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ABSTRACT

Video generation models have advanced significantly, yet they still struggle to
synthesize complex human movements due to the high degrees of freedom in hu-
man articulation. This limitation stems from the intrinsic constraints of pixel-
only training objectives, which inherently bias models toward appearance fidelity
at the expense of learning underlying kinematic principles. To address this, we
introduce EchoMotion, a framework designed to model the joint distribution of
appearance and human motion, thereby improving the quality of complex human
action video generation. EchoMotion extends the DiT (Diffusion Transformer)
framework with a dual-branch architecture that jointly processes tokens concate-
nated from different modalities. Furthermore, we propose MVS-RoPE (Motion-
Video Syncronized RoPE), which offers unified 3D positional encoding for both
video and motion tokens. By providing a synchronized coordinate system for the
dual-modal latent sequence, MVS-RoPE establishes an inductive bias that fosters
temporal alignment between the two modalities. We also propose a mixed multi-
modal in-context learning strategy. This strategy enables the model to perform
both the joint generation of complex human action videos and their corresponding
motion sequences, as well as versatile cross-modal conditional generation tasks.
To facilitate the training of a model with these capabilities, we construct HuMoVe,
a large-scale dataset of approximately 80,000 high-quality, human-centric video-
motion pairs. Our findings reveal that explicitly representing human motion is
complementary to appearance, significantly boosting the coherence and plausibil-
ity of human-centric video generation. The entire project will be open-sourced.

1 INTRODUCTION

Recently, video generation models have witnessed a remarkable progress, driven in particular by the
rapid evolution of diffusion models (Ho et al., 2020; Song et al., 2020; Peebles & Xie, 2023; Rom-
bach et al., 2022) and VLM caption models (Liu et al., 2023; Wang et al., 2024a; Team et al., 2024).
Existing video generation models (Hong et al., 2022; Wan et al., 2025; Kong et al., 2024; Lin et al.,
2024) have achieved good results in terms of visual fidelity and temporal consistency. Nonethe-
less, even state-of-the-art generators still face significant challenges in synthesizing complex human
motions. The resulting videos often suffer from severe anatomical artifacts and unnatural joint artic-
ulations, as exemplified in Figure 1(a). This deficiency primarily arises from the inherent limitations
of pixel-centric training objectives, which tend to prioritize visual fidelity over the underlying kine-
matic principles governing human articulation. Concretely, the pixel-level reconstruction losses
common in diffusion models are dominated by static appearance and background details, not tem-
poral kinetics. This deficiency is particularly pronounced for human subjects, whose high degrees
of freedom make even subtle kinematic errors glaringly unnatural.

Prior research (Chefer et al., 2025; Huang et al., 2024) has highlighted that human synthesis prob-
lems persist even with basic motion types that are well-represented in training data. This suggests
that limitations in temporal coherence are not merely a matter of data scale, but rather point to inher-
ent difficulties in modeling fine-grained kinematic dynamics. To address this issue, some existing
works focus on conditioning generation on explicit structural guidance, employing techniques like
2D keypoints priors(Jiang et al., 2025; Ma et al., 2024b) or 3D poses priors(Zhou et al., 2024; Buch-
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(b) Conditional Generation via Cross-Modal Completion(a) Enhanced Human Anatomical Generation
Base model EchoMotion Video-to-Motion Motion-to-Video

Figure 1: Key capabilities of EchoMotion: EchoMotion (a) enhances the anatomical correctness of
human-centric video generation, and (b) enables cross-modal control between video and motion.

heim et al., 2025). While this approach offers direct control, it introduces two significant limitations.
First, it creates a dependency on control signals that are often unavailable in real-world applications.
Second, even when 3D priors like human poses are used, they are typically projected into the 2D
image plane to align with the video frames. This projection process inevitably discards crucial 3D
geometric information, leading to a diminished understanding of the underlying body structure and
potential motion inconsistencies.

Motivated by these findings, we propose EchoMotion, an innovative framework that natively models
the joint distribution of video and human motion modality. It features a dual-modality diffusion
transformer which adopts a dual-branch architecture to uniformly process tokens from different
modalities. Unlike the previous MMDiT architecture (Esser et al., 2024), which solely focuses
on denoising video inputs, our EchoMotion takes a further step by explicitly denoising parametric
motion. Benefiting from this explicit motion modeling, our method can significantly reduce motion
artifacts and facilitate the generation of complex human motion videos.

In contrast to common approaches that condition on motion videos (Zhou et al., 2024; Hu, 2024),
our parameterized motion representation is token-efficient and preserves the native 3D information.
Specifically, the tokens from visual and motion modalities are concatenated along the sequence
dimension and then processed by our proposed Motion-Video Syncronised RoPE (MVS-RoPE)
mechanism, where visual and motion tokens are modulated by token-wise position embeddings.
This mechanism modulates visual and motion tokens with token-wise position embeddings, en-
suring temporal correspondence between them while also maintaining the spatial integrity of each
modality’s spatial information. To ensure efficient model convergence and fully exploit the multi-
task capabilities of our model, we design a mixed multi-modal in-context learning strategy. This
strategy employs a two-stage training recipe: an initial motion-only training phase followed by a
multi-task motion-video training phase. In the second phase, we further construct three paradigms:
joint generation, motion-to-video generation, and video-to-motion generation, to efficiently capture
the cross-modal interactions. Furthermore, we introduce a new high-quality, human-centric video
dataset, which we name HuMoVe. This dataset comprises approximately 80,000 video clips, each
featuring distinct and clear human motions. For every video, we provide a granular textual descrip-
tion that details (1) the subject’s appearance and attire, (2) the background context, and (3) a precise
description of the action being performed. To complement this, we also extract and include the
corresponding SMPL motion parameters for each video clip, offering rich structural guidance.

Our experiments demonstrate that by holistically modeling the joint distribution of video and mo-
tion, EchoMotion significantly enhances the synthesis of human videos in terms of temporal coher-
ence and structural integrity. Comprehensive evaluations validate its superiority over state-of-the-art
baselines, showcasing drastic reductions in motion artifacts and superior preservation of physical
plausibility. Furthermore, this unified approach inherently enables versatile cross-modal control-
lable generation, a capability confirmed through extensive qualitative and quantitative assessments.

2 RELATED WORKS

2.1 VIDEO DIFFUSION MODEL

Diffusion models have become the de facto standard for visual synthesis, scaling from high-
fidelity image generation (Rombach et al., 2022; Esser et al., 2024; Peebles & Xie, 2023) to video
(Blattmann et al., 2023; Lin et al., 2024; Wan et al., 2025). The core architecture, typically a Diffu-
sion Transformer (DiT) (Peebles & Xie, 2023) operating in the latent space of a VAE, was originally
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designed for static images. By extending the 2D attention to a 3D full attention (Wan et al., 2025;
Kong et al., 2024) or inserting additional temporal attention layers (Blattmann et al., 2023; Gao et al.,
2025), the diffusion model is adapted for the temporal coherent video generation. Regarding con-
ditioning, instead of using conventional cross-attention to inject text prompts, MMDiT (Esser et al.,
2024) employs a distinct approach. It processes visual and textual tokens with separate weights and
then concatenates them as input to the attention mechanism. This design facilitates a bidirectional
flow of information between the two modalities. To further improve the temporal coherence, Video-
JAM (Chefer et al., 2025) introduced to incorporate explicit motion prior to video models through
predicting optical flow in addition to appearance. Instead of focusing on dense, low-level motion
like optical flow to model short-term temporal motion, our work focuses on leveraging the SMPL
(Loper et al., 2023) parameter as a high-level, structured human kinematics.

