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Abstract

Tables are widely used across various fields001
such as finance, healthcare, and public adminis-002
tration, playing an indispensable role in modern003
society. Despite their importance, the struc-004
tured nature of tabular data, like permutation005
invariance, adds complexity to its processing.006
Large Language Models (LLMs) offer new op-007
portunities, but their performance remains sub-008
optimal due to the unique characteristics of009
tables. Rapidly improving LLMs’ ability to010
process tables is unattainable in the short term.011
Therefore, we believe that table tasks should be012
broken down into many interrelated subtasks to013
enhance performance. So, we define workflows014
for handling table tasks, refine existing methods015
based on these workflows, and compare poten-016
tially effective methods, such as LLM-based017
agents, for implementing all workflows, thus018
providing assistance for future development.019

1 Introduction020

Tables are common in our daily lives and widely021

used in fields such as finance (Hwang et al., 2023a),022

healthcare (Shi et al., 2024), public administration023

(Musumeci et al., 2024), and chemistry (Do et al.,024

2023). They play an indispensable role in modern025

society. However, their structured nature like per-026

mutation invariance adds complexity to understand-027

ing, processing, and utilization. As data volume028

and complexity increase, the challenges in table029

processing grow. Unlike text and images, tabular030

data have received less attention in machine learn-031

ing (van Breugel and van der Schaar, 2024).032

Large Language Models (LLMs) like GPT-4033

(Achiam et al., 2023) present novel opportunities034

for handling tabular data. By converting tabular035

data into text or utilizing Multimodal Large Lan-036

guage Models (MLLMs) (OpenAI, 2023) for pro-037

cessing image-formatted tables, LLMs can effec-038

tively execute certain table-related tasks. However,039

despite relatively clean datasets like BIRD (Li et al.,040

2024b), LLMs often fall short due to inherent chal- 041

lenges such as permutation invariance. 042

Focusing solely on specific table tasks limits 043

the exploitation of LLMs’ inherent capabilities, 044

hindering the development of sufficiently practi- 045

cal systems for real-world applications. Rapidly 046

enhancing LLMs’ capacity to handle tables to a 047

level suitable for real-world tasks is unrealistic in 048

the current scenario. A potential approach involves 049

decomposing the processing flow of table tasks and 050

implementing comprehensive workflows to address 051

them more effectively. 052

Hence, it is imperative to establish a holistic 053

workflow tailored for real-world table task scenar- 054

ios. This entails grasping the prerequisites for table 055

tasks, pinpointing overlooked or unattended areas 056

through a thorough review of existing methodolo- 057

gies, and delineating pathways for future enhance- 058

ments in table processing. 059

LLM-based agents, powered by large language 060

models, can exhibit some autonomous behavior 061

and complete diverse tasks (Wang et al., 2024a). 062

Although there are various shortcomings in current 063

LLM-based agents handling table tasks, such as 064

SheetAgent (Chen et al., 2024), we believe they 065

have the potential to accomplish entire workflows. 066

Therefore, this paper compares several existing 067

LLM-based agents for table tasks, analyzing which 068

parts of the workflow they can complete and which 069

remain unaddressed. This analysis aims to guide 070

the future development of LLM-based agents for 071

table tasks. 072

The contributions of this paper is as follows. 073

1. We define the workflow of the entire table ap- 074

plication, including characteristics and issues 075

of tables, table reading, table preprocessing, 076

user query understanding, table retrieval, table 077

reasoning, table manipulation and tabular data 078

safety. We also take into account the various 079

challenges that table tasks face across various 080

domains. 081
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2. We summarize existing methods across differ-082

