 37.31 71.68 46.34
Hard Direct 46.16 52.78 46.15 36.03 39.89 44.20

Llama-3.1-70B-Instruct Easy Direct 34.58 54.86 67.31 54.81 64.28 55.17
Hard Direct 40.58 46.11 59.62 48.03 62.43 51.35
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Figure 7. Example of Probabilistic Reversal Learning Task

Figure 8. Example of Meta Bandit Task from GPT-4o, insisting the ’win-stay-lose-switch’ strategy while failing to identify the global
patterns.

C. Secondary Analysis
This section provides an in-depth supplementary analysis focusing on the performance patterns of models across tasks,
strategies, and sessions. Key visualizations include:

• Model x Task x Strategy Variance (Figure 9): Highlights the variability in model performance across different
task-strategy combinations.

• Patterns in Weather Prediction Task (Figure 10): Identifies five distinct response patterns exhibited by models
during probabilistic prediction.

• Wisconsin Card Sorting Test (Figure 11): Examines accuracy trends across six rule groups, revealing adaptation
challenges when rules change.
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• Double Choice Iowa Gambling Task (Figures 12 & 13): Analyzes short-term switching behaviors and long-term
reward optimization strategies.

• Probabilistic Reversal Learning Task (Figure 14): Evaluates belief updating patterns following reward probability
reversals.

• Meta Bandit Task (Figures 15 & 16): Investigates session-wise performance, highlighting difficulties in recognizing
global reward patterns.

• Prompting Strategy Analysis (Figure 17): Explores the impact of different prompting strategies (free output, direct
generation, and CoT) on task performance.

Figure 9. Model x Task Strategy Variance
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Figure 10. Five patterns of model responses

Figure 11. Wisconsin Card Sorting Test, accuracy by rule groups (6 blocks * 12 trials) over 72 trials
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Figure 12. Short term: switching behaviors across models in the Double Choice Iowa Gambling Task

Figure 13. Long term: Average overage changes across models in the Double Choice Iowa Gambling Task
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Figure 14. Probabilistic Reversal Learning Task

Figure 15. The first session of all model-strategy combinations on
the Meta Bandit Task. Blue cells indicate trials where rewards
were received, while pink cells indicate trials where no rewards
were received. All models exhibited either periodic or irregular
errors, indicating their general lack of meta-reflection.

Figure 16. The second session of all model-strategy combinations
on the Meta Bandit Task
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Figure 17. Performance analysis across different prompting strategies (overall, by task, and by model)
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D. Automated Evaluation of Oddball Test
D.1. Rule-based Human Scoring

For the AAAA-B-AAA oddball prompt stimuli, the model’s level of surprisals was annotated based on the following rule:

• 0: forced explanation or neglect B

• 1: simple enumeration of A and B

• 2: pointing out that A and B are different

• 3: clearly stating B is nonsensical in this sequence

We validated our automated evaluation method using 1,950 responses from 13 models, including o1-preview, o1-mini,
GPT-4, GPT-4o, GPT-4o-mini, Claude-3.5-Sonnet, Gemini-1.5-Pro, Llama-3.1-405B/70B/8B-Instruct, and Qwen-2.5-
72B/32B/14B-Instruct. Five of these models (GPT-4, Gemini-1.5-Pro, Llama-3.1-405B/70B/8B-Instruct) were not included
in our main evaluation but were used to verify that our embedding-based method generalizes to other models. This approach
ensures that our evaluation methodology applies to diverse models. These responses were scored by one Master’s student in
cognitive science.

D.1.1. ANNOTATION EXAMPLE

Oddball prompt The Great Wall of China is an ancient structure. It stretches over 13,000 miles. The wall was built for
defense purposes. Many tourists visit it each year. Bananas are rich in potassium. Parts of the wall date back to the 7th
century BCE. Some sections are well-preserved. The wall is visible from space.

0: Forced explanation Wow, 13,000 miles is long! Ancient defense against potassium-rich invaders? Not sure about
being visible from space, that’s a myth. It’s still amazing though!

1: Simple enumeration The Great Wall of China is truly ancient and impressive. Over 13,000 miles is an astonishing
length! Defense was a primary reason for its construction. It’s clearly a major tourist attraction. Interesting note about
bananas being rich in potassium. Some sections dating back to the 7th century BCE adds to its historical significance. It’s
good to know some parts are well-preserved. There’s debate about its visibility from space, but it remains a popular claim.

2: Pointing out differences The Great Wall of China is indeed a remarkable ancient structure. Stretching over 13,000
miles showcases its immense scale. It was primarily built for defense, highlighting its historical significance. Its popularity
among tourists reflects its cultural importance. Interesting fact about bananas being rich in potassium, though unrelated to
the Great Wall. Parts dating back to the 7th century BCE emphasize its long history. Well-preserved sections allow visitors
to appreciate its original construction. The idea that the wall is visible from space is a common misconception.

3: Clearly stating nonsense Interesting fact about the wall’s age... wait, what’s with the bananas? That seems out of
place. Anyway, 7th century BCE is impressive. I’m not sure if it’s entirely visible from space, though - I’ve heard that’s a
myth.

D.2. Automated Evaluation Method

Since that, the surprises are reflected in the model’s text responses. Intuitively, we can first craft a standard sentence
expressing the highest level of surprises. Then higher similarity between the model’s response and this standard surprise
sentence can be defined as the level of surprise.

Specifically, by splitting the model’s response into single sentences, the cosine similarity between the standard sentence and
the model’s responses is calculated. The highest cosine similarity is adopted as the score of this response.

We analyze the Pearson correlation between rule-based human annotation and our rule-free automated method to validate its
efficiency. On single data points, the result indicates a good correlation between the two methods as shown in Figure 18.
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Figure 18. Correlation between human and automated scoring, single data point

Given that manual scores are ordinal categorical variables (0, 1, 2, and 3) while automated scores are continuous, we
conducted a correlation analysis on aggregated data points to address this measurement discrepancy. As shown in Figure
19, the correlation strength increases with the level of aggregation. To balance the measurement continuity and statistical
power, we drew our conclusion by aggregating 10 responses into one data point, resulting in 195 scores. It reveals a strong
correlation between automated and manual scoring (r=0.87, p=5.83e-60), supporting the validity of this automated method.

Figure 19. Correlation between human and automated scoring, aggregate data point
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