2.2 CONDITIONAL HUMAN VIDEO GENERATION

Recent advancements in diffusion models have significantly improved the quality of human video
generation. Building upon pre-trained diffusion models, methods like DisCo (Wang et al., 2024b)
and Follow-Your-Pose (Ma et al., 2024b) adapt the ControlNet architecture to guide generation using
2D human keypoints. Other works, such as MagicAnimate (Xu et al., 2024) and Animate Anyone
(Hu, 2024), employ dedicated pose guidance modules to encode 2D pose sequences and inject them
as conditioning. Another branch of research uses rendered 3D human models for conditioning.
For instance, Champ (Zhu et al., 2024) utilizes rendered SMPL (Loper et al., 2023) models as
guidance frames for video generation. Following this direction, RealisDance (Zhou et al., 2024;
2025) guides generation by concatenating multiple visual pose representations—such as outputs
from HaMeR (Pavlakos et al., 2024) and DWPose (Yang et al., 2023), alongside rendered SMPL
models—along the channel dimension. Similarly, Human4DiT (Shao et al., 2024) generates free-
view human videos conditioned on rendered SMPL models and camera poses. While powerful,
these methods share a fundamental architectural limitation: they are strictly conditional generators.
In contrast, we introduce a unified architecture that treats human motion parameters and video as
coupled modalities, enabling both joint generation and cross-modal completion.

3 METHOD

This paper introduces EchoMotion, a system designed to generate videos with corresponding mo-
tion sequences from an input text prompt. We first propose a Dual-Modality Diffusion Transformer,
augmented with a parametric motion representation and a Motion-Video Synchronized RoPE, to
effectively model the intricate interaction between these two distinct modalities in Sec. 3.1. Then,
we tailor a mixed multi-modal in-context learning strategy to facilitate mutual promotion and com-
pletion within this multi-modal system, as detailed in Section 3.2. Finally, to support this research
and the broader community, we construct and release the HuMoVe dataset, a large-scale collection
of paired video, 3D human motion parameters, and text data in Section 3.3.

3.1 DIFFUSION FOR JOINT VISUAL-MOTION GENERATION.

Architecture. Towards high-fidelity video generation, we select Wan (Wan et al., 2025) as our
backbone model, owing to its superior performance. Unlike approaches that model the video-only
distribution p(x|y)-which can prioritize appearance fidelity at the expense of motion principles, we
instead model the joint distribution of human movement and video p(x,m|y). Here, y denotes the
given text prompt, while x and m represent the video and human motion parameters, respectively.
This unified modeling approach allows our model to effectively learn both visual and motion dy-
namics. As illustrated in Figure 2, our Dual-Modality Diffusion Transformer first processes the
input video by parameterizing human motion representations, derived from SMPL pose and shape
parameters (Loper et al., 2023). These motion tokens are concatenated with visual tokens and sub-
sequently fed into a series of Dual-Modality Diffusion Transformer blocks. Within each block, our
proposed MVS-RoPE instills modality-aware positional information, ensuring proper alignment.

Parametric Human Motion Representation. Given a video of a person in motion, we use the
SMPL (Loper et al., 2023) model to parameterize the pose and shape of the human body. It captures
articulated human body configurations through a low-dimensional set of pose and shape parameters,
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Figure 2: Overview of EchoMotion. (a) The dual-modality DiT block for joint video-motion mod-
eling. (b) Our MVS-RoPE to serve as a synchronized coordinate for dual-modal token sequence.

making it a widely adopted foundation in computer vision tasks involving human mesh recovery. For
a single frame, the SMPL model facilitates the extraction of human body representations. Specif-
ically, it provides shape parameters β ∈ R10 that define the overall body shape, pose parameters
θ ∈ R24×6 that capture human joint angles, global body orientation γ ∈ R6, and the human root
joint position v ∈ R3. Following DART (Zhao et al., 2024), we further utilize the 3D joint position
η ∈ R24×3 to represent each human joint.

To construct a unified representation that integrates human motion modalities, we design multi-task
projectors to build a bidirectional mapping between the parameter and the latent spaces. For each
frame, we categorize the motion parameters into three groups: {v, η} for 3D position, {θ, γ} for 6D
rotation, and β for human shape. Three independent MLPs then project these parameters sets into
the target transformer hidden dimension, generating 51 motion tokens per frame. Similarly, another
three MLPs map the generated motion tokens back to the original parameter space for reconstruction.
Crucially, to better model rapidly changing motion patterns, we preserve the temporal structure of
these motion tokens. This contrasts with the typical time-level down-sampling applied to visual
tokens, and importantly, these refined and compact motion tokens retain crucial temporal motion
information with only a minimal increase in computational overhead.

Dual-Modality Diffusion Transformer Block. This block processes and integrates multi-modal
information. It begins by projecting the embeddings from the video and human motion modalities
independently using two distinct sets of learnable projection matrices. The projected features are
then concatenated along the sequence dimension to form as:

Qmm,Kmm, Vmm = [Qv;Qm], [Kv;Km], [Vv;Vm], (1)

where [·; ·] signifies the concatenation operation. Thereafter, a self-attention layer is applied to
capture dependencies and correlations across both modalities. Following self-attention, the at-
tended features are disentangled, with each modality’s features subsequently processed indepen-
dently through separate cross-attention layers (to interact with text information) and FFNs. This
architecture enables a detailed interaction between modalities and with textual guidance. Within
self-attention layers, we propose a specialized mechanism to imbue features with precise position
information, ensuring proper contextual understanding, as shown below.

Motion-Video Synchronized RoPE. Existing MMDiT architectures typically incorporate posi-
tional information either through inherent positional IDs from the text encoder or by employing
M-RoPE (Wang et al., 2024a) to model text positions. However, neither of these approaches directly
accounts for the inherent temporal alignment between human motion and videos. Consequently, they
are not directly suitable for representing the positional information of parameterized motion tokens,
necessitating a dedicated design to accurately capture this crucial motion positional information.

Therefore, in our MVS-RoPE, illustrated in Figure 2 (b), we construct positional information by
considering motion tokens as an extension of visual tokens along the spatial diagonal. This spatial
treatment enables continuous encoding for motion tokens relative to the visual tokens’ spatial po-
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Figure 3: Overview of Mixed In-Context Learning strategy.

sitions. Recognizing the direct temporal correspondence between motion tokens and visual tokens
(4x temporal compression from VAE), we assign sequential temporal indices to video tokens. In
contrast, motion tokens are assigned temporal positional encodings scaled by a factor of 1/4 relative
to the video token time indices. The processed feature after MVS-RoPE is given by:

f̂v
t,h,w = MVS-RoPE(fv

t,h,w, t, h, w) = R(4t, h, w) · fv
t,h,w, (2)

f̂m
t,i = MVS-RoPE(fm

t,i, t, i) = R(t,H + i,W + i) · fm
t,i. (3)

Here, t is the temporal index, i is the motion token index, and (h,w) represents the spatial indices for
visual tokens. H and W denote the spatial range of the visual tokens. The function R(·) represents
the RoPE encoding, which applies a rotation based on the input temporal and spatial indices.

This design ensures that 1) Preserves pretrained knowledge: video tokens receive the exact same
3D RoPE as used during pre-training, ensuring that valuable learned representations are not dis-
turbed; 2) Enforces correct temporal alignment: the 1/4 scaling explicitly encodes the multi-rate
relationship, resolving ambiguity and ensuring video and motion are perfectly synchronized in time.
and 3) Guarantees modality distinguishability: the spatial diagonal extension prevents “positional
collisions”, allowing the model to easily differentiate between video and human motion tokens.