ent workflows and analyze areas that remain083

unexplored or minimally addressed. We also084

propose potential research directions, such as085

adapting methods from other fields.086

3. We compare existing LLM-based agents on087

tables, analyze their module compositions,088

and evaluate the gaps between them and real-089

world table task requirements.090

2 Characteristics and Categories of091

Tabular Data092

Table information, or structured information, in-093

cludes both textual data and structural details. That094

is, a table is a two-dimensional data structure com-095

posed of rows and columns with schema informa-096

tion. This structural aspect gives tabular data char-097

acteristics that general textual information lacks.098

For LLMs, this presents several challenges:099

(1) Permutation Invariance. Tabular data re-100

mains unchanged if rows and columns are swapped.101

The model’s output should be consistent even when102

the input table’s rows or columns are exchanged103

(Zhu et al., 2022). (2) Heterogeneity. Tabular data104

usually contains both numerical and categorical105

features (Borisov et al., 2022a). (3) Sparsity. Tabu-106

lar data is often sparse and imbalanced, resulting in107

long-tail distributions in training samples (Sauber-108

Cole and Khoshgoftaar, 2022). (4) Data Quality109

Issues. Tabular data often has missing features,110

noise, and class imbalance.111

Apart from common characteristics, different112

types of tables also have unique features. Based on113

their structural information, tables can generally be114

categorized as follows:115

(1) Database Tables, Primarily Relational116

Database Tables. These tables have a uniform117

structure and often store large amounts of data.118

Multiple tables within the same database are deeply119

connected through foreign keys. They contain com-120

plete schema information and adhere to database121

design paradigms. In relational databases, tables122

can be manipulated using SQL (Silberschatz et al.,123

2011). (2) Text-Serialized Tables. These tables,124

which can be in CSV or TSV formats, are similar to125

those in relational databases but lack explicitly de-126

fined schema information. (3) Excel Spreadsheets127

or Sheets. These are similar to CSV and TSV128

formats but more versatile, as a file can contain129

multiple sheets. They may include merged cells,130

highlighting, and other visual formats (Chen et al.,131

2024). (4) Tables Found in Documents. These 132

tables, commonly encountered in web pages or 133

PDFs, vary in forms. They often necessitate OCR 134

or similar technologies for recognition (Shafait and 135

Smith, 2010). (5) Other Types of Broadly Cus- 136

tomized Hierarchical Tables. These tables, like 137

invoices, menus, or receipts, exhibit diverse for- 138

mats and intricate hierarchical relationships with 139

logical mappings (Cheng et al., 2021). 140

In summary, to enable LLMs to better process 141

tabular data and complete table-related tasks, a se- 142

ries of optimizations tailored to the characteristics 143

of tabular data is necessary. 144

3 Introduction to Workflow 145

In this chapter, we will provide a detailed explo- 146

ration of the workflow for table-related tasks in 147

real-world scenarios and introduce the different 148

characteristics of table tasks in various domains. 149

The workflow diagram can be seen in Figure 1. 150

Figure 1: The workflow diagram.

3.1 Table Reading 151

There are two primary carriers for machine- 152

readable tables: text-based Carriers and image- 153

based Carriers. Our main focus is on the former, 154

while discussions related to the latter are included 155

in Appendix A. 156

Tables need to be serialized into text to be in- 157

put into LLMs and serialization formats include: 158

(1) Text-based Table Serialization. Formats like 159

Markdown, CSV, TSV, HTML, XML, and LaTeX 160

(Singha et al., 2023a; Sui et al., 2024) are com- 161

monly used for representing tables. (2) Encoder- 162

based Formats. Research utilizes encoders to 163

process tables and input encoded information into 164

LLMs. This approach involves pre-training the Ta- 165

ble Encoder and aligning the encoded information 166

with LLMs (Jin et al., 2024). 167

3.2 Table Preprocessing 168

Table preprocessing involves traditional methods 169

like filling missing data, detecting anomalies, and 170

normalizing data. Additionally, column name 171

cleaning restores original semantics to aid tables 172
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with abbreviated or desensitized column names173

(Zhang et al., 2023b). We also considered some174

other possible Table Preprocessing scenarios, but175

due to the lack of sufficient research, we have in-176

cluded them in Appendix B.177

3.3 User Query Understanding178

Tasks involving table processing require both tab-179

ular data and user queries. However, user queries180

often pose challenges due to ambiguity. To tackle181

these challenges, advanced intent detection within182

LLMs are necessary (Liu et al., 2019). When faced183

with vague questions, models must demonstrate184

robustness and the ability to follow instructions185

(Zhou et al., 2023). In instances of excessively186

ambiguous queries, models might need to prompt187

users to clarify their requirements (Wu, 2023).188

3.4 Table Retrieval189

Using large tables in LLMs can lead to long con-190

texts, increased costs, and reduced performance191

(Kaddour et al., 2023). To address this, Retrieval-192

Augmented Generation (RAG) (Gao et al., 2023b)193

can be applied within tables to extract key infor-194

mation, avoiding the need to input large tables di-195

rectly. Of course, RAG can also be used for table196

tasks such as query-answer retrieval, but this is197

not our main focus. Relevant content is included198

in Appendix C. A common method for RAG-in-199

Table is schema link, which selects the necessary200

tables, columns, and key values from the schema201

for a given task (Pourreza and Rafiei, 2024a). How-202

ever, schema link mainly suits relational databases.203

Other methods aim to filter essential information204

from diverse table types (Kong et al., 2024).205

3.5 Table Reasoning206

Various papers offer different definitions of ta-207

ble reasoning (Zhang et al., 2024e; Zhao et al.,208

2022b). Here, our focus lies on LLMs’ ability to209

comprehend tables autonomously, without external210

aids. Tasks in table reasoning typically include Ta-211

ble Question Answering (TableQA) (Pasupat and212

Liang, 2015), Table Fact Verification (Chen et al.,213

2019), Table-to-Text (Nan et al., 2022a), and Table214

Interpretation (Zhang et al., 2023d).215

3.6 Table Manipulation216

Table manipulation involves modifying table infor-217

mation to fulfill user needs, which includes chang-218

ing content, schema, or the table’s structure (Chen219

et al., 2024). One method is to directly use LLMs220

for generating modified tables (Li et al., 2023c). 221

However, due to the limitations of LLMs, primarily 222

their context window constraints and difficulties 223

in handling tables, they are often used to generate 224

code or invoke tools (Schick et al., 2024). Text-to- 225

SQL is a significant area of research, generating 226

SQL queries based on input tables and user queries 227

(Yu et al., 2018). SQL has limitations, such as visu- 228

alization, prompting the use of Python or domain- 229

specific languages (DSLs) for table manipulation 230

(Lai et al., 2023; Zha et al., 2023). 231

3.7 Other Table Tasks 232

These tasks include table prediction and table gen- 233

eration. 234

Table Prediction. In table prediction tasks, pre- 235

dictions are made using given tabular data. This 236

falls under predictive tasks in machine learning. 237

Handling the heterogeneity and continuity of nu- 238

merical features is typically required for these tasks 239

(Yan et al., 2024). 240

Table Generation. Table generation tasks are 241

broadly divided into two types. Firstly, summary- 242

form table generation involves summarizing input 243

information into a table, serving as a summary of 244

the input (Prasad et al., 2024). Secondly, synthetic 245

data generation involves creating or augmenting 246

data to supplement training data when it’s insuffi- 247

cient. This usually requires generating high-quality 248

data closely resembling real-world data (Borisov 249

et al., 2022b). 250

3.8 Tabular data Safety 251

LLMs must resist adversarial attacks and avoid gen- 252

erating biased, discriminatory, or privacy-violating 253

content. They should also ensure data security by 254

not producing code that threatens it. Additionally, 255

when dealing with table tasks, LLMs should prior- 256

itize data integrity, reliability, confidentiality, and 257

traceability (Yao et al., 2024). 258

3.9 Table Tasks in Various Domains 259

Table tasks in different domains show distinct char- 260

acteristics. In the financial domain, tasks often in- 261

volve complex mathematical computations (Chen 262

et al., 2021b). In the medical domain, tables often 263

have numerous columns (potentially tens of thou- 264

sands or more) and sparse data (Margeloiu et al., 265

2023). Moreover, each domain has its specific ter- 266

minologies. This requires special handling when 267

dealing with table tasks in different fields. 268
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4 Methods of Different Workflows269

This section outlines methods within each work-270

flow, addressing problems and research gaps. Its271

aim is to help build comprehensive table process-272

ing systems, enhancing their capabilities within273

workflows.274

4.1 Table reading275

Various serialization methods exist for tables, with276

Markdown format being the most common (Fang277

et al., 2024). Markdown offers readability and re-278

quires fewer tokens. Other methods include JSON279

(Sui et al., 2024), DFLoader (Singha et al., 2023b),280

Attribute-Value Pairs (Wang et al., 2023c), HTML281

(Sui et al., 2023b), Latex (Jaitly et al., 2023), and282

converting tables into natural language (Yu et al.,283

2023; Gong et al., 2020). HTML format has been284

found beneficial for GPT models due to their pre-285

training on web data (Sui et al., 2023b, 2024). La-286

tex has also shown promise (Jaitly et al., 2023).287

HTML and Latex may retain more structural infor-288

mation, aiding LLMs’ understanding, but require289

more tokens. Adding identifiers and highlighting290

key information in serialization impact LLMs’ un-291

derstanding of tables (Deng et al., 2024).292

Insufficient research exists on table serialization,293

partly because LLMs do not consider serialization294

method during pre-training. This may affect their295

ability to understand tables.296

For Encoder-based formats, HGT transforms ta-297

bles into heterogeneous graphs (HG) (Jin et al.,298

2024), while DictLLM treats tables as Key-Value299

structured data (Guo et al., 2024). They then enter300

the converted form into the Encoder. TableGPT301

also introduces a Table Encoder.302

Encoder-based formats convert tabular data into303

abstract representations, handling various tables,304

reducing token counts, capturing key information,305

and addressing permutation invariance. Table en-306

coders can enhance RAG and other LLMs’ perfor-307

mance (Herzig et al., 2020; Yin et al., 2020; Deng308

et al., 2022; Wang et al., 2021b; Wang and Sun,309

2022; Ye et al., 2023), yet their application and310

research in LLMs remain limited. More research311

is needed to explore their effectiveness in handling312

table tasks, aiding LLMs in processing such tasks313

better.314

4.2 Table Preprocessing315

Traditional Table Preprocessing. DAAgent (Hu316

et al., 2024) treats table preprocessing as a task,317

while Table-GPT (Li et al., 2023c) incorporates re- 318

lated tasks like data imputation. LLMs with robust 319

table capabilities could potentially streamline pre- 320

processing and enhance missing value prediction. 321

However, direct LLM use for table processing is 322

costly; integrating LLMs with Automated Machine 323

Learning (AutoML) (He et al., 2021) appears more 324

feasible. 325

Column Name Cleaning. It originally seen as 326

a classification task (Ammar et al., 2011; Veyseh 327

et al., 2020), categorizing abbreviations into fixed 328

options. NameGuess (Zhang et al., 2023b) treats 329

it as a generative task, reconstructing full names 330

using LLMs’ knowledge. However, NameGuess 331

only provides partial information from abbrevia- 332

tions, thus facing difficulties in handling omitted 333

details in column names. Improving LLMs’ table 334

understanding and integrating external knowledge 335

could enhance Column name cleaning. It could 336

also serve as pre-training to enhance LLMs’ table 337

comprehension and synergize with table generation 338

tasks. 339

4.3 User Query Understanding 340

Intention clarification is a common method to deal 341

with ambiguity (Mu et al., 2023). It can involve di- 342

rect questioning or asking the user for clarification. 343

Agents like SheetAgent (Chen et al., 2024) and 344

TableGPT (Zha et al., 2023) have Intent Detection 345

capabilities. Multi-turn Text-to-SQL datasets, such 346

as CoSQL (Yu et al., 2019), require agents to seek 347

clarification from users when necessary. 348

A significant challenge is defining and under- 349

standing ambiguity in table contexts. Human an- 350

notators only agree 62Papicchio et al. developed a 351

pipeline to evaluate a model’s performance in re- 352

solving input ambiguity (Papicchio et al.), yet other 353

forms of ambiguity remain unaddressed. Huang et 354

al. found that documentation meant for humans can 355

assist GPT-4 in Text-to-SQL tasks (Huang et al., 356

2023). Bhaskar et al. propose using a top-k ap- 357

proach to generate possible candidates for users 358

(Bhaskar et al., 2023). Advanced LLMs like GPT- 359

4 can identify and introduce ambiguity in user 360

queries (Floratou et al., 2024), indicating poten- 361

tial for future research. 362

4.4 Table Retrieval 363

The simplest schema link approach involves using 364

LLMs directly to output schema link results based 365

on schema information and user queries (DTS-SQL 366
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(Pourreza and Rafiei, 2024b), DIN-SQL (Pour-367