3.2 MIXED MULTI-MODAL IN-CONTEXT LEARNING STRATEGY.

Due to the divergent feature representations of visual and motion tokens, a phased training approach
is necessary for the model to effectively process and align these two modalities. To achieve this
alignment and ensure stable learning, we propose a two-stage strategy initialized from pretrained
DiT parameters:

• Phase 1: Motion-only Pretraining. The motion branch is trained independently using
motion-only datasets, while the video branch is frozen and deactivated (inputs omitted).
This stage focuses on generating motion sequences.

• Phase 2: Multi-task Motion-video Training. Subsequently, the model is trained on
motion-video paired datasets with both branches unfrozen and active, enabling the gen-
eration of both visual and motion sequences.

The rationale for motion-only pretraining is to allow the motion branch to first converge on its
own domain, preventing the dominant computationally expensive of video branch. Once stable,
the architecture is readily extensible to both joint generation of video and motion, as well as bi-
directional cross-modal control. Therefore, in phase 2, we train the model using motion-video
paired datasets with a focus on the three complementary interaction paradigms.

As illustrated in Figure 3, each paradigm is randomly sampled: 1) Joint training: generate both
video and motion sequences concurrently. 2) Motion-to-video training: motion sequences serve as
the conditioning input for video generation. 3) Video-to-motion training: video sequences are used
to condition motion generation. When one modality serves as the conditioning input, its features are
preserved and not subjected to noise injection during the forward diffusion process. Additionally, a
lightweight MLP projects the task embedding to the latent space. This task hint is then added to the
latents to guide conditional token prediction.

Under this framework paradigm, the model naturally achieves both pure text-guided generation and
cross-modal conditional generation during inference. Benefiting from this training approach, pure
text-guided generation can exhibit significant improvements in video dynamics.

In-Context Classifier-Free Guidance (ICCFG). Our ICCFG implementation employs distinct con-
ditioning strategies tailored to our three training paradigms in Phase 2, differing from standard CFG.
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(a) The Distribution of Motion Categories (b) Word Cloud Caption (c) Dataset Visualization

Figure 4: Overview of our HuMoVe dataset. (a) Voronoi treemap of the dataset’s composition. (b)
Word cloud of the text captions. (c) Sample frames paired with their 3D mesh reconstructions.

During Phase 2, we apply a paradigm-specific conditional dropping strategy. For joint generation,
the text condition is randomly dropped. For motion-to-video generation, both text and motion con-
ditions are randomly dropped. For video-to-motion generation, the text condition is always dropped,
while the video condition is dropped randomly. Accordingly, to leverage this capability during in-
ference, we define uθ(·) as the diffusion model. For the Joint Generation mode:

ov
t ,o

m
t = uθ(xt,mt, ∅) + ω1(uθ(xt,mt, y)− uθ(xt,mt, ∅)), (4)

where ov
t and om

t represent the video and motion predictions of timestep t, respectively. ∅ signifies
the absence of a specific condition and ω1 is the guidance scale for text condition. For the Motion-
to-Video Generation mode, the output can be expressed as:

ot
v = uθ(xt, ∅, ∅) + ω1(uθ(xt,mt, y)− uθ(xt,mt, ∅)) + ω2(uθ(xt,mt, ∅)− uθ(xt, ∅, ∅)), (5)

where ω2 is the guidance scale for motion condition. For the Video-to-Motion Generation mode:

om
t = uθ(∅,mt, ∅) + ω2(uθ(xt,mt, ∅)− uθ(∅,mt, ∅)). (6)

This allows the model to leverage the rich context provided by various modalities while selectively
enabling specific generation capabilities.

3.3 HuMoVe DATASET

A significant gap exists in current open-source resources for joint video-motion generation. Datasets
from prior work (Mahmood et al., 2019; Lin et al., 2023; Fan et al., 2025) are often unsuitable, typ-
ically because they are modality-specific (lacking visual context) or consist of low-quality videos
with redundant backgrounds and human characters. To address this limitation, we construct Hu-
MoVe: a large-scale, high-quality dataset featuring diverse scenes and human characters. Each video
in HuMoVe is paired with a descriptive textual caption and its corresponding 3D SMPL motion pa-
rameters, forming a tightly aligned, multi-modal corpus for advanced generative modeling.

We implement a comprehensive data processing pipeline that involves automated collection from
various sources, followed by rigorous filtering for aesthetic quality and subject focus, and culmi-
nates in precise 3D human mesh recovery and annotation, resulting in a final dataset of approxi-
mately 80,000 entries. A detailed breakdown of our pipeline is provided in Appendix A.4. The
resulting HuMoVe dataset is exceptionally diverse. As visualized by the Voronoi treemap in Figure
4(a), it spans 9 major categories (represented by distinct color groups) and 38 subcategories (rep-
resented by shades within each group), ranging from subtle, everyday actions to dynamic, complex
performances. A full categorical breakdown is available in the Appendix A.4. This careful curation
provides a clean, comprehensive, and challenging foundation for developing the next generation of
kinematically-aware generative models.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We perform experiments on two variants of the open-sourced model, Wan2.1-1.3B and Wan2.2-
5B, to validate the effectiveness of our method. The initial motion-only training phase leverages

6
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Table 1: Comparison with baseline models on video generation. We report both human evaluation
and automatic metrics. Bold indicates the best performance, and underline indicates the second best.

Auto Metrics Human Eval
Human

Anatomy
Motion

Smoothness
Dynamic
Degree

Aesthetic
Quality

Video
Quality

Prompt
Following

Posture
Plausibility

CogVideoX-2B 61.7 97.0 49.4 51.6 55.3 52.1 53.6
Wan-1.3B 78.1 98.2 60.6 60.1 68.2 70.3 64.0
Video Tuning(Wan-1.3B) 77.4 98.3 61.6 59.7 69.3 73.2 65.5
EchoMotion(Wan-1.3B) 79.6 98.9 61.9 60.0 71.3 73.2 66.1
CogVideoX1.5-5B 65.3 98.5 54.4 53.2 62.5 60.4 59.4
Wan-5B 83.0 98.9 62.2 58.3 72.8 78.9 68.9
Video Tuning(Wan-5B) 83.1 98.7 63.1 57.9 72.3 79.6 70.2
EchoMotion(Wan-5B) 85.1 99.3 64.0 58.3 81.0 81.5 81.6

a composite motion dataset. This dataset comprises our proposed HuMoVe dataset alongside the
extensive HumanML3D dataset (Guo et al., 2022), a public repository containing over 14,616 human
motions in SMPL format. During the multi-task paired motion-video training phase, we train our
model using our collected motion-video paired data. The Wan2.2-5B+EchoMotion model is trained
for 4000 A100 GPU hours.

4.2 TEXT TO VIDEO GENERATION

Evaluation Protocol. To enable a comprehensive evaluation, we build a new benchmark that covers
a wide spectrum of human motion, from daily activities to extreme athletic feats. Our benchmark
includes a diverse set of prompts (30 per category) covering: precise, high-momentum movements
from gymnastics and athletics; fluid, expressive motions from dance; reactive and interactive scenar-
ios from ball and combat sports; and the natural gestures of everyday life. For quantitative analysis,
we use the automatic metrics from VBench (Huang et al., 2024) and VBench-2.0 (Zheng et al.,
2025), alongside human user studies to collect numerical ratings. These quantitative findings are
complemented by qualitative visualizations that illustrate the performance of our method.