reza and Rafiei, 2024a), MAC-SQL (Wang et al.,368

2023a), etc.).369

For large databases with many tables, some370

approaches use a two-stage method: first select-371

ing tables, then performing column-level schema372

link within them. Examples include CRUSH4SQL373

(Kothyari et al., 2023) and MURRE (Zhang et al.,374

2024d).375

In handling even larger databases where schema376

information can’t fit into LLMs at once, Blar-SQL377

(Domínguez et al., 2024) suggests schema chunk-378

ing, dividing schema information into chunks that379

fit within the context window and then merging the380

results.381

Besides schema link, similar efforts focus on382

RAG-in-Table tasks. For example, OPENTAB383

(Kong et al., 2024) conducts column selection via384

SQL first, then proceeds with row and column se-385

lection. ReAcTable’s (Zhang et al., 2023g) primary386

operation involves selecting rows and columns.387

PURPLE (Ren et al., 2024) represents schema as a388

graph and uses the Steiner (Hwang and Richards,389

1992) tree problem to prune the schema.390

But the schema chunking method in Blar-SQL391

(Domínguez et al., 2024) naturally causes a per-392

formance loss. To boost schema link performance,393

exploring methods like PURPLE, which rely less394

on LLMs’ capabilities, such as invoking tools, may395

be necessary.396

Incorrect RAG-in-Table directly affects subse-397

quent table tasks’ effectiveness. However, there’s a398

lack of evaluation work on RAG-in-Table. Many399

testing methods, like SLSQL (Lei et al., 2020), of-400

ten rely on simple metrics like Precision, Recall,401

F1. To cater to LLMs’ needs in schema link, DFIN-402

SQL (Volvovsky et al., 2024) proposes a new met-403

ric, Schema Link Accuracy Metric, yet relevant404

datasets or benchmarks are still lacking.405

4.5 Table Reasoning406

There are numerous datasets for tasks like TableQA407

(Pasupat and Liang, 2015; Nan et al., 2022b; Herzig408

et al., 2021a; Chen et al., 2020b,a) and Table409

Fact Verification (Chen et al., 2019). Consider-410

able research leverages LLMs for table reasoning.411

The simplest approach uses prompt engineering.412

For example, ToolWriter (Gemmell and Dalton,413

2023) directly generates answers for straightfor-414

ward TableQA tasks using LLMs. Sui et al. employ415

self-augmented prompting (Sui et al., 2024), where416

LLMs first generate an understanding of the table 417

and then use it to generate answers. Some methods 418

also enhance LLMs’ capabilities using Chain-of- 419

Thought (CoT) (Wei et al., 2022), as demonstrated 420

in research (Liu et al., 2023c) by Liu et al. 421

Since LLMs are typically not specifically trained 422

on tabular data, one crucial way to improve table 423

reasoning is through fine-tuning. Many models 424

are fine-tuned for table tasks or structured data 425

tasks. Examples include TableLlama (Zhang et al., 426

2023e), UnifiedSKG (Xie et al., 2022) and TabFMs 427

(Zhang et al., 2023a). Microsoft developed a spe- 428

cialized fine-tuning method called table-tuning (Li 429

et al., 2023c). It includes tasks like Table Summa- 430

rization and Row-to-Row Transformation. 431

However, research on table reasoning directly us- 432

ing LLMs to generate answers is relatively scarce. 433

LLMs have limited capabilities and are highly sen- 434

sitive to the format of table input. Liu et al. (Liu 435

et al., 2023c) found that transposing tables or re- 436

arranging rows and columns greatly affects LLM 437

performance. Due to the inherent limitations of 438

LLM architectures, these challenges are currently 439

difficult to address. 440

4.6 Table Manipulation 441

There is limited research on directly modifying 442

tables. For instance, Microsoft’s Table-GPT (Li 443

et al., 2023c) handles tasks related to outputting 444

modified tables. In contrast, code-based methods 445

are commonly used. The commonly used code 446

for table manipulation includes SQL, Python, and 447

DSL. A simple comparison between them is shown 448

in Table 1. 449

SQL. Various studies explore Text-to-SQL, uti- 450

lizing datasets like Spider (Yu et al., 2018), BIRD 451

(Li et al., 2024b) and WikiSQL (Zhong et al., 452

2017). Methods like C3 (Dong et al., 2023) employ 453

prompt engineering for Text-to-SQL in zero-shot 454

mode, while Nan et al. (Nan et al., 2023) utilize 455

few-shot learning. QDecomp+InterCOL (Tai et al., 456

2023) introduces CoT to tackle Text-to-SQL chal- 457

lenges. Approaches such as TableLLaMA (Zhang 458

et al., 2023e), UnifiedSKG (Xie et al., 2022), and 459

RESDSQL (Li et al., 2023a) are based on fine- 460

tuning. 461

Effective Text-to-SQL methods often split the 462

task into multiple stages. One common approach 463

involves Schema Link followed by SQL genera- 464

tion, as seen in Blar-SQL (Domínguez et al., 2024) 465

and DTS-SQL (Pourreza and Rafiei, 2024b). An- 466
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Language SQL Python DSL
Example SELECT * FROM Person

WHERE Age > 18;
result = df[df[’Age’] >

18]
{"commands":

"SelectCondition",
"commands_args":

{"columns": [’Age’],
"condition":
"Age>18"}}

Table 1: Comparison of three languages commonly used for Table Manipulation: SQL, Python, and DSL. Among
them, DSL is mainly based on TableGPT (Zha et al., 2023).

other method first generates the SQL structure, then467

its content, demonstrated by ZeroNL2SQL (Gu468

et al., 2023b) and SC-Prompt (Gu et al., 2023a).469

SGU-SQL (Zhang et al., 2024c) enhances linkage470

between user queries and databases, then uses syn-471

tax trees to guide SQL generation. PET-SQL (Li472

et al., 2024d) generates preliminary SQL, performs473

schema link based on it, then finalizes the SQL. Re-474

BoostSQL (Sui et al., 2023a) and DIN-SQL (Pour-475

reza and Rafiei, 2024a) primarily address query476

rewriting, schema link, SQL generation, and self-477

correction. DFIN-SQL ((Volvovsky et al., 2024)),478

an enhancement of DIN-SQL, focuses on produc-479

ing concise table descriptions. PURPLE (Ren et al.,480

2024) focuses on schema pruning, skeleton predic-481

tion, demonstration selection, and database adap-482

tation to accommodate SQL rule variations among483

different databases.484

However, Text-to-SQL still faces several issues:485

(1) SQL syntax remains limited, mostly revolv-486

ing around SELECT statements. ALTER and UP-487

DATE queries are notably scarce. In the BIRD (Li488

et al., 2024b) dataset, among 12,751 reference SQL489

queries analyzed, only 36 instances of left join or490

right join were found, with the majority being inner491

join. (2) Evaluation of SQL queries is inadequate.492

Key metrics like Exact Matching and Execution493

Accuracy are commonly used, as in Spider (Yu494

et al., 2018), yet additional metrics such as Valid495

Efficiency Score are seldom employed, except in496

datasets like BIRD. (3) Certain Chinese Text-to-497

SQL datasets, like CSpider (Min et al., 2019), are498

translations from English counterparts. This of-499

ten results in disparities between table and column500

names in the database and their representations in501

questions. Moreover, column names are sometimes502

implied within the question’s semantics (LYU et al.,503

2022).504

Python. There are few datasets specifically de-505

signed for Python-based table tasks. Datasets like506

HumanEval (Chen et al., 2021a), MBPP (Austin507

et al., 2021), and DS-1000 (Lai et al., 2023) include 508

problems with pandas but often lack complexity 509

and table input. Datasets like SOFSET, which fo- 510

cus on real-world StackOverflow problems with 511

table inputs, are scarce. 512

However, some studies show Python may not 513

always be advantageous for table manipulation. 514

For example, Liu et al. found Direct Prompting 515

outperformed Python (Liu et al., 2023d), and Re- 516

BoostSQL found Text-to-Python less effective than 517

Text-to-SQL (Sui et al., 2023a). Still, Python has 518

strengths in visualizing data and processing non- 519

database tables. 520

DSL. Some studies investigate the effectiveness 521

of DSL for table tasks. For instance, ReBoost- 522

SQL (Sui et al., 2023a) designs encapsulated func- 523

tions and demonstrates superior performance com- 524

pared to SQL generation methods on advanced 525

models like GPT-4. CHAIN-OF-TABLE (Wang 526

et al., 2024b) employs custom atomic operations 527

to process tables step-by-step following the CoT 528

approach. TableGPT (Zha et al., 2023) defines a 529

DSL for table manipulation. 530

To improve LLMs’ ability with tabular data, be- 531

yond adapting LLMs to existing tools, optimizing 532

tools for LLM compatibility is crucial. Recent 533

studies indicate human-readable data and code rep- 534

resentations might not be ideal for LLMs. Recent 535

studies propose AI-oriented languages like SimPy 536

(Sun et al., 2024), a Python variant, and SUQL (Liu 537

et al., 2023b), a modified SQL with free-text query- 538

ing capabilities. These AI-oriented languages aid 539

LLMs in managing table tasks. Additionally, pro- 540

posals recommend designing databases with LLM 541

interaction in mind, integrating views to boost LLM 542

understanding of database data (Nascimento et al.). 543

4.7 Other Table Tasks 544

Table Prediction. Numerous studies explore us- 545

ing Large Language Models (LLMs) for table 546

prediction (Yan et al., 2024; Slack and Singh, 547
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2023; Manikandan et al., 2023). LLMs face chal-548