Quantitative Results. We evaluate our method against the video-only baselines at both 1.3B and
5B scales. The results, summarized in Table 1, demonstrate that our joint modeling approach yields
substantial gains in motion fidelity. On automatic metrics, EchoMotion markedly improves scores
for Motion Smoothness and Anatomical Consistency over the baselines. Notably, this improvement
is achieved without any reduction in the Aesthetic Quality score. These results are strongly corrob-
orated by our human evaluation, where participants assign EchoMotion significantly higher ratings
for Video Quality, Motion Plausibility, and Prompt-Following for human-centric prompts.

Qualitative Results. Figure 5 highlights the critical limitations of Video-only training on com-
plex, human-centric prompts. While the Wan2.2-5B baseline generates reasonable aesthetics, it
consistently violates kinematic constraints, producing severe anatomical artifacts (e.g., the tangled
gymnast, the distorted skateboarder). Furthermore, the baseline struggles with semantic composi-
tionality, failing to execute the multi-step workout sequence. In contrast, by jointly modeling video
and human motion, our model generates subjects with plausible anatomy and successfully follows
compositional instructions. As shown, it produces coherent and correct motions for all three chal-
lenging prompts, demonstrating a deeper understanding of human action.

In addition to outperforming baselines, our method demonstrates remarkable versatility and a sophis-
ticated capacity for multi-modal generation. Figure 6 showcases its generative breadth, successfully
synthesizing a wide variety of high-quality, kinematically plausible actions—from a golf swing to a
snowboarding aerial—across diverse scenes. Moreover, the efficacy of our joint modeling approach
is directly illustrated in Figure 7, where the model simultaneously generates a video and its corre-
sponding, temporally-aligned SMPL sequence from one prompt. This co-generation demonstrates
that the model’s output is not simply a pixel-level synthesis but is fundamentally conditioned on an
internal representation of human kinematics.
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“The video shows a skateboarder quickly sliding down a stair railing, maintaining balance throughout, with bold and smooth movements.”

“A gymnast is stretching on the mat before training, lifting her legs over her head and showing off her incredible flexibility.”

“A fit, muscular female athlete is performing a dynamic workout combining squats and cross touches in an indoor space. She is in a standing position, 
with her hands clasped in front of her chest. Then, she quickly squats to complete one squat movement. Immediately after, she lifts one leg high to 
complete a stretching movement…”

Wan 2.2-5B EchoMotion(Wan-5B)

Figure 5: Qualitative comparison with the 5B baseline. Our model (EchoMotion, right) generates
anatomically correct and semantically coherent human motions, resolving the severe artifacts and
compositional failures present in the baseline (left).

“A man is using a rowing machine in the gym, reaching forward with both hands, moving in a coordinated 
manner as if he is really rowing.”

“A man begins with a side stance, his body slightly bent, holding a driver tightly with both hands, intently 
focusing on the golf ball on the ground. He then smoothly completes the backswing…”

“The video shows a soccer player practicing dribbling on the green grass. He is wearing an orange 
training vest, and the frequency of his foot movements keeps changing..…”

“A male boxer is training with a punching bag in a modern gym. He looks focused, alternating his punches 
against the bag...”

“In a modern gym, a male dressed in a gray sweatshirt is performing squats with his hands in a prayer 
position. The background is neatly arranged with dumbbells..…”

“In a magnificent snowy mountain environment, a snowboarder wearing a purple hooded ski suit and light-
colored ski gear charged up the snow slope and randomly executed an impressive aerial maneuver.…”

Figure 6: Text-to-video results from EchoMotion, demonstrating both strong prompt alignment
and high kinematic plausibility across a diverse range of human-centric scenarios. Please refer
to Appendix A.6 and the supplementary material for additional examples and video results.

4.3 CROSS-MODAL COMPLETION

Our model’s unified design enables powerful cross-modal capabilities, as shown in Figure 8. By
forming tasks as modal completion, EchoMotion operates bi-directionally: (a) it can synthesize
a high-fidelity video that precisely follows a given motion sequence (motion-to-video), and (b) it
can recover the underlying SMPL motion from an input video (video-to-motion). This flexibility
to perform both generation and inverse kinematics with a single model highlights the significant
advantage of our joint modeling approach.

4.4 ABLATION STUDIES

Joint Generation vs. Video-Only Generation. We compare our joint training approach against
a baseline fine-tuned exclusively on the video data from our dataset (Video Tuning). As shown in
Table 1, while the Video-only tuning approach offers only marginal improvements and fails to en-
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Figure 7: EchoMotion jointly generates an SMPL motion sequence (left) and video (right), demon-
strating a learned joint distribution.

“An Asian woman with black hair tied in a low 
ponytail, dressed in a dark gray sleeveless sports tank 
top and black high-waisted workout pants…”
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(a) Generate Human Video Given Conditional Motion and Text (b) Recovery Human Motion Given  Video

“A young woman is bouncing on an indoor trampoline, 
with a purple wall in the background, which features 
two tall arched windows symmetrically placed …”

Figure 8: Cross-modal completion by EchoMotion. (a) Motion-to-Video synthesis from motion and
text. (b) Video-to-Motion recovery (inverse kinematics).

hance key kinematic metrics, our EchoMotion model demonstrates substantial gains in both Human
Anatomy and, notably, Posture Plausibility. This result confirms our central hypothesis: The key to
high-quality human motion synthesis lies in the joint modeling of appearance and kinematics during
training, whereas simply adding more human-centric video data offers marginal benefits.

(a) Attention distribution  
on temporal level 

w/MVS-RoPE

(b) Attention distribution  
on temporal level 
wo/time-level-sync 

Video Human motion
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Figure 9: Effect of MVS-RoPE.

MVS-RoPE Design. To validate our MVS-
RoPE design for aligning video and motion
modalities, we visualize the self-attention score
in Figure 9. Crucially, the motion temporal se-
quence is four times the length of the video
temporal sequence, requiring the model to learn
a non-trivial 4:1 temporal mapping. In our
model with MVS-RoPE (a), the attention map
reflects this perfectly. The video-to-motion at-
tention forms a clear, shallow diagonal, while
the Motion-to-Video attention forms a corre-
sponding steep diagonal. This asymmetrical
structure is direct evidence that the model has
learned the correct temporal alignment. In contrast, the baseline without MVS-RoPE (b) fails com-
pletely; the attention is scattered, and the required diagonal structures are absent, demonstrating its
inability to synchronize the two modalities.

5 CONCLUSION

We present EchoMotion, a novel framework for generating human videos by jointly modeling ap-
pearance and kinematics within a dual-modality DiT. To achieve this, our method utilize a SMPL-
based parametric human motion representation and a proposed MVS-RoPE to enforce temporal
alignment between video and motion modalities during self-attention computation. Furthermore, a
mixed in-context learning strategy equips the model with versatile capabilities, such as controllable
motion-to-video and video-to-motion generation. The development of this framework is supported
by our introduction of HuMoVe, a new dataset of about 80,000 high-quality video-motion pairs.
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Limitations. Our framework is currently limited to single-person generation. Extending it to multi-
person scenarios, while architecturally feasible by concatenating SMPL tokens, would require creat-
ing a new, large-scale dataset with per-person annotations. As this represents a significant resource
commitment, we prioritized perfecting the single-person generation model in this work and leave
multi-person generation as a promising direction for future projects.

ETHICS STATEMENT

The authors have read and adhered to the ICLR Code of Ethics. Our work introduces a powerful
video generation model, EchoMotion, and a new human-centric dataset, HuMoVe, which prompts
careful consideration of several ethical dimensions.