lenges due to their limited mathematical capabili-549

ties (Plevris et al., 2023), particularly in represent-550

ing numerical values, and struggle with tasks like551

Extreme Multi-label Classification (Plevris et al.,552

2023; D’Oosterlinck et al., 2024). On the other553

hand, tree-based models like XGBoost maintain554

advantages in table prediction (Grinsztajn et al.,555

2022). Alternatively, there are several avenues to556

explore, as summarized here:557

(1) Utilizing LLMs as General Predictors.558

Aky"urek et al. show that Transformers fit linear559

regression models via in-context learning (Akyürek560

et al., 2022). Google develops Universal Regres-561

sors — OmniPred (Song et al., 2024) — enhancing562

tokens to better represent data and training exten-563

sively across prediction tasks, highlighting LLMs’564

potential. (2) Employing LLMs as Feature Ex-565

tractors. Do et al. convert tabular data into text, us-566

ing LLMs to embed these texts as features for XG-567

Boost training (Do et al., 2023). LLMs can aid in568

feature selection, necessitating further research. (3)569

Integrating LLMs into AutoML Frameworks.570

LLMs in tooling invoke other ML methods via571

APIs. AutoML-GPT (Zhang et al., 2023c) and572

MYCRUNCHGPT (Kumar et al., 2023b) focus on573

AutoML and Scientific Machine Learning tasks,574

respectively. JarviX (Liu et al., 2023a) employs575

LLMs for automated guidance and high-precision576

data analysis on table datasets, integrating AutoML577

for predictive modeling. Optimization opportuni-578

ties exist in AutoML’s complexity.579

Table Generation. LLMs can generate summary580

tables effectively, as demonstrated by Prasad et581

al. (Kim et al., 2024a) with LLMs. ChartAssis-582

tant (Meng et al., 2024) utilizes table generation583

from charts as a pre-training task to improve LLMs’584

comprehension of visual data. Incorporating sum-585

mary table generation into pre-training tasks can586

enhance LLMs’ ability to understand and produce587

structured information, warranting further explo-588

ration. Methods for generating synthetic data tables589

with decoder-only architecture LLMs are limited.590

CLLM (Seedat et al., 2023) uses GPT-4 to generate591

tabular data, then filters the output. Kim et al. em-592

ploy grouped CSV format prompts to expand tables593

(Kim et al., 2024a). Gretel Navigator 1 is an online594

tool for creating, editing, and augmenting tabular595

data. It contributes to the synthetic_text_to_sql596

(Meyer et al., 2024) dataset. Currently, evaluating597

1https://gretel.ai/navigator

the quality of generated tables remains immature, 598

reflecting a lack of understanding of what consti- 599

tutes good tabular data. 600

4.8 Tabular Data Safety 601

There is significant research on adversarial attacks 602

on LLMs (Kumar et al., 2023a; Xhonneux et al., 603

2024). However, there is less research focused 604

on tabular data. The primary concerns regarding 605

the security of tabular data are privacy and data 606

safety. TableGPT (Zha et al., 2023) emphasizes 607

private deployment to address these concerns. The 608

security of tabular data is also linked to the trace- 609

ability of data processing. One approach is using 610

DSL to limit LLM functionalities, preventing them 611

from generating malicious code. Examples include 612

CHAIN-OF-TABLE (Wang et al., 2024b) and Re- 613

AcTable (Zhang et al., 2023g). Another method 614

involves post-hoc mitigation. For example, Dat- 615

aLore (Lou et al., 2024) finds methods to transform 616

Table A into its enhanced form A′. 617

However, requiring traceability in table process- 618

ing and designing an effective DSL together can 619

limit LLM capabilities. Balancing performance 620

and security is a significant challenge due to these 621

constraints. Existing table datasets also overlook 622

security concerns, necessitating research and devel- 623

opment of relevant benchmarks. 624

4.9 Table Tasks in Various Domains 625

Research in the Finance Domain has been exten- 626

sive. Datasets in TableQA include TAT-QA (Zhu 627

et al., 2021), FinQA (Chen et al., 2021b), Con- 628

vFinQA (Chen et al., 2022), and Multihiertt (Zhao 629

et al., 2022a). Benchmarks like KnowledgeMATH 630

(Zhao et al., 2023) for TableQA and BULL (Zhang 631

et al., 2024a) for Text-to-SQL focus on financial 632

knowledge and computational abilities. Hwang et 633

al. (Hwang et al., 2023b) augmented FinQA using 634

LLMs. They trained models that outperform others 635

in TableQA within finance. FinSQL (Zhang et al., 636

2024a) enhanced Text-to-SQL in finance through 637

prompt engineering, schema link, fine-tuning, and 638

output calibration. RAVEN (Theuma and Shareghi, 639

2024) improved Tabular Data Analysis in Finance 640

through tool usage and fine-tuning. This enhanced 641

performance in both TableQA and Text-to-SQL. 642

In the medical domain, DictLLM (Guo et al., 643

2024) aids in handling structured data like medical 644

laboratory reports. EHRAgent (Shi et al., 2024) 645

deals with Electronic Health Records (EHRs). In 646

the power domain, Sun et al. (Sun et al., 2023) 647
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boosted LLMs’ Text-to-SQL capabilities through648

secondary pre-training and instruction fine-tuning.649

In the materials domain, Do et al. (Do et al., 2023)650

serialize tables into text, then use LLMs for embed-651

ding before employing xgboost for table prediction.652

Research on optimizing table tasks for differ-653

ent domains remains insufficient. More domains654

should leverage LLMs to address a wider array of655

real-world issues.656

5 Comparison of Existing LLM-based657

Agents’ Capabilities658

In this chapter, we compare various LLM-based659

agents. We summarize their workflow capabilities660

and assess the status of each part of their imple-661

mentation.662

SheetAgent (Chen et al., 2024) is a framework663

with multi-agents. It employs iterative task reason-664

ing and reflection to manipulate spreadsheets pre-665

cisely and autonomously. SheetCopilot (Li et al.,666

2024a) devises atomic operations as abstractions of667

spreadsheet functions. They also developed a task668

planning framework for interaction with large lan-669

guage models. Data-Copilot (Zhang et al., 2023f)670

is a code-centric data analysis agent. It executes671

queries, processes, and visualizes data based on672

human requests. ReAcTable (Zhang et al., 2023g)673

specializes in TableQA problems. It uses SQL and674

Python code in its processing, incorporating fea-675

tures like voting. DAAgent (Hu et al., 2024) per-676

forms table tasks using Python, referencing the Re-677

Act (Yao et al., 2022) framework. DB-GPT (Xue678

et al., 2023) understands natural language queries679

and generates accurate SQL queries. It includes680

a Python library for developer convenience. Data681

Formulator (Wang et al., 2023b) assists in visualiz-682

ing tabular data and automates table preprocessing683

for visualization pipelines. TableGPT (Zha et al.,684

2023) utilizes a Table Encoder for comprehensive685

table understanding. It handles various operations686

such as question answering, data manipulation, vi-687

sualization, analysis report generation, and auto-688

mated prediction. EHRAgent (Shi et al., 2024)689

focuses on EHRs and autonomously executes com-690

plex clinical tasks, integrating medical knowledge691

during processing.692

A comparison of these agents based on workflow693

is available in Table 2 in Appendix D. It can be seen694

that currently, there is no LLM-based agent capable695

of executing the complete workflow.696

6 Conclusion 697

This paper outlined the workflow for real-world 698

table tasks, highlighting critical steps such as table 699

reading, preprocessing, user query understanding, 700

table retrieval, reasoning, and manipulation, along 701

with safety considerations. Existing methods ad- 702

dress specific tasks but lack integration across the 703

entire process. Further research is necessary to fill 704

the gaps and enhance comprehensive automation 705

of the workflow. 706

Future efforts should prioritize the development 707

of solutions capable of fully automating the entire 708

process, empowering LLM-based table processing 709

systems, particularly agents, to effectively manage 710

all aspects of table processing. Addressing these 711

challenges will advance LLMs’ capabilities and 712

their utility in real-world table tasks, ultimately en- 713

hancing efficiency and effectiveness across various 714

domains. 715

Limitations 716

This paper represents the first attempt, to our knowl- 717

edge, to comprehensively review table workflow 718

definitions. However, our current definitions have 719

several issues and do not fully address real-world 720

table processing requirements. The current defini- 721

tions of table tasks do not cover all existing tasks, 722

and the relationships between different tasks are not 723

clearly explained. Many workflow definitions are 724

vague and need refinement. We aim to standardize 725

these table tasks more formally in the future. 726

This paper focuses on the workflow process 727

and does not extensively cover techniques related 728

to LLMs, such as prompt engineering, Chain-of- 729

Thought, and fine-tuning. Nevertheless, these tech- 730

niques are widely used in the methods discussed in 731

our paper. 732

It’s important to note that not all table processing 733

workflows require every step outlined in our paper. 734

As LLMs evolve, particularly those with improved 735

table processing capabilities, many workflow steps 736

may become less crucial. 737
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A Table of Image-based Carriers1537

These tables offer flexibility for depicting complex1538

structures (Zhao et al., 2024). However, they pose1539

usability challenges. Two main approaches exist.1540

One approach is table recognition, which employs1541

techniques like OCR (Lin et al., 2022) to convert1542

image tables into text. The other approach involves1543

integrating images of tables as separate modalities1544

into multimodal models (Kim et al., 2024b). How-1545

ever, this form of tables is currently difficult to1546

modify using predefined operations, making it not1547

the primary focus of our research. Nonetheless, it1548

remains a promising area for future exploration.1549

Utilizing OCR (Lin et al., 2022; Prasad et al.,1550

2020) and similar technologies (Li et al., 2023b)1551

for table recognition within images and their con-1552

version into textual formats is a straightforward1553

approach (Kasem et al., 2022). However, our1554

focus lies primarily on directly inputting image-1555

formatted tables into MLLMs. Since the emer-1556

gence of MLLMs such as GPT-4V (OpenAI, 2023)1557

and Gemini (Team et al., 2023), several investiga- 1558

tions have aimed to evaluate MLLMs’ comprehen- 1559

sion of table or chart images (Yang et al., 2023). 1560

Some MLLMs, like DeepSeek-VL (Lu et al., 2024), 1561

have even incorporated image-formatted tabular 1562

data during their pre-training phases. Addition- 1563

ally, multimodal datasets like CMMU (Zhang et al., 1564

2024b) and M-Paper (Hu et al., 2023) contain 1565

image-based tabular data, while TableVQA-Bench 1566

(Kim et al., 2024b) is specifically designed for 1567

image-based table tasks. 1568

Concerning image-formatted tables, their visual 1569

attributes are crucial. Deng et al. (Deng et al., 1570

2024) found that applying different colors to indi- 1571

vidual rows enhances table reasoning for MLLMs, 1572

though the performance improvement for strong 1573

LLMs is marginal. Their study confirmed high- 1574

lighting improves table reasoning. Other studies, 1575

such as TableVQA-Bench, distinguished between 1576

Table, Cell, Border, and Text attributes during ta- 1577

ble rendering but did not investigate the potential 1578

impact of these visual attributes on MLLMs’ table 1579

comprehension. 1580

MLLMs handle Text-based and Image-based 1581

tables similarly, Deng et al. (Deng et al., 2024) 1582

found. Both have strengths and weaknesses, but 1583

Text-based outperforms Image-based significantly 1584

in TableVQA-Bench’s three tasks. Due to task and 1585

input method differences, further investigation into 1586

these methods’ superiority is needed. 1587

Research on image-formatted tables is nascent, 1588

lacking models optimized for such tables. Current 1589

benchmarks focus on computer-rendered tables, 1590

neglecting handwritten ones. 1591

B Schema Construction 1592

Another possible direction for table preprocessing 1593

is schema construction. Schema information is the 1594

structural information of the table. However, in 1595

many real-world scenarios, a lot of Schema infor- 1596

mation is missing, such as relational database tables 1597

stored in CSV files. For such data, if we can re- 1598

store or reconstruct the table’s schema information, 1599

it will be beneficial for LLMs to understand the ta- 1600

ble information. More diverse methods can be used 1601

to handle table data. An example of this would be 1602

generating SQL code for relational database tables 1603

that are stored in CSV files. 1604

There have been some studies on column type 1605

detection (Hulsebos et al., 2019; Zhang et al., 1606

2019; Suhara et al., 2022) and column relation- 1607
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ship identification (Wang et al., 2021a; Iida et al.,1608