Potential for Misuse We acknowledge that generative models capable of creating realistic hu-
man videos, such as EchoMotion, have dual-use potential. This technology could be misused for
creating synthetic media for malicious purposes (e.g., ”deepfakes,” disinformation). Our primary
research goal is to advance the scientific understanding of motion dynamics in generative models,
with potential positive applications in creative industries, virtual reality, and data augmentation for
training robust perception models. We are committed to responsible research dissemination and will
explore methods like digital watermarking in future work to mitigate misuse.

Bias in Data and Models The HuMoVe dataset, despite our efforts to capture diverse motions,
may reflect biases present in the source data regarding demographics, cultural representation, and
types of activities. Consequently, models trained on this data, including EchoMotion, may inherit
and potentially amplify these biases. We recognize this as a limitation and an important direction
for future work, which should focus on dataset expansion, bias detection, and algorithmic fairness
to ensure more equitable generative outcomes.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. To this end, we provide detailed
information and resources as described below.

Code and Pre-trained Models The complete source code for our EchoMotion model, along with
the pre-trained model weights, will be publicly released in a GitHub repository upon publication.
This will allow the community to verify our results, build upon our work, and apply the model to
new tasks.

Dataset Our newly constructed HuMoVe dataset will be publicly released. This release will in-
clude the video identifiers, our detailed textual annotations, and the extracted SMPL parameters.
We provide a comprehensive description of the data collection, filtering, and annotation process in
the Appendix A.4 to ensure transparency.

Computational Environment The Appendix includes a description of the computational envi-
ronment used for our experiments, specifying key dependencies such as PyTorch version, CUDA
version, and other relevant libraries, to help other researchers replicate our setup.
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A APPENDIX

A.1 USE OF LLMS

We utilized Large Language Models (LLMs) in several capacities to assist in this research. The
core intellectual contributions, including the formulation of the research problem, the design of
the EchoMotion architecture, the MVS-RoPE mechanism, and the mixed multi-modal in-context
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learning strategy, were conceived and developed entirely by the human authors. The roles of LLMs
were confined to the following assistive tasks:

1. Writing and Manuscript Refinement: We employed general-purpose LLMs, such as
OpenAI’s ChatGPT, for grammatical corrections, stylistic improvements, and enhancing
the clarity and readability of the manuscript. The scientific narrative, structure, and all
claims remain the original work of the authors.

2. Data Curation Support: To aid in the collection of our HuMoVe dataset, we used an LLM
to generate a broad set of keywords and search queries related to complex human motions.
This helped to systematically identify relevant video content from public-domain sources.

3. Automated Video Annotation: A significant part of the annotation process for the Hu-
MoVe dataset was facilitated by an in-house Vision-Language Model (VLM). This model
was tasked with generating the initial draft of the granular textual descriptions for each
video clip, covering (1) the subject’s appearance and attire, (2) the background context,
and (3) a description of the action.

A.2 PRELIMINARY

Diffusion Tranformers(DiT). Diffusion Transformers (DiTs) (Peebles & Xie, 2023) replace the
conventional U-Net backbone in diffusion models with a pure transformer architecture, demonstrat-
ing superior performance and scalability. A DiT operates on latent space and is composed of three
main stages:

• An input encoder that ”patchifies” the noisy latent variable into a sequence of tokens.

• A series of transformer blocks that process these tokens. These blocks are conditioned
on the diffusion timestep t and other context, such as text embeddings, via adaptive layer
normalization (adaLN).

• A final decoder that ”unpatchifies” the output tokens back into the predicted noise map.

Flow Matching. During training, video latents xi is disturbed by a random noise x0 ∼ N (0, I),
according to the timestep t ∈ [0, 1], i.e.,

xt = tx1 + (1− t)x0. (7)

The model is trained to predict the velocity vt = x1 − x0 by minimizing the MSE loss of the model
prediction and vt,

L = Ex0,x1,y,t||u(xt, y, t; θ)− vt||2, (8)

where y is the input text description, θ denotes the model weights, and u(xt, y, t; θ) is the prediction
by the DiT model.

Rotary Position Embedding (RoPE). Rotary Position Embedding(Heo et al., 2024) encodes abso-
lute positional information by applying position-dependent rotations to the query and key vectors,
which are typically adopted by recent Transformers to inject positional information within self-
attention layers. Given a d-dimention vision embedding xt,h,w with a 3D positional index (t, h, w)
in the sequence, 3D RoPE is added dimension-wise,

x̃t,h,w = RΘ
t,h,wxt,h,w, (9)

where RΘ
t,h,w denotes a 3D rotation matrix determinded by the given 3D positional index and a

pre-defined base frequency Θ.

A.3 THE JOINT DISTRIBUTION OF VIDEO AND HUMAN MOTION.

Instead of modeling the video-only distribution, we propose that the distribution of human move-
ment video, denoted as pθ(z), can be modeled by a joint distribution of its video and corresponding
human motion parameters. Specifically, given a text prompt y, the distribution p(z|y) can be formu-
lated as

p(z|y) = pθ(x,m|y), (10)
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where x and m represent the video and the human motion parameters, respectively. The goal of
our model f is to learn the joint distribution pθ(x,m|y). During inference, we generate a video
and corresponding human motion parameters by iteratively denoising the video and human motion
latents jointly.

x,m = f(y) (11)
Revisiting Eq.10, we could derive that

pθ(x|m, y) =
pθ(x|y)

pθ(x,m|y)
, (12)

where pθ(x|m, y) corresponds to the video conditional distribution given the human motion. There-
fore, sampling the video from the pθ(x|m, y) is equivalent to generating a video that matches the
given human motion m and text prompt y, i.e., controllable video generation. Similarly, given a
video, we can recover the human motion parameters within the video by sampling from the motion
conditional distribution:

pθ(m|x, y) = pθ(m|y = ∅)
pθ(x,m|y = ∅)

. (13)

A.4 DETAILS OF HuMoVe DATASET

Fine-grained Categories. Table 2 details the two-level classification scheme used to organize our
dataset. We group specific, fine-grained activities (e.g., Skateboarding, Swimming, Boxing) into
broader, thematic major categories (e.g., Urban & Outdoor, Water Sports, Combat Sports). This
taxonomy provides a structured framework for analyzing the dataset’s diversity and for evaluating
model performance across different motion types.

Table 2: Mapping of Major Categories to their corresponding Fine-grained Categories.

Major Category Fine-grained Categories
Urban & Outdoor Archery, Cycling, Equestrian, Highlining, Motocross,

Parkour, Rock Climbing, Skateboarding, Street Workout

Water Sports Kayaking, Kitesurfing, Paddleboarding, Surfing,
Swimming, Wakeboarding, Windsurfing

Athletics & Fitness Athletics, Olympics

Ball Sports Basketball, Golf, Soccer, Tennis, Volleyball

Combat Sports Boxing, Judo, MMA, Taekwondo, Wrestling, Wushu

Dance & Artistic Artistic Roller Skating, Breakdancing, Dancing

Gymnastics & Acrobatic Gymnastics, Trampoline

Ice & Snow Sports Figure Skating, Skiing & Snowboarding

General & Others Daily Activity, Other

Raw Data Collection.

To ensure our raw data encompasses a wide range of human movements, our collection process be-
gan with a structured, top-down approach. We first manually defined nine major motion categories,
as detailed in Table 2 (e.g., Urban & Outdoor, Water Sports, and Combat Sports). These high-level
categories were then provided as input to a Large Language Model (LLM), which we tasked with
generating a diverse list of specific search keywords for each category. An example of the prompt
used for this task is shown below. The resulting keywords were subsequently used to collect a
raw data pool from diverse sources, including open-source datasets, movies, and the internet. The
prompt used for this task is shown below.� �
You are a data sourcing expert for computer vision research. Your task is

to expand high-level categories of human motion into specific,
diverse, and fine-grained search keywords suitable for video
platforms.
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For each major category provided, generate a list of 20-30 search terms.

Here is an example of the desired input-output format:

**Input:**
Major Category: Combat Sports

**Desired Output Keywords:**
- boxing training drills 4k
- MMA sparring session slow motion
- cinematic Taekwondo high kick
- Judo throw tutorial
- female wrestler practice highlights
- Wushu performance competition
...

Now, please generate keywords for the following list of major categories:
- Urban & Outdoor
- Water Sports
- Athletics & Fitness
- Ball Sports
- Combat Sports
- Dance & Artistic
- Gymnastics & Acrobatics
- Ice & Snow Sports
- General & Others� �
Listing 1: The prompt used to expand major categories into specific search keywords via an LLM.

Data Filtering. Raw video data often exhibits frequent scene translation and contains low aesthetic
and resolution data, which will negatively impact the performance of the model. To mitigate these
challenges, we employ a scene detection model to segment the raw video into clips and leverage an
aesthetic scoring model to filter out video clips with low aesthetic quality. As this work primarily
focuses on the movement of the main characters in the foreground, we employed a bounding box de-
tection model to identify the individuals in the video, and filtered out those containing multiple main
characters by comparing the number and area of the bounding boxes. Moreover, the DWPose(Yang
et al., 2023) is employed to detect the number of visible key points within the video. Those data
with a relatively low number of visible key points are filtered to avoid artifacts and jitter during the
3D human pose detection stage.

Human Mesh Recovery and Post Process. Given the track bounding boxes as input, to obtain
frame-wise high-quality SMPL parameters including β ∈ R10, θ ∈ R24, Γ ∈ R6, and v ∈ R3, we
use the CameraHMR(Patel & Black, 2025) for the human mesh estimation, due to its high stability
and accuracy. Moreover, we perform temporal smoothing on the frame-wise SMPL parameters and
obtain the positions of the 3D keypoints J ∈ R24×3 through motion retargeting. Finally, we leverage
a Vision-Language Model(Wang et al., 2024a) to caption the videos. Our construction mechanism
yields about 80k high-quality paired datasets.

A.5 COMPARISON WITH TOP-TIER COMMERCIAL MODELS.

We thank the reviewers for this valuable suggestion. We are actively conducting the experiments for
the comparison with top commercial models. We plan to finalize this analysis within the next four
days and will update this document with the full results.

A.6 MORE QUALITATIVE RESULTS

In this section, we provide an expanded gallery of qualitative results to further demonstrate the
capabilities of EchoMotion.

Figure 10 showcases a diverse set of text-to-video generation results, highlighting the model’s ability
to handle complex prompts across various activities and environments. Figure 11 focuses on the
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“On a rushing river, the splashing milky-white water intertwines with the dark gray jagged rocks, as a 
female athlete smiles while kayaking…”

“A young smoothly dribbles in from the right side, controlling the ball rhythmically with his right hand, his 
body crouched like a poised cheetah; as he approaches the basket, he suddenly stops, and with explosive 
power from his legs, leaps into the air, raising the basketball above his head and dropping it into the 
hoop..…”

“A white woman occupies the center of the frame, her hands tightly gripping the horizontal bar, her arms 
extended straight, her body hanging naturally like a pendulum. Then, she elegantly bends and lifts her legs, 
with her toes pointed straight towards the ceiling, briefly hovering before gently falling like a feather…”

“A female skateboarder executed a difficult aerial flip in an outdoor U-shaped pool. She was dressed in a 
form-fitting black long-sleeve shirt, light blue jeans, and pure white sneakers, with her golden hair flowing 
in the wind. As she landed, her feet made solid contact with the slope, her knees bent flexibly to absorb the 
impact, and her arms extended like eagle wings to stabilize her center of gravity....”

“At the summit of a magnificent snow-covered mountain, a man dressed in a bright blue-green hooded ski 
suit launches himself into the air from a steep slope, smoothly executing an elegant backflip in mid-air, his 
snowboard tracing a dynamic arc as he spins; he lands by bending his knees to absorb the impact and 
continues to glide steadily…”

“In a quiet indoor corner, the light blue walls radiate a warm blue tone under soft volumetric light, while 
the light-colored wooden floor reflects a delicate sheen. A middle-aged woman with curly hair and 
sunglasses walks in from the left side of the scene, then she bends down, placing her hands on a yoga mat, 
with her legs in a lunge position to stretch...”

“... A young white male surfer stands barefoot on a light blue surfboard; his body is slightly bent like a bow, 
arms spread wide like wings to maintain balance with precision, eyes focused ahead, smoothly performing 
the difficult maneuver of shifting his body weight and rotating the board. ”

“At the golden moment on a professional athletic field, a strong young male athlete with a deep skin tone 
and neat black short hair is running steadily from the left side of the frame to the right, his body leaning 
forward with a sense of power, arms swinging rhythmically, steps coordinated and powerful, with a focused 
face full of training passion...”

“On the deep gray rubber mat of a modern gym, a woman in bright blue sports underwear and high-
waisted tight shorts is fully focused on rope training. She leans forward, her back straight as a blade, legs 
slightly bent to gather strength, gripping the black padded handles firmly, pulling the rope down to her 
chest in a smooth and controlled rhythm, then slowly returning it to the starting point…”

“In the kitchen, the sunlight outlines the plump contours of the bright red tomatoes on the wooden cutting 
board. A woman with a sincere smile is facing the camera, her hands gracefully raised to her chest with 
palms facing outward to show an open posture. She then naturally brings her hands together in front of her 
chest, maintaining a friendly expression, and slightly bows to convey a naturally warm friendliness... ”

Figure 10: Additional text-to-video generation results from EchoMotion. These examples showcase
the model’s capability to generate a diverse range of high-quality videos, spanning various activities
(e.g., kayaking, skateboarding, skiing) and environments. The results demonstrate a faithful adher-
ence to complex and detailed textual descriptions.

motion-to-video task, illustrating how EchoMotion precisely translates 3D motion sequences into
realistic videos while adhering to textual descriptions of appearance and context.

A.7 MORE QUANTITATIVE RESULTS

A.7.1 TEXT-TO-VIDEO.

To provide a more granular understanding of our model’s performance and robustness, we present
a detailed quantitative comparison across various motion categories. Figure 12 visualizes the per-
formance of our proposed model, EchoMotion(Wan-5B), against several baselines and ablations.
The evaluation is conducted on a diverse set of nine categories—Athletic, Arts, Ball, Daily, Fight,
Gymnastics, Ice Show Sports, Outdoor, and Water Sports—in addition to an overall average perfor-
mance. Models are assessed on four key metrics: Aesthetic Quality, Dynamic, Human Anatomy,
and Motion Smoothness.

A consistent trend emerges from the results: while all models achieve competitive scores in Aes-
thetic Quality, our final model, EchoMotion(Wan-5B), establishes a significant lead in the metrics
most critical to motion fidelity: Human Anatomy and Motion Smoothness. For instance, in the ”Av-
erage Performance” comparison, our model outperforms the next-best baseline by a clear margin
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“An Asian young man is standing in the center of a dimly lit gym, wearing a dark gray hoodie and black tight training pants, engaged in strength training. The 
background features neatly arranged dark metal racks, which hold dumbbells and colored solid balls—orange, deep blue, and dark green spheres are interspersed, with a 
clearly visible brick wall texture in the back....”