2021), but they still differ from the requirements1609

of schema construction. For instance, column type1610

detection often involves classification tasks, mak-1611

ing it challenging to handle variable types like1612

VARCHAR(48). Relationship identification often1613

doesn’t involve recognizing primary keys or for-1614

eign keys. Schema construction itself is a com-1615

plex issue, and due to the limitations of contextual1616

windows, it’s not feasible for LLMs to handle it1617

entirely. Combining LLMs with tools might be a1618

viable approach.1619

C Table RAG1620

In addition to RAG-in-Table, there is also Table1621

RAG, which utilizes RAG technology to retrieve1622

relevant question-answer pairs related to tables.1623

However, table retrieval faces distinct challenges1624

compared to conventional text tasks with RAG.1625

These challenges include determining how to en-1626

code table information, identifying similar tables,1627

and coordinating the encoding of table information1628

with that of textual information.1629

In addition to retrieving relevant data for cur-1630

rent table tasks through RAG, another approach1631

is to apply RAG internally within the tables them-1632

selves, essentially treating the tables as retrieval1633

knowledge bases. This allows for the retrieval of1634

specific table contents based on input text informa-1635

tion. The reason for conducting retrieval within the1636

tables is to avoid inputting excessively large tables1637

directly into LLMs, which can lead to excessively1638

long contexts. This, in turn, increases inference1639

costs, overlooks crucial information, and results1640

in performance degradation (Kaddour et al., 2023).1641

Even purportedly long-context supporting models1642

may not fully address all challenges associated with1643

lengthy contexts (Li et al., 2024c).1644

Many tasks involving the use of LLMs to handle1645

tables often mention RAG. However, they often1646

do not vectorize the tables themselves, only vec-1647

torizing user queries or SQL, such as DAILSQL1648

(Gao et al., 2023a), DB-GPT (Xue et al., 2023), etc.1649

Yang et al. (Yang et al., 2024) adopted a simple1650

approach of converting all information into .docx1651

documents and then vectorizing them. OPENTAB1652

(Kong et al., 2024) employs BM25 (Robertson1653

et al., 2009) for table RAG, while LIRAGE (Lin1654

et al., 2023) uses ColBERT (Khattab and Zaharia,1655

2020) to simultaneously encode queries and tables1656

for table RAG.1657

Wang et al. (Wang et al., 2022) tested two table 1658

vectorization methods — DPR (Karpukhin et al., 1659

2020), and DTR (Herzig et al., 2021b) — and found 1660

that the structural information of tables might not 1661

be crucial in table retrieval. What matters most is 1662

the textual information within the tables. Hence, 1663

there might not be a need to design a specialized 1664

table vectorization model; employing a text vector- 1665

ization model directly could suffice. However, this 1666

research only delves into the performance of table 1667

retrieval itself, without verifying the impact of dif- 1668

ferent vectorization methods on the downstream 1669

tasks’ performance with LLMs. We believe that 1670

more research is needed in the realm of table RAG. 1671

D Comparison of LLM-based Agents for 1672

Table Tasks Based on Workflow 1673

We have compiled the performance comparison of 1674

various agents into Table 2. 1675

Our primary reference for summarizing these 1676

agents was their respective papers, without consid- 1677

ering further improvements made to these systems 1678

when applied in real-world scenarios. Addition- 1679

ally, since these agents often do not adhere to the 1680

workflows defined in this paper, we mainly exam- 1681

ined whether each step was explicitly mentioned in 1682

the literature. If a relevant technique was not men- 1683

tioned in the paper, we represented it in the table 1684

with “-”. The design of comparison metrics pri- 1685

marily follows the workflows defined in this paper 1686

and does not encompass all aspects of these agents’ 1687

capabilities. We have endeavored to summarize the 1688

abilities of these agents to the best of our ability, 1689

but there may be areas where our summary is in- 1690

complete. We will further refine this table in the 1691

future. 1692
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Workflow SheetAgent
(Chen et al.,

2024)

SheetCopilot
(Li et al.,
2024a)

Data-Copilot
(Zhang et al.,

2023f)

ReAcTable
(Zhang et al.,

2023g)

DAAgent (Hu
et al., 2024)

DB-GPT (Xue
et al., 2023)

Data
Formulator
(Wang et al.,

2023b)

TableGPT
(Zha et al.,

2023)

EHRAgent
(Shi et al.,

2024)

Handled
Spreadsheet
Types

Sheet Sheet Sheet, database Database Sheet Sheet, database Sheet Sheet, database Database

Table Prepro-
cessing Meth-
ods

- - - - Feature
engineering,

outlier
detection,

comprehensive
data

preprocessing

- ✓ - -

Methods for
Handling User
Queries

Identification
of unclear

requirements

- Query
rewriting

- - Query
rewriting

Supports
user-designed

concepts, some
requiring

programming,
with

multi-round
interaction
capability

Intent detection,
vague input

rejection

-

Table Re-
trieval

- - - ✓ - - - - -

Output Lan-
guage Types

NL (natural
language),

SQL, Python

DSL NL, code,
interface

invocation,
tool-usage

NL, SQL,
Python

NL, Python NL, SQL,
tool-usage

NL, Python NL, DSL NL (used for
plan

generation),
Python,

tool-usage
Table Reason-
ing Capability

- - - ✓ - - - ✓ -

Table Manipu-
lation Types

Worksheet
management,

value
processing,

content
summary, chart
design, format

adjustment

Cell value
modification,
formatting,
worksheet

management,
formulas and

functions,
charts and pivot

tables, etc.

Data
visualization

Query Summary
statistics,

correlation
analysis,

distribution
analysis

SQL-based
data analysis,

data
visualization,

etc.

Reshaping,
derivation

(creating new
variables), data
visualization

Question
answering, data
manipulation,
insert, delete,
query, modify

operations, data
visualization,

analysis report
generation, etc.

SQL-based
data analysis

Other Spread-
sheet Task
Abilities

- - - - Using machine
learning

algorithms for
table prediction

Plan to add
table prediction

in the future

- Table
prediction

-

Tabular Data
Safety

- - - - - Protecting data
privacy and

security

- privacy
protection

-

Domain Adap-
tation

General General General General General General General General,
customizable

fine-tuning for
different
domains

Medical

Table 2: Comparison of LLM-based agents for table tasks based on workflow.
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