“A young South Asian male is doing physical training on a rural path at dusk. He has a lean and muscular build, short hair, and a light beard. He is wearing a dark gray 
sleeveless sports vest and navy blue shorts, decorated with light gray stripes at the hem. He is barefoot on the dirt path. The background features an open, fallow 
farmland, with dried straw scattered on the ground....”

“A young Asian woman is dressed in a dark turtleneck knit sweater and loose-fitting trousers, set in a minimalist industrial-style indoor space. The background features a 
textured concrete wall and a large floor-to-ceiling window. The shot is a medium shot, stable and fixed, with black-and-white tones maintaining the original high-contrast 
style, and the light and shadow structures remain unchanged, creating a calm yet tense overall atmosphere....”

“A deep-skinned, athletic African female athlete is in the final phase of her run-up for long jump at an outdoor track and field venue. She is on a deep red rubber track, 
with light yellow marker blocks visible at the edge of the track. The background features slightly blurred palm trees and shrubs, interspersed with scattered orange 
tropical flowers, and in the distance, there is the silhouette of low gray stands......”

Figure 11: Additional results for the motion-to-video task. These examples illustrate EchoMotion’s
ability to accurately render a given 3D motion sequence into a visually coherent video. Crucially, the
model follows the kinematic guidance from the motion input for the action, while simultaneously
adhering to the textual prompt for the subject’s appearance, attire, and scene context.

in these two areas. This strongly indicates that our approach is particularly effective at generating
anatomically correct human figures and ensuring temporally coherent, smooth movements, which
are common challenges in human video generation.

The strength of our model is further validated by its consistent high performance across a wide
spectrum of motion types. From the intricate and precise movements in ”Gymnastics” and ”Arts” to
the large-scale, dynamic actions in ”Water Sports” and ”Fight,” our model consistently ranks first.
This demonstrates the generalizability and robustness of our method, proving it is not overfitted to a
specific type of motion but can handle a diverse range of human activities effectively.

A.7.2 MOTION-TO-VIDEO.

Following VACEJiang et al. (2025), we provide a quantitative comparison on the motion-to-video
task against several leading methods, including Text2Video-Zero (Khachatryan et al., 2023), Follow-
Your-Pose (Ma et al., 2024a), VACE-14B (Jiang et al., 2025), and the specialized animation model
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Figure 12: Per-category quantitative comparison. We provide a detailed performance breakdown of
our model (Wan2.2 5B + EchoMotion) and other baselines across nine distinct motion categories,
plus an overall average. Models are evaluated on four metrics: Aesthetic Quality, Dynamic, Human
Anatomy, and Motion Smoothness. Our model consistently achieves superior performance, partic-
ularly in Human Anatomy and Motion Smoothness, across all tested scenarios, demonstrating its
robustness and high-fidelity motion generation capabilities.

Wan2.2-Animate-14B (wan). As shown in Table 3, EchoMotion achieves highly competitive results,
demonstrating excellent video quality and strong kinematic plausibility.

It is important to clarify that our task is a cross-modal completion challenge (generating from both
text and motion), which is distinct from standard image animation (driving a source image with mo-
tion). For the comparison with Wan2.2-Animate-14B, which requires a source image, we provided
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the first frame of the ground truth video as its input. Since this setup does not use a text prompt to
define appearance, the Prompt Following metric is not applicable for this method.

The result highlights a key advantage of EchoMotion: its ability to jointly understand and synthe-
size from both textual and motion inputs, offering greater flexibility. It is particularly noteworthy
that despite being a more compact (5B) and versatile multi-task model, EchoMotion delivers perfor-
mance on par with larger models specialized for a single task. Crucially, this versatility is achieved
with remarkable parameter efficiency. Unlike approaches that require training an auxiliary control
module (e.g., a ControlNet branch), EchoMotion natively supports the motion-to-video task through
its unified multi-task training, without introducing any additional parameters.

A.7.3 VIDEO-TO-MOTION.

Following the evaluation protocol of recent works like ChatHuman (Lin et al., 2025), we assess the
performance of our Video-to-Motion capability on 200 samples from the 3DPW test set (Von Mar-
card et al., 2018). We report the Mean Per-Joint Position Error (MPJPE) and Procrustes-Aligned
MPJPE (PA-MPJPE) and categorize the compared methods into two groups: reconstruction-based
and generative-based, as shown in Table 4.

The results show that while our method does not surpass specialized, reconstruction-based models
like HMR2.0Goel et al. (2023), this is an expected outcome. Reconstruction-based methods are
typically optimized for the single task of human mesh recovery and often rely on strong supervision
from 2D keypoint annotations during training. In contrast, our EchoMotion model is designed as a
versatile, multi-task generative framework, which inherently involves a trade-off between special-
ization and flexibility. Within the more comparable category of generative-based approaches, our
method achieves performance on par with the state-of-the-art ChatHuman, demonstrating the effec-
tiveness of our unified model which supports not only motion recovery but also broader generative
tasks.

A.7.4 MOTION GENERATION.

We are actively conducting the experiments for the motion generation results. We plan to finalize
this analysis within the next four days and will update this document with the full results.

A.8 MORE ABLATION STUDIES

In this section, we present additional ablation studies to further validate the architectural design
choices of EchoMotion.

A.8.1 IMPACT OF POSITIONAL COLLISIONS IN MVS-ROPE

To demonstrate the necessity of the spatial extension design within our proposed MVS-RoPE, we
investigate the effect of spatial index overlap between modalities. We compare two distinct configu-
rations: (a) EchoMotion (Proposed): Motion tokens are treated as a diagonal extension of the visual
latent space to ensure unique spatial identifiers. The encoding is formulated as:

f̂m
t,i = MVS-RoPE(fm

t,i, t, i) = R(t,H + i,W + i) · fm
t,i, (14)

where H and W denote the spatial dimensions of the video latents.

(b) Positional Collision (Baseline): Motion tokens are assigned spatial indices starting from the
origin, identical to the initial visual tokens. This results in a ”collision” of coordinates:

f̂m
t,i = MVS-RoPE(fm

t,i, t, i) = R(t, i, i) · fm
t,i. (15)

Both models were trained for 1,600 iterations under identical settings. The qualitative comparison is
illustrated in Figure 13. The results reveal a stark contrast: the model utilizing our proposed MVS-
RoPE (Left) produces visually appealing and temporally coherent videos. Conversely, the Positional
Collision baseline (Right) suffers from severe visual degeneration, generating output with collapsed
structures and noise.
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wo/ position collisions (ours) w/ position collisions

Figure 13: The negative effect of positional collision of the positional embedding.

Table 3: Quantitative comparison on human motion generation. Best results are highlighted in bold
and second-best results are underlined.
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Text2Video-Zero 57.6 79.7 23.9 76.6 44.2 70.1 40.9
Follow-Your-Pose 48.8 90.1 26.1 88.0 50.9 79.2 42.1
VACE-14B 60.2 98.6 26.4 97.3 79.2 82.4 66.9
Wan2.2-Animate-14B 61.4 98.9 28.1 99.2 - 87.2 68.9
EchoMotion(Wan-5B) 59.2 99.1 26.9 98.4 78.2 82.2 65.2

This degradation occurs because identifying the modality of a token relies heavily on its positional
embedding in the attention mechanism. When motion and video tokens share the same spatial
coordinates (collision), it creates positional ambiguity. This forces the motion tokens to interfere
with the visual tokens in the attention mechanism, disrupting the pre-trained generative priors of
the video backbone and preventing the model from effectively distinguishing between the latent
representations of the two modalities.

A.8.2 TWO-STAGE TRAINING SCHEME.

To validate the effectiveness of our proposed two-stage training strategy, we compare it against a
one-stage baseline. The baseline model is trained on the motion-video paired dataset from scratch,
without the initial motion-only pretraining phase. As illustrated in Figure 14(a), our two-stage
method demonstrates significantly improved training efficiency. Specifically, our model with mo-
tion pretraining (red curve) reaches a low motion loss convergence threshold more than 20 times
faster in terms of GPU hours compared to the baseline that trains both modalities jointly from the
beginning (blue curve). This highlights the benefit of allowing the motion branch to first converge
in its own domain. This pretraining phase prevents the learning signal from the motion branch from
being overshadowed by the computationally dominant video branch, leading to a more stable and
efficient joint training process in the second stage.

A.8.3 DUAL-BRANCH ARCHETECTURE.

We conduct an ablation study to verify the superiority of our dual-branch DiT architecture over a
single-stream alternative. The single-stream baseline processes the concatenated video and motion
tokens through a shared set of Q, K, V projection and FFN layers. In contrast, our dual-branch
design employs a separate set of weights (i.e., experts) for the projection and FFN layers of each
modality.
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Table 4: Quantitative comparison of Human Mesh Recovery performance on the 3DPW dataset
(Von Marcard et al., 2018). We categorize methods into reconstruction-based and generative-based
approaches. Best results are highlighted in bold.

Method PA-MPJPE ↓ MPJPE ↓

Rec-Based SPIN (Kolotouros et al., 2019) 62.9 102.9
HMR2.0 (Goel et al., 2023) 58.4 91.0

Gen-Based
ChatPose (Feng et al., 2024) 81.9 163.6
ChatHuman (Lin et al., 2025) 58.7 91.3
EchoMotion(Video-to-Motion) 59.8 94.1

(a) Training GPU hours vs. Motion loss (b) Training step vs. Flow matching loss

Figure 14: Ablation studies on our key designs. (a) Comparison of training efficiency between our
two-stage training scheme (w/ Motion Pretraining) and a one-stage baseline (w/o Motion Pretrain-
ing). The x-axis is in log scale. Our method achieves the same motion loss convergence with over
20x fewer GPU hours. (b) Comparison of training performance between our Dual-stream DiT and a
Single-stream DiT baseline. Our architecture achieves a consistently lower loss and converges to a
better final value.

As illustrated in Figure 14(b), the training loss curves for both architectures reveal a clear perfor-
mance gap. Our dual-branch model (orange curve) consistently achieves a lower flow matching loss
throughout the training process compared to the single-stream baseline (blue curve). Notably, our
model converges to a significantly lower final loss, while the baseline plateaus at a higher value, as
highlighted in the magnified inset. This result suggests that providing dedicated processing paths
for video and motion modalities allows the model to learn more effective and specialized represen-
tations. This approach avoids the potential feature interference that can occur in a shared-weight,
single-stream architecture, ultimately leading to superior model performance and a more robust joint
distribution model.

A.9 EXPERIMENTS DETAILS

We adapt two pre-trained video foundation models, Wan2.1-1.3B and Wan2.2-5B, by integrating
our dual-modality blocks.

• For the 1.3B model, we replace all original DiT blocks with our video-motion blocks. This
results in a final model with 2.6B parameters.

• For the larger 5B model, we adopt a hybrid strategy, replacing half of the video blocks with
our dual-modality blocks, which yields a final model with 7.5B parameters.

All models were trained on NVIDIA A100 80GB GPUs. The 2.6B model required approximately
2,300 GPU hours for pre-training, while the 7.5B model required 4,000 GPU hours. Detailed train-
ing hyperparameters are provided in Table 5.
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Table 5: Experimental settings of EchoMotion 1.3B model.

Parameter Value
Transformer dim 1536

Numbers of heads 24
Numbers of layers 30

Number of video-only blocks 0
Number of video-motion blocks 30

Video height 480
Video width 832
Video frame 81

FPS 16
Batchsize 2

Train timesteps 1000
Train shift 8.0
Optimizer AdamW

Learning rate 8e-6
Weight decay 0.001

Sample timesteps 50
Sample shift 8.0

Sample guidance scale 6.0

Table 6: Experimental settings of EchoMotion 5B model.

Parameter Value
Transformer dim 3072

Numbers of heads 24
Numbers of layers 30

Number of video-only blocks 15
Number of video-motion blocks 15

Video height 708
Video width 1280
Video frame 121

FPS 24
Batchsize 1

Train timesteps 1000
Train shift 8.0
Optimizer AdamW

Learning rate 8e-6
Weight decay 0.001

Sample timesteps 50
Sample shift 8.0

Sample guidance scale 6.0

A.10 COMPUTATION AND PARAMETER ANALYSIS

As illustrated in Figure 15, it is crucial to distinguish between our model’s parameter count and its
computational cost. While introducing the dual-branch architecture significantly increases the to-
tal number of parameters, the growth in computational overhead (i.e., FLOPs) is disproportionately
small. For instance, our 1.3B dual-branch model has double parameters than its video-only counter-
part but requires only 12.9% more FLOPs for a single forward pass. This trend holds true for our
larger 5B models: the hybrid architecture introduces 51% more parameters but only increases the
computational cost by 10.3% (from 237.0 to 261.4 PFLOPs).

This disproportionately small increase in FLOPs is a direct consequence of our architectural design.
The additional parameters are exclusively dedicated to processing motion tokens, which, despite
their rich information content, represent a small fraction of the total sequence length (e.g., 4,131
motion tokens vs. 32,760 video tokens in the 1.3B model). As a result, the impact on practical
inference latency is marginal. This demonstrates that our dual-branch approach is a highly efficient
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Figure 15: Visualization of our model scale and computational cost.

method for incorporating multimodal capabilities, significantly expanding model functionality with
a minimal increase in its computational footprint.

A.11 SOCIETAL IMPACTS AND SAFEGUARDS

The advancements in controllable human video generation grounded in kinematic models, as exem-
plified by our work on EchoMotion, present profound societal impacts. By enabling the creation
of high-quality, kinematically plausible videos with direct control over human motion, our frame-
work democratizes access to sophisticated animation and visual effects tools. This innovation can
dramatically streamline workflows in industries such as filmmaking (for pre-visualization), video
games (for realistic character animation), virtual reality (for lifelike avatars), and even in specialized
fields like sports science and physical therapy for visualizing complex biomechanics. The ability
to generate videos from structured motion data offers unprecedented creative flexibility and a new
paradigm for digital human creation.

However, the power of such generative technologies also introduces significant challenges. The au-
tomation of high-fidelity animation could lead to job displacement for traditional 3D animators and
motion capture artists, necessitating industry-wide adaptation and a focus on creative direction over
manual execution. More critically, the potential for misuse poses a serious ethical concern. The abil-
ity to generate realistic videos of individuals performing complex actions they never took could be
exploited to create highly convincing deepfakes, impersonations, or misinformation, thereby erod-
ing public trust. Furthermore, ensuring that our MoV e dataset and the models trained on it are free
from demographic or physical biases is essential to prevent the generation of content that reinforces
harmful stereotypes.

To address these issues, we implement robust safeguards. Our models inherit the safety mechanisms
from their foundational bases (Wan2.1 and Wan2.2), which include filters to detect and prevent
the generation of inappropriate or harmful content. We are committed to adhering to strict ethical
guidelines regarding the use of our technology. By open-sourcing our models and the MoV e dataset,
we aim to foster transparency, enable independent auditing, and encourage a community-driven
approach to developing responsible and ethical human-centric generative AI.